blob: 2d1fb65b15fadf24b8e734ad9cfa99499459b2a2 [file] [log] [blame]
/**************************************************************************
*
* Copyright 2010 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
**************************************************************************/
#include "util/u_debug.h"
#include "util/u_cpu_detect.h"
#include "util/u_math.h"
#include "lp_bld_debug.h"
#include "lp_bld_const.h"
#include "lp_bld_format.h"
#include "lp_bld_gather.h"
#include "lp_bld_swizzle.h"
#include "lp_bld_type.h"
#include "lp_bld_init.h"
#include "lp_bld_intr.h"
#include "lp_bld_pack.h"
/**
* Get the pointer to one element from scatter positions in memory.
*
* @sa lp_build_gather()
*/
LLVMValueRef
lp_build_gather_elem_ptr(struct gallivm_state *gallivm,
unsigned length,
LLVMValueRef base_ptr,
LLVMValueRef offsets,
unsigned i)
{
LLVMValueRef offset;
LLVMValueRef ptr;
assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
if (length == 1) {
assert(i == 0);
offset = offsets;
} else {
LLVMValueRef index = lp_build_const_int32(gallivm, i);
offset = LLVMBuildExtractElement(gallivm->builder, offsets, index, "");
}
ptr = LLVMBuildGEP(gallivm->builder, base_ptr, &offset, 1, "");
return ptr;
}
/**
* Gather one element from scatter positions in memory.
*
* @sa lp_build_gather()
*/
LLVMValueRef
lp_build_gather_elem(struct gallivm_state *gallivm,
unsigned length,
unsigned src_width,
unsigned dst_width,
boolean aligned,
LLVMValueRef base_ptr,
LLVMValueRef offsets,
unsigned i,
boolean vector_justify)
{
LLVMTypeRef src_type = LLVMIntTypeInContext(gallivm->context, src_width);
LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
LLVMTypeRef dst_elem_type = LLVMIntTypeInContext(gallivm->context, dst_width);
LLVMValueRef ptr;
LLVMValueRef res;
assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i);
ptr = LLVMBuildBitCast(gallivm->builder, ptr, src_ptr_type, "");
res = LLVMBuildLoad(gallivm->builder, ptr, "");
/* XXX
* On some archs we probably really want to avoid having to deal
* with alignments lower than 4 bytes (if fetch size is a power of
* two >= 32). On x86 it doesn't matter, however.
* We should be able to guarantee full alignment for any kind of texture
* fetch (except ARB_texture_buffer_range, oops), but not vertex fetch
* (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends
* but I don't think that's quite what we wanted).
* For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT
* looks like a good fit, but it seems this cap bit (and OpenGL) aren't
* enforcing what we want (which is what d3d10 does, the offset needs to
* be aligned to element size, but GL has bytes regardless of element
* size which would only leave us with minimum alignment restriction of 16
* which doesn't make much sense if the type isn't 4x32bit). Due to
* translation of offsets to first_elem in sampler_views it actually seems
* gallium could not do anything else except 16 no matter what...
*/
if (!aligned) {
LLVMSetAlignment(res, 1);
} else if (!util_is_power_of_two(src_width)) {
/*
* Full alignment is impossible, assume the caller really meant
* the individual elements were aligned (e.g. 3x32bit format).
* And yes the generated code may otherwise crash, llvm will
* really assume 128bit alignment with a 96bit fetch (I suppose
* that makes sense as it can just assume the upper 32bit to be
* whatever).
* Maybe the caller should be able to explicitly set this, but
* this should cover all the 3-channel formats.
*/
if (((src_width / 24) * 24 == src_width) &&
util_is_power_of_two(src_width / 24)) {
LLVMSetAlignment(res, src_width / 24);
} else {
LLVMSetAlignment(res, 1);
}
}
assert(src_width <= dst_width);
if (src_width < dst_width) {
res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, "");
if (vector_justify) {
#ifdef PIPE_ARCH_BIG_ENDIAN
res = LLVMBuildShl(gallivm->builder, res,
LLVMConstInt(dst_elem_type, dst_width - src_width, 0), "");
#endif
}
}
return res;
}
/**
* Gather one element from scatter positions in memory.
* Nearly the same as above, however the individual elements
* may be vectors themselves, and fetches may be float type.
* Can also do pad vector instead of ZExt.
*
* @sa lp_build_gather()
*/
static LLVMValueRef
lp_build_gather_elem_vec(struct gallivm_state *gallivm,
unsigned length,
unsigned src_width,
LLVMTypeRef src_type,
struct lp_type dst_type,
boolean aligned,
LLVMValueRef base_ptr,
LLVMValueRef offsets,
unsigned i,
boolean vector_justify)
{
LLVMValueRef ptr, res;
LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i);
ptr = LLVMBuildBitCast(gallivm->builder, ptr, src_ptr_type, "");
res = LLVMBuildLoad(gallivm->builder, ptr, "");
/* XXX
* On some archs we probably really want to avoid having to deal
* with alignments lower than 4 bytes (if fetch size is a power of
* two >= 32). On x86 it doesn't matter, however.
* We should be able to guarantee full alignment for any kind of texture
* fetch (except ARB_texture_buffer_range, oops), but not vertex fetch
* (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends
* but I don't think that's quite what we wanted).
* For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT
* looks like a good fit, but it seems this cap bit (and OpenGL) aren't
* enforcing what we want (which is what d3d10 does, the offset needs to
* be aligned to element size, but GL has bytes regardless of element
* size which would only leave us with minimum alignment restriction of 16
* which doesn't make much sense if the type isn't 4x32bit). Due to
* translation of offsets to first_elem in sampler_views it actually seems
* gallium could not do anything else except 16 no matter what...
*/
if (!aligned) {
LLVMSetAlignment(res, 1);
} else if (!util_is_power_of_two(src_width)) {
/*
* Full alignment is impossible, assume the caller really meant
* the individual elements were aligned (e.g. 3x32bit format).
* And yes the generated code may otherwise crash, llvm will
* really assume 128bit alignment with a 96bit fetch (I suppose
* that makes sense as it can just assume the upper 32bit to be
* whatever).
* Maybe the caller should be able to explicitly set this, but
* this should cover all the 3-channel formats.
*/
if (((src_width / 24) * 24 == src_width) &&
util_is_power_of_two(src_width / 24)) {
LLVMSetAlignment(res, src_width / 24);
} else {
LLVMSetAlignment(res, 1);
}
}
assert(src_width <= dst_type.width * dst_type.length);
if (src_width < dst_type.width * dst_type.length) {
if (dst_type.length > 1) {
res = lp_build_pad_vector(gallivm, res, dst_type.length);
/*
* vector_justify hopefully a non-issue since we only deal
* with src_width >= 32 here?
*/
} else {
LLVMTypeRef dst_elem_type = lp_build_vec_type(gallivm, dst_type);
/*
* Only valid if src_ptr_type is int type...
*/
res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, "");
if (vector_justify) {
#ifdef PIPE_ARCH_BIG_ENDIAN
res = LLVMBuildShl(gallivm->builder, res,
LLVMConstInt(dst_elem_type,
dst_type.width - src_width, 0), "");
#endif
}
}
}
return res;
}
static LLVMValueRef
lp_build_gather_avx2(struct gallivm_state *gallivm,
unsigned length,
unsigned src_width,
struct lp_type dst_type,
LLVMValueRef base_ptr,
LLVMValueRef offsets)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMTypeRef src_type, src_vec_type;
LLVMValueRef res;
struct lp_type res_type = dst_type;
res_type.length *= length;
if (dst_type.floating) {
src_type = src_width == 64 ? LLVMDoubleTypeInContext(gallivm->context) :
LLVMFloatTypeInContext(gallivm->context);
} else {
src_type = LLVMIntTypeInContext(gallivm->context, src_width);
}
src_vec_type = LLVMVectorType(src_type, length);
/* XXX should allow hw scaling (can handle i8, i16, i32, i64 for x86) */
assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
if (0) {
/*
* XXX: This will cause LLVM pre 3.7 to hang; it works on LLVM 3.8 but
* will not use the AVX2 gather instrinsics (even with llvm 4.0), at
* least with Haswell. See
* http://lists.llvm.org/pipermail/llvm-dev/2016-January/094448.html
* And the generated code doing the emulation is quite a bit worse
* than what we get by doing it ourselves too.
*/
LLVMTypeRef i32_type = LLVMIntTypeInContext(gallivm->context, 32);
LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length);
LLVMTypeRef i1_type = LLVMIntTypeInContext(gallivm->context, 1);
LLVMTypeRef i1_vec_type = LLVMVectorType(i1_type, length);
LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
LLVMValueRef src_ptr;
base_ptr = LLVMBuildBitCast(builder, base_ptr, src_ptr_type, "");
/* Rescale offsets from bytes to elements */
LLVMValueRef scale = LLVMConstInt(i32_type, src_width/8, 0);
scale = lp_build_broadcast(gallivm, i32_vec_type, scale);
assert(LLVMTypeOf(offsets) == i32_vec_type);
offsets = LLVMBuildSDiv(builder, offsets, scale, "");
src_ptr = LLVMBuildGEP(builder, base_ptr, &offsets, 1, "vector-gep");
char intrinsic[64];
util_snprintf(intrinsic, sizeof intrinsic, "llvm.masked.gather.v%u%s%u",
length, dst_type.floating ? "f" : "i", src_width);
LLVMValueRef alignment = LLVMConstInt(i32_type, src_width/8, 0);
LLVMValueRef mask = LLVMConstAllOnes(i1_vec_type);
LLVMValueRef passthru = LLVMGetUndef(src_vec_type);
LLVMValueRef args[] = { src_ptr, alignment, mask, passthru };
res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 4, 0);
} else {
LLVMTypeRef i8_type = LLVMIntTypeInContext(gallivm->context, 8);
const char *intrinsic = NULL;
unsigned l_idx = 0;
assert(src_width == 32 || src_width == 64);
if (src_width == 32) {
assert(length == 4 || length == 8);
} else {
assert(length == 2 || length == 4);
}
static const char *intrinsics[2][2][2] = {
{{"llvm.x86.avx2.gather.d.d",
"llvm.x86.avx2.gather.d.d.256"},
{"llvm.x86.avx2.gather.d.q",
"llvm.x86.avx2.gather.d.q.256"}},
{{"llvm.x86.avx2.gather.d.ps",
"llvm.x86.avx2.gather.d.ps.256"},
{"llvm.x86.avx2.gather.d.pd",
"llvm.x86.avx2.gather.d.pd.256"}},
};
if ((src_width == 32 && length == 8) ||
(src_width == 64 && length == 4)) {
l_idx = 1;
}
intrinsic = intrinsics[dst_type.floating][src_width == 64][l_idx];
LLVMValueRef passthru = LLVMGetUndef(src_vec_type);
LLVMValueRef mask = LLVMConstAllOnes(src_vec_type);
mask = LLVMConstBitCast(mask, src_vec_type);
LLVMValueRef scale = LLVMConstInt(i8_type, 1, 0);
LLVMValueRef args[] = { passthru, base_ptr, offsets, mask, scale };
res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 5, 0);
}
res = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, res_type), "");
return res;
}
/**
* Gather elements from scatter positions in memory into a single vector.
* Use for fetching texels from a texture.
* For SSE, typical values are length=4, src_width=32, dst_width=32.
*
* When src_width < dst_width, the return value can be justified in
* one of two ways:
* "integer justification" is used when the caller treats the destination
* as a packed integer bitmask, as described by the channels' "shift" and
* "width" fields;
* "vector justification" is used when the caller casts the destination
* to a vector and needs channel X to be in vector element 0.
*
* @param length length of the offsets
* @param src_width src element width in bits
* @param dst_type result element type (src will be expanded to fit,
* but truncation is not allowed)
* (this may be a vector, must be pot sized)
* @param aligned whether the data is guaranteed to be aligned (to src_width)
* @param base_ptr base pointer, needs to be a i8 pointer type.
* @param offsets vector with offsets
* @param vector_justify select vector rather than integer justification
*/
LLVMValueRef
lp_build_gather(struct gallivm_state *gallivm,
unsigned length,
unsigned src_width,
struct lp_type dst_type,
boolean aligned,
LLVMValueRef base_ptr,
LLVMValueRef offsets,
boolean vector_justify)
{
LLVMValueRef res;
boolean need_expansion = src_width < dst_type.width * dst_type.length;
boolean vec_fetch;
struct lp_type fetch_type, fetch_dst_type;
LLVMTypeRef src_type;
assert(src_width <= dst_type.width * dst_type.length);
/*
* This is quite a mess...
* Figure out if the fetch should be done as:
* a) scalar or vector
* b) float or int
*
* As an example, for a 96bit fetch expanded into 4x32bit, it is better
* to use (3x32bit) vector type (then pad the vector). Otherwise, the
* zext will cause extra instructions.
* However, the same isn't true for 3x16bit (the codegen for that is
* completely worthless on x86 simd, and for 3x8bit is is way worse
* still, don't try that... (To get really good code out of llvm for
* these cases, the only way is to decompose the fetches manually
* into 1x32bit/1x16bit, or 1x16/1x8bit respectively, although the latter
* case requires sse41, otherwise simple scalar zext is way better.
* But probably not important enough, so don't bother.)
* Also, we try to honor the floating bit of destination (but isn't
* possible if caller asks for instance for 2x32bit dst_type with
* 48bit fetch - the idea would be to use 3x16bit fetch, pad and
* cast to 2x32f type, so the fetch is always int and on top of that
* we avoid the vec pad and use scalar zext due the above mentioned
* issue).
* Note this is optimized for x86 sse2 and up backend. Could be tweaked
* for other archs if necessary...
*/
if (((src_width % 32) == 0) && ((src_width % dst_type.width) == 0) &&
(dst_type.length > 1)) {
/* use vector fetch (if dst_type is vector) */
vec_fetch = TRUE;
if (dst_type.floating) {
fetch_type = lp_type_float_vec(dst_type.width, src_width);
} else {
fetch_type = lp_type_int_vec(dst_type.width, src_width);
}
/* intentionally not using lp_build_vec_type here */
src_type = LLVMVectorType(lp_build_elem_type(gallivm, fetch_type),
fetch_type.length);
fetch_dst_type = fetch_type;
fetch_dst_type.length = dst_type.length;
} else {
/* use scalar fetch */
vec_fetch = FALSE;
if (dst_type.floating && ((src_width == 32) || (src_width == 64))) {
fetch_type = lp_type_float(src_width);
} else {
fetch_type = lp_type_int(src_width);
}
src_type = lp_build_vec_type(gallivm, fetch_type);
fetch_dst_type = fetch_type;
fetch_dst_type.width = dst_type.width * dst_type.length;
}
if (length == 1) {
/* Scalar */
res = lp_build_gather_elem_vec(gallivm, length,
src_width, src_type, fetch_dst_type,
aligned, base_ptr, offsets, 0,
vector_justify);
return LLVMBuildBitCast(gallivm->builder, res,
lp_build_vec_type(gallivm, dst_type), "");
/*
* Excluding expansion from these paths because if you need it for
* 32bit/64bit fetches you're doing it wrong (this is gather, not
* conversion) and it would be awkward for floats.
*/
} else if (util_cpu_caps.has_avx2 && !need_expansion &&
src_width == 32 && (length == 4 || length == 8)) {
return lp_build_gather_avx2(gallivm, length, src_width, dst_type,
base_ptr, offsets);
/*
* This looks bad on paper wrt throughtput/latency on Haswell.
* Even on Broadwell it doesn't look stellar.
* Albeit no measurements were done (but tested to work).
* Should definitely enable on Skylake.
* (In general, should be more of a win if the fetch is 256bit wide -
* this is true for the 32bit case above too.)
*/
} else if (0 && util_cpu_caps.has_avx2 && !need_expansion &&
src_width == 64 && (length == 2 || length == 4)) {
return lp_build_gather_avx2(gallivm, length, src_width, dst_type,
base_ptr, offsets);
} else {
/* Vector */
LLVMValueRef elems[LP_MAX_VECTOR_WIDTH / 8];
unsigned i;
boolean vec_zext = FALSE;
struct lp_type res_type, gather_res_type;
LLVMTypeRef res_t, gather_res_t;
res_type = fetch_dst_type;
res_type.length *= length;
gather_res_type = res_type;
if (src_width == 16 && dst_type.width == 32 && dst_type.length == 1) {
/*
* Note that llvm is never able to optimize zext/insert combos
* directly (i.e. zero the simd reg, then place the elements into
* the appropriate place directly). (I think this has to do with
* scalar/vector transition.) And scalar 16->32bit zext simd loads
* aren't possible (instead loading to scalar reg first).
* No idea about other archs...
* We could do this manually, but instead we just use a vector
* zext, which is simple enough (and, in fact, llvm might optimize
* this away).
* (We're not trying that with other bit widths as that might not be
* easier, in particular with 8 bit values at least with only sse2.)
*/
assert(vec_fetch == FALSE);
gather_res_type.width /= 2;
fetch_dst_type = fetch_type;
src_type = lp_build_vec_type(gallivm, fetch_type);
vec_zext = TRUE;
}
res_t = lp_build_vec_type(gallivm, res_type);
gather_res_t = lp_build_vec_type(gallivm, gather_res_type);
res = LLVMGetUndef(gather_res_t);
for (i = 0; i < length; ++i) {
LLVMValueRef index = lp_build_const_int32(gallivm, i);
elems[i] = lp_build_gather_elem_vec(gallivm, length,
src_width, src_type, fetch_dst_type,
aligned, base_ptr, offsets, i,
vector_justify);
if (!vec_fetch) {
res = LLVMBuildInsertElement(gallivm->builder, res, elems[i], index, "");
}
}
if (vec_zext) {
res = LLVMBuildZExt(gallivm->builder, res, res_t, "");
if (vector_justify) {
#if PIPE_ARCH_BIG_ENDIAN
unsigned sv = dst_type.width - src_width;
res = LLVMBuildShl(gallivm->builder, res,
lp_build_const_int_vec(gallivm, res_type, sv), "");
#endif
}
}
if (vec_fetch) {
/*
* Do bitcast now otherwise llvm might get some funny ideas wrt
* float/int types...
*/
for (i = 0; i < length; i++) {
elems[i] = LLVMBuildBitCast(gallivm->builder, elems[i],
lp_build_vec_type(gallivm, dst_type), "");
}
res = lp_build_concat(gallivm, elems, dst_type, length);
} else {
struct lp_type really_final_type = dst_type;
assert(res_type.length * res_type.width ==
dst_type.length * dst_type.width * length);
really_final_type.length *= length;
res = LLVMBuildBitCast(gallivm->builder, res,
lp_build_vec_type(gallivm, really_final_type), "");
}
}
return res;
}
LLVMValueRef
lp_build_gather_values(struct gallivm_state * gallivm,
LLVMValueRef * values,
unsigned value_count)
{
LLVMTypeRef vec_type = LLVMVectorType(LLVMTypeOf(values[0]), value_count);
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef vec = LLVMGetUndef(vec_type);
unsigned i;
for (i = 0; i < value_count; i++) {
LLVMValueRef index = lp_build_const_int32(gallivm, i);
vec = LLVMBuildInsertElement(builder, vec, values[i], index, "");
}
return vec;
}