blob: 9ffbf4956185d27a499b4a05b8417262b053ce87 [file] [log] [blame]
/* Author(s):
* Connor Abbott
* Alyssa Rosenzweig
*
* Copyright (c) 2013 Connor Abbott (connor@abbott.cx)
* Copyright (c) 2018 Alyssa Rosenzweig (alyssa@rosenzweig.io)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <assert.h>
#include <inttypes.h>
#include <ctype.h>
#include <string.h>
#include "midgard.h"
#include "midgard_ops.h"
#include "midgard_quirks.h"
#include "disassemble.h"
#include "helpers.h"
#include "util/bitscan.h"
#include "util/half_float.h"
#include "util/u_math.h"
#define DEFINE_CASE(define, str) case define: { fprintf(fp, str); break; }
static unsigned *midg_tags;
static bool is_instruction_int = false;
/* Stats */
static struct midgard_disasm_stats midg_stats;
/* Transform an expanded writemask (duplicated 8-bit format) into its condensed
* form (one bit per component) */
static inline unsigned
condense_writemask(unsigned expanded_mask,
unsigned bits_per_component)
{
if (bits_per_component == 8) {
/* Duplicate every bit to go from 8 to 16-channel wrmask */
unsigned omask = 0;
for (unsigned i = 0; i < 8; ++i) {
if (expanded_mask & (1 << i))
omask |= (3 << (2 * i));
}
return omask;
}
unsigned slots_per_component = bits_per_component / 16;
unsigned max_comp = (16 * 8) / bits_per_component;
unsigned condensed_mask = 0;
for (unsigned i = 0; i < max_comp; i++) {
if (expanded_mask & (1 << (i * slots_per_component)))
condensed_mask |= (1 << i);
}
return condensed_mask;
}
static void
print_alu_opcode(FILE *fp, midgard_alu_op op)
{
bool int_op = false;
if (alu_opcode_props[op].name) {
fprintf(fp, "%s", alu_opcode_props[op].name);
int_op = midgard_is_integer_op(op);
} else
fprintf(fp, "alu_op_%02X", op);
/* For constant analysis */
is_instruction_int = int_op;
}
static void
print_ld_st_opcode(FILE *fp, midgard_load_store_op op)
{
if (load_store_opcode_props[op].name)
fprintf(fp, "%s", load_store_opcode_props[op].name);
else
fprintf(fp, "ldst_op_%02X", op);
}
static bool is_embedded_constant_half = false;
static bool is_embedded_constant_int = false;
static char
prefix_for_bits(unsigned bits)
{
switch (bits) {
case 8:
return 'q';
case 16:
return 'h';
case 64:
return 'd';
default:
return 0;
}
}
/* For static analysis to ensure all registers are written at least once before
* use along the source code path (TODO: does this break done for complex CF?)
*/
uint16_t midg_ever_written = 0;
static void
print_reg(FILE *fp, unsigned reg, unsigned bits)
{
/* Perform basic static analysis for expanding constants correctly */
if (reg == 26) {
is_embedded_constant_int = is_instruction_int;
is_embedded_constant_half = (bits < 32);
}
unsigned uniform_reg = 23 - reg;
bool is_uniform = false;
/* For r8-r15, it could be a work or uniform. We distinguish based on
* the fact work registers are ALWAYS written before use, but uniform
* registers are NEVER written before use. */
if ((reg >= 8 && reg < 16) && !(midg_ever_written & (1 << reg)))
is_uniform = true;
/* r16-r23 are always uniform */
if (reg >= 16 && reg <= 23)
is_uniform = true;
/* Update the uniform count appropriately */
if (is_uniform)
midg_stats.uniform_count =
MAX2(uniform_reg + 1, midg_stats.uniform_count);
char prefix = prefix_for_bits(bits);
if (prefix)
fputc(prefix, fp);
fprintf(fp, "r%u", reg);
}
static char *outmod_names_float[4] = {
"",
".pos",
".sat_signed",
".sat"
};
static char *outmod_names_int[4] = {
".isat",
".usat",
"",
".hi"
};
static char *srcmod_names_int[4] = {
"sext(",
"zext(",
"",
"("
};
static void
print_outmod(FILE *fp, unsigned outmod, bool is_int)
{
fprintf(fp, "%s", is_int ? outmod_names_int[outmod] :
outmod_names_float[outmod]);
}
static void
print_quad_word(FILE *fp, uint32_t *words, unsigned tabs)
{
unsigned i;
for (i = 0; i < 4; i++)
fprintf(fp, "0x%08X%s ", words[i], i == 3 ? "" : ",");
fprintf(fp, "\n");
}
static const char components[16] = "xyzwefghijklmnop";
/* Helper to print 4 chars of a swizzle */
static void
print_swizzle_helper(FILE *fp, unsigned swizzle, unsigned offset)
{
for (unsigned i = 0; i < 4; ++i) {
unsigned c = (swizzle >> (i * 2)) & 3;
c += offset;
fprintf(fp, "%c", components[c]);
}
}
/* Helper to print 8 chars of a swizzle, duplicating over */
static void
print_swizzle_helper_8(FILE *fp, unsigned swizzle, bool upper)
{
for (unsigned i = 0; i < 4; ++i) {
unsigned c = (swizzle >> (i * 2)) & 3;
c *= 2;
c += upper*8;
fprintf(fp, "%c%c", components[c], components[c+1]);
}
}
static void
print_swizzle_vec16(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low,
midgard_dest_override override)
{
fprintf(fp, ".");
if (override == midgard_dest_override_upper) {
if (rep_high)
fprintf(fp, " /* rep_high */ ");
if (rep_low)
fprintf(fp, " /* rep_low */ ");
if (!rep_high && rep_low)
print_swizzle_helper_8(fp, swizzle, true);
else
print_swizzle_helper_8(fp, swizzle, false);
} else {
print_swizzle_helper_8(fp, swizzle, rep_high & 1);
print_swizzle_helper_8(fp, swizzle, !(rep_low & 1));
}
}
static void
print_swizzle_vec8(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half)
{
fprintf(fp, ".");
/* TODO: Is it possible to unify half/full? */
if (half) {
print_swizzle_helper(fp, swizzle, (rep_low * 8));
print_swizzle_helper(fp, swizzle, (rep_low * 8) + !rep_high * 4);
} else {
print_swizzle_helper(fp, swizzle, rep_high * 4);
print_swizzle_helper(fp, swizzle, !rep_low * 4);
}
}
static void
print_swizzle_vec4(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half)
{
if (rep_high)
fprintf(fp, " /* rep_high */ ");
if (!half && rep_low)
fprintf(fp, " /* rep_low */ ");
if (swizzle == 0xE4 && !half) return; /* xyzw */
fprintf(fp, ".");
print_swizzle_helper(fp, swizzle, rep_low * 4);
}
static void
print_swizzle_vec2(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half)
{
char *alphabet = "XY";
if (half) {
alphabet = rep_low ? "zw" : "xy";
} else if (rep_low)
fprintf(fp, " /* rep_low */ ");
if (rep_high)
fprintf(fp, " /* rep_high */ ");
if (swizzle == 0xE4 && !half) return; /* XY */
fprintf(fp, ".");
for (unsigned i = 0; i < 4; i += 2) {
unsigned a = (swizzle >> (i * 2)) & 3;
unsigned b = (swizzle >> ((i+1) * 2)) & 3;
/* Normally we're adjacent, but if there's an issue, don't make
* it ambiguous */
if (b == (a + 1))
fprintf(fp, "%c", alphabet[a >> 1]);
else
fprintf(fp, "[%c%c]", components[a], components[b]);
}
}
static int
bits_for_mode(midgard_reg_mode mode)
{
switch (mode) {
case midgard_reg_mode_8:
return 8;
case midgard_reg_mode_16:
return 16;
case midgard_reg_mode_32:
return 32;
case midgard_reg_mode_64:
return 64;
default:
unreachable("Invalid reg mode");
return 0;
}
}
static int
bits_for_mode_halved(midgard_reg_mode mode, bool half)
{
unsigned bits = bits_for_mode(mode);
if (half)
bits >>= 1;
return bits;
}
static void
print_scalar_constant(FILE *fp, unsigned src_binary,
const midgard_constants *consts,
midgard_scalar_alu *alu)
{
midgard_scalar_alu_src *src = (midgard_scalar_alu_src *)&src_binary;
assert(consts != NULL);
fprintf(fp, "#");
mir_print_constant_component(fp, consts, src->component,
src->full ?
midgard_reg_mode_32 : midgard_reg_mode_16,
false, src->mod, alu->op);
}
static void
print_vector_constants(FILE *fp, unsigned src_binary,
const midgard_constants *consts,
midgard_vector_alu *alu)
{
midgard_vector_alu_src *src = (midgard_vector_alu_src *)&src_binary;
unsigned bits = bits_for_mode_halved(alu->reg_mode, src->half);
unsigned max_comp = (sizeof(*consts) * 8) / bits;
unsigned comp_mask, num_comp = 0;
assert(consts);
assert(max_comp <= 16);
comp_mask = effective_writemask(alu->op, condense_writemask(alu->mask, bits));
num_comp = util_bitcount(comp_mask);
fprintf(fp, "<");
bool first = true;
for (unsigned i = 0; i < max_comp; ++i) {
if (!(comp_mask & (1 << i))) continue;
unsigned c = (src->swizzle >> (i * 2)) & 3;
if (bits == 16 && !src->half) {
if (i < 4)
c += (src->rep_high * 4);
else
c += (!src->rep_low * 4);
} else if (bits == 32 && !src->half) {
/* Implicitly ok */
} else if (bits == 8) {
assert (!src->half);
unsigned index = (i >> 1) & 3;
unsigned base = (src->swizzle >> (index * 2)) & 3;
c = base * 2;
if (i < 8)
c += (src->rep_high) * 8;
else
c += (!src->rep_low) * 8;
/* We work on twos, actually */
if (i & 1)
c++;
} else {
printf(" (%d%d%d)", src->rep_low, src->rep_high, src->half);
}
if (first)
first = false;
else
fprintf(fp, ", ");
mir_print_constant_component(fp, consts, c, alu->reg_mode,
src->half, src->mod, alu->op);
}
if (num_comp > 1)
fprintf(fp, ">");
}
static void
print_srcmod(FILE *fp, bool is_int, unsigned mod, bool scalar)
{
/* Modifiers change meaning depending on the op's context */
midgard_int_mod int_mod = mod;
if (is_int) {
if (scalar && mod == 2) {
fprintf(fp, "unk2");
}
fprintf(fp, "%s", srcmod_names_int[int_mod]);
} else {
if (mod & MIDGARD_FLOAT_MOD_NEG)
fprintf(fp, "-");
if (mod & MIDGARD_FLOAT_MOD_ABS)
fprintf(fp, "abs(");
}
}
static void
print_srcmod_end(FILE *fp, bool is_int, unsigned mod, unsigned bits)
{
/* Since we wrapped with a function-looking thing */
if (is_int && mod == midgard_int_shift)
fprintf(fp, ") << %u", bits);
else if ((is_int && (mod != midgard_int_normal))
|| (!is_int && mod & MIDGARD_FLOAT_MOD_ABS))
fprintf(fp, ")");
}
static void
print_vector_src(FILE *fp, unsigned src_binary,
midgard_reg_mode mode, unsigned reg,
midgard_dest_override override, bool is_int)
{
midgard_vector_alu_src *src = (midgard_vector_alu_src *)&src_binary;
print_srcmod(fp, is_int, src->mod, false);
//register
unsigned bits = bits_for_mode_halved(mode, src->half);
print_reg(fp, reg, bits);
/* When the source was stepped down via `half`, rep_low means "higher
* half" and rep_high is never seen. When it's not native,
* rep_low/rep_high are for, well, replication */
if (mode == midgard_reg_mode_8) {
assert(!src->half);
print_swizzle_vec16(fp, src->swizzle, src->rep_high, src->rep_low, override);
} else if (mode == midgard_reg_mode_16) {
print_swizzle_vec8(fp, src->swizzle, src->rep_high, src->rep_low, src->half);
} else if (mode == midgard_reg_mode_32) {
print_swizzle_vec4(fp, src->swizzle, src->rep_high, src->rep_low, src->half);
} else if (mode == midgard_reg_mode_64) {
print_swizzle_vec2(fp, src->swizzle, src->rep_high, src->rep_low, src->half);
}
print_srcmod_end(fp, is_int, src->mod, bits);
}
static uint16_t
decode_vector_imm(unsigned src2_reg, unsigned imm)
{
uint16_t ret;
ret = src2_reg << 11;
ret |= (imm & 0x7) << 8;
ret |= (imm >> 3) & 0xFF;
return ret;
}
static void
print_immediate(FILE *fp, uint16_t imm)
{
if (is_instruction_int)
fprintf(fp, "#%u", imm);
else
fprintf(fp, "#%g", _mesa_half_to_float(imm));
}
static void
update_dest(unsigned reg)
{
/* We should record writes as marking this as a work register. Store
* the max register in work_count; we'll add one at the end */
if (reg < 16) {
midg_stats.work_count = MAX2(reg, midg_stats.work_count);
midg_ever_written |= (1 << reg);
}
}
static void
print_dest(FILE *fp, unsigned reg, midgard_reg_mode mode, midgard_dest_override override)
{
/* Depending on the mode and override, we determine the type of
* destination addressed. Absent an override, we address just the
* type of the operation itself */
unsigned bits = bits_for_mode(mode);
if (override != midgard_dest_override_none)
bits /= 2;
update_dest(reg);
print_reg(fp, reg, bits);
}
static void
print_mask_vec16(FILE *fp, uint8_t mask, midgard_dest_override override)
{
fprintf(fp, ".");
for (unsigned i = 0; i < 8; i++) {
if (mask & (1 << i))
fprintf(fp, "%c%c",
components[i*2 + 0],
components[i*2 + 1]);
}
}
/* For 16-bit+ masks, we read off from the 8-bit mask field. For 16-bit (vec8),
* it's just one bit per channel, easy peasy. For 32-bit (vec4), it's one bit
* per channel with one duplicate bit in the middle. For 64-bit (vec2), it's
* one-bit per channel with _3_ duplicate bits in the middle. Basically, just
* subdividing the 128-bit word in 16-bit increments. For 64-bit, we uppercase
* the mask to make it obvious what happened */
static void
print_mask(FILE *fp, uint8_t mask, unsigned bits, midgard_dest_override override)
{
if (bits == 8) {
print_mask_vec16(fp, mask, override);
return;
}
/* Skip 'complete' masks */
if (override == midgard_dest_override_none)
if (bits >= 32 && mask == 0xFF) return;
fprintf(fp, ".");
unsigned skip = (bits / 16);
bool uppercase = bits > 32;
bool tripped = false;
/* To apply an upper destination override, we "shift" the alphabet.
* E.g. with an upper override on 32-bit, instead of xyzw, print efgh.
* For upper 16-bit, instead of xyzwefgh, print ijklmnop */
const char *alphabet = components;
if (override == midgard_dest_override_upper)
alphabet += (128 / bits);
for (unsigned i = 0; i < 8; i += skip) {
bool a = (mask & (1 << i)) != 0;
for (unsigned j = 1; j < skip; ++j) {
bool dupe = (mask & (1 << (i + j))) != 0;
tripped |= (dupe != a);
}
if (a) {
char c = alphabet[i / skip];
if (uppercase)
c = toupper(c);
fprintf(fp, "%c", c);
}
}
if (tripped)
fprintf(fp, " /* %X */", mask);
}
/* Prints the 4-bit masks found in texture and load/store ops, as opposed to
* the 8-bit masks found in (vector) ALU ops. Supports texture-style 16-bit
* mode as well, but not load/store-style 16-bit mode. */
static void
print_mask_4(FILE *fp, unsigned mask, bool upper)
{
if (mask == 0xF) {
if (upper)
fprintf(fp, "'");
return;
}
fprintf(fp, ".");
for (unsigned i = 0; i < 4; ++i) {
bool a = (mask & (1 << i)) != 0;
if (a)
fprintf(fp, "%c", components[i + (upper ? 4 : 0)]);
}
}
static void
print_vector_field(FILE *fp, const char *name, uint16_t *words, uint16_t reg_word,
const midgard_constants *consts, unsigned tabs)
{
midgard_reg_info *reg_info = (midgard_reg_info *)&reg_word;
midgard_vector_alu *alu_field = (midgard_vector_alu *) words;
midgard_reg_mode mode = alu_field->reg_mode;
unsigned override = alu_field->dest_override;
/* For now, prefix instruction names with their unit, until we
* understand how this works on a deeper level */
fprintf(fp, "%s.", name);
print_alu_opcode(fp, alu_field->op);
/* Postfix with the size to disambiguate if necessary */
char postfix = prefix_for_bits(bits_for_mode(mode));
bool size_ambiguous = override != midgard_dest_override_none;
if (size_ambiguous)
fprintf(fp, "%c", postfix ? postfix : 'r');
/* Print the outmod, if there is one */
print_outmod(fp, alu_field->outmod,
midgard_is_integer_out_op(alu_field->op));
fprintf(fp, " ");
/* Mask denoting status of 8-lanes */
uint8_t mask = alu_field->mask;
/* First, print the destination */
print_dest(fp, reg_info->out_reg, mode, alu_field->dest_override);
if (override != midgard_dest_override_none) {
bool modeable = (mode != midgard_reg_mode_8);
bool known = override != 0x3; /* Unused value */
if (!(modeable && known))
fprintf(fp, "/* do%u */ ", override);
}
/* Instructions like fdot4 do *not* replicate, ensure the
* mask is of only a single component */
unsigned rep = GET_CHANNEL_COUNT(alu_opcode_props[alu_field->op].props);
if (rep) {
unsigned comp_mask = condense_writemask(mask, bits_for_mode(mode));
unsigned num_comp = util_bitcount(comp_mask);
if (num_comp != 1)
fprintf(fp, "/* err too many components */");
}
print_mask(fp, mask, bits_for_mode(mode), override);
fprintf(fp, ", ");
bool is_int = midgard_is_integer_op(alu_field->op);
if (reg_info->src1_reg == 26)
print_vector_constants(fp, alu_field->src1, consts, alu_field);
else
print_vector_src(fp, alu_field->src1, mode, reg_info->src1_reg, override, is_int);
fprintf(fp, ", ");
if (reg_info->src2_imm) {
uint16_t imm = decode_vector_imm(reg_info->src2_reg, alu_field->src2 >> 2);
print_immediate(fp, imm);
} else if (reg_info->src2_reg == 26) {
print_vector_constants(fp, alu_field->src2, consts, alu_field);
} else {
print_vector_src(fp, alu_field->src2, mode,
reg_info->src2_reg, override, is_int);
}
midg_stats.instruction_count++;
fprintf(fp, "\n");
}
static void
print_scalar_src(FILE *fp, bool is_int, unsigned src_binary, unsigned reg)
{
midgard_scalar_alu_src *src = (midgard_scalar_alu_src *)&src_binary;
print_srcmod(fp, is_int, src->mod, true);
print_reg(fp, reg, src->full ? 32 : 16);
unsigned c = src->component;
if (src->full) {
assert((c & 1) == 0);
c >>= 1;
}
fprintf(fp, ".%c", components[c]);
print_srcmod_end(fp, is_int, src->mod, src->full ? 32 : 16);
}
static uint16_t
decode_scalar_imm(unsigned src2_reg, unsigned imm)
{
uint16_t ret;
ret = src2_reg << 11;
ret |= (imm & 3) << 9;
ret |= (imm & 4) << 6;
ret |= (imm & 0x38) << 2;
ret |= imm >> 6;
return ret;
}
static void
print_scalar_field(FILE *fp, const char *name, uint16_t *words, uint16_t reg_word,
const midgard_constants *consts, unsigned tabs)
{
midgard_reg_info *reg_info = (midgard_reg_info *)&reg_word;
midgard_scalar_alu *alu_field = (midgard_scalar_alu *) words;
if (alu_field->unknown)
fprintf(fp, "scalar ALU unknown bit set\n");
fprintf(fp, "%s.", name);
print_alu_opcode(fp, alu_field->op);
print_outmod(fp, alu_field->outmod,
midgard_is_integer_out_op(alu_field->op));
fprintf(fp, " ");
bool full = alu_field->output_full;
update_dest(reg_info->out_reg);
print_reg(fp, reg_info->out_reg, full ? 32 : 16);
unsigned c = alu_field->output_component;
bool is_int = midgard_is_integer_op(alu_field->op);
if (full) {
assert((c & 1) == 0);
c >>= 1;
}
fprintf(fp, ".%c, ", components[c]);
if (reg_info->src1_reg == 26)
print_scalar_constant(fp, alu_field->src1, consts, alu_field);
else
print_scalar_src(fp, is_int, alu_field->src1, reg_info->src1_reg);
fprintf(fp, ", ");
if (reg_info->src2_imm) {
uint16_t imm = decode_scalar_imm(reg_info->src2_reg,
alu_field->src2);
print_immediate(fp, imm);
} else if (reg_info->src2_reg == 26) {
print_scalar_constant(fp, alu_field->src2, consts, alu_field);
} else
print_scalar_src(fp, is_int, alu_field->src2, reg_info->src2_reg);
midg_stats.instruction_count++;
fprintf(fp, "\n");
}
static void
print_branch_op(FILE *fp, unsigned op)
{
switch (op) {
case midgard_jmp_writeout_op_branch_uncond:
fprintf(fp, "uncond.");
break;
case midgard_jmp_writeout_op_branch_cond:
fprintf(fp, "cond.");
break;
case midgard_jmp_writeout_op_writeout:
fprintf(fp, "write.");
break;
case midgard_jmp_writeout_op_tilebuffer_pending:
fprintf(fp, "tilebuffer.");
break;
case midgard_jmp_writeout_op_discard:
fprintf(fp, "discard.");
break;
default:
fprintf(fp, "unk%u.", op);
break;
}
}
static void
print_branch_cond(FILE *fp, int cond)
{
switch (cond) {
case midgard_condition_write0:
fprintf(fp, "write0");
break;
case midgard_condition_false:
fprintf(fp, "false");
break;
case midgard_condition_true:
fprintf(fp, "true");
break;
case midgard_condition_always:
fprintf(fp, "always");
break;
default:
fprintf(fp, "unk%X", cond);
break;
}
}
static bool
print_compact_branch_writeout_field(FILE *fp, uint16_t word)
{
midgard_jmp_writeout_op op = word & 0x7;
midg_stats.instruction_count++;
switch (op) {
case midgard_jmp_writeout_op_branch_uncond: {
midgard_branch_uncond br_uncond;
memcpy((char *) &br_uncond, (char *) &word, sizeof(br_uncond));
fprintf(fp, "br.uncond ");
if (br_uncond.unknown != 1)
fprintf(fp, "unknown:%u, ", br_uncond.unknown);
if (br_uncond.offset >= 0)
fprintf(fp, "+");
fprintf(fp, "%d -> %s", br_uncond.offset,
midgard_tag_props[br_uncond.dest_tag].name);
fprintf(fp, "\n");
return br_uncond.offset >= 0;
}
case midgard_jmp_writeout_op_branch_cond:
case midgard_jmp_writeout_op_writeout:
case midgard_jmp_writeout_op_discard:
default: {
midgard_branch_cond br_cond;
memcpy((char *) &br_cond, (char *) &word, sizeof(br_cond));
fprintf(fp, "br.");
print_branch_op(fp, br_cond.op);
print_branch_cond(fp, br_cond.cond);
fprintf(fp, " ");
if (br_cond.offset >= 0)
fprintf(fp, "+");
fprintf(fp, "%d -> %s", br_cond.offset,
midgard_tag_props[br_cond.dest_tag].name);
fprintf(fp, "\n");
return br_cond.offset >= 0;
}
}
return false;
}
static bool
print_extended_branch_writeout_field(FILE *fp, uint8_t *words, unsigned next)
{
midgard_branch_extended br;
memcpy((char *) &br, (char *) words, sizeof(br));
fprintf(fp, "brx.");
print_branch_op(fp, br.op);
/* Condition codes are a LUT in the general case, but simply repeated 8 times for single-channel conditions.. Check this. */
bool single_channel = true;
for (unsigned i = 0; i < 16; i += 2) {
single_channel &= (((br.cond >> i) & 0x3) == (br.cond & 0x3));
}
if (single_channel)
print_branch_cond(fp, br.cond & 0x3);
else
fprintf(fp, "lut%X", br.cond);
if (br.unknown)
fprintf(fp, ".unknown%u", br.unknown);
fprintf(fp, " ");
if (br.offset >= 0)
fprintf(fp, "+");
fprintf(fp, "%d -> %s\n", br.offset,
midgard_tag_props[br.dest_tag].name);
unsigned I = next + br.offset * 4;
if (midg_tags[I] && midg_tags[I] != br.dest_tag) {
fprintf(fp, "\t/* XXX TAG ERROR: jumping to %s but tagged %s \n",
midgard_tag_props[br.dest_tag].name,
midgard_tag_props[midg_tags[I]].name);
}
midg_tags[I] = br.dest_tag;
midg_stats.instruction_count++;
return br.offset >= 0;
}
static unsigned
num_alu_fields_enabled(uint32_t control_word)
{
unsigned ret = 0;
if ((control_word >> 17) & 1)
ret++;
if ((control_word >> 19) & 1)
ret++;
if ((control_word >> 21) & 1)
ret++;
if ((control_word >> 23) & 1)
ret++;
if ((control_word >> 25) & 1)
ret++;
return ret;
}
static bool
print_alu_word(FILE *fp, uint32_t *words, unsigned num_quad_words,
unsigned tabs, unsigned next)
{
uint32_t control_word = words[0];
uint16_t *beginning_ptr = (uint16_t *)(words + 1);
unsigned num_fields = num_alu_fields_enabled(control_word);
uint16_t *word_ptr = beginning_ptr + num_fields;
unsigned num_words = 2 + num_fields;
const midgard_constants *consts = NULL;
bool branch_forward = false;
if ((control_word >> 17) & 1)
num_words += 3;
if ((control_word >> 19) & 1)
num_words += 2;
if ((control_word >> 21) & 1)
num_words += 3;
if ((control_word >> 23) & 1)
num_words += 2;
if ((control_word >> 25) & 1)
num_words += 3;
if ((control_word >> 26) & 1)
num_words += 1;
if ((control_word >> 27) & 1)
num_words += 3;
if (num_quad_words > (num_words + 7) / 8) {
assert(num_quad_words == (num_words + 15) / 8);
//Assume that the extra quadword is constants
consts = (midgard_constants *)(words + (4 * num_quad_words - 4));
}
if ((control_word >> 16) & 1)
fprintf(fp, "unknown bit 16 enabled\n");
if ((control_word >> 17) & 1) {
print_vector_field(fp, "vmul", word_ptr, *beginning_ptr, consts, tabs);
beginning_ptr += 1;
word_ptr += 3;
}
if ((control_word >> 18) & 1)
fprintf(fp, "unknown bit 18 enabled\n");
if ((control_word >> 19) & 1) {
print_scalar_field(fp, "sadd", word_ptr, *beginning_ptr, consts, tabs);
beginning_ptr += 1;
word_ptr += 2;
}
if ((control_word >> 20) & 1)
fprintf(fp, "unknown bit 20 enabled\n");
if ((control_word >> 21) & 1) {
print_vector_field(fp, "vadd", word_ptr, *beginning_ptr, consts, tabs);
beginning_ptr += 1;
word_ptr += 3;
}
if ((control_word >> 22) & 1)
fprintf(fp, "unknown bit 22 enabled\n");
if ((control_word >> 23) & 1) {
print_scalar_field(fp, "smul", word_ptr, *beginning_ptr, consts, tabs);
beginning_ptr += 1;
word_ptr += 2;
}
if ((control_word >> 24) & 1)
fprintf(fp, "unknown bit 24 enabled\n");
if ((control_word >> 25) & 1) {
print_vector_field(fp, "lut", word_ptr, *beginning_ptr, consts, tabs);
word_ptr += 3;
}
if ((control_word >> 26) & 1) {
branch_forward |= print_compact_branch_writeout_field(fp, *word_ptr);
word_ptr += 1;
}
if ((control_word >> 27) & 1) {
branch_forward |= print_extended_branch_writeout_field(fp, (uint8_t *) word_ptr, next);
word_ptr += 3;
}
if (consts)
fprintf(fp, "uconstants 0x%X, 0x%X, 0x%X, 0x%X\n",
consts->u32[0], consts->u32[1],
consts->u32[2], consts->u32[3]);
return branch_forward;
}
static void
print_varying_parameters(FILE *fp, midgard_load_store_word *word)
{
midgard_varying_parameter param;
unsigned v = word->varying_parameters;
memcpy(&param, &v, sizeof(param));
if (param.is_varying) {
/* If a varying, there are qualifiers */
if (param.flat)
fprintf(fp, ".flat");
if (param.interpolation != midgard_interp_default) {
if (param.interpolation == midgard_interp_centroid)
fprintf(fp, ".centroid");
else if (param.interpolation == midgard_interp_sample)
fprintf(fp, ".sample");
else
fprintf(fp, ".interp%d", param.interpolation);
}
if (param.modifier != midgard_varying_mod_none) {
if (param.modifier == midgard_varying_mod_perspective_w)
fprintf(fp, ".perspectivew");
else if (param.modifier == midgard_varying_mod_perspective_z)
fprintf(fp, ".perspectivez");
else
fprintf(fp, ".mod%d", param.modifier);
}
} else if (param.flat || param.interpolation || param.modifier) {
fprintf(fp, " /* is_varying not set but varying metadata attached */");
}
if (param.zero0 || param.zero1 || param.zero2)
fprintf(fp, " /* zero tripped, %u %u %u */ ", param.zero0, param.zero1, param.zero2);
}
static bool
is_op_varying(unsigned op)
{
switch (op) {
case midgard_op_st_vary_16:
case midgard_op_st_vary_32:
case midgard_op_st_vary_32i:
case midgard_op_st_vary_32u:
case midgard_op_ld_vary_16:
case midgard_op_ld_vary_32:
case midgard_op_ld_vary_32i:
case midgard_op_ld_vary_32u:
return true;
}
return false;
}
static bool
is_op_attribute(unsigned op)
{
switch (op) {
case midgard_op_ld_attr_16:
case midgard_op_ld_attr_32:
case midgard_op_ld_attr_32i:
case midgard_op_ld_attr_32u:
return true;
}
return false;
}
static void
print_load_store_arg(FILE *fp, uint8_t arg, unsigned index)
{
/* Try to interpret as a register */
midgard_ldst_register_select sel;
memcpy(&sel, &arg, sizeof(arg));
/* If unknown is set, we're not sure what this is or how to
* interpret it. But if it's zero, we get it. */
if (sel.unknown) {
fprintf(fp, "0x%02X", arg);
return;
}
unsigned reg = REGISTER_LDST_BASE + sel.select;
char comp = components[sel.component];
fprintf(fp, "r%u.%c", reg, comp);
/* Only print a shift if it's non-zero. Shifts only make sense for the
* second index. For the first, we're not sure what it means yet */
if (index == 1) {
if (sel.shift)
fprintf(fp, " << %u", sel.shift);
} else {
fprintf(fp, " /* %X */", sel.shift);
}
}
static void
update_stats(signed *stat, unsigned address)
{
if (*stat >= 0)
*stat = MAX2(*stat, address + 1);
}
static void
print_load_store_instr(FILE *fp, uint64_t data,
unsigned tabs)
{
midgard_load_store_word *word = (midgard_load_store_word *) &data;
print_ld_st_opcode(fp, word->op);
unsigned address = word->address;
if (is_op_varying(word->op)) {
print_varying_parameters(fp, word);
/* Do some analysis: check if direct cacess */
if ((word->arg_2 == 0x1E) && midg_stats.varying_count >= 0)
update_stats(&midg_stats.varying_count, address);
else
midg_stats.varying_count = -16;
} else if (is_op_attribute(word->op)) {
if ((word->arg_2 == 0x1E) && midg_stats.attribute_count >= 0)
update_stats(&midg_stats.attribute_count, address);
else
midg_stats.attribute_count = -16;
}
fprintf(fp, " r%u", word->reg + (OP_IS_STORE(word->op) ? 26 : 0));
print_mask_4(fp, word->mask, false);
if (!OP_IS_STORE(word->op))
update_dest(word->reg);
bool is_ubo = OP_IS_UBO_READ(word->op);
if (is_ubo) {
/* UBOs use their own addressing scheme */
int lo = word->varying_parameters >> 7;
int hi = word->address;
/* TODO: Combine fields logically */
address = (hi << 3) | lo;
}
fprintf(fp, ", %u", address);
print_swizzle_vec4(fp, word->swizzle, false, false, false);
fprintf(fp, ", ");
if (is_ubo) {
fprintf(fp, "ubo%u", word->arg_1);
update_stats(&midg_stats.uniform_buffer_count, word->arg_1);
} else
print_load_store_arg(fp, word->arg_1, 0);
fprintf(fp, ", ");
print_load_store_arg(fp, word->arg_2, 1);
fprintf(fp, " /* %X */\n", word->varying_parameters);
midg_stats.instruction_count++;
}
static void
print_load_store_word(FILE *fp, uint32_t *word, unsigned tabs)
{
midgard_load_store *load_store = (midgard_load_store *) word;
if (load_store->word1 != 3) {
print_load_store_instr(fp, load_store->word1, tabs);
}
if (load_store->word2 != 3) {
print_load_store_instr(fp, load_store->word2, tabs);
}
}
static void
print_texture_reg_select(FILE *fp, uint8_t u, unsigned base)
{
midgard_tex_register_select sel;
memcpy(&sel, &u, sizeof(u));
if (!sel.full)
fprintf(fp, "h");
fprintf(fp, "r%u", base + sel.select);
unsigned component = sel.component;
/* Use the upper half in half-reg mode */
if (sel.upper) {
assert(!sel.full);
component += 4;
}
fprintf(fp, ".%c", components[component]);
assert(sel.zero == 0);
}
static void
print_texture_format(FILE *fp, int format)
{
/* Act like a modifier */
fprintf(fp, ".");
switch (format) {
DEFINE_CASE(MALI_TEX_1D, "1d");
DEFINE_CASE(MALI_TEX_2D, "2d");
DEFINE_CASE(MALI_TEX_3D, "3d");
DEFINE_CASE(MALI_TEX_CUBE, "cube");
default:
unreachable("Bad format");
}
}
static bool
midgard_op_has_helpers(unsigned op, bool gather)
{
if (gather)
return true;
switch (op) {
case TEXTURE_OP_NORMAL:
case TEXTURE_OP_DFDX:
case TEXTURE_OP_DFDY:
return true;
default:
return false;
}
}
static void
print_texture_op(FILE *fp, unsigned op, bool gather)
{
/* Act like a bare name, like ESSL functions */
if (gather) {
fprintf(fp, "textureGather");
unsigned component = op >> 4;
unsigned bottom = op & 0xF;
if (bottom != 0x2)
fprintf(fp, "_unk%u", bottom);
fprintf(fp, ".%c", components[component]);
return;
}
switch (op) {
DEFINE_CASE(TEXTURE_OP_NORMAL, "texture");
DEFINE_CASE(TEXTURE_OP_LOD, "textureLod");
DEFINE_CASE(TEXTURE_OP_TEXEL_FETCH, "texelFetch");
DEFINE_CASE(TEXTURE_OP_BARRIER, "barrier");
DEFINE_CASE(TEXTURE_OP_DFDX, "dFdx");
DEFINE_CASE(TEXTURE_OP_DFDY, "dFdy");
default:
fprintf(fp, "tex_%X", op);
break;
}
}
static bool
texture_op_takes_bias(unsigned op)
{
return op == TEXTURE_OP_NORMAL;
}
static char
sampler_type_name(enum mali_sampler_type t)
{
switch (t) {
case MALI_SAMPLER_FLOAT:
return 'f';
case MALI_SAMPLER_UNSIGNED:
return 'u';
case MALI_SAMPLER_SIGNED:
return 'i';
default:
return '?';
}
}
static void
print_texture_barrier(FILE *fp, uint32_t *word)
{
midgard_texture_barrier_word *barrier = (midgard_texture_barrier_word *) word;
if (barrier->type != TAG_TEXTURE_4_BARRIER)
fprintf(fp, "/* barrier tag %X != tex/bar */ ", barrier->type);
if (!barrier->cont)
fprintf(fp, "/* cont missing? */");
if (!barrier->last)
fprintf(fp, "/* last missing? */");
if (barrier->zero1)
fprintf(fp, "/* zero1 = 0x%X */ ", barrier->zero1);
if (barrier->zero2)
fprintf(fp, "/* zero2 = 0x%X */ ", barrier->zero2);
if (barrier->zero3)
fprintf(fp, "/* zero3 = 0x%X */ ", barrier->zero3);
if (barrier->zero4)
fprintf(fp, "/* zero4 = 0x%X */ ", barrier->zero4);
if (barrier->zero5)
fprintf(fp, "/* zero4 = 0x%" PRIx64 " */ ", barrier->zero5);
/* Control barriers are always implied, so include for obviousness */
fprintf(fp, " control");
if (barrier->buffer)
fprintf(fp, " | buffer");
if (barrier->shared)
fprintf(fp, " | shared");
if (barrier->stack)
fprintf(fp, " | stack");
fprintf(fp, "\n");
}
#undef DEFINE_CASE
static void
print_texture_word(FILE *fp, uint32_t *word, unsigned tabs, unsigned in_reg_base, unsigned out_reg_base)
{
midgard_texture_word *texture = (midgard_texture_word *) word;
midg_stats.helper_invocations |=
midgard_op_has_helpers(texture->op, texture->is_gather);
/* Broad category of texture operation in question */
print_texture_op(fp, texture->op, texture->is_gather);
/* Barriers use a dramatically different code path */
if (texture->op == TEXTURE_OP_BARRIER) {
print_texture_barrier(fp, word);
return;
} else if (texture->type == TAG_TEXTURE_4_BARRIER)
fprintf (fp, "/* nonbarrier had tex/bar tag */ ");
else if (texture->type == TAG_TEXTURE_4_VTX)
fprintf (fp, ".vtx");
/* Specific format in question */
print_texture_format(fp, texture->format);
/* Instruction "modifiers" parallel the ALU instructions. */
if (texture->shadow)
fprintf(fp, ".shadow");
if (texture->cont)
fprintf(fp, ".cont");
if (texture->last)
fprintf(fp, ".last");
if (texture->out_of_order)
fprintf(fp, ".ooo%u", texture->out_of_order);
/* Output modifiers are always interpreted floatly */
print_outmod(fp, texture->outmod, false);
fprintf(fp, " %sr%u", texture->out_full ? "" : "h",
out_reg_base + texture->out_reg_select);
print_mask_4(fp, texture->mask, texture->out_upper);
assert(!(texture->out_full && texture->out_upper));
fprintf(fp, ", ");
/* Depending on whether we read from textures directly or indirectly,
* we may be able to update our analysis */
if (texture->texture_register) {
fprintf(fp, "texture[");
print_texture_reg_select(fp, texture->texture_handle, in_reg_base);
fprintf(fp, "], ");
/* Indirect, tut tut */
midg_stats.texture_count = -16;
} else {
fprintf(fp, "texture%u, ", texture->texture_handle);
update_stats(&midg_stats.texture_count, texture->texture_handle);
}
/* Print the type, GL style */
fprintf(fp, "%csampler", sampler_type_name(texture->sampler_type));
if (texture->sampler_register) {
fprintf(fp, "[");
print_texture_reg_select(fp, texture->sampler_handle, in_reg_base);
fprintf(fp, "]");
midg_stats.sampler_count = -16;
} else {
fprintf(fp, "%u", texture->sampler_handle);
update_stats(&midg_stats.sampler_count, texture->sampler_handle);
}
print_swizzle_vec4(fp, texture->swizzle, false, false, false);
fprintf(fp, ", %sr%u", texture->in_reg_full ? "" : "h", in_reg_base + texture->in_reg_select);
assert(!(texture->in_reg_full && texture->in_reg_upper));
/* TODO: integrate with swizzle */
if (texture->in_reg_upper)
fprintf(fp, "'");
print_swizzle_vec4(fp, texture->in_reg_swizzle, false, false, false);
/* There is *always* an offset attached. Of
* course, that offset is just immediate #0 for a
* GLES call that doesn't take an offset. If there
* is a non-negative non-zero offset, this is
* specified in immediate offset mode, with the
* values in the offset_* fields as immediates. If
* this is a negative offset, we instead switch to
* a register offset mode, where the offset_*
* fields become register triplets */
if (texture->offset_register) {
fprintf(fp, " + ");
bool full = texture->offset & 1;
bool select = texture->offset & 2;
bool upper = texture->offset & 4;
fprintf(fp, "%sr%u", full ? "" : "h", in_reg_base + select);
assert(!(texture->out_full && texture->out_upper));
/* TODO: integrate with swizzle */
if (upper)
fprintf(fp, "'");
print_swizzle_vec4(fp, texture->offset >> 3, false, false, false);
fprintf(fp, ", ");
} else if (texture->offset) {
/* Only select ops allow negative immediate offsets, verify */
signed offset_x = (texture->offset & 0xF);
signed offset_y = ((texture->offset >> 4) & 0xF);
signed offset_z = ((texture->offset >> 8) & 0xF);
bool neg_x = offset_x < 0;
bool neg_y = offset_y < 0;
bool neg_z = offset_z < 0;
bool any_neg = neg_x || neg_y || neg_z;
if (any_neg && texture->op != TEXTURE_OP_TEXEL_FETCH)
fprintf(fp, "/* invalid negative */ ");
/* Regardless, just print the immediate offset */
fprintf(fp, " + <%d, %d, %d>, ", offset_x, offset_y, offset_z);
} else {
fprintf(fp, ", ");
}
char lod_operand = texture_op_takes_bias(texture->op) ? '+' : '=';
if (texture->lod_register) {
fprintf(fp, "lod %c ", lod_operand);
print_texture_reg_select(fp, texture->bias, in_reg_base);
fprintf(fp, ", ");
if (texture->bias_int)
fprintf(fp, " /* bias_int = 0x%X */", texture->bias_int);
} else if (texture->op == TEXTURE_OP_TEXEL_FETCH) {
/* For texel fetch, the int LOD is in the fractional place and
* there is no fraction. We *always* have an explicit LOD, even
* if it's zero. */
if (texture->bias_int)
fprintf(fp, " /* bias_int = 0x%X */ ", texture->bias_int);
fprintf(fp, "lod = %u, ", texture->bias);
} else if (texture->bias || texture->bias_int) {
signed bias_int = texture->bias_int;
float bias_frac = texture->bias / 256.0f;
float bias = bias_int + bias_frac;
bool is_bias = texture_op_takes_bias(texture->op);
char sign = (bias >= 0.0) ? '+' : '-';
char operand = is_bias ? sign : '=';
fprintf(fp, "lod %c %f, ", operand, fabsf(bias));
}
fprintf(fp, "\n");
/* While not zero in general, for these simple instructions the
* following unknowns are zero, so we don't include them */
if (texture->unknown4 ||
texture->unknown8) {
fprintf(fp, "// unknown4 = 0x%x\n", texture->unknown4);
fprintf(fp, "// unknown8 = 0x%x\n", texture->unknown8);
}
midg_stats.instruction_count++;
}
struct midgard_disasm_stats
disassemble_midgard(FILE *fp, uint8_t *code, size_t size, unsigned gpu_id, gl_shader_stage stage)
{
uint32_t *words = (uint32_t *) code;
unsigned num_words = size / 4;
int tabs = 0;
bool branch_forward = false;
int last_next_tag = -1;
unsigned i = 0;
midg_tags = calloc(sizeof(midg_tags[0]), num_words);
/* Stats for shader-db */
memset(&midg_stats, 0, sizeof(midg_stats));
midg_ever_written = 0;
while (i < num_words) {
unsigned tag = words[i] & 0xF;
unsigned next_tag = (words[i] >> 4) & 0xF;
unsigned num_quad_words = midgard_tag_props[tag].size;
if (midg_tags[i] && midg_tags[i] != tag) {
fprintf(fp, "\t/* XXX: TAG ERROR branch, got %s expected %s */\n",
midgard_tag_props[tag].name,
midgard_tag_props[midg_tags[i]].name);
}
midg_tags[i] = tag;
/* Check the tag. The idea is to ensure that next_tag is
* *always* recoverable from the disassembly, such that we may
* safely omit printing next_tag. To show this, we first
* consider that next tags are semantically off-byone -- we end
* up parsing tag n during step n+1. So, we ensure after we're
* done disassembling the next tag of the final bundle is BREAK
* and warn otherwise. We also ensure that the next tag is
* never INVALID. Beyond that, since the last tag is checked
* outside the loop, we can check one tag prior. If equal to
* the current tag (which is unique), we're done. Otherwise, we
* print if that tag was > TAG_BREAK, which implies the tag was
* not TAG_BREAK or TAG_INVALID. But we already checked for
* TAG_INVALID, so it's just if the last tag was TAG_BREAK that
* we're silent. So we throw in a print for break-next on at
* the end of the bundle (if it's not the final bundle, which
* we already check for above), disambiguating this case as
* well. Hence in all cases we are unambiguous, QED. */
if (next_tag == TAG_INVALID)
fprintf(fp, "\t/* XXX: invalid next tag */\n");
if (last_next_tag > TAG_BREAK && last_next_tag != tag) {
fprintf(fp, "\t/* XXX: TAG ERROR sequence, got %s expexted %s */\n",
midgard_tag_props[tag].name,
midgard_tag_props[last_next_tag].name);
}
last_next_tag = next_tag;
/* Tags are unique in the following way:
*
* INVALID, BREAK, UNKNOWN_*: verbosely printed
* TEXTURE_4_BARRIER: verified by barrier/!barrier op
* TEXTURE_4_VTX: .vtx tag printed
* TEXTURE_4: tetxure lack of barriers or .vtx
* TAG_LOAD_STORE_4: only load/store
* TAG_ALU_4/8/12/16: by number of instructions/constants
* TAG_ALU_4_8/12/16_WRITEOUT: ^^ with .writeout tag
*/
switch (tag) {
case TAG_TEXTURE_4_VTX ... TAG_TEXTURE_4_BARRIER: {
bool interpipe_aliasing =
midgard_get_quirks(gpu_id) & MIDGARD_INTERPIPE_REG_ALIASING;
print_texture_word(fp, &words[i], tabs,
interpipe_aliasing ? 0 : REG_TEX_BASE,
interpipe_aliasing ? REGISTER_LDST_BASE : REG_TEX_BASE);
break;
}
case TAG_LOAD_STORE_4:
print_load_store_word(fp, &words[i], tabs);
break;
case TAG_ALU_4 ... TAG_ALU_16_WRITEOUT:
branch_forward = print_alu_word(fp, &words[i], num_quad_words, tabs, i + 4*num_quad_words);
/* Reset word static analysis state */
is_embedded_constant_half = false;
is_embedded_constant_int = false;
/* TODO: infer/verify me */
if (tag >= TAG_ALU_4_WRITEOUT)
fprintf(fp, "writeout\n");
break;
default:
fprintf(fp, "Unknown word type %u:\n", words[i] & 0xF);
num_quad_words = 1;
print_quad_word(fp, &words[i], tabs);
fprintf(fp, "\n");
break;
}
/* We are parsing per bundle anyway. Add before we start
* breaking out so we don't miss the final bundle. */
midg_stats.bundle_count++;
midg_stats.quadword_count += num_quad_words;
/* Include a synthetic "break" instruction at the end of the
* bundle to signify that if, absent a branch, the shader
* execution will stop here. Stop disassembly at such a break
* based on a heuristic */
if (next_tag == TAG_BREAK) {
if (branch_forward) {
fprintf(fp, "break\n");
} else {
fprintf(fp, "\n");
break;
}
}
fprintf(fp, "\n");
i += 4 * num_quad_words;
}
if (last_next_tag != TAG_BREAK) {
fprintf(fp, "/* XXX: shader ended with tag %s */\n",
midgard_tag_props[last_next_tag].name);
}
free(midg_tags);
/* We computed work_count as max_work_registers, so add one to get the
* count. If no work registers are written, you still have one work
* reported, which is exactly what the hardware expects */
midg_stats.work_count++;
return midg_stats;
}