blob: fe094ebb2190714bb085464f3fbc5baae14bf2e4 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <map>
#include <unordered_map>
#include "aco_ir.h"
/*
* Implements the algorithm for dominator-tree value numbering
* from "Value Numbering" by Briggs, Cooper, and Simpson.
*/
namespace aco {
namespace {
struct InstrHash {
std::size_t operator()(Instruction* instr) const
{
uint64_t hash = (uint64_t) instr->opcode + (uint64_t) instr->format;
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand op = instr->operands[i];
uint64_t val = op.isTemp() ? op.tempId() : op.isFixed() ? op.physReg() : op.constantValue();
hash |= val << (i+1) * 8;
}
if (instr->isVOP3()) {
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);
for (unsigned i = 0; i < 3; i++) {
hash ^= vop3->abs[i] << (i*3 + 0);
hash ^= vop3->opsel[i] << (i*3 + 1);
hash ^= vop3->neg[i] << (i*3 + 2);
}
hash ^= (vop3->clamp << 28) * 13;
hash += vop3->omod << 19;
}
switch (instr->format) {
case Format::SMEM:
break;
case Format::VINTRP: {
Interp_instruction* interp = static_cast<Interp_instruction*>(instr);
hash ^= interp->attribute << 13;
hash ^= interp->component << 27;
break;
}
case Format::DS:
break;
default:
break;
}
return hash;
}
};
struct InstrPred {
bool operator()(Instruction* a, Instruction* b) const
{
if (a->format != b->format)
return false;
if (a->opcode != b->opcode)
return false;
if (a->operands.size() != b->operands.size() || a->definitions.size() != b->definitions.size())
return false; /* possible with pseudo-instructions */
/* We can't value number v_readlane_b32 across control flow or discards
* because of the possibility of live-range splits.
* We can't value number permutes for the same reason as
* v_readlane_b32 and because discards affect the result */
if (a->opcode == aco_opcode::v_readfirstlane_b32 || a->opcode == aco_opcode::v_readlane_b32 ||
a->opcode == aco_opcode::ds_bpermute_b32 || a->opcode == aco_opcode::ds_permute_b32 ||
a->opcode == aco_opcode::ds_swizzle_b32 || a->format == Format::PSEUDO_REDUCTION ||
a->opcode == aco_opcode::p_phi || a->opcode == aco_opcode::p_linear_phi) {
if (a->pass_flags != b->pass_flags)
return false;
}
for (unsigned i = 0; i < a->operands.size(); i++) {
if (a->operands[i].isConstant()) {
if (!b->operands[i].isConstant())
return false;
if (a->operands[i].constantValue() != b->operands[i].constantValue())
return false;
}
else if (a->operands[i].isTemp()) {
if (!b->operands[i].isTemp())
return false;
if (a->operands[i].tempId() != b->operands[i].tempId())
return false;
}
else if (a->operands[i].isUndefined() ^ b->operands[i].isUndefined())
return false;
if (a->operands[i].isFixed()) {
if (a->operands[i].physReg() == exec)
return false;
if (!b->operands[i].isFixed())
return false;
if (!(a->operands[i].physReg() == b->operands[i].physReg()))
return false;
}
}
for (unsigned i = 0; i < a->definitions.size(); i++) {
if (a->definitions[i].isTemp()) {
if (!b->definitions[i].isTemp())
return false;
if (a->definitions[i].regClass() != b->definitions[i].regClass())
return false;
}
if (a->definitions[i].isFixed()) {
if (!b->definitions[i].isFixed())
return false;
if (!(a->definitions[i].physReg() == b->definitions[i].physReg()))
return false;
}
}
if (a->format == Format::PSEUDO_BRANCH)
return false;
if (a->isVOP3()) {
VOP3A_instruction* a3 = static_cast<VOP3A_instruction*>(a);
VOP3A_instruction* b3 = static_cast<VOP3A_instruction*>(b);
for (unsigned i = 0; i < 3; i++) {
if (a3->abs[i] != b3->abs[i] ||
a3->opsel[i] != b3->opsel[i] ||
a3->neg[i] != b3->neg[i])
return false;
}
return a3->clamp == b3->clamp &&
a3->omod == b3->omod;
}
if (a->isDPP()) {
DPP_instruction* aDPP = static_cast<DPP_instruction*>(a);
DPP_instruction* bDPP = static_cast<DPP_instruction*>(b);
return aDPP->dpp_ctrl == bDPP->dpp_ctrl &&
aDPP->bank_mask == bDPP->bank_mask &&
aDPP->row_mask == bDPP->row_mask &&
aDPP->bound_ctrl == bDPP->bound_ctrl &&
aDPP->abs[0] == bDPP->abs[0] &&
aDPP->abs[1] == bDPP->abs[1] &&
aDPP->neg[0] == bDPP->neg[0] &&
aDPP->neg[1] == bDPP->neg[1];
}
switch (a->format) {
case Format::VOPC: {
/* Since the results depend on the exec mask, these shouldn't
* be value numbered (this is especially useful for subgroupBallot()). */
return false;
}
case Format::SOPK: {
SOPK_instruction* aK = static_cast<SOPK_instruction*>(a);
SOPK_instruction* bK = static_cast<SOPK_instruction*>(b);
return aK->imm == bK->imm;
}
case Format::SMEM: {
SMEM_instruction* aS = static_cast<SMEM_instruction*>(a);
SMEM_instruction* bS = static_cast<SMEM_instruction*>(b);
return aS->can_reorder && bS->can_reorder &&
aS->glc == bS->glc && aS->nv == bS->nv;
}
case Format::VINTRP: {
Interp_instruction* aI = static_cast<Interp_instruction*>(a);
Interp_instruction* bI = static_cast<Interp_instruction*>(b);
if (aI->attribute != bI->attribute)
return false;
if (aI->component != bI->component)
return false;
return true;
}
case Format::PSEUDO_REDUCTION: {
Pseudo_reduction_instruction *aR = static_cast<Pseudo_reduction_instruction*>(a);
Pseudo_reduction_instruction *bR = static_cast<Pseudo_reduction_instruction*>(b);
return aR->reduce_op == bR->reduce_op && aR->cluster_size == bR->cluster_size;
}
case Format::MTBUF: {
/* this is fine since they are only used for vertex input fetches */
MTBUF_instruction* aM = static_cast<MTBUF_instruction *>(a);
MTBUF_instruction* bM = static_cast<MTBUF_instruction *>(b);
return aM->can_reorder == bM->can_reorder &&
aM->barrier == bM->barrier &&
aM->dfmt == bM->dfmt &&
aM->nfmt == bM->nfmt &&
aM->offset == bM->offset &&
aM->offen == bM->offen &&
aM->idxen == bM->idxen &&
aM->glc == bM->glc &&
aM->slc == bM->slc &&
aM->tfe == bM->tfe &&
aM->disable_wqm == bM->disable_wqm;
}
/* we want to optimize these in NIR and don't hassle with load-store dependencies */
case Format::MUBUF:
case Format::FLAT:
case Format::GLOBAL:
case Format::SCRATCH:
return false;
case Format::DS: {
/* we already handle potential issue with permute/swizzle above */
DS_instruction* aD = static_cast<DS_instruction *>(a);
DS_instruction* bD = static_cast<DS_instruction *>(b);
if (a->opcode != aco_opcode::ds_bpermute_b32 &&
a->opcode != aco_opcode::ds_permute_b32 &&
a->opcode != aco_opcode::ds_swizzle_b32)
return false;
return aD->gds == bD->gds && aD->offset0 == bD->offset0 && aD->offset1 == bD->offset1;
}
case Format::MIMG: {
MIMG_instruction* aM = static_cast<MIMG_instruction*>(a);
MIMG_instruction* bM = static_cast<MIMG_instruction*>(b);
return aM->can_reorder && bM->can_reorder &&
aM->barrier == bM->barrier &&
aM->dmask == bM->dmask &&
aM->unrm == bM->unrm &&
aM->glc == bM->glc &&
aM->slc == bM->slc &&
aM->tfe == bM->tfe &&
aM->da == bM->da &&
aM->lwe == bM->lwe &&
aM->r128 == bM->r128 &&
aM->a16 == bM->a16 &&
aM->d16 == bM->d16 &&
aM->disable_wqm == bM->disable_wqm;
}
default:
return true;
}
}
};
using expr_set = std::unordered_map<Instruction*, uint32_t, InstrHash, InstrPred>;
struct vn_ctx {
Program* program;
expr_set expr_values;
std::map<uint32_t, Temp> renames;
uint32_t exec_id = 0;
vn_ctx(Program* program) : program(program) {}
};
bool dominates(vn_ctx& ctx, uint32_t parent, uint32_t child)
{
while (parent < child)
child = ctx.program->blocks[child].logical_idom;
return parent == child;
}
void process_block(vn_ctx& ctx, Block& block)
{
std::vector<aco_ptr<Instruction>> new_instructions;
new_instructions.reserve(block.instructions.size());
for (aco_ptr<Instruction>& instr : block.instructions) {
/* first, rename operands */
for (Operand& op : instr->operands) {
if (!op.isTemp())
continue;
auto it = ctx.renames.find(op.tempId());
if (it != ctx.renames.end())
op.setTemp(it->second);
}
if (instr->definitions.empty()) {
new_instructions.emplace_back(std::move(instr));
continue;
}
/* simple copy-propagation through renaming */
if ((instr->opcode == aco_opcode::s_mov_b32 || instr->opcode == aco_opcode::s_mov_b64 || instr->opcode == aco_opcode::v_mov_b32) &&
!instr->definitions[0].isFixed() && instr->operands[0].isTemp() && instr->operands[0].regClass() == instr->definitions[0].regClass() &&
!instr->isDPP() && !((int)instr->format & (int)Format::SDWA)) {
ctx.renames[instr->definitions[0].tempId()] = instr->operands[0].getTemp();
}
if (instr->opcode == aco_opcode::p_discard_if ||
instr->opcode == aco_opcode::p_demote_to_helper)
ctx.exec_id++;
instr->pass_flags = ctx.exec_id;
std::pair<expr_set::iterator, bool> res = ctx.expr_values.emplace(instr.get(), block.index);
/* if there was already an expression with the same value number */
if (!res.second) {
Instruction* orig_instr = res.first->first;
assert(instr->definitions.size() == orig_instr->definitions.size());
/* check if the original instruction dominates the current one */
if (dominates(ctx, res.first->second, block.index)) {
for (unsigned i = 0; i < instr->definitions.size(); i++) {
assert(instr->definitions[i].regClass() == orig_instr->definitions[i].regClass());
ctx.renames[instr->definitions[i].tempId()] = orig_instr->definitions[i].getTemp();
}
} else {
ctx.expr_values.erase(res.first);
ctx.expr_values.emplace(instr.get(), block.index);
new_instructions.emplace_back(std::move(instr));
}
} else {
new_instructions.emplace_back(std::move(instr));
}
}
block.instructions = std::move(new_instructions);
}
void rename_phi_operands(Block& block, std::map<uint32_t, Temp>& renames)
{
for (aco_ptr<Instruction>& phi : block.instructions) {
if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
break;
for (Operand& op : phi->operands) {
if (!op.isTemp())
continue;
auto it = renames.find(op.tempId());
if (it != renames.end())
op.setTemp(it->second);
}
}
}
} /* end namespace */
void value_numbering(Program* program)
{
vn_ctx ctx(program);
for (Block& block : program->blocks) {
if (block.logical_idom != -1)
process_block(ctx, block);
else
rename_phi_operands(block, ctx.renames);
ctx.exec_id++;
}
/* rename loop header phi operands */
for (Block& block : program->blocks) {
if (block.kind & block_kind_loop_header)
rename_phi_operands(block, ctx.renames);
}
}
}