blob: dd10a9f65bc58b31951dad1db7a82bdce5b80b52 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "tu_private.h"
#include "util/debug.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
struct cache_entry_variant_info
{
};
struct cache_entry
{
union {
unsigned char sha1[20];
uint32_t sha1_dw[5];
};
uint32_t code_sizes[MESA_SHADER_STAGES];
struct tu_shader_variant *variants[MESA_SHADER_STAGES];
char code[0];
};
static void
tu_pipeline_cache_init(struct tu_pipeline_cache *cache,
struct tu_device *device)
{
cache->device = device;
pthread_mutex_init(&cache->mutex, NULL);
cache->modified = false;
cache->kernel_count = 0;
cache->total_size = 0;
cache->table_size = 1024;
const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
cache->hash_table = malloc(byte_size);
/* We don't consider allocation failure fatal, we just start with a 0-sized
* cache. Disable caching when we want to keep shader debug info, since
* we don't get the debug info on cached shaders. */
if (cache->hash_table == NULL)
cache->table_size = 0;
else
memset(cache->hash_table, 0, byte_size);
}
static void
tu_pipeline_cache_finish(struct tu_pipeline_cache *cache)
{
for (unsigned i = 0; i < cache->table_size; ++i)
if (cache->hash_table[i]) {
vk_free(&cache->alloc, cache->hash_table[i]);
}
pthread_mutex_destroy(&cache->mutex);
free(cache->hash_table);
}
static uint32_t
entry_size(struct cache_entry *entry)
{
size_t ret = sizeof(*entry);
for (int i = 0; i < MESA_SHADER_STAGES; ++i)
if (entry->code_sizes[i])
ret +=
sizeof(struct cache_entry_variant_info) + entry->code_sizes[i];
return ret;
}
static struct cache_entry *
tu_pipeline_cache_search_unlocked(struct tu_pipeline_cache *cache,
const unsigned char *sha1)
{
const uint32_t mask = cache->table_size - 1;
const uint32_t start = (*(uint32_t *) sha1);
if (cache->table_size == 0)
return NULL;
for (uint32_t i = 0; i < cache->table_size; i++) {
const uint32_t index = (start + i) & mask;
struct cache_entry *entry = cache->hash_table[index];
if (!entry)
return NULL;
if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
return entry;
}
}
unreachable("hash table should never be full");
}
static struct cache_entry *
tu_pipeline_cache_search(struct tu_pipeline_cache *cache,
const unsigned char *sha1)
{
struct cache_entry *entry;
pthread_mutex_lock(&cache->mutex);
entry = tu_pipeline_cache_search_unlocked(cache, sha1);
pthread_mutex_unlock(&cache->mutex);
return entry;
}
static void
tu_pipeline_cache_set_entry(struct tu_pipeline_cache *cache,
struct cache_entry *entry)
{
const uint32_t mask = cache->table_size - 1;
const uint32_t start = entry->sha1_dw[0];
/* We'll always be able to insert when we get here. */
assert(cache->kernel_count < cache->table_size / 2);
for (uint32_t i = 0; i < cache->table_size; i++) {
const uint32_t index = (start + i) & mask;
if (!cache->hash_table[index]) {
cache->hash_table[index] = entry;
break;
}
}
cache->total_size += entry_size(entry);
cache->kernel_count++;
}
static VkResult
tu_pipeline_cache_grow(struct tu_pipeline_cache *cache)
{
const uint32_t table_size = cache->table_size * 2;
const uint32_t old_table_size = cache->table_size;
const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
struct cache_entry **table;
struct cache_entry **old_table = cache->hash_table;
table = malloc(byte_size);
if (table == NULL)
return vk_error(cache->device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
cache->hash_table = table;
cache->table_size = table_size;
cache->kernel_count = 0;
cache->total_size = 0;
memset(cache->hash_table, 0, byte_size);
for (uint32_t i = 0; i < old_table_size; i++) {
struct cache_entry *entry = old_table[i];
if (!entry)
continue;
tu_pipeline_cache_set_entry(cache, entry);
}
free(old_table);
return VK_SUCCESS;
}
static void
tu_pipeline_cache_add_entry(struct tu_pipeline_cache *cache,
struct cache_entry *entry)
{
if (cache->kernel_count == cache->table_size / 2)
tu_pipeline_cache_grow(cache);
/* Failing to grow that hash table isn't fatal, but may mean we don't
* have enough space to add this new kernel. Only add it if there's room.
*/
if (cache->kernel_count < cache->table_size / 2)
tu_pipeline_cache_set_entry(cache, entry);
}
struct cache_header
{
uint32_t header_size;
uint32_t header_version;
uint32_t vendor_id;
uint32_t device_id;
uint8_t uuid[VK_UUID_SIZE];
};
static void
tu_pipeline_cache_load(struct tu_pipeline_cache *cache,
const void *data,
size_t size)
{
struct tu_device *device = cache->device;
struct cache_header header;
if (size < sizeof(header))
return;
memcpy(&header, data, sizeof(header));
if (header.header_size < sizeof(header))
return;
if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
return;
if (header.vendor_id != 0 /* TODO */)
return;
if (header.device_id != 0 /* TODO */)
return;
if (memcmp(header.uuid, device->physical_device->cache_uuid,
VK_UUID_SIZE) != 0)
return;
char *end = (void *) data + size;
char *p = (void *) data + header.header_size;
while (end - p >= sizeof(struct cache_entry)) {
struct cache_entry *entry = (struct cache_entry *) p;
struct cache_entry *dest_entry;
size_t size = entry_size(entry);
if (end - p < size)
break;
dest_entry =
vk_alloc(&cache->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
if (dest_entry) {
memcpy(dest_entry, entry, size);
for (int i = 0; i < MESA_SHADER_STAGES; ++i)
dest_entry->variants[i] = NULL;
tu_pipeline_cache_add_entry(cache, dest_entry);
}
p += size;
}
}
VkResult
tu_CreatePipelineCache(VkDevice _device,
const VkPipelineCacheCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipelineCache *pPipelineCache)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_pipeline_cache *cache;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
cache = vk_object_alloc(&device->vk, pAllocator, sizeof(*cache),
VK_OBJECT_TYPE_PIPELINE_CACHE);
if (cache == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
if (pAllocator)
cache->alloc = *pAllocator;
else
cache->alloc = device->vk.alloc;
tu_pipeline_cache_init(cache, device);
if (pCreateInfo->initialDataSize > 0) {
tu_pipeline_cache_load(cache, pCreateInfo->pInitialData,
pCreateInfo->initialDataSize);
}
*pPipelineCache = tu_pipeline_cache_to_handle(cache);
return VK_SUCCESS;
}
void
tu_DestroyPipelineCache(VkDevice _device,
VkPipelineCache _cache,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_pipeline_cache, cache, _cache);
if (!cache)
return;
tu_pipeline_cache_finish(cache);
vk_object_free(&device->vk, pAllocator, cache);
}
VkResult
tu_GetPipelineCacheData(VkDevice _device,
VkPipelineCache _cache,
size_t *pDataSize,
void *pData)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_pipeline_cache, cache, _cache);
struct cache_header *header;
VkResult result = VK_SUCCESS;
pthread_mutex_lock(&cache->mutex);
const size_t size = sizeof(*header) + cache->total_size;
if (pData == NULL) {
pthread_mutex_unlock(&cache->mutex);
*pDataSize = size;
return VK_SUCCESS;
}
if (*pDataSize < sizeof(*header)) {
pthread_mutex_unlock(&cache->mutex);
*pDataSize = 0;
return VK_INCOMPLETE;
}
void *p = pData, *end = pData + *pDataSize;
header = p;
header->header_size = sizeof(*header);
header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
header->vendor_id = 0 /* TODO */;
header->device_id = 0 /* TODO */;
memcpy(header->uuid, device->physical_device->cache_uuid, VK_UUID_SIZE);
p += header->header_size;
struct cache_entry *entry;
for (uint32_t i = 0; i < cache->table_size; i++) {
if (!cache->hash_table[i])
continue;
entry = cache->hash_table[i];
const uint32_t size = entry_size(entry);
if (end < p + size) {
result = VK_INCOMPLETE;
break;
}
memcpy(p, entry, size);
for (int j = 0; j < MESA_SHADER_STAGES; ++j)
((struct cache_entry *) p)->variants[j] = NULL;
p += size;
}
*pDataSize = p - pData;
pthread_mutex_unlock(&cache->mutex);
return result;
}
static void
tu_pipeline_cache_merge(struct tu_pipeline_cache *dst,
struct tu_pipeline_cache *src)
{
for (uint32_t i = 0; i < src->table_size; i++) {
struct cache_entry *entry = src->hash_table[i];
if (!entry || tu_pipeline_cache_search(dst, entry->sha1))
continue;
tu_pipeline_cache_add_entry(dst, entry);
src->hash_table[i] = NULL;
}
}
VkResult
tu_MergePipelineCaches(VkDevice _device,
VkPipelineCache destCache,
uint32_t srcCacheCount,
const VkPipelineCache *pSrcCaches)
{
TU_FROM_HANDLE(tu_pipeline_cache, dst, destCache);
for (uint32_t i = 0; i < srcCacheCount; i++) {
TU_FROM_HANDLE(tu_pipeline_cache, src, pSrcCaches[i]);
tu_pipeline_cache_merge(dst, src);
}
return VK_SUCCESS;
}