blob: a6c7504f08e97c6c06cb09501468b2a6eb715830 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifdef ENABLE_SHADER_CACHE
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include "zlib.h"
#ifdef HAVE_ZSTD
#include "zstd.h"
#endif
/* 3 is the recomended level, with 22 as the absolute maximum */
#define ZSTD_COMPRESSION_LEVEL 3
/* From the zlib docs:
* "If the memory is available, buffers sizes on the order of 128K or 256K
* bytes should be used."
*/
#define BUFSIZE 256 * 1024
static ssize_t
write_all(int fd, const void *buf, size_t count);
/**
* Compresses cache entry in memory and writes it to disk. Returns the size
* of the data written to disk.
*/
static size_t
deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
const char *filename)
{
#ifdef HAVE_ZSTD
/* from the zstd docs (https://facebook.github.io/zstd/zstd_manual.html):
* compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
*/
size_t out_size = ZSTD_compressBound(in_data_size);
void * out = malloc(out_size);
size_t ret = ZSTD_compress(out, out_size, in_data, in_data_size,
ZSTD_COMPRESSION_LEVEL);
if (ZSTD_isError(ret)) {
free(out);
return 0;
}
ssize_t written = write_all(dest, out, ret);
if (written == -1) {
free(out);
return 0;
}
free(out);
return ret;
#else
unsigned char *out;
/* allocate deflate state */
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.next_in = (uint8_t *) in_data;
strm.avail_in = in_data_size;
int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
if (ret != Z_OK)
return 0;
/* compress until end of in_data */
size_t compressed_size = 0;
int flush;
out = malloc(BUFSIZE * sizeof(unsigned char));
if (out == NULL)
return 0;
do {
int remaining = in_data_size - BUFSIZE;
flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
in_data_size -= BUFSIZE;
/* Run deflate() on input until the output buffer is not full (which
* means there is no more data to deflate).
*/
do {
strm.avail_out = BUFSIZE;
strm.next_out = out;
ret = deflate(&strm, flush); /* no bad return value */
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
size_t have = BUFSIZE - strm.avail_out;
compressed_size += have;
ssize_t written = write_all(dest, out, have);
if (written == -1) {
(void)deflateEnd(&strm);
free(out);
return 0;
}
} while (strm.avail_out == 0);
/* all input should be used */
assert(strm.avail_in == 0);
} while (flush != Z_FINISH);
/* stream should be complete */
assert(ret == Z_STREAM_END);
/* clean up and return */
(void)deflateEnd(&strm);
free(out);
return compressed_size;
# endif
}
#if DETECT_OS_WINDOWS
/* TODO: implement disk cache support on windows */
#else
#include <dirent.h>
#include <errno.h>
#include <inttypes.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "util/debug.h"
#include "util/disk_cache.h"
#include "util/disk_cache_os.h"
#include "util/ralloc.h"
#include "util/rand_xor.h"
/* Create a directory named 'path' if it does not already exist.
*
* Returns: 0 if path already exists as a directory or if created.
* -1 in all other cases.
*/
static int
mkdir_if_needed(const char *path)
{
struct stat sb;
/* If the path exists already, then our work is done if it's a
* directory, but it's an error if it is not.
*/
if (stat(path, &sb) == 0) {
if (S_ISDIR(sb.st_mode)) {
return 0;
} else {
fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
"---disabling.\n", path);
return -1;
}
}
int ret = mkdir(path, 0755);
if (ret == 0 || (ret == -1 && errno == EEXIST))
return 0;
fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
path, strerror(errno));
return -1;
}
/* Concatenate an existing path and a new name to form a new path. If the new
* path does not exist as a directory, create it then return the resulting
* name of the new path (ralloc'ed off of 'ctx').
*
* Returns NULL on any error, such as:
*
* <path> does not exist or is not a directory
* <path>/<name> exists but is not a directory
* <path>/<name> cannot be created as a directory
*/
static char *
concatenate_and_mkdir(void *ctx, const char *path, const char *name)
{
char *new_path;
struct stat sb;
if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
return NULL;
new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
if (mkdir_if_needed(new_path) == 0)
return new_path;
else
return NULL;
}
/* Given a directory path and predicate function, find the entry with
* the oldest access time in that directory for which the predicate
* returns true.
*
* Returns: A malloc'ed string for the path to the chosen file, (or
* NULL on any error). The caller should free the string when
* finished.
*/
static char *
choose_lru_file_matching(const char *dir_path,
bool (*predicate)(const char *dir_path,
const struct stat *,
const char *, const size_t))
{
DIR *dir;
struct dirent *entry;
char *filename;
char *lru_name = NULL;
time_t lru_atime = 0;
dir = opendir(dir_path);
if (dir == NULL)
return NULL;
while (1) {
entry = readdir(dir);
if (entry == NULL)
break;
struct stat sb;
if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
if (!lru_atime || (sb.st_atime < lru_atime)) {
size_t len = strlen(entry->d_name);
if (!predicate(dir_path, &sb, entry->d_name, len))
continue;
char *tmp = realloc(lru_name, len + 1);
if (tmp) {
lru_name = tmp;
memcpy(lru_name, entry->d_name, len + 1);
lru_atime = sb.st_atime;
}
}
}
}
if (lru_name == NULL) {
closedir(dir);
return NULL;
}
if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
filename = NULL;
free(lru_name);
closedir(dir);
return filename;
}
/* Is entry a regular file, and not having a name with a trailing
* ".tmp"
*/
static bool
is_regular_non_tmp_file(const char *path, const struct stat *sb,
const char *d_name, const size_t len)
{
if (!S_ISREG(sb->st_mode))
return false;
if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
return false;
return true;
}
/* Returns the size of the deleted file, (or 0 on any error). */
static size_t
unlink_lru_file_from_directory(const char *path)
{
struct stat sb;
char *filename;
filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
if (filename == NULL)
return 0;
if (stat(filename, &sb) == -1) {
free (filename);
return 0;
}
unlink(filename);
free (filename);
return sb.st_blocks * 512;
}
/* Is entry a directory with a two-character name, (and not the
* special name of ".."). We also return false if the dir is empty.
*/
static bool
is_two_character_sub_directory(const char *path, const struct stat *sb,
const char *d_name, const size_t len)
{
if (!S_ISDIR(sb->st_mode))
return false;
if (len != 2)
return false;
if (strcmp(d_name, "..") == 0)
return false;
char *subdir;
if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
return false;
DIR *dir = opendir(subdir);
free(subdir);
if (dir == NULL)
return false;
unsigned subdir_entries = 0;
struct dirent *d;
while ((d = readdir(dir)) != NULL) {
if(++subdir_entries > 2)
break;
}
closedir(dir);
/* If dir only contains '.' and '..' it must be empty */
if (subdir_entries <= 2)
return false;
return true;
}
/* Create the directory that will be needed for the cache file for \key.
*
* Obviously, the implementation here must closely match
* _get_cache_file above.
*/
static void
make_cache_file_directory(struct disk_cache *cache, const cache_key key)
{
char *dir;
char buf[41];
_mesa_sha1_format(buf, key);
if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
return;
mkdir_if_needed(dir);
free(dir);
}
static ssize_t
write_all(int fd, const void *buf, size_t count)
{
const char *out = buf;
ssize_t written;
size_t done;
for (done = 0; done < count; done += written) {
written = write(fd, out + done, count - done);
if (written == -1)
return -1;
}
return done;
}
/* Evict least recently used cache item */
void
disk_cache_evict_lru_item(struct disk_cache *cache)
{
char *dir_path;
/* With a reasonably-sized, full cache, (and with keys generated
* from a cryptographic hash), we can choose two random hex digits
* and reasonably expect the directory to exist with a file in it.
* Provides pseudo-LRU eviction to reduce checking all cache files.
*/
uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus);
if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0)
return;
size_t size = unlink_lru_file_from_directory(dir_path);
free(dir_path);
if (size) {
p_atomic_add(cache->size, - (uint64_t)size);
return;
}
/* In the case where the random choice of directory didn't find
* something, we choose the least recently accessed from the
* existing directories.
*
* Really, the only reason this code exists is to allow the unit
* tests to work, (which use an artificially-small cache to be able
* to force a single cached item to be evicted).
*/
dir_path = choose_lru_file_matching(cache->path,
is_two_character_sub_directory);
if (dir_path == NULL)
return;
size = unlink_lru_file_from_directory(dir_path);
free(dir_path);
if (size)
p_atomic_add(cache->size, - (uint64_t)size);
}
void
disk_cache_write_item_to_disk(struct disk_cache_put_job *dc_job,
struct cache_entry_file_data *cf_data,
char *filename)
{
int fd = -1, fd_final = -1;
/* Write to a temporary file to allow for an atomic rename to the
* final destination filename, (to prevent any readers from seeing
* a partially written file).
*/
char *filename_tmp = NULL;
if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
goto done;
fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
/* Make the two-character subdirectory within the cache as needed. */
if (fd == -1) {
if (errno != ENOENT)
goto done;
make_cache_file_directory(dc_job->cache, dc_job->key);
fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
if (fd == -1)
goto done;
}
/* With the temporary file open, we take an exclusive flock on
* it. If the flock fails, then another process still has the file
* open with the flock held. So just let that file be responsible
* for writing the file.
*/
#ifdef HAVE_FLOCK
int err = flock(fd, LOCK_EX | LOCK_NB);
#else
struct flock lock = {
.l_start = 0,
.l_len = 0, /* entire file */
.l_type = F_WRLCK,
.l_whence = SEEK_SET
};
int err = fcntl(fd, F_SETLK, &lock);
#endif
if (err == -1)
goto done;
/* Now that we have the lock on the open temporary file, we can
* check to see if the destination file already exists. If so,
* another process won the race between when we saw that the file
* didn't exist and now. In this case, we don't do anything more,
* (to ensure the size accounting of the cache doesn't get off).
*/
fd_final = open(filename, O_RDONLY | O_CLOEXEC);
if (fd_final != -1) {
unlink(filename_tmp);
goto done;
}
/* OK, we're now on the hook to write out a file that we know is
* not in the cache, and is also not being written out to the cache
* by some other process.
*/
/* Write the driver_keys_blob, this can be used find information about the
* mesa version that produced the entry or deal with hash collisions,
* should that ever become a real problem.
*/
int ret = write_all(fd, dc_job->cache->driver_keys_blob,
dc_job->cache->driver_keys_blob_size);
if (ret == -1) {
unlink(filename_tmp);
goto done;
}
/* Write the cache item metadata. This data can be used to deal with
* hash collisions, as well as providing useful information to 3rd party
* tools reading the cache files.
*/
ret = write_all(fd, &dc_job->cache_item_metadata.type,
sizeof(uint32_t));
if (ret == -1) {
unlink(filename_tmp);
goto done;
}
if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) {
ret = write_all(fd, &dc_job->cache_item_metadata.num_keys,
sizeof(uint32_t));
if (ret == -1) {
unlink(filename_tmp);
goto done;
}
ret = write_all(fd, dc_job->cache_item_metadata.keys[0],
dc_job->cache_item_metadata.num_keys *
sizeof(cache_key));
if (ret == -1) {
unlink(filename_tmp);
goto done;
}
}
size_t cf_data_size = sizeof(*cf_data);
ret = write_all(fd, cf_data, cf_data_size);
if (ret == -1) {
unlink(filename_tmp);
goto done;
}
/* Now, finally, write out the contents to the temporary file, then
* rename them atomically to the destination filename, and also
* perform an atomic increment of the total cache size.
*/
size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
fd, filename_tmp);
if (file_size == 0) {
unlink(filename_tmp);
goto done;
}
ret = rename(filename_tmp, filename);
if (ret == -1) {
unlink(filename_tmp);
goto done;
}
struct stat sb;
if (stat(filename, &sb) == -1) {
/* Something went wrong remove the file */
unlink(filename);
goto done;
}
p_atomic_add(dc_job->cache->size, sb.st_blocks * 512);
done:
if (fd_final != -1)
close(fd_final);
/* This close finally releases the flock, (now that the final file
* has been renamed into place and the size has been added).
*/
if (fd != -1)
close(fd);
free(filename_tmp);
}
/* Determine path for cache based on the first defined name as follows:
*
* $MESA_GLSL_CACHE_DIR
* $XDG_CACHE_HOME/mesa_shader_cache
* <pwd.pw_dir>/.cache/mesa_shader_cache
*/
char *
disk_cache_generate_cache_dir(void *mem_ctx)
{
char *path = getenv("MESA_GLSL_CACHE_DIR");
if (path) {
if (mkdir_if_needed(path) == -1)
return NULL;
path = concatenate_and_mkdir(mem_ctx, path, CACHE_DIR_NAME);
if (!path)
return NULL;
}
if (path == NULL) {
char *xdg_cache_home = getenv("XDG_CACHE_HOME");
if (xdg_cache_home) {
if (mkdir_if_needed(xdg_cache_home) == -1)
return NULL;
path = concatenate_and_mkdir(mem_ctx, xdg_cache_home, CACHE_DIR_NAME);
if (!path)
return NULL;
}
}
if (!path) {
char *buf;
size_t buf_size;
struct passwd pwd, *result;
buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
if (buf_size == -1)
buf_size = 512;
/* Loop until buf_size is large enough to query the directory */
while (1) {
buf = ralloc_size(mem_ctx, buf_size);
getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
if (result)
break;
if (errno == ERANGE) {
ralloc_free(buf);
buf = NULL;
buf_size *= 2;
} else {
return NULL;
}
}
path = concatenate_and_mkdir(mem_ctx, pwd.pw_dir, ".cache");
if (!path)
return NULL;
path = concatenate_and_mkdir(mem_ctx, path, CACHE_DIR_NAME);
if (!path)
return NULL;
}
return path;
}
bool
disk_cache_enabled()
{
/* If running as a users other than the real user disable cache */
if (geteuid() != getuid())
return false;
/* At user request, disable shader cache entirely. */
if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false))
return false;
return true;
}
bool
disk_cache_mmap_cache_index(void *mem_ctx, struct disk_cache *cache,
char *path)
{
int fd = -1;
bool mapped = false;
cache->path = ralloc_strdup(cache, path);
if (cache->path == NULL)
goto path_fail;
path = ralloc_asprintf(mem_ctx, "%s/index", cache->path);
if (path == NULL)
goto path_fail;
fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
if (fd == -1)
goto path_fail;
struct stat sb;
if (fstat(fd, &sb) == -1)
goto path_fail;
/* Force the index file to be the expected size. */
size_t size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
if (sb.st_size != size) {
if (ftruncate(fd, size) == -1)
goto path_fail;
}
/* We map this shared so that other processes see updates that we
* make.
*
* Note: We do use atomic addition to ensure that multiple
* processes don't scramble the cache size recorded in the
* index. But we don't use any locking to prevent multiple
* processes from updating the same entry simultaneously. The idea
* is that if either result lands entirely in the index, then
* that's equivalent to a well-ordered write followed by an
* eviction and a write. On the other hand, if the simultaneous
* writes result in a corrupt entry, that's not really any
* different than both entries being evicted, (since within the
* guarantees of the cryptographic hash, a corrupt entry is
* unlikely to ever match a real cache key).
*/
cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (cache->index_mmap == MAP_FAILED)
goto path_fail;
cache->index_mmap_size = size;
cache->size = (uint64_t *) cache->index_mmap;
cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
mapped = true;
path_fail:
if (fd != -1)
close(fd);
return mapped;
}
void
disk_cache_destroy_mmap(struct disk_cache *cache)
{
munmap(cache->index_mmap, cache->index_mmap_size);
}
#endif
#endif /* ENABLE_SHADER_CACHE */