blob: dc1f212c00329ef930f83648c15505f4ae58d8f4 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_generator.cpp
*
* This file supports generating code from the FS LIR to the actual
* native instructions.
*/
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_cfg.h"
#include "util/mesa-sha1.h"
static enum brw_reg_file
brw_file_from_reg(fs_reg *reg)
{
switch (reg->file) {
case ARF:
return BRW_ARCHITECTURE_REGISTER_FILE;
case FIXED_GRF:
case VGRF:
return BRW_GENERAL_REGISTER_FILE;
case MRF:
return BRW_MESSAGE_REGISTER_FILE;
case IMM:
return BRW_IMMEDIATE_VALUE;
case BAD_FILE:
case ATTR:
case UNIFORM:
unreachable("not reached");
}
return BRW_ARCHITECTURE_REGISTER_FILE;
}
static struct brw_reg
brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
fs_reg *reg, bool compressed)
{
struct brw_reg brw_reg;
switch (reg->file) {
case MRF:
assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
/* Fallthrough */
case VGRF:
if (reg->stride == 0) {
brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
} else {
/* From the Haswell PRM:
*
* "VertStride must be used to cross GRF register boundaries. This
* rule implies that elements within a 'Width' cannot cross GRF
* boundaries."
*
* The maximum width value that could satisfy this restriction is:
*/
const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
/* Because the hardware can only split source regions at a whole
* multiple of width during decompression (i.e. vertically), clamp
* the value obtained above to the physical execution size of a
* single decompressed chunk of the instruction:
*/
const unsigned phys_width = compressed ? inst->exec_size / 2 :
inst->exec_size;
const unsigned max_hw_width = 16;
/* XXX - The equation above is strictly speaking not correct on
* hardware that supports unbalanced GRF writes -- On Gen9+
* each decompressed chunk of the instruction may have a
* different execution size when the number of components
* written to each destination GRF is not the same.
*/
if (reg->stride > 4) {
assert(reg != &inst->dst);
assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
brw_reg = stride(brw_reg, reg->stride, 1, 0);
} else {
const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
}
if (devinfo->gen == 7 && !devinfo->is_haswell) {
/* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
* "Each DF (Double Float) operand uses an element size of 4 rather
* than 8 and all regioning parameters are twice what the values
* would be based on the true element size: ExecSize, Width,
* HorzStride, and VertStride. Each DF operand uses a pair of
* channels and all masking and swizzing should be adjusted
* appropriately."
*
* From the IvyBridge PRM (Special Requirements for Handling Double
* Precision Data Types, page 71):
* "In Align1 mode, all regioning parameters like stride, execution
* size, and width must use the syntax of a pair of packed
* floats. The offsets for these data types must be 64-bit
* aligned. The execution size and regioning parameters are in terms
* of floats."
*
* Summarized: when handling DF-typed arguments, ExecSize,
* VertStride, and Width must be doubled.
*
* It applies to BayTrail too.
*/
if (type_sz(reg->type) == 8) {
brw_reg.width++;
if (brw_reg.vstride > 0)
brw_reg.vstride++;
assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
}
/* When converting from DF->F, we set the destination stride to 2
* because each d2f conversion implicitly writes 2 floats, being
* the first one the converted value. IVB/BYT actually writes two
* F components per SIMD channel, and every other component is
* filled with garbage.
*/
if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
type_sz(inst->dst.type) < 8) {
assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
brw_reg.hstride--;
}
}
}
brw_reg = retype(brw_reg, reg->type);
brw_reg = byte_offset(brw_reg, reg->offset);
brw_reg.abs = reg->abs;
brw_reg.negate = reg->negate;
break;
case ARF:
case FIXED_GRF:
case IMM:
assert(reg->offset == 0);
brw_reg = reg->as_brw_reg();
break;
case BAD_FILE:
/* Probably unused. */
brw_reg = brw_null_reg();
break;
case ATTR:
case UNIFORM:
unreachable("not reached");
}
/* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
* region, but on IVB and BYT DF regions must be programmed in terms of
* floats. A <0,2,1> region accomplishes this.
*/
if (devinfo->gen == 7 && !devinfo->is_haswell &&
type_sz(reg->type) == 8 &&
brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
brw_reg.width == BRW_WIDTH_1 &&
brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
brw_reg.width = BRW_WIDTH_2;
brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
}
return brw_reg;
}
fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
struct brw_stage_prog_data *prog_data,
bool runtime_check_aads_emit,
gl_shader_stage stage)
: compiler(compiler), log_data(log_data),
devinfo(compiler->devinfo),
prog_data(prog_data), dispatch_width(0),
runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
shader_name(NULL), stage(stage), mem_ctx(mem_ctx)
{
p = rzalloc(mem_ctx, struct brw_codegen);
brw_init_codegen(devinfo, p, mem_ctx);
/* In the FS code generator, we are very careful to ensure that we always
* set the right execution size so we don't need the EU code to "help" us
* by trying to infer it. Sometimes, it infers the wrong thing.
*/
p->automatic_exec_sizes = false;
}
fs_generator::~fs_generator()
{
}
class ip_record : public exec_node {
public:
DECLARE_RALLOC_CXX_OPERATORS(ip_record)
ip_record(int ip)
{
this->ip = ip;
}
int ip;
};
bool
fs_generator::patch_discard_jumps_to_fb_writes()
{
if (this->discard_halt_patches.is_empty())
return false;
int scale = brw_jump_scale(p->devinfo);
if (devinfo->gen >= 6) {
/* There is a somewhat strange undocumented requirement of using
* HALT, according to the simulator. If some channel has HALTed to
* a particular UIP, then by the end of the program, every channel
* must have HALTed to that UIP. Furthermore, the tracking is a
* stack, so you can't do the final halt of a UIP after starting
* halting to a new UIP.
*
* Symptoms of not emitting this instruction on actual hardware
* included GPU hangs and sparkly rendering on the piglit discard
* tests.
*/
brw_inst *last_halt = brw_HALT(p);
brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
}
int ip = p->nr_insn;
foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
brw_inst *patch = &p->store[patch_ip->ip];
assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
if (devinfo->gen >= 6) {
/* HALT takes a half-instruction distance from the pre-incremented IP. */
brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
} else {
brw_set_src1(p, patch, brw_imm_d((ip - patch_ip->ip) * scale));
}
}
this->discard_halt_patches.make_empty();
if (devinfo->gen < 6) {
/* From the g965 PRM:
*
* "As DMask is not automatically reloaded into AMask upon completion
* of this instruction, software has to manually restore AMask upon
* completion."
*
* DMask lives in the bottom 16 bits of sr0.1.
*/
brw_inst *reset = brw_MOV(p, brw_mask_reg(BRW_AMASK),
retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW));
brw_inst_set_exec_size(devinfo, reset, BRW_EXECUTE_1);
brw_inst_set_mask_control(devinfo, reset, BRW_MASK_DISABLE);
brw_inst_set_qtr_control(devinfo, reset, BRW_COMPRESSION_NONE);
brw_inst_set_thread_control(devinfo, reset, BRW_THREAD_SWITCH);
}
if (devinfo->gen == 4 && !devinfo->is_g4x) {
/* From the g965 PRM:
*
* "[DevBW, DevCL] Erratum: The subfields in mask stack register are
* reset to zero during graphics reset, however, they are not
* initialized at thread dispatch. These subfields will retain the
* values from the previous thread. Software should make sure the
* mask stack is empty (reset to zero) before terminating the thread.
* In case that this is not practical, software may have to reset the
* mask stack at the beginning of each kernel, which will impact the
* performance."
*
* Luckily we can rely on:
*
* "[DevBW, DevCL] This register access restriction is not
* applicable, hardware does ensure execution pipeline coherency,
* when a mask stack register is used as an explicit source and/or
* destination."
*/
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
brw_set_default_exec_size(p, BRW_EXECUTE_2);
brw_MOV(p, vec2(brw_mask_stack_depth_reg(0)), brw_imm_uw(0));
brw_set_default_exec_size(p, BRW_EXECUTE_16);
/* Reset the if stack. */
brw_MOV(p, retype(brw_mask_stack_reg(0), BRW_REGISTER_TYPE_UW),
brw_imm_uw(0));
brw_pop_insn_state(p);
}
return true;
}
void
fs_generator::generate_send(fs_inst *inst,
struct brw_reg dst,
struct brw_reg desc,
struct brw_reg ex_desc,
struct brw_reg payload,
struct brw_reg payload2)
{
const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
dst.nr == BRW_ARF_NULL;
const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
uint32_t desc_imm = inst->desc |
brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
/* If we have any sort of extended descriptor, then we need SENDS. This
* also covers the dual-payload case because ex_mlen goes in ex_desc.
*/
brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
desc, desc_imm, ex_desc, ex_desc_imm,
inst->eot);
if (inst->check_tdr)
brw_inst_set_opcode(p->devinfo, brw_last_inst,
devinfo->gen >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
} else {
brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
inst->eot);
if (inst->check_tdr)
brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
}
}
void
fs_generator::fire_fb_write(fs_inst *inst,
struct brw_reg payload,
struct brw_reg implied_header,
GLuint nr)
{
struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
if (devinfo->gen < 6) {
brw_push_insn_state(p);
brw_set_default_exec_size(p, BRW_EXECUTE_8);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
brw_pop_insn_state(p);
}
uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
/* We assume render targets start at 0, because headerless FB write
* messages set "Render Target Index" to 0. Using a different binding
* table index would make it impossible to use headerless messages.
*/
const uint32_t surf_index = inst->target;
brw_inst *insn = brw_fb_WRITE(p,
payload,
retype(implied_header, BRW_REGISTER_TYPE_UW),
msg_control,
surf_index,
nr,
0,
inst->eot,
inst->last_rt,
inst->header_size != 0);
if (devinfo->gen >= 6)
brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
}
void
fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
{
if (devinfo->gen < 8 && !devinfo->is_haswell) {
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
brw_set_default_flag_reg(p, 0, 0);
}
const struct brw_reg implied_header =
devinfo->gen < 6 ? payload : brw_null_reg();
if (inst->base_mrf >= 0)
payload = brw_message_reg(inst->base_mrf);
if (!runtime_check_aads_emit) {
fire_fb_write(inst, payload, implied_header, inst->mlen);
} else {
/* This can only happen in gen < 6 */
assert(devinfo->gen < 6);
struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
/* Check runtime bit to detect if we have to send AA data or not */
brw_push_insn_state(p);
brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
brw_set_default_exec_size(p, BRW_EXECUTE_1);
brw_AND(p,
v1_null_ud,
retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
brw_imm_ud(1<<26));
brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
brw_pop_insn_state(p);
{
/* Don't send AA data */
fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
}
brw_land_fwd_jump(p, jmp);
fire_fb_write(inst, payload, implied_header, inst->mlen);
}
}
void
fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
struct brw_reg payload)
{
assert(inst->size_written % REG_SIZE == 0);
struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
/* We assume that render targets start at binding table index 0. */
const unsigned surf_index = inst->target;
gen9_fb_READ(p, dst, payload, surf_index,
inst->header_size, inst->size_written / REG_SIZE,
prog_data->persample_dispatch);
}
void
fs_generator::generate_mov_indirect(fs_inst *inst,
struct brw_reg dst,
struct brw_reg reg,
struct brw_reg indirect_byte_offset)
{
assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
assert(!reg.abs && !reg.negate);
assert(reg.type == dst.type);
unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
imm_byte_offset += indirect_byte_offset.ud;
reg.nr = imm_byte_offset / REG_SIZE;
reg.subnr = imm_byte_offset % REG_SIZE;
if (type_sz(reg.type) > 4 && !devinfo->has_64bit_float) {
brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
subscript(reg, BRW_REGISTER_TYPE_D, 0));
brw_set_default_swsb(p, tgl_swsb_null());
brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
subscript(reg, BRW_REGISTER_TYPE_D, 1));
} else {
brw_MOV(p, dst, reg);
}
} else {
/* Prior to Broadwell, there are only 8 address registers. */
assert(inst->exec_size <= 8 || devinfo->gen >= 8);
/* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
struct brw_reg addr = vec8(brw_address_reg(0));
/* Whether we can use destination dependency control without running the
* risk of a hang if an instruction gets shot down.
*/
const bool use_dep_ctrl = !inst->predicate &&
inst->exec_size == dispatch_width;
brw_inst *insn;
/* The destination stride of an instruction (in bytes) must be greater
* than or equal to the size of the rest of the instruction. Since the
* address register is of type UW, we can't use a D-type instruction.
* In order to get around this, re retype to UW and use a stride.
*/
indirect_byte_offset =
retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
/* There are a number of reasons why we don't use the base offset here.
* One reason is that the field is only 9 bits which means we can only
* use it to access the first 16 GRFs. Also, from the Haswell PRM
* section "Register Region Restrictions":
*
* "The lower bits of the AddressImmediate must not overflow to
* change the register address. The lower 5 bits of Address
* Immediate when added to lower 5 bits of address register gives
* the sub-register offset. The upper bits of Address Immediate
* when added to upper bits of address register gives the register
* address. Any overflow from sub-register offset is dropped."
*
* Since the indirect may cause us to cross a register boundary, this
* makes the base offset almost useless. We could try and do something
* clever where we use a actual base offset if base_offset % 32 == 0 but
* that would mean we were generating different code depending on the
* base offset. Instead, for the sake of consistency, we'll just do the
* add ourselves. This restriction is only listed in the Haswell PRM
* but empirical testing indicates that it applies on all older
* generations and is lifted on Broadwell.
*
* In the end, while base_offset is nice to look at in the generated
* code, using it saves us 0 instructions and would require quite a bit
* of case-by-case work. It's just not worth it.
*
* Due to a hardware bug some platforms (particularly Gen11+) seem to
* require the address components of all channels to be valid whether or
* not they're active, which causes issues if we use VxH addressing
* under non-uniform control-flow. We can easily work around that by
* initializing the whole address register with a pipelined NoMask MOV
* instruction.
*/
if (devinfo->gen >= 7) {
insn = brw_MOV(p, addr, brw_imm_uw(imm_byte_offset));
brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
if (devinfo->gen >= 12)
brw_set_default_swsb(p, tgl_swsb_null());
else
brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
}
insn = brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
if (devinfo->gen >= 12)
brw_set_default_swsb(p, tgl_swsb_regdist(1));
else if (devinfo->gen >= 7)
brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
if (type_sz(reg.type) > 4 &&
((devinfo->gen == 7 && !devinfo->is_haswell) ||
devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
!devinfo->has_64bit_float)) {
/* IVB has an issue (which we found empirically) where it reads two
* address register components per channel for indirectly addressed
* 64-bit sources.
*
* From the Cherryview PRM Vol 7. "Register Region Restrictions":
*
* "When source or destination datatype is 64b or operation is
* integer DWord multiply, indirect addressing must not be used."
*
* To work around both of these, we do two integer MOVs insead of one
* 64-bit MOV. Because no double value should ever cross a register
* boundary, it's safe to use the immediate offset in the indirect
* here to handle adding 4 bytes to the offset and avoid the extra
* ADD to the register file.
*/
brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
brw_set_default_swsb(p, tgl_swsb_null());
brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
} else {
struct brw_reg ind_src = brw_VxH_indirect(0, 0);
brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
!inst->get_next()->is_tail_sentinel() &&
((fs_inst *)inst->get_next())->mlen > 0) {
/* From the Sandybridge PRM:
*
* "[Errata: DevSNB(SNB)] If MRF register is updated by any
* instruction that “indexed/indirect” source AND is followed
* by a send, the instruction requires a “Switch”. This is to
* avoid race condition where send may dispatch before MRF is
* updated."
*/
brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
}
}
}
}
void
fs_generator::generate_shuffle(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src,
struct brw_reg idx)
{
/* Ivy bridge has some strange behavior that makes this a real pain to
* implement for 64-bit values so we just don't bother.
*/
assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
/* Because we're using the address register, we're limited to 8-wide
* execution on gen7. On gen8, we're limited to 16-wide by the address
* register file and 8-wide for 64-bit types. We could try and make this
* instruction splittable higher up in the compiler but that gets weird
* because it reads all of the channels regardless of execution size. It's
* easier just to split it here.
*/
const unsigned lower_width =
(devinfo->gen <= 7 || type_sz(src.type) > 4) ?
8 : MIN2(16, inst->exec_size);
brw_set_default_exec_size(p, cvt(lower_width) - 1);
for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
brw_set_default_group(p, group);
if ((src.vstride == 0 && src.hstride == 0) ||
idx.file == BRW_IMMEDIATE_VALUE) {
/* Trivial, the source is already uniform or the index is a constant.
* We will typically not get here if the optimizer is doing its job,
* but asserting would be mean.
*/
const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
} else {
/* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
struct brw_reg addr = vec8(brw_address_reg(0));
struct brw_reg group_idx = suboffset(idx, group);
if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
/* Things get grumpy if the register is too wide. */
group_idx.width--;
group_idx.vstride--;
}
assert(type_sz(group_idx.type) <= 4);
if (type_sz(group_idx.type) == 4) {
/* The destination stride of an instruction (in bytes) must be
* greater than or equal to the size of the rest of the
* instruction. Since the address register is of type UW, we
* can't use a D-type instruction. In order to get around this,
* re retype to UW and use a stride.
*/
group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
}
/* Take into account the component size and horizontal stride. */
assert(src.vstride == src.hstride + src.width);
brw_SHL(p, addr, group_idx,
brw_imm_uw(util_logbase2(type_sz(src.type)) +
src.hstride - 1));
/* Add on the register start offset */
brw_set_default_swsb(p, tgl_swsb_regdist(1));
brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
if (type_sz(src.type) > 4 &&
((devinfo->gen == 7 && !devinfo->is_haswell) ||
devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
/* IVB has an issue (which we found empirically) where it reads
* two address register components per channel for indirectly
* addressed 64-bit sources.
*
* From the Cherryview PRM Vol 7. "Register Region Restrictions":
*
* "When source or destination datatype is 64b or operation is
* integer DWord multiply, indirect addressing must not be
* used."
*
* To work around both of these, we do two integer MOVs insead of
* one 64-bit MOV. Because no double value should ever cross a
* register boundary, it's safe to use the immediate offset in the
* indirect here to handle adding 4 bytes to the offset and avoid
* the extra ADD to the register file.
*/
struct brw_reg gdst = suboffset(dst, group);
struct brw_reg dst_d = retype(spread(gdst, 2),
BRW_REGISTER_TYPE_D);
assert(dst.hstride == 1);
brw_MOV(p, dst_d,
retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
brw_set_default_swsb(p, tgl_swsb_null());
brw_MOV(p, byte_offset(dst_d, 4),
retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
} else {
brw_MOV(p, suboffset(dst, group * dst.hstride),
retype(brw_VxH_indirect(0, 0), src.type));
}
}
brw_set_default_swsb(p, tgl_swsb_null());
}
}
void
fs_generator::generate_quad_swizzle(const fs_inst *inst,
struct brw_reg dst, struct brw_reg src,
unsigned swiz)
{
/* Requires a quad. */
assert(inst->exec_size >= 4);
if (src.file == BRW_IMMEDIATE_VALUE ||
has_scalar_region(src)) {
/* The value is uniform across all channels */
brw_MOV(p, dst, src);
} else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
/* This only works on 8-wide 32-bit values */
assert(inst->exec_size == 8);
assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
assert(src.vstride == src.width + 1);
brw_set_default_access_mode(p, BRW_ALIGN_16);
struct brw_reg swiz_src = stride(src, 4, 4, 1);
swiz_src.swizzle = swiz;
brw_MOV(p, dst, swiz_src);
} else {
assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
assert(src.vstride == src.width + 1);
const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
switch (swiz) {
case BRW_SWIZZLE_XXXX:
case BRW_SWIZZLE_YYYY:
case BRW_SWIZZLE_ZZZZ:
case BRW_SWIZZLE_WWWW:
brw_MOV(p, dst, stride(src_0, 4, 4, 0));
break;
case BRW_SWIZZLE_XXZZ:
case BRW_SWIZZLE_YYWW:
brw_MOV(p, dst, stride(src_0, 2, 2, 0));
break;
case BRW_SWIZZLE_XYXY:
case BRW_SWIZZLE_ZWZW:
assert(inst->exec_size == 4);
brw_MOV(p, dst, stride(src_0, 0, 2, 1));
break;
default:
assert(inst->force_writemask_all);
brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
for (unsigned c = 0; c < 4; c++) {
brw_inst *insn = brw_MOV(
p, stride(suboffset(dst, c),
4 * inst->dst.stride, 1, 4 * inst->dst.stride),
stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
if (devinfo->gen < 12) {
brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
brw_inst_set_no_dd_check(devinfo, insn, c > 0);
}
brw_set_default_swsb(p, tgl_swsb_null());
}
break;
}
}
}
void
fs_generator::generate_urb_read(fs_inst *inst,
struct brw_reg dst,
struct brw_reg header)
{
assert(inst->size_written % REG_SIZE == 0);
assert(header.file == BRW_GENERAL_REGISTER_FILE);
assert(header.type == BRW_REGISTER_TYPE_UD);
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
brw_set_src0(p, send, header);
if (devinfo->gen < 12)
brw_set_src1(p, send, brw_imm_ud(0u));
brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
brw_inst_set_mlen(p->devinfo, send, inst->mlen);
brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
brw_inst_set_header_present(p->devinfo, send, true);
brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
}
void
fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
{
brw_inst *insn;
/* WaClearTDRRegBeforeEOTForNonPS.
*
* WA: Clear tdr register before send EOT in all non-PS shader kernels
*
* mov(8) tdr0:ud 0x0:ud {NoMask}"
*/
if (inst->eot && p->devinfo->gen == 10) {
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
brw_pop_insn_state(p);
}
insn = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, insn, brw_null_reg());
brw_set_src0(p, insn, payload);
if (devinfo->gen < 12)
brw_set_src1(p, insn, brw_imm_ud(0u));
brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
brw_inst_set_rlen(p->devinfo, insn, 0);
brw_inst_set_eot(p->devinfo, insn, inst->eot);
brw_inst_set_header_present(p->devinfo, insn, true);
brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
}
void
fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
{
struct brw_inst *insn;
insn = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
if (devinfo->gen < 12)
brw_set_src1(p, insn, brw_imm_ud(0u));
/* Terminate a compute shader by sending a message to the thread spawner.
*/
brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
brw_inst_set_mlen(devinfo, insn, 1);
brw_inst_set_rlen(devinfo, insn, 0);
brw_inst_set_eot(devinfo, insn, inst->eot);
brw_inst_set_header_present(devinfo, insn, false);
brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
if (devinfo->gen < 11) {
brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
/* Note that even though the thread has a URB resource associated with it,
* we set the "do not dereference URB" bit, because the URB resource is
* managed by the fixed-function unit, so it will free it automatically.
*/
brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
}
brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
}
void
fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
{
brw_barrier(p, src);
if (devinfo->gen >= 12) {
brw_set_default_swsb(p, tgl_swsb_null());
brw_SYNC(p, TGL_SYNC_BAR);
} else {
brw_WAIT(p);
}
}
bool
fs_generator::generate_linterp(fs_inst *inst,
struct brw_reg dst, struct brw_reg *src)
{
/* PLN reads:
* / in SIMD16 \
* -----------------------------------
* | src1+0 | src1+1 | src1+2 | src1+3 |
* |-----------------------------------|
* |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
* -----------------------------------
*
* but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
*
* -----------------------------------
* | src1+0 | src1+1 | src1+2 | src1+3 |
* |-----------------------------------|
* |(x0, x1)|(y0, y1)| | | in SIMD8
* |-----------------------------------|
* |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
* -----------------------------------
*
* See also: emit_interpolation_setup_gen4().
*/
struct brw_reg delta_x = src[0];
struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
struct brw_reg interp = src[1];
brw_inst *i[2];
/* nir_lower_interpolation() will do the lowering to MAD instructions for
* us on gen11+
*/
assert(devinfo->gen < 11);
if (devinfo->has_pln) {
if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
/* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
*
* "[DevSNB]:<src1> must be even register aligned.
*
* This restriction is lifted on Ivy Bridge.
*
* This means that we need to split PLN into LINE+MAC on-the-fly.
* Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
* we have to split into SIMD8 pieces. For gen4 (!has_pln), the
* coordinate registers are laid out differently so we leave it as a
* SIMD16 instruction.
*/
assert(inst->exec_size == 8 || inst->exec_size == 16);
assert(inst->group % 16 == 0);
brw_push_insn_state(p);
brw_set_default_exec_size(p, BRW_EXECUTE_8);
/* Thanks to two accumulators, we can emit all the LINEs and then all
* the MACs. This improves parallelism a bit.
*/
for (unsigned g = 0; g < inst->exec_size / 8; g++) {
brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
offset(delta_x, g * 2));
brw_inst_set_group(devinfo, line, inst->group + g * 8);
/* LINE writes the accumulator automatically on gen4-5. On Sandy
* Bridge and later, we have to explicitly enable it.
*/
if (devinfo->gen >= 6)
brw_inst_set_acc_wr_control(p->devinfo, line, true);
/* brw_set_default_saturate() is called before emitting
* instructions, so the saturate bit is set in each instruction,
* so we need to unset it on the LINE instructions.
*/
brw_inst_set_saturate(p->devinfo, line, false);
}
for (unsigned g = 0; g < inst->exec_size / 8; g++) {
brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
offset(delta_x, g * 2 + 1));
brw_inst_set_group(devinfo, mac, inst->group + g * 8);
brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
}
brw_pop_insn_state(p);
return true;
} else {
brw_PLN(p, dst, interp, delta_x);
return false;
}
} else {
i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
/* brw_set_default_saturate() is called before emitting instructions, so
* the saturate bit is set in each instruction, so we need to unset it on
* the first instruction.
*/
brw_inst_set_saturate(p->devinfo, i[0], false);
return true;
}
}
void
fs_generator::generate_get_buffer_size(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src,
struct brw_reg surf_index)
{
assert(devinfo->gen >= 7);
assert(surf_index.file == BRW_IMMEDIATE_VALUE);
uint32_t simd_mode;
int rlen = 4;
switch (inst->exec_size) {
case 8:
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
break;
case 16:
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
break;
default:
unreachable("Invalid width for texture instruction");
}
if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
rlen = 8;
dst = vec16(dst);
}
brw_SAMPLE(p,
retype(dst, BRW_REGISTER_TYPE_UW),
inst->base_mrf,
src,
surf_index.ud,
0,
GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
rlen, /* response length */
inst->mlen,
inst->header_size > 0,
simd_mode,
BRW_SAMPLER_RETURN_FORMAT_SINT32);
}
void
fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
struct brw_reg surface_index,
struct brw_reg sampler_index)
{
assert(devinfo->gen < 7);
assert(inst->size_written % REG_SIZE == 0);
int msg_type = -1;
uint32_t simd_mode;
uint32_t return_format;
/* Sampler EOT message of less than the dispatch width would kill the
* thread prematurely.
*/
assert(!inst->eot || inst->exec_size == dispatch_width);
switch (dst.type) {
case BRW_REGISTER_TYPE_D:
return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
break;
case BRW_REGISTER_TYPE_UD:
return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
break;
default:
return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
break;
}
/* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
* is set as part of the message descriptor. On gen4, the PRM seems to
* allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
* later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
* gone from the message descriptor entirely and you just get UINT32 all
* the time regasrdless. Since we can really only do non-UINT32 on gen4,
* just stomp it to UINT32 all the time.
*/
if (inst->opcode == SHADER_OPCODE_TXS)
return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
switch (inst->exec_size) {
case 8:
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
break;
case 16:
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
break;
default:
unreachable("Invalid width for texture instruction");
}
if (devinfo->gen >= 5) {
switch (inst->opcode) {
case SHADER_OPCODE_TEX:
if (inst->shadow_compare) {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
}
break;
case FS_OPCODE_TXB:
if (inst->shadow_compare) {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
}
break;
case SHADER_OPCODE_TXL:
if (inst->shadow_compare) {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
}
break;
case SHADER_OPCODE_TXS:
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
break;
case SHADER_OPCODE_TXD:
assert(!inst->shadow_compare);
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
break;
case SHADER_OPCODE_TXF:
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
break;
case SHADER_OPCODE_TXF_CMS:
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
break;
case SHADER_OPCODE_LOD:
msg_type = GEN5_SAMPLER_MESSAGE_LOD;
break;
case SHADER_OPCODE_TG4:
assert(devinfo->gen == 6);
assert(!inst->shadow_compare);
msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
break;
case SHADER_OPCODE_SAMPLEINFO:
msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
break;
default:
unreachable("not reached");
}
} else {
switch (inst->opcode) {
case SHADER_OPCODE_TEX:
/* Note that G45 and older determines shadow compare and dispatch width
* from message length for most messages.
*/
if (inst->exec_size == 8) {
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
if (inst->shadow_compare) {
assert(inst->mlen == 6);
} else {
assert(inst->mlen <= 4);
}
} else {
if (inst->shadow_compare) {
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
assert(inst->mlen == 9);
} else {
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
}
}
break;
case FS_OPCODE_TXB:
if (inst->shadow_compare) {
assert(inst->exec_size == 8);
assert(inst->mlen == 6);
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
} else {
assert(inst->mlen == 9);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
}
break;
case SHADER_OPCODE_TXL:
if (inst->shadow_compare) {
assert(inst->exec_size == 8);
assert(inst->mlen == 6);
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
} else {
assert(inst->mlen == 9);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
}
break;
case SHADER_OPCODE_TXD:
/* There is no sample_d_c message; comparisons are done manually */
assert(inst->exec_size == 8);
assert(inst->mlen == 7 || inst->mlen == 10);
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
break;
case SHADER_OPCODE_TXF:
assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
break;
case SHADER_OPCODE_TXS:
assert(inst->mlen == 3);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
break;
default:
unreachable("not reached");
}
}
assert(msg_type != -1);
if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
dst = vec16(dst);
}
assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
/* Load the message header if present. If there's a texture offset,
* we need to set it up explicitly and load the offset bitfield.
* Otherwise, we can use an implied move from g0 to the first message reg.
*/
struct brw_reg src = brw_null_reg();
if (inst->header_size != 0) {
if (devinfo->gen < 6 && !inst->offset) {
/* Set up an implied move from g0 to the MRF. */
src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
} else {
const tgl_swsb swsb = brw_get_default_swsb(p);
assert(inst->base_mrf != -1);
struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
brw_push_insn_state(p);
brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
brw_set_default_exec_size(p, BRW_EXECUTE_8);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
/* Explicitly set up the message header by copying g0 to the MRF. */
brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
brw_set_default_swsb(p, tgl_swsb_regdist(1));
brw_set_default_exec_size(p, BRW_EXECUTE_1);
if (inst->offset) {
/* Set the offset bits in DWord 2. */
brw_MOV(p, get_element_ud(header_reg, 2),
brw_imm_ud(inst->offset));
}
brw_pop_insn_state(p);
brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
}
}
uint32_t base_binding_table_index;
switch (inst->opcode) {
case SHADER_OPCODE_TG4:
base_binding_table_index = prog_data->binding_table.gather_texture_start;
break;
default:
base_binding_table_index = prog_data->binding_table.texture_start;
break;
}
assert(surface_index.file == BRW_IMMEDIATE_VALUE);
assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
brw_SAMPLE(p,
retype(dst, BRW_REGISTER_TYPE_UW),
inst->base_mrf,
src,
surface_index.ud + base_binding_table_index,
sampler_index.ud % 16,
msg_type,
inst->size_written / REG_SIZE,
inst->mlen,
inst->header_size != 0,
simd_mode,
return_format);
}
/* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
* looking like:
*
* arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
*
* Ideally, we want to produce:
*
* DDX DDY
* dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
* (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
* (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
* (ss0.br - ss0.bl) (ss0.tr - ss0.br)
* (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
* (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
* (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
* (ss1.br - ss1.bl) (ss1.tr - ss1.br)
*
* and add another set of two more subspans if in 16-pixel dispatch mode.
*
* For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
* for each pair, and vertstride = 2 jumps us 2 elements after processing a
* pair. But the ideal approximation may impose a huge performance cost on
* sample_d. On at least Haswell, sample_d instruction does some
* optimizations if the same LOD is used for all pixels in the subspan.
*
* For DDY, we need to use ALIGN16 mode since it's capable of doing the
* appropriate swizzling.
*/
void
fs_generator::generate_ddx(const fs_inst *inst,
struct brw_reg dst, struct brw_reg src)
{
unsigned vstride, width;
if (devinfo->gen >= 8) {
if (inst->opcode == FS_OPCODE_DDX_FINE) {
/* produce accurate derivatives */
vstride = BRW_VERTICAL_STRIDE_2;
width = BRW_WIDTH_2;
} else {
/* replicate the derivative at the top-left pixel to other pixels */
vstride = BRW_VERTICAL_STRIDE_4;
width = BRW_WIDTH_4;
}
struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
struct brw_reg src1 = src;
src0.vstride = vstride;
src0.width = width;
src0.hstride = BRW_HORIZONTAL_STRIDE_0;
src1.vstride = vstride;
src1.width = width;
src1.hstride = BRW_HORIZONTAL_STRIDE_0;
brw_ADD(p, dst, src0, negate(src1));
} else {
/* On Haswell and earlier, the region used above appears to not work
* correctly for compressed instructions. At least on Haswell and
* Iron Lake, compressed ALIGN16 instructions do work. Since we
* would have to split to SIMD8 no matter which method we choose, we
* may as well use ALIGN16 on all platforms gen7 and earlier.
*/
struct brw_reg src0 = stride(src, 4, 4, 1);
struct brw_reg src1 = stride(src, 4, 4, 1);
if (inst->opcode == FS_OPCODE_DDX_FINE) {
src0.swizzle = BRW_SWIZZLE_XXZZ;
src1.swizzle = BRW_SWIZZLE_YYWW;
} else {
src0.swizzle = BRW_SWIZZLE_XXXX;
src1.swizzle = BRW_SWIZZLE_YYYY;
}
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_16);
brw_ADD(p, dst, negate(src0), src1);
brw_pop_insn_state(p);
}
}
/* The negate_value boolean is used to negate the derivative computation for
* FBOs, since they place the origin at the upper left instead of the lower
* left.
*/
void
fs_generator::generate_ddy(const fs_inst *inst,
struct brw_reg dst, struct brw_reg src)
{
const uint32_t type_size = type_sz(src.type);
if (inst->opcode == FS_OPCODE_DDY_FINE) {
/* produce accurate derivatives.
*
* From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
* "Register Region Restrictions", Section "1. Special Restrictions":
*
* "In Align16 mode, the channel selects and channel enables apply to
* a pair of half-floats, because these parameters are defined for
* DWord elements ONLY. This is applicable when both source and
* destination are half-floats."
*
* So for half-float operations we use the Gen11+ Align1 path. CHV
* inherits its FP16 hardware from SKL, so it is not affected.
*/
if (devinfo->gen >= 11 ||
(devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
src = stride(src, 0, 2, 1);
brw_push_insn_state(p);
brw_set_default_exec_size(p, BRW_EXECUTE_4);
for (uint32_t g = 0; g < inst->exec_size; g += 4) {
brw_set_default_group(p, inst->group + g);
brw_ADD(p, byte_offset(dst, g * type_size),
negate(byte_offset(src, g * type_size)),
byte_offset(src, (g + 2) * type_size));
brw_set_default_swsb(p, tgl_swsb_null());
}
brw_pop_insn_state(p);
} else {
struct brw_reg src0 = stride(src, 4, 4, 1);
struct brw_reg src1 = stride(src, 4, 4, 1);
src0.swizzle = BRW_SWIZZLE_XYXY;
src1.swizzle = BRW_SWIZZLE_ZWZW;
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_16);
brw_ADD(p, dst, negate(src0), src1);
brw_pop_insn_state(p);
}
} else {
/* replicate the derivative at the top-left pixel to other pixels */
if (devinfo->gen >= 8) {
struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
brw_ADD(p, dst, negate(src0), src1);
} else {
/* On Haswell and earlier, the region used above appears to not work
* correctly for compressed instructions. At least on Haswell and
* Iron Lake, compressed ALIGN16 instructions do work. Since we
* would have to split to SIMD8 no matter which method we choose, we
* may as well use ALIGN16 on all platforms gen7 and earlier.
*/
struct brw_reg src0 = stride(src, 4, 4, 1);
struct brw_reg src1 = stride(src, 4, 4, 1);
src0.swizzle = BRW_SWIZZLE_XXXX;
src1.swizzle = BRW_SWIZZLE_ZZZZ;
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_16);
brw_ADD(p, dst, negate(src0), src1);
brw_pop_insn_state(p);
}
}
}
void
fs_generator::generate_discard_jump(fs_inst *)
{
/* This HALT will be patched up at FB write time to point UIP at the end of
* the program, and at brw_uip_jip() JIP will be set to the end of the
* current block (or the program).
*/
this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
brw_HALT(p);
}
void
fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
{
/* The 32-wide messages only respect the first 16-wide half of the channel
* enable signals which are replicated identically for the second group of
* 16 channels, so we cannot use them unless the write is marked
* force_writemask_all.
*/
const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
MIN2(16, inst->exec_size);
const unsigned block_size = 4 * lower_size / REG_SIZE;
const tgl_swsb swsb = brw_get_default_swsb(p);
assert(inst->mlen != 0);
brw_push_insn_state(p);
brw_set_default_exec_size(p, cvt(lower_size) - 1);
brw_set_default_compression(p, lower_size > 8);
for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
brw_set_default_group(p, inst->group + lower_size * i);
if (i > 0) {
assert(swsb.mode & TGL_SBID_SET);
brw_set_default_swsb(p, tgl_swsb_sbid(TGL_SBID_SRC, swsb.sbid));
} else {
brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
}
brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
block_size,
inst->offset + block_size * REG_SIZE * i);
}
brw_pop_insn_state(p);
}
void
fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
{
assert(inst->exec_size <= 16 || inst->force_writemask_all);
assert(inst->mlen != 0);
brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
inst->exec_size / 8, inst->offset);
}
void
fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
{
assert(inst->exec_size <= 16 || inst->force_writemask_all);
gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
}
void
fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
struct brw_reg dst,
struct brw_reg index,
struct brw_reg offset)
{
assert(type_sz(dst.type) == 4);
assert(inst->mlen != 0);
assert(index.file == BRW_IMMEDIATE_VALUE &&
index.type == BRW_REGISTER_TYPE_UD);
uint32_t surf_index = index.ud;
assert(offset.file == BRW_IMMEDIATE_VALUE &&
offset.type == BRW_REGISTER_TYPE_UD);
uint32_t read_offset = offset.ud;
brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
read_offset, surf_index);
}
void
fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
struct brw_reg dst,
struct brw_reg index,
struct brw_reg payload)
{
assert(index.type == BRW_REGISTER_TYPE_UD);
assert(payload.file == BRW_GENERAL_REGISTER_FILE);
assert(type_sz(dst.type) == 4);
if (index.file == BRW_IMMEDIATE_VALUE) {
const uint32_t surf_index = index.ud;
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_pop_insn_state(p);
brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
brw_set_desc(p, send,
brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
REG_SIZE), true) |
brw_dp_read_desc(devinfo, surf_index,
BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
BRW_DATAPORT_READ_TARGET_DATA_CACHE));
} else {
const tgl_swsb swsb = brw_get_default_swsb(p);
struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
/* a0.0 = surf_index & 0xff */
brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
brw_set_dest(p, insn_and, addr);
brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
/* dst = send(payload, a0.0 | <descriptor>) */
brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
brw_send_indirect_message(
p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
retype(dst, BRW_REGISTER_TYPE_UD),
retype(payload, BRW_REGISTER_TYPE_UD), addr,
brw_message_desc(devinfo, 1,
DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
brw_dp_read_desc(devinfo, 0 /* surface */,
BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
BRW_DATAPORT_READ_TARGET_DATA_CACHE),
false /* EOT */);
brw_pop_insn_state(p);
}
}
void
fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
struct brw_reg dst,
struct brw_reg index)
{
assert(devinfo->gen < 7); /* Should use the gen7 variant. */
assert(inst->header_size != 0);
assert(inst->mlen);
assert(index.file == BRW_IMMEDIATE_VALUE &&
index.type == BRW_REGISTER_TYPE_UD);
uint32_t surf_index = index.ud;
uint32_t simd_mode, rlen, msg_type;
if (inst->exec_size == 16) {
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
rlen = 8;
} else {
assert(inst->exec_size == 8);
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
rlen = 4;
}
if (devinfo->gen >= 5)
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
else {
/* We always use the SIMD16 message so that we only have to load U, and
* not V or R.
*/
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
assert(inst->mlen == 3);
assert(inst->size_written == 8 * REG_SIZE);
rlen = 8;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
}
struct brw_reg header = brw_vec8_grf(0, 0);
gen6_resolve_implied_move(p, &header, inst->base_mrf);
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_inst_set_compression(devinfo, send, false);
brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
brw_set_src0(p, send, header);
if (devinfo->gen < 6)
brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
/* Our surface is set up as floats, regardless of what actual data is
* stored in it.
*/
uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
brw_set_desc(p, send,
brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
brw_sampler_desc(devinfo, surf_index,
0, /* sampler (unused) */
msg_type, simd_mode, return_format));
}
void
fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src,
struct brw_reg msg_data,
unsigned msg_type)
{
const bool has_payload = inst->src[0].file != BAD_FILE;
assert(msg_data.type == BRW_REGISTER_TYPE_UD);
assert(inst->size_written % REG_SIZE == 0);
brw_pixel_interpolator_query(p,
retype(dst, BRW_REGISTER_TYPE_UW),
/* If we don't have a payload, what we send doesn't matter */
has_payload ? src : brw_vec8_grf(0, 0),
inst->pi_noperspective,
msg_type,
msg_data,
has_payload ? 2 * inst->exec_size / 8 : 1,
inst->size_written / REG_SIZE);
}
/* Sets vstride=1, width=4, hstride=0 of register src1 during
* the ADD instruction.
*/
void
fs_generator::generate_set_sample_id(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1)
{
assert(dst.type == BRW_REGISTER_TYPE_D ||
dst.type == BRW_REGISTER_TYPE_UD);
assert(src0.type == BRW_REGISTER_TYPE_D ||
src0.type == BRW_REGISTER_TYPE_UD);
const struct brw_reg reg = stride(src1, 1, 4, 0);
const unsigned lower_size = MIN2(inst->exec_size,
devinfo->gen >= 8 ? 16 : 8);
for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
(i * lower_size / (1 << src0.width))) *
type_sz(src0.type) / REG_SIZE),
suboffset(reg, i * lower_size / 4));
brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
brw_inst_set_compression(devinfo, insn, lower_size > 8);
brw_set_default_swsb(p, tgl_swsb_null());
}
}
void
fs_generator::generate_pack_half_2x16_split(fs_inst *,
struct brw_reg dst,
struct brw_reg x,
struct brw_reg y)
{
assert(devinfo->gen >= 7);
assert(dst.type == BRW_REGISTER_TYPE_UD);
assert(x.type == BRW_REGISTER_TYPE_F);
assert(y.type == BRW_REGISTER_TYPE_F);
/* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
*
* Because this instruction does not have a 16-bit floating-point type,
* the destination data type must be Word (W).
*
* The destination must be DWord-aligned and specify a horizontal stride
* (HorzStride) of 2. The 16-bit result is stored in the lower word of
* each destination channel and the upper word is not modified.
*/
struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
/* Give each 32-bit channel of dst the form below, where "." means
* unchanged.
* 0x....hhhh
*/
brw_F32TO16(p, dst_w, y);
/* Now the form:
* 0xhhhh0000
*/
brw_set_default_swsb(p, tgl_swsb_regdist(1));
brw_SHL(p, dst, dst, brw_imm_ud(16u));
/* And, finally the form of packHalf2x16's output:
* 0xhhhhllll
*/
brw_F32TO16(p, dst_w, x);
}
void
fs_generator::generate_shader_time_add(fs_inst *,
struct brw_reg payload,
struct brw_reg offset,
struct brw_reg value)
{
const tgl_swsb swsb = brw_get_default_swsb(p);
assert(devinfo->gen >= 7);
brw_push_insn_state(p);
brw_set_default_mask_control(p, true);
brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
assert(payload.file == BRW_GENERAL_REGISTER_FILE);
struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
offset.type);
struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
value.type);
assert(offset.file == BRW_IMMEDIATE_VALUE);
if (value.file == BRW_GENERAL_REGISTER_FILE) {
value.width = BRW_WIDTH_1;
value.hstride = BRW_HORIZONTAL_STRIDE_0;
value.vstride = BRW_VERTICAL_STRIDE_0;
} else {
assert(value.file == BRW_IMMEDIATE_VALUE);
}
/* Trying to deal with setup of the params from the IR is crazy in the FS8
* case, and we don't really care about squeezing every bit of performance
* out of this path, so we just emit the MOVs from here.
*/
brw_MOV(p, payload_offset, offset);
brw_set_default_swsb(p, tgl_swsb_null());
brw_MOV(p, payload_value, value);
brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
brw_shader_time_add(p, payload,
prog_data->binding_table.shader_time_start);
brw_pop_insn_state(p);
}
void
fs_generator::enable_debug(const char *shader_name)
{
debug_flag = true;
this->shader_name = shader_name;
}
int
fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
struct shader_stats shader_stats,
const brw::performance &perf,
struct brw_compile_stats *stats)
{
/* align to 64 byte boundary. */
brw_realign(p, 64);
this->dispatch_width = dispatch_width;
int start_offset = p->next_insn_offset;
/* `send_count` explicitly does not include spills or fills, as we'd
* like to use it as a metric for intentional memory access or other
* shared function use. Otherwise, subtle changes to scheduling or
* register allocation could cause it to fluctuate wildly - and that
* effect is already counted in spill/fill counts.
*/
int spill_count = 0, fill_count = 0;
int loop_count = 0, send_count = 0, nop_count = 0;
bool is_accum_used = false;
struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
foreach_block_and_inst (block, fs_inst, inst, cfg) {
if (inst->opcode == SHADER_OPCODE_UNDEF)
continue;
struct brw_reg src[4], dst;
unsigned int last_insn_offset = p->next_insn_offset;
bool multiple_instructions_emitted = false;
/* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
* "Register Region Restrictions" section: for BDW, SKL:
*
* "A POW/FDIV operation must not be followed by an instruction
* that requires two destination registers."
*
* The documentation is often lacking annotations for Atom parts,
* and empirically this affects CHV as well.
*/
if (devinfo->gen >= 8 &&
devinfo->gen <= 9 &&
p->nr_insn > 1 &&
brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
inst->dst.component_size(inst->exec_size) > REG_SIZE) {
brw_NOP(p);
last_insn_offset = p->next_insn_offset;
/* In order to avoid spurious instruction count differences when the
* instruction schedule changes, keep track of the number of inserted
* NOPs.
*/
nop_count++;
}
/* GEN:BUG:14010017096:
*
* Clear accumulator register before end of thread.
*/
if (inst->eot && is_accum_used && devinfo->gen >= 12) {
brw_set_default_exec_size(p, BRW_EXECUTE_16);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f));
last_insn_offset = p->next_insn_offset;
}
if (!is_accum_used && !inst->eot) {
is_accum_used = inst->writes_accumulator_implicitly(devinfo) ||
inst->dst.is_accumulator();
}
if (unlikely(debug_flag))
disasm_annotate(disasm_info, inst, p->next_insn_offset);
/* If the instruction writes to more than one register, it needs to be
* explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
* hardware figures out by itself what the right compression mode is,
* but we still need to know whether the instruction is compressed to
* set up the source register regions appropriately.
*
* XXX - This is wrong for instructions that write a single register but
* read more than one which should strictly speaking be treated as
* compressed. For instructions that don't write any registers it
* relies on the destination being a null register of the correct
* type and regioning so the instruction is considered compressed
* or not accordingly.
*/
const bool compressed =
inst->dst.component_size(inst->exec_size) > REG_SIZE;
brw_set_default_compression(p, compressed);
brw_set_default_group(p, inst->group);
for (unsigned int i = 0; i < inst->sources; i++) {
src[i] = brw_reg_from_fs_reg(devinfo, inst,
&inst->src[i], compressed);
/* The accumulator result appears to get used for the
* conditional modifier generation. When negating a UD
* value, there is a 33rd bit generated for the sign in the
* accumulator value, so now you can't check, for example,
* equality with a 32-bit value. See piglit fs-op-neg-uvec4.
*/
assert(!inst->conditional_mod ||
inst->src[i].type != BRW_REGISTER_TYPE_UD ||
!inst->src[i].negate);
}
dst = brw_reg_from_fs_reg(devinfo, inst,
&inst->dst, compressed);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_predicate_control(p, inst->predicate);
brw_set_default_predicate_inverse(p, inst->predicate_inverse);
/* On gen7 and above, hardware automatically adds the group onto the
* flag subregister number. On Sandy Bridge and older, we have to do it
* ourselves.
*/
const unsigned flag_subreg = inst->flag_subreg +
(devinfo->gen >= 7 ? 0 : inst->group / 16);
brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
brw_set_default_saturate(p, inst->saturate);
brw_set_default_mask_control(p, inst->force_writemask_all);
brw_set_default_acc_write_control(p, inst->writes_accumulator);
brw_set_default_swsb(p, inst->sched);
unsigned exec_size = inst->exec_size;
if (devinfo->gen == 7 && !devinfo->is_haswell &&
(get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
exec_size *= 2;
}
brw_set_default_exec_size(p, cvt(exec_size) - 1);
assert(inst->force_writemask_all || inst->exec_size >= 4);
assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
switch (inst->opcode) {
case BRW_OPCODE_SYNC:
assert(src[0].file == BRW_IMMEDIATE_VALUE);
brw_SYNC(p, tgl_sync_function(src[0].ud));
break;
case BRW_OPCODE_MOV:
brw_MOV(p, dst, src[0]);
break;
case BRW_OPCODE_ADD:
brw_ADD(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MUL:
brw_MUL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_AVG:
brw_AVG(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MACH:
brw_MACH(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_LINE:
brw_LINE(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MAD:
assert(devinfo->gen >= 6);
if (devinfo->gen < 10)
brw_set_default_access_mode(p, BRW_ALIGN_16);
brw_MAD(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_LRP:
assert(devinfo->gen >= 6 && devinfo->gen <= 10);
if (devinfo->gen < 10)
brw_set_default_access_mode(p, BRW_ALIGN_16);
brw_LRP(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_FRC:
brw_FRC(p, dst, src[0]);
break;
case BRW_OPCODE_RNDD:
brw_RNDD(p, dst, src[0]);
break;
case BRW_OPCODE_RNDE:
brw_RNDE(p, dst, src[0]);
break;
case BRW_OPCODE_RNDZ:
brw_RNDZ(p, dst, src[0]);
break;
case BRW_OPCODE_AND:
brw_AND(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_OR:
brw_OR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_XOR:
brw_XOR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_NOT:
brw_NOT(p, dst, src[0]);
break;
case BRW_OPCODE_ASR:
brw_ASR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_SHR:
brw_SHR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_SHL:
brw_SHL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_ROL:
assert(devinfo->gen >= 11);
assert(src[0].type == dst.type);
brw_ROL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_ROR:
assert(devinfo->gen >= 11);
assert(src[0].type == dst.type);
brw_ROR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_F32TO16:
assert(devinfo->gen >= 7);
brw_F32TO16(p, dst, src[0]);
break;
case BRW_OPCODE_F16TO32:
assert(devinfo->gen >= 7);
brw_F16TO32(p, dst, src[0]);
break;
case BRW_OPCODE_CMP:
if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
/* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
* implemented in the compiler is not sufficient. Overriding the
* type when the destination is the null register is necessary but
* not sufficient by itself.
*/
assert(dst.nr == BRW_ARF_NULL);
dst.type = BRW_REGISTER_TYPE_D;
}
brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
break;
case BRW_OPCODE_SEL:
brw_SEL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_CSEL:
assert(devinfo->gen >= 8);
if (devinfo->gen < 10)
brw_set_default_access_mode(p, BRW_ALIGN_16);
brw_CSEL(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_BFREV:
assert(devinfo->gen >= 7);
brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
retype(src[0], BRW_REGISTER_TYPE_UD));
break;
case BRW_OPCODE_FBH:
assert(devinfo->gen >= 7);
brw_FBH(p, retype(dst, src[0].type), src[0]);
break;
case BRW_OPCODE_FBL:
assert(devinfo->gen >= 7);
brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
retype(src[0], BRW_REGISTER_TYPE_UD));
break;
case BRW_OPCODE_LZD:
brw_LZD(p, dst, src[0]);
break;
case BRW_OPCODE_CBIT:
assert(devinfo->gen >= 7);
brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
retype(src[0], BRW_REGISTER_TYPE_UD));
break;
case BRW_OPCODE_ADDC:
assert(devinfo->gen >= 7);
brw_ADDC(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_SUBB:
assert(devinfo->gen >= 7);
brw_SUBB(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MAC:
brw_MAC(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_BFE:
assert(devinfo->gen >= 7);
if (devinfo->gen < 10)
brw_set_default_access_mode(p, BRW_ALIGN_16);
brw_BFE(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_BFI1:
assert(devinfo->gen >= 7);
brw_BFI1(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_BFI2:
assert(devinfo->gen >= 7);
if (devinfo->gen < 10)
brw_set_default_access_mode(p, BRW_ALIGN_16);
brw_BFI2(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_IF:
if (inst->src[0].file != BAD_FILE) {
/* The instruction has an embedded compare (only allowed on gen6) */
assert(devinfo->gen == 6);
gen6_IF(p, inst->conditional_mod, src[0], src[1]);
} else {
brw_IF(p, brw_get_default_exec_size(p));
}
break;
case BRW_OPCODE_ELSE:
brw_ELSE(p);
break;
case BRW_OPCODE_ENDIF:
brw_ENDIF(p);
break;
case BRW_OPCODE_DO:
brw_DO(p, brw_get_default_exec_size(p));
break;
case BRW_OPCODE_BREAK:
brw_BREAK(p);
break;
case BRW_OPCODE_CONTINUE:
brw_CONT(p);
break;
case BRW_OPCODE_WHILE:
brw_WHILE(p);
loop_count++;
break;
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
if (devinfo->gen >= 6) {
assert(inst->mlen == 0);
assert(devinfo->gen >= 7 || inst->exec_size == 8);
gen6_math(p, dst, brw_math_function(inst->opcode),
src[0], brw_null_reg());
} else {
assert(inst->mlen >= 1);
assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
gen4_math(p, dst,
brw_math_function(inst->opcode),
inst->base_mrf, src[0],
BRW_MATH_PRECISION_FULL);
send_count++;
}
break;
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_INT_REMAINDER:
case SHADER_OPCODE_POW:
assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
if (devinfo->gen >= 6) {
assert(inst->mlen == 0);
assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
inst->exec_size == 8);
gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
} else {
assert(inst->mlen >= 1);
assert(inst->exec_size == 8);
gen4_math(p, dst, brw_math_function(inst->opcode),
inst->base_mrf, src[0],
BRW_MATH_PRECISION_FULL);
send_count++;
}
break;
case FS_OPCODE_LINTERP:
multiple_instructions_emitted = generate_linterp(inst, dst, src);
break;
case FS_OPCODE_PIXEL_X:
assert(src[0].type == BRW_REGISTER_TYPE_UW);
src[0].subnr = 0 * type_sz(src[0].type);
brw_MOV(p, dst, stride(src[0], 8, 4, 1));
break;
case FS_OPCODE_PIXEL_Y:
assert(src[0].type == BRW_REGISTER_TYPE_UW);
src[0].subnr = 4 * type_sz(src[0].type);
brw_MOV(p, dst, stride(src[0], 8, 4, 1));
break;
case SHADER_OPCODE_SEND:
generate_send(inst, dst, src[0], src[1], src[2],
inst->ex_mlen > 0 ? src[3] : brw_null_reg());
if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
(inst->desc & 0xff) == GEN8_BTI_STATELESS_NON_COHERENT) {
if (inst->size_written)
fill_count++;
else
spill_count++;
} else {
send_count++;
}
break;
case SHADER_OPCODE_GET_BUFFER_SIZE:
generate_get_buffer_size(inst, dst, src[0], src[1]);
send_count++;
break;
case SHADER_OPCODE_TEX:
case FS_OPCODE_TXB:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXF_CMS:
case SHADER_OPCODE_TXL:
case SHADER_OPCODE_TXS:
case SHADER_OPCODE_LOD:
case SHADER_OPCODE_TG4:
case SHADER_OPCODE_SAMPLEINFO:
assert(inst->src[0].file == BAD_FILE);
generate_tex(inst, dst, src[1], src[2]);
send_count++;
break;
case FS_OPCODE_DDX_COARSE:
case FS_OPCODE_DDX_FINE:
generate_ddx(inst, dst, src[0]);
break;
case FS_OPCODE_DDY_COARSE:
case FS_OPCODE_DDY_FINE:
generate_ddy(inst, dst, src[0]);
break;
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
generate_scratch_write(inst, src[0]);
spill_count++;
break;
case SHADER_OPCODE_GEN4_SCRATCH_READ:
generate_scratch_read(inst, dst);
fill_count++;
break;
case SHADER_OPCODE_GEN7_SCRATCH_READ:
generate_scratch_read_gen7(inst, dst);
fill_count++;
break;
case SHADER_OPCODE_MOV_INDIRECT:
generate_mov_indirect(inst, dst, src[0], src[1]);
break;
case SHADER_OPCODE_MOV_RELOC_IMM:
assert(src[0].file == BRW_IMMEDIATE_VALUE);
brw_MOV_reloc_imm(p, dst, dst.type, src[0].ud);
break;
case SHADER_OPCODE_URB_READ_SIMD8:
case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
generate_urb_read(inst, dst, src[0]);
send_count++;
break;
case SHADER_OPCODE_URB_WRITE_SIMD8:
case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
generate_urb_write(inst, src[0]);
send_count++;
break;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
assert(inst->force_writemask_all);
generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
send_count++;
break;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
assert(inst->force_writemask_all);
generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
send_count++;
break;
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
send_count++;
break;
case FS_OPCODE_REP_FB_WRITE:
case FS_OPCODE_FB_WRITE:
generate_fb_write(inst, src[0]);
send_count++;
break;
case FS_OPCODE_FB_READ:
generate_fb_read(inst, dst, src[0]);
send_count++;
break;
case FS_OPCODE_DISCARD_JUMP:
generate_discard_jump(inst);
break;
case SHADER_OPCODE_SHADER_TIME_ADD:
generate_shader_time_add(inst, src[0], src[1], src[2]);
break;
case SHADER_OPCODE_INTERLOCK:
case SHADER_OPCODE_MEMORY_FENCE: {
assert(src[1].file == BRW_IMMEDIATE_VALUE);
assert(src[2].file == BRW_IMMEDIATE_VALUE);
const enum opcode send_op = inst->opcode == SHADER_OPCODE_INTERLOCK ?
BRW_OPCODE_SENDC : BRW_OPCODE_SEND;
brw_memory_fence(p, dst, src[0], send_op,
brw_message_target(inst->sfid),
/* commit_enable */ src[1].ud,
/* bti */ src[2].ud);
send_count++;
break;
}
case FS_OPCODE_SCHEDULING_FENCE:
if (inst->sources == 0 && inst->sched.regdist == 0 &&
inst->sched.mode == TGL_SBID_NULL) {
if (unlikely(debug_flag))
disasm_info->use_tail = true;
break;
}
if (devinfo->gen >= 12) {
/* Use the available SWSB information to stall. A single SYNC is
* sufficient since if there were multiple dependencies, the
* scoreboard algorithm already injected other SYNCs before this
* instruction.
*/
brw_SYNC(p, TGL_SYNC_NOP);
} else {
for (unsigned i = 0; i < inst->sources; i++) {
/* Emit a MOV to force a stall until the instruction producing the
* registers finishes.
*/
brw_MOV(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW),
retype(src[i], BRW_REGISTER_TYPE_UW));
}
if (inst->sources > 1)
multiple_instructions_emitted = true;
}
break;
case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
const struct brw_reg mask =
brw_stage_has_packed_dispatch(devinfo, stage,
prog_data) ? brw_imm_ud(~0u) :
stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
brw_dmask_reg();
brw_find_live_channel(p, dst, mask);
break;
}
case FS_OPCODE_LOAD_LIVE_CHANNELS: {
assert(devinfo->gen >= 8);
assert(inst->force_writemask_all && inst->group == 0);
assert(inst->dst.file == BAD_FILE);
brw_set_default_exec_size(p, BRW_EXECUTE_1);
brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg),
BRW_REGISTER_TYPE_UD),
retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
break;
}
case SHADER_OPCODE_BROADCAST:
assert(inst->force_writemask_all);
brw_broadcast(p, dst, src[0], src[1]);
break;
case SHADER_OPCODE_SHUFFLE:
generate_shuffle(inst, dst, src[0], src[1]);
break;
case SHADER_OPCODE_SEL_EXEC:
assert(inst->force_writemask_all);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, dst, src[1]);
brw_set_default_mask_control(p, BRW_MASK_ENABLE);
brw_set_default_swsb(p, tgl_swsb_null());
brw_MOV(p, dst, src[0]);
break;
case SHADER_OPCODE_QUAD_SWIZZLE:
assert(src[1].file == BRW_IMMEDIATE_VALUE);
assert(src[1].type == BRW_REGISTER_TYPE_UD);
generate_quad_swizzle(inst, dst, src[0], src[1].ud);
break;
case SHADER_OPCODE_CLUSTER_BROADCAST: {
assert(!src[0].negate && !src[0].abs);
assert(src[1].file == BRW_IMMEDIATE_VALUE);
assert(src[1].type == BRW_REGISTER_TYPE_UD);
assert(src[2].file == BRW_IMMEDIATE_VALUE);
assert(src[2].type == BRW_REGISTER_TYPE_UD);
const unsigned component = src[1].ud;
const unsigned cluster_size = src[2].ud;
unsigned vstride = cluster_size;
unsigned width = cluster_size;
/* The maximum exec_size is 32, but the maximum width is only 16. */
if (inst->exec_size == width) {
vstride = 0;
width = 1;
}
struct brw_reg strided = stride(suboffset(src[0], component),
vstride, width, 0);
if (type_sz(src[0].type) > 4 &&
(devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
/* IVB has an issue (which we found empirically) where it reads
* two address register components per channel for indirectly
* addressed 64-bit sources.
*
* From the Cherryview PRM Vol 7. "Register Region Restrictions":
*
* "When source or destination datatype is 64b or operation is
* integer DWord multiply, indirect addressing must not be
* used."
*
* To work around both of these, we do two integer MOVs insead of
* one 64-bit MOV. Because no double value should ever cross a
* register boundary, it's safe to use the immediate offset in the
* indirect here to handle adding 4 bytes to the offset and avoid
* the extra ADD to the register file.
*/
assert(src[0].type == dst.type);
brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
subscript(strided, BRW_REGISTER_TYPE_D, 0));
brw_set_default_swsb(p, tgl_swsb_null());
brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
subscript(strided, BRW_REGISTER_TYPE_D, 1));
} else {
brw_MOV(p, dst, strided);
}
break;
}
case FS_OPCODE_SET_SAMPLE_ID:
generate_set_sample_id(inst, dst, src[0], src[1]);
break;
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
break;
case FS_OPCODE_PLACEHOLDER_HALT:
/* This is the place where the final HALT needs to be inserted if
* we've emitted any discards. If not, this will emit no code.
*/
if (!patch_discard_jumps_to_fb_writes()) {
if (unlikely(debug_flag)) {
disasm_info->use_tail = true;
}
}
break;
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
generate_pixel_interpolator_query(inst, dst, src[0], src[1],
GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
send_count++;
break;
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
generate_pixel_interpolator_query(inst, dst, src[0], src[1],
GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
send_count++;
break;
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
generate_pixel_interpolator_query(inst, dst, src[0], src[1],
GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
send_count++;
break;
case CS_OPCODE_CS_TERMINATE:
generate_cs_terminate(inst, src[0]);
send_count++;
break;
case SHADER_OPCODE_BARRIER:
generate_barrier(inst, src[0]);
send_count++;
break;
case BRW_OPCODE_DIM:
assert(devinfo->is_haswell);
assert(src[0].type == BRW_REGISTER_TYPE_DF);
assert(dst.type == BRW_REGISTER_TYPE_DF);
brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
break;
case SHADER_OPCODE_RND_MODE: {
assert(src[0].file == BRW_IMMEDIATE_VALUE);
/*
* Changes the floating point rounding mode updating the control
* register field defined at cr0.0[5-6] bits.
*/
enum brw_rnd_mode mode =
(enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
}
break;
case SHADER_OPCODE_FLOAT_CONTROL_MODE:
assert(src[0].file == BRW_IMMEDIATE_VALUE);
assert(src[1].file == BRW_IMMEDIATE_VALUE);
brw_float_controls_mode(p, src[0].d, src[1].d);
break;
default:
unreachable("Unsupported opcode");
case SHADER_OPCODE_LOAD_PAYLOAD:
unreachable("Should be lowered by lower_load_payload()");
}
if (multiple_instructions_emitted)
continue;
if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
assert(p->next_insn_offset == last_insn_offset + 16 ||
!"conditional_mod, no_dd_check, or no_dd_clear set for IR "
"emitting more than 1 instruction");
brw_inst *last = &p->store[last_insn_offset / 16];
if (inst->conditional_mod)
brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
if (devinfo->gen < 12) {
brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
}
}
}
brw_set_uip_jip(p, start_offset);
/* end of program sentinel */
disasm_new_inst_group(disasm_info, p->next_insn_offset);
#ifndef NDEBUG
bool validated =
#else
if (unlikely(debug_flag))
#endif
brw_validate_instructions(devinfo, p->store,
start_offset,
p->next_insn_offset,
disasm_info);
int before_size = p->next_insn_offset - start_offset;
brw_compact_instructions(p, start_offset, disasm_info);
int after_size = p->next_insn_offset - start_offset;
if (unlikely(debug_flag)) {
unsigned char sha1[21];
char sha1buf[41];
_mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
after_size, sha1);
_mesa_sha1_format(sha1buf, sha1);
fprintf(stderr, "Native code for %s (sha1 %s)\n"
"SIMD%d shader: %d instructions. %d loops. %u cycles. "
"%d:%d spills:fills, %u sends, "
"scheduled with mode %s. "
"Promoted %u constants. "
"Compacted %d to %d bytes (%.0f%%)\n",
shader_name, sha1buf,
dispatch_width, before_size / 16,
loop_count, perf.latency,
spill_count, fill_count, send_count,
shader_stats.scheduler_mode,
shader_stats.promoted_constants,
before_size, after_size,
100.0f * (before_size - after_size) / before_size);
/* overriding the shader makes disasm_info invalid */
if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
dump_assembly(p->store, start_offset, p->next_insn_offset,
disasm_info, perf.block_latency);
} else {
fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
}
}
ralloc_free(disasm_info);
#ifndef NDEBUG
if (!validated && !debug_flag) {
fprintf(stderr,
"Validation failed. Rerun with INTEL_DEBUG=shaders to get more information.\n");
}
#endif
assert(validated);
compiler->shader_debug_log(log_data,
"%s SIMD%d shader: %d inst, %d loops, %u cycles, "
"%d:%d spills:fills, %u sends, "
"scheduled with mode %s, "
"Promoted %u constants, "
"compacted %d to %d bytes.",
_mesa_shader_stage_to_abbrev(stage),
dispatch_width, before_size / 16 - nop_count,
loop_count, perf.latency,
spill_count, fill_count, send_count,
shader_stats.scheduler_mode,
shader_stats.promoted_constants,
before_size, after_size);
if (stats) {
stats->dispatch_width = dispatch_width;
stats->instructions = before_size / 16 - nop_count;
stats->sends = send_count;
stats->loops = loop_count;
stats->cycles = perf.latency;
stats->spills = spill_count;
stats->fills = fill_count;
}
return start_offset;
}
void
fs_generator::add_const_data(void *data, unsigned size)
{
assert(prog_data->const_data_size == 0);
if (size > 0) {
prog_data->const_data_size = size;
prog_data->const_data_offset = brw_append_data(p, data, size, 32);
}
}
const unsigned *
fs_generator::get_assembly()
{
prog_data->relocs = brw_get_shader_relocs(p, &prog_data->num_relocs);
return brw_get_program(p, &prog_data->program_size);
}