blob: d05dd248ce469c777c01e829ada22c7d1521bbf1 [file] [log] [blame]
/**************************************************************************
*
* Copyright 2009-2010 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE, INC AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "pipe/p_screen.h"
#include "pipe/p_context.h"
#include "pipe/p_state.h"
#include "tgsi/tgsi_ureg.h"
#include "tgsi/tgsi_build.h"
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_sanity.h"
#include "util/u_debug.h"
#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "util/u_bitmask.h"
#include "GL/gl.h"
#include "compiler/shader_info.h"
union tgsi_any_token {
struct tgsi_header header;
struct tgsi_processor processor;
struct tgsi_token token;
struct tgsi_property prop;
struct tgsi_property_data prop_data;
struct tgsi_declaration decl;
struct tgsi_declaration_range decl_range;
struct tgsi_declaration_dimension decl_dim;
struct tgsi_declaration_interp decl_interp;
struct tgsi_declaration_image decl_image;
struct tgsi_declaration_semantic decl_semantic;
struct tgsi_declaration_sampler_view decl_sampler_view;
struct tgsi_declaration_array array;
struct tgsi_immediate imm;
union tgsi_immediate_data imm_data;
struct tgsi_instruction insn;
struct tgsi_instruction_label insn_label;
struct tgsi_instruction_texture insn_texture;
struct tgsi_instruction_memory insn_memory;
struct tgsi_texture_offset insn_texture_offset;
struct tgsi_src_register src;
struct tgsi_ind_register ind;
struct tgsi_dimension dim;
struct tgsi_dst_register dst;
unsigned value;
};
struct ureg_tokens {
union tgsi_any_token *tokens;
unsigned size;
unsigned order;
unsigned count;
};
#define UREG_MAX_INPUT (4 * PIPE_MAX_SHADER_INPUTS)
#define UREG_MAX_SYSTEM_VALUE PIPE_MAX_ATTRIBS
#define UREG_MAX_OUTPUT (4 * PIPE_MAX_SHADER_OUTPUTS)
#define UREG_MAX_CONSTANT_RANGE 32
#define UREG_MAX_HW_ATOMIC_RANGE 32
#define UREG_MAX_IMMEDIATE 4096
#define UREG_MAX_ADDR 3
#define UREG_MAX_ARRAY_TEMPS 256
struct const_decl {
struct {
unsigned first;
unsigned last;
} constant_range[UREG_MAX_CONSTANT_RANGE];
unsigned nr_constant_ranges;
};
struct hw_atomic_decl {
struct {
unsigned first;
unsigned last;
unsigned array_id;
} hw_atomic_range[UREG_MAX_HW_ATOMIC_RANGE];
unsigned nr_hw_atomic_ranges;
};
#define DOMAIN_DECL 0
#define DOMAIN_INSN 1
struct ureg_program
{
enum pipe_shader_type processor;
bool supports_any_inout_decl_range;
int next_shader_processor;
struct {
enum tgsi_semantic semantic_name;
unsigned semantic_index;
enum tgsi_interpolate_mode interp;
unsigned char cylindrical_wrap;
unsigned char usage_mask;
enum tgsi_interpolate_loc interp_location;
unsigned first;
unsigned last;
unsigned array_id;
} input[UREG_MAX_INPUT];
unsigned nr_inputs, nr_input_regs;
unsigned vs_inputs[PIPE_MAX_ATTRIBS/32];
struct {
enum tgsi_semantic semantic_name;
unsigned semantic_index;
} system_value[UREG_MAX_SYSTEM_VALUE];
unsigned nr_system_values;
struct {
enum tgsi_semantic semantic_name;
unsigned semantic_index;
unsigned streams;
unsigned usage_mask; /* = TGSI_WRITEMASK_* */
unsigned first;
unsigned last;
unsigned array_id;
boolean invariant;
} output[UREG_MAX_OUTPUT];
unsigned nr_outputs, nr_output_regs;
struct {
union {
float f[4];
unsigned u[4];
int i[4];
} value;
unsigned nr;
unsigned type;
} immediate[UREG_MAX_IMMEDIATE];
unsigned nr_immediates;
struct ureg_src sampler[PIPE_MAX_SAMPLERS];
unsigned nr_samplers;
struct {
unsigned index;
enum tgsi_texture_type target;
enum tgsi_return_type return_type_x;
enum tgsi_return_type return_type_y;
enum tgsi_return_type return_type_z;
enum tgsi_return_type return_type_w;
} sampler_view[PIPE_MAX_SHADER_SAMPLER_VIEWS];
unsigned nr_sampler_views;
struct {
unsigned index;
enum tgsi_texture_type target;
enum pipe_format format;
boolean wr;
boolean raw;
} image[PIPE_MAX_SHADER_IMAGES];
unsigned nr_images;
struct {
unsigned index;
bool atomic;
} buffer[PIPE_MAX_SHADER_BUFFERS];
unsigned nr_buffers;
struct util_bitmask *free_temps;
struct util_bitmask *local_temps;
struct util_bitmask *decl_temps;
unsigned nr_temps;
unsigned array_temps[UREG_MAX_ARRAY_TEMPS];
unsigned nr_array_temps;
struct const_decl const_decls[PIPE_MAX_CONSTANT_BUFFERS];
struct hw_atomic_decl hw_atomic_decls[PIPE_MAX_HW_ATOMIC_BUFFERS];
unsigned properties[TGSI_PROPERTY_COUNT];
unsigned nr_addrs;
unsigned nr_instructions;
struct ureg_tokens domain[2];
bool use_memory[TGSI_MEMORY_TYPE_COUNT];
};
static union tgsi_any_token error_tokens[32];
static void tokens_error( struct ureg_tokens *tokens )
{
if (tokens->tokens && tokens->tokens != error_tokens)
FREE(tokens->tokens);
tokens->tokens = error_tokens;
tokens->size = ARRAY_SIZE(error_tokens);
tokens->count = 0;
}
static void tokens_expand( struct ureg_tokens *tokens,
unsigned count )
{
unsigned old_size = tokens->size * sizeof(unsigned);
if (tokens->tokens == error_tokens) {
return;
}
while (tokens->count + count > tokens->size) {
tokens->size = (1 << ++tokens->order);
}
tokens->tokens = REALLOC(tokens->tokens,
old_size,
tokens->size * sizeof(unsigned));
if (tokens->tokens == NULL) {
tokens_error(tokens);
}
}
static void set_bad( struct ureg_program *ureg )
{
tokens_error(&ureg->domain[0]);
}
static union tgsi_any_token *get_tokens( struct ureg_program *ureg,
unsigned domain,
unsigned count )
{
struct ureg_tokens *tokens = &ureg->domain[domain];
union tgsi_any_token *result;
if (tokens->count + count > tokens->size)
tokens_expand(tokens, count);
result = &tokens->tokens[tokens->count];
tokens->count += count;
return result;
}
static union tgsi_any_token *retrieve_token( struct ureg_program *ureg,
unsigned domain,
unsigned nr )
{
if (ureg->domain[domain].tokens == error_tokens)
return &error_tokens[0];
return &ureg->domain[domain].tokens[nr];
}
void
ureg_property(struct ureg_program *ureg, unsigned name, unsigned value)
{
assert(name < ARRAY_SIZE(ureg->properties));
ureg->properties[name] = value;
}
struct ureg_src
ureg_DECL_fs_input_cyl_centroid_layout(struct ureg_program *ureg,
enum tgsi_semantic semantic_name,
unsigned semantic_index,
enum tgsi_interpolate_mode interp_mode,
unsigned cylindrical_wrap,
enum tgsi_interpolate_loc interp_location,
unsigned index,
unsigned usage_mask,
unsigned array_id,
unsigned array_size)
{
unsigned i;
assert(usage_mask != 0);
assert(usage_mask <= TGSI_WRITEMASK_XYZW);
for (i = 0; i < ureg->nr_inputs; i++) {
if (ureg->input[i].semantic_name == semantic_name &&
ureg->input[i].semantic_index == semantic_index) {
assert(ureg->input[i].interp == interp_mode);
assert(ureg->input[i].cylindrical_wrap == cylindrical_wrap);
assert(ureg->input[i].interp_location == interp_location);
if (ureg->input[i].array_id == array_id) {
ureg->input[i].usage_mask |= usage_mask;
goto out;
}
assert((ureg->input[i].usage_mask & usage_mask) == 0);
}
}
if (ureg->nr_inputs < UREG_MAX_INPUT) {
assert(array_size >= 1);
ureg->input[i].semantic_name = semantic_name;
ureg->input[i].semantic_index = semantic_index;
ureg->input[i].interp = interp_mode;
ureg->input[i].cylindrical_wrap = cylindrical_wrap;
ureg->input[i].interp_location = interp_location;
ureg->input[i].first = index;
ureg->input[i].last = index + array_size - 1;
ureg->input[i].array_id = array_id;
ureg->input[i].usage_mask = usage_mask;
ureg->nr_input_regs = MAX2(ureg->nr_input_regs, index + array_size);
ureg->nr_inputs++;
} else {
set_bad(ureg);
}
out:
return ureg_src_array_register(TGSI_FILE_INPUT, ureg->input[i].first,
array_id);
}
struct ureg_src
ureg_DECL_fs_input_cyl_centroid(struct ureg_program *ureg,
enum tgsi_semantic semantic_name,
unsigned semantic_index,
enum tgsi_interpolate_mode interp_mode,
unsigned cylindrical_wrap,
enum tgsi_interpolate_loc interp_location,
unsigned array_id,
unsigned array_size)
{
return ureg_DECL_fs_input_cyl_centroid_layout(ureg,
semantic_name, semantic_index, interp_mode,
cylindrical_wrap, interp_location,
ureg->nr_input_regs, TGSI_WRITEMASK_XYZW, array_id, array_size);
}
struct ureg_src
ureg_DECL_vs_input( struct ureg_program *ureg,
unsigned index )
{
assert(ureg->processor == PIPE_SHADER_VERTEX);
assert(index / 32 < ARRAY_SIZE(ureg->vs_inputs));
ureg->vs_inputs[index/32] |= 1 << (index % 32);
return ureg_src_register( TGSI_FILE_INPUT, index );
}
struct ureg_src
ureg_DECL_input_layout(struct ureg_program *ureg,
enum tgsi_semantic semantic_name,
unsigned semantic_index,
unsigned index,
unsigned usage_mask,
unsigned array_id,
unsigned array_size)
{
return ureg_DECL_fs_input_cyl_centroid_layout(ureg,
semantic_name, semantic_index,
TGSI_INTERPOLATE_CONSTANT, 0, TGSI_INTERPOLATE_LOC_CENTER,
index, usage_mask, array_id, array_size);
}
struct ureg_src
ureg_DECL_input(struct ureg_program *ureg,
enum tgsi_semantic semantic_name,
unsigned semantic_index,
unsigned array_id,
unsigned array_size)
{
return ureg_DECL_fs_input_cyl_centroid(ureg, semantic_name, semantic_index,
TGSI_INTERPOLATE_CONSTANT, 0,
TGSI_INTERPOLATE_LOC_CENTER,
array_id, array_size);
}
struct ureg_src
ureg_DECL_system_value(struct ureg_program *ureg,
enum tgsi_semantic semantic_name,
unsigned semantic_index)
{
unsigned i;
for (i = 0; i < ureg->nr_system_values; i++) {
if (ureg->system_value[i].semantic_name == semantic_name &&
ureg->system_value[i].semantic_index == semantic_index) {
goto out;
}
}
if (ureg->nr_system_values < UREG_MAX_SYSTEM_VALUE) {
ureg->system_value[ureg->nr_system_values].semantic_name = semantic_name;
ureg->system_value[ureg->nr_system_values].semantic_index = semantic_index;
i = ureg->nr_system_values;
ureg->nr_system_values++;
} else {
set_bad(ureg);
}
out:
return ureg_src_register(TGSI_FILE_SYSTEM_VALUE, i);
}
struct ureg_dst
ureg_DECL_output_layout(struct ureg_program *ureg,
enum tgsi_semantic semantic_name,
unsigned semantic_index,
unsigned streams,
unsigned index,
unsigned usage_mask,
unsigned array_id,
unsigned array_size,
boolean invariant)
{
unsigned i;
assert(usage_mask != 0);
assert(!(streams & 0x03) || (usage_mask & 1));
assert(!(streams & 0x0c) || (usage_mask & 2));
assert(!(streams & 0x30) || (usage_mask & 4));
assert(!(streams & 0xc0) || (usage_mask & 8));
for (i = 0; i < ureg->nr_outputs; i++) {
if (ureg->output[i].semantic_name == semantic_name &&
ureg->output[i].semantic_index == semantic_index) {
if (ureg->output[i].array_id == array_id) {
ureg->output[i].usage_mask |= usage_mask;
goto out;
}
assert((ureg->output[i].usage_mask & usage_mask) == 0);
}
}
if (ureg->nr_outputs < UREG_MAX_OUTPUT) {
ureg->output[i].semantic_name = semantic_name;
ureg->output[i].semantic_index = semantic_index;
ureg->output[i].usage_mask = usage_mask;
ureg->output[i].first = index;
ureg->output[i].last = index + array_size - 1;
ureg->output[i].array_id = array_id;
ureg->output[i].invariant = invariant;
ureg->nr_output_regs = MAX2(ureg->nr_output_regs, index + array_size);
ureg->nr_outputs++;
}
else {
set_bad( ureg );
i = 0;
}
out:
ureg->output[i].streams |= streams;
return ureg_dst_array_register(TGSI_FILE_OUTPUT, ureg->output[i].first,
array_id);
}
struct ureg_dst
ureg_DECL_output_masked(struct ureg_program *ureg,
unsigned name,
unsigned index,
unsigned usage_mask,
unsigned array_id,
unsigned array_size)
{
return ureg_DECL_output_layout(ureg, name, index, 0,
ureg->nr_output_regs, usage_mask, array_id,
array_size, FALSE);
}
struct ureg_dst
ureg_DECL_output(struct ureg_program *ureg,
enum tgsi_semantic name,
unsigned index)
{
return ureg_DECL_output_masked(ureg, name, index, TGSI_WRITEMASK_XYZW,
0, 1);
}
struct ureg_dst
ureg_DECL_output_array(struct ureg_program *ureg,
enum tgsi_semantic semantic_name,
unsigned semantic_index,
unsigned array_id,
unsigned array_size)
{
return ureg_DECL_output_masked(ureg, semantic_name, semantic_index,
TGSI_WRITEMASK_XYZW,
array_id, array_size);
}
/* Returns a new constant register. Keep track of which have been
* referred to so that we can emit decls later.
*
* Constant operands declared with this function must be addressed
* with a two-dimensional index.
*
* There is nothing in this code to bind this constant to any tracked
* value or manage any constant_buffer contents -- that's the
* resposibility of the calling code.
*/
void
ureg_DECL_constant2D(struct ureg_program *ureg,
unsigned first,
unsigned last,
unsigned index2D)
{
struct const_decl *decl = &ureg->const_decls[index2D];
assert(index2D < PIPE_MAX_CONSTANT_BUFFERS);
if (decl->nr_constant_ranges < UREG_MAX_CONSTANT_RANGE) {
uint i = decl->nr_constant_ranges++;
decl->constant_range[i].first = first;
decl->constant_range[i].last = last;
}
}
/* A one-dimensional, deprecated version of ureg_DECL_constant2D().
*
* Constant operands declared with this function must be addressed
* with a one-dimensional index.
*/
struct ureg_src
ureg_DECL_constant(struct ureg_program *ureg,
unsigned index)
{
struct const_decl *decl = &ureg->const_decls[0];
unsigned minconst = index, maxconst = index;
unsigned i;
/* Inside existing range?
*/
for (i = 0; i < decl->nr_constant_ranges; i++) {
if (decl->constant_range[i].first <= index &&
decl->constant_range[i].last >= index) {
goto out;
}
}
/* Extend existing range?
*/
for (i = 0; i < decl->nr_constant_ranges; i++) {
if (decl->constant_range[i].last == index - 1) {
decl->constant_range[i].last = index;
goto out;
}
if (decl->constant_range[i].first == index + 1) {
decl->constant_range[i].first = index;
goto out;
}
minconst = MIN2(minconst, decl->constant_range[i].first);
maxconst = MAX2(maxconst, decl->constant_range[i].last);
}
/* Create new range?
*/
if (decl->nr_constant_ranges < UREG_MAX_CONSTANT_RANGE) {
i = decl->nr_constant_ranges++;
decl->constant_range[i].first = index;
decl->constant_range[i].last = index;
goto out;
}
/* Collapse all ranges down to one:
*/
i = 0;
decl->constant_range[0].first = minconst;
decl->constant_range[0].last = maxconst;
decl->nr_constant_ranges = 1;
out:
assert(i < decl->nr_constant_ranges);
assert(decl->constant_range[i].first <= index);
assert(decl->constant_range[i].last >= index);
struct ureg_src src = ureg_src_register(TGSI_FILE_CONSTANT, index);
return ureg_src_dimension(src, 0);
}
/* Returns a new hw atomic register. Keep track of which have been
* referred to so that we can emit decls later.
*/
void
ureg_DECL_hw_atomic(struct ureg_program *ureg,
unsigned first,
unsigned last,
unsigned buffer_id,
unsigned array_id)
{
struct hw_atomic_decl *decl = &ureg->hw_atomic_decls[buffer_id];
if (decl->nr_hw_atomic_ranges < UREG_MAX_HW_ATOMIC_RANGE) {
uint i = decl->nr_hw_atomic_ranges++;
decl->hw_atomic_range[i].first = first;
decl->hw_atomic_range[i].last = last;
decl->hw_atomic_range[i].array_id = array_id;
} else {
set_bad(ureg);
}
}
static struct ureg_dst alloc_temporary( struct ureg_program *ureg,
boolean local )
{
unsigned i;
/* Look for a released temporary.
*/
for (i = util_bitmask_get_first_index(ureg->free_temps);
i != UTIL_BITMASK_INVALID_INDEX;
i = util_bitmask_get_next_index(ureg->free_temps, i + 1)) {
if (util_bitmask_get(ureg->local_temps, i) == local)
break;
}
/* Or allocate a new one.
*/
if (i == UTIL_BITMASK_INVALID_INDEX) {
i = ureg->nr_temps++;
if (local)
util_bitmask_set(ureg->local_temps, i);
/* Start a new declaration when the local flag changes */
if (!i || util_bitmask_get(ureg->local_temps, i - 1) != local)
util_bitmask_set(ureg->decl_temps, i);
}
util_bitmask_clear(ureg->free_temps, i);
return ureg_dst_register( TGSI_FILE_TEMPORARY, i );
}
struct ureg_dst ureg_DECL_temporary( struct ureg_program *ureg )
{
return alloc_temporary(ureg, FALSE);
}
struct ureg_dst ureg_DECL_local_temporary( struct ureg_program *ureg )
{
return alloc_temporary(ureg, TRUE);
}
struct ureg_dst ureg_DECL_array_temporary( struct ureg_program *ureg,
unsigned size,
boolean local )
{
unsigned i = ureg->nr_temps;
struct ureg_dst dst = ureg_dst_register( TGSI_FILE_TEMPORARY, i );
if (local)
util_bitmask_set(ureg->local_temps, i);
/* Always start a new declaration at the start */
util_bitmask_set(ureg->decl_temps, i);
ureg->nr_temps += size;
/* and also at the end of the array */
util_bitmask_set(ureg->decl_temps, ureg->nr_temps);
if (ureg->nr_array_temps < UREG_MAX_ARRAY_TEMPS) {
ureg->array_temps[ureg->nr_array_temps++] = i;
dst.ArrayID = ureg->nr_array_temps;
}
return dst;
}
void ureg_release_temporary( struct ureg_program *ureg,
struct ureg_dst tmp )
{
if(tmp.File == TGSI_FILE_TEMPORARY)
util_bitmask_set(ureg->free_temps, tmp.Index);
}
/* Allocate a new address register.
*/
struct ureg_dst ureg_DECL_address( struct ureg_program *ureg )
{
if (ureg->nr_addrs < UREG_MAX_ADDR)
return ureg_dst_register( TGSI_FILE_ADDRESS, ureg->nr_addrs++ );
assert( 0 );
return ureg_dst_register( TGSI_FILE_ADDRESS, 0 );
}
/* Allocate a new sampler.
*/
struct ureg_src ureg_DECL_sampler( struct ureg_program *ureg,
unsigned nr )
{
unsigned i;
for (i = 0; i < ureg->nr_samplers; i++)
if (ureg->sampler[i].Index == (int)nr)
return ureg->sampler[i];
if (i < PIPE_MAX_SAMPLERS) {
ureg->sampler[i] = ureg_src_register( TGSI_FILE_SAMPLER, nr );
ureg->nr_samplers++;
return ureg->sampler[i];
}
assert( 0 );
return ureg->sampler[0];
}
/*
* Allocate a new shader sampler view.
*/
struct ureg_src
ureg_DECL_sampler_view(struct ureg_program *ureg,
unsigned index,
enum tgsi_texture_type target,
enum tgsi_return_type return_type_x,
enum tgsi_return_type return_type_y,
enum tgsi_return_type return_type_z,
enum tgsi_return_type return_type_w)
{
struct ureg_src reg = ureg_src_register(TGSI_FILE_SAMPLER_VIEW, index);
uint i;
for (i = 0; i < ureg->nr_sampler_views; i++) {
if (ureg->sampler_view[i].index == index) {
return reg;
}
}
if (i < PIPE_MAX_SHADER_SAMPLER_VIEWS) {
ureg->sampler_view[i].index = index;
ureg->sampler_view[i].target = target;
ureg->sampler_view[i].return_type_x = return_type_x;
ureg->sampler_view[i].return_type_y = return_type_y;
ureg->sampler_view[i].return_type_z = return_type_z;
ureg->sampler_view[i].return_type_w = return_type_w;
ureg->nr_sampler_views++;
return reg;
}
assert(0);
return reg;
}
/* Allocate a new image.
*/
struct ureg_src
ureg_DECL_image(struct ureg_program *ureg,
unsigned index,
enum tgsi_texture_type target,
enum pipe_format format,
boolean wr,
boolean raw)
{
struct ureg_src reg = ureg_src_register(TGSI_FILE_IMAGE, index);
unsigned i;
for (i = 0; i < ureg->nr_images; i++)
if (ureg->image[i].index == index)
return reg;
if (i < PIPE_MAX_SHADER_IMAGES) {
ureg->image[i].index = index;
ureg->image[i].target = target;
ureg->image[i].wr = wr;
ureg->image[i].raw = raw;
ureg->image[i].format = format;
ureg->nr_images++;
return reg;
}
assert(0);
return reg;
}
/* Allocate a new buffer.
*/
struct ureg_src ureg_DECL_buffer(struct ureg_program *ureg, unsigned nr,
bool atomic)
{
struct ureg_src reg = ureg_src_register(TGSI_FILE_BUFFER, nr);
unsigned i;
for (i = 0; i < ureg->nr_buffers; i++)
if (ureg->buffer[i].index == nr)
return reg;
if (i < PIPE_MAX_SHADER_BUFFERS) {
ureg->buffer[i].index = nr;
ureg->buffer[i].atomic = atomic;
ureg->nr_buffers++;
return reg;
}
assert(0);
return reg;
}
/* Allocate a memory area.
*/
struct ureg_src ureg_DECL_memory(struct ureg_program *ureg,
unsigned memory_type)
{
struct ureg_src reg = ureg_src_register(TGSI_FILE_MEMORY, memory_type);
ureg->use_memory[memory_type] = true;
return reg;
}
static int
match_or_expand_immediate64( const unsigned *v,
unsigned nr,
unsigned *v2,
unsigned *pnr2,
unsigned *swizzle )
{
unsigned nr2 = *pnr2;
unsigned i, j;
*swizzle = 0;
for (i = 0; i < nr; i += 2) {
boolean found = FALSE;
for (j = 0; j < nr2 && !found; j += 2) {
if (v[i] == v2[j] && v[i + 1] == v2[j + 1]) {
*swizzle |= (j << (i * 2)) | ((j + 1) << ((i + 1) * 2));
found = TRUE;
}
}
if (!found) {
if ((nr2) >= 4) {
return FALSE;
}
v2[nr2] = v[i];
v2[nr2 + 1] = v[i + 1];
*swizzle |= (nr2 << (i * 2)) | ((nr2 + 1) << ((i + 1) * 2));
nr2 += 2;
}
}
/* Actually expand immediate only when fully succeeded.
*/
*pnr2 = nr2;
return TRUE;
}
static int
match_or_expand_immediate( const unsigned *v,
int type,
unsigned nr,
unsigned *v2,
unsigned *pnr2,
unsigned *swizzle )
{
unsigned nr2 = *pnr2;
unsigned i, j;
if (type == TGSI_IMM_FLOAT64 ||
type == TGSI_IMM_UINT64 ||
type == TGSI_IMM_INT64)
return match_or_expand_immediate64(v, nr, v2, pnr2, swizzle);
*swizzle = 0;
for (i = 0; i < nr; i++) {
boolean found = FALSE;
for (j = 0; j < nr2 && !found; j++) {
if (v[i] == v2[j]) {
*swizzle |= j << (i * 2);
found = TRUE;
}
}
if (!found) {
if (nr2 >= 4) {
return FALSE;
}
v2[nr2] = v[i];
*swizzle |= nr2 << (i * 2);
nr2++;
}
}
/* Actually expand immediate only when fully succeeded.
*/
*pnr2 = nr2;
return TRUE;
}
static struct ureg_src
decl_immediate( struct ureg_program *ureg,
const unsigned *v,
unsigned nr,
unsigned type )
{
unsigned i, j;
unsigned swizzle = 0;
/* Could do a first pass where we examine all existing immediates
* without expanding.
*/
for (i = 0; i < ureg->nr_immediates; i++) {
if (ureg->immediate[i].type != type) {
continue;
}
if (match_or_expand_immediate(v,
type,
nr,
ureg->immediate[i].value.u,
&ureg->immediate[i].nr,
&swizzle)) {
goto out;
}
}
if (ureg->nr_immediates < UREG_MAX_IMMEDIATE) {
i = ureg->nr_immediates++;
ureg->immediate[i].type = type;
if (match_or_expand_immediate(v,
type,
nr,
ureg->immediate[i].value.u,
&ureg->immediate[i].nr,
&swizzle)) {
goto out;
}
}
set_bad(ureg);
out:
/* Make sure that all referenced elements are from this immediate.
* Has the effect of making size-one immediates into scalars.
*/
if (type == TGSI_IMM_FLOAT64 ||
type == TGSI_IMM_UINT64 ||
type == TGSI_IMM_INT64) {
for (j = nr; j < 4; j+=2) {
swizzle |= (swizzle & 0xf) << (j * 2);
}
} else {
for (j = nr; j < 4; j++) {
swizzle |= (swizzle & 0x3) << (j * 2);
}
}
return ureg_swizzle(ureg_src_register(TGSI_FILE_IMMEDIATE, i),
(swizzle >> 0) & 0x3,
(swizzle >> 2) & 0x3,
(swizzle >> 4) & 0x3,
(swizzle >> 6) & 0x3);
}
struct ureg_src
ureg_DECL_immediate( struct ureg_program *ureg,
const float *v,
unsigned nr )
{
union {
float f[4];
unsigned u[4];
} fu;
unsigned int i;
for (i = 0; i < nr; i++) {
fu.f[i] = v[i];
}
return decl_immediate(ureg, fu.u, nr, TGSI_IMM_FLOAT32);
}
struct ureg_src
ureg_DECL_immediate_f64( struct ureg_program *ureg,
const double *v,
unsigned nr )
{
union {
unsigned u[4];
double d[2];
} fu;
unsigned int i;
assert((nr / 2) < 3);
for (i = 0; i < nr / 2; i++) {
fu.d[i] = v[i];
}
return decl_immediate(ureg, fu.u, nr, TGSI_IMM_FLOAT64);
}
struct ureg_src
ureg_DECL_immediate_uint( struct ureg_program *ureg,
const unsigned *v,
unsigned nr )
{
return decl_immediate(ureg, v, nr, TGSI_IMM_UINT32);
}
struct ureg_src
ureg_DECL_immediate_block_uint( struct ureg_program *ureg,
const unsigned *v,
unsigned nr )
{
uint index;
uint i;
if (ureg->nr_immediates + (nr + 3) / 4 > UREG_MAX_IMMEDIATE) {
set_bad(ureg);
return ureg_src_register(TGSI_FILE_IMMEDIATE, 0);
}
index = ureg->nr_immediates;
ureg->nr_immediates += (nr + 3) / 4;
for (i = index; i < ureg->nr_immediates; i++) {
ureg->immediate[i].type = TGSI_IMM_UINT32;
ureg->immediate[i].nr = nr > 4 ? 4 : nr;
memcpy(ureg->immediate[i].value.u,
&v[(i - index) * 4],
ureg->immediate[i].nr * sizeof(uint));
nr -= 4;
}
return ureg_src_register(TGSI_FILE_IMMEDIATE, index);
}
struct ureg_src
ureg_DECL_immediate_int( struct ureg_program *ureg,
const int *v,
unsigned nr )
{
return decl_immediate(ureg, (const unsigned *)v, nr, TGSI_IMM_INT32);
}
struct ureg_src
ureg_DECL_immediate_uint64( struct ureg_program *ureg,
const uint64_t *v,
unsigned nr )
{
union {
unsigned u[4];
uint64_t u64[2];
} fu;
unsigned int i;
assert((nr / 2) < 3);
for (i = 0; i < nr / 2; i++) {
fu.u64[i] = v[i];
}
return decl_immediate(ureg, fu.u, nr, TGSI_IMM_UINT64);
}
struct ureg_src
ureg_DECL_immediate_int64( struct ureg_program *ureg,
const int64_t *v,
unsigned nr )
{
union {
unsigned u[4];
int64_t i64[2];
} fu;
unsigned int i;
assert((nr / 2) < 3);
for (i = 0; i < nr / 2; i++) {
fu.i64[i] = v[i];
}
return decl_immediate(ureg, fu.u, nr, TGSI_IMM_INT64);
}
void
ureg_emit_src( struct ureg_program *ureg,
struct ureg_src src )
{
unsigned size = 1 + (src.Indirect ? 1 : 0) +
(src.Dimension ? (src.DimIndirect ? 2 : 1) : 0);
union tgsi_any_token *out = get_tokens( ureg, DOMAIN_INSN, size );
unsigned n = 0;
assert(src.File != TGSI_FILE_NULL);
assert(src.File < TGSI_FILE_COUNT);
out[n].value = 0;
out[n].src.File = src.File;
out[n].src.SwizzleX = src.SwizzleX;
out[n].src.SwizzleY = src.SwizzleY;
out[n].src.SwizzleZ = src.SwizzleZ;
out[n].src.SwizzleW = src.SwizzleW;
out[n].src.Index = src.Index;
out[n].src.Negate = src.Negate;
out[0].src.Absolute = src.Absolute;
n++;
if (src.Indirect) {
out[0].src.Indirect = 1;
out[n].value = 0;
out[n].ind.File = src.IndirectFile;
out[n].ind.Swizzle = src.IndirectSwizzle;
out[n].ind.Index = src.IndirectIndex;
if (!ureg->supports_any_inout_decl_range &&
(src.File == TGSI_FILE_INPUT || src.File == TGSI_FILE_OUTPUT))
out[n].ind.ArrayID = 0;
else
out[n].ind.ArrayID = src.ArrayID;
n++;
}
if (src.Dimension) {
out[0].src.Dimension = 1;
out[n].dim.Dimension = 0;
out[n].dim.Padding = 0;
if (src.DimIndirect) {
out[n].dim.Indirect = 1;
out[n].dim.Index = src.DimensionIndex;
n++;
out[n].value = 0;
out[n].ind.File = src.DimIndFile;
out[n].ind.Swizzle = src.DimIndSwizzle;
out[n].ind.Index = src.DimIndIndex;
if (!ureg->supports_any_inout_decl_range &&
(src.File == TGSI_FILE_INPUT || src.File == TGSI_FILE_OUTPUT))
out[n].ind.ArrayID = 0;
else
out[n].ind.ArrayID = src.ArrayID;
} else {
out[n].dim.Indirect = 0;
out[n].dim.Index = src.DimensionIndex;
}
n++;
}
assert(n == size);
}
void
ureg_emit_dst( struct ureg_program *ureg,
struct ureg_dst dst )
{
unsigned size = 1 + (dst.Indirect ? 1 : 0) +
(dst.Dimension ? (dst.DimIndirect ? 2 : 1) : 0);
union tgsi_any_token *out = get_tokens( ureg, DOMAIN_INSN, size );
unsigned n = 0;
assert(dst.File != TGSI_FILE_NULL);
assert(dst.File != TGSI_FILE_SAMPLER);
assert(dst.File != TGSI_FILE_SAMPLER_VIEW);
assert(dst.File != TGSI_FILE_IMMEDIATE);
assert(dst.File < TGSI_FILE_COUNT);
out[n].value = 0;
out[n].dst.File = dst.File;
out[n].dst.WriteMask = dst.WriteMask;
out[n].dst.Indirect = dst.Indirect;
out[n].dst.Index = dst.Index;
n++;
if (dst.Indirect) {
out[n].value = 0;
out[n].ind.File = dst.IndirectFile;
out[n].ind.Swizzle = dst.IndirectSwizzle;
out[n].ind.Index = dst.IndirectIndex;
if (!ureg->supports_any_inout_decl_range &&
(dst.File == TGSI_FILE_INPUT || dst.File == TGSI_FILE_OUTPUT))
out[n].ind.ArrayID = 0;
else
out[n].ind.ArrayID = dst.ArrayID;
n++;
}
if (dst.Dimension) {
out[0].dst.Dimension = 1;
out[n].dim.Dimension = 0;
out[n].dim.Padding = 0;
if (dst.DimIndirect) {
out[n].dim.Indirect = 1;
out[n].dim.Index = dst.DimensionIndex;
n++;
out[n].value = 0;
out[n].ind.File = dst.DimIndFile;
out[n].ind.Swizzle = dst.DimIndSwizzle;
out[n].ind.Index = dst.DimIndIndex;
if (!ureg->supports_any_inout_decl_range &&
(dst.File == TGSI_FILE_INPUT || dst.File == TGSI_FILE_OUTPUT))
out[n].ind.ArrayID = 0;
else
out[n].ind.ArrayID = dst.ArrayID;
} else {
out[n].dim.Indirect = 0;
out[n].dim.Index = dst.DimensionIndex;
}
n++;
}
assert(n == size);
}
static void validate( enum tgsi_opcode opcode,
unsigned nr_dst,
unsigned nr_src )
{
#ifndef NDEBUG
const struct tgsi_opcode_info *info = tgsi_get_opcode_info( opcode );
assert(info);
if (info) {
assert(nr_dst == info->num_dst);
assert(nr_src == info->num_src);
}
#endif
}
struct ureg_emit_insn_result
ureg_emit_insn(struct ureg_program *ureg,
enum tgsi_opcode opcode,
boolean saturate,
unsigned precise,
unsigned num_dst,
unsigned num_src)
{
union tgsi_any_token *out;
uint count = 1;
struct ureg_emit_insn_result result;
validate( opcode, num_dst, num_src );
out = get_tokens( ureg, DOMAIN_INSN, count );
out[0].insn = tgsi_default_instruction();
out[0].insn.Opcode = opcode;
out[0].insn.Saturate = saturate;
out[0].insn.Precise = precise;
out[0].insn.NumDstRegs = num_dst;
out[0].insn.NumSrcRegs = num_src;
result.insn_token = ureg->domain[DOMAIN_INSN].count - count;
result.extended_token = result.insn_token;
ureg->nr_instructions++;
return result;
}
/**
* Emit a label token.
* \param label_token returns a token number indicating where the label
* needs to be patched later. Later, this value should be passed to the
* ureg_fixup_label() function.
*/
void
ureg_emit_label(struct ureg_program *ureg,
unsigned extended_token,
unsigned *label_token )
{
union tgsi_any_token *out, *insn;
if (!label_token)
return;
out = get_tokens( ureg, DOMAIN_INSN, 1 );
out[0].value = 0;
insn = retrieve_token( ureg, DOMAIN_INSN, extended_token );
insn->insn.Label = 1;
*label_token = ureg->domain[DOMAIN_INSN].count - 1;
}
/* Will return a number which can be used in a label to point to the
* next instruction to be emitted.
*/
unsigned
ureg_get_instruction_number( struct ureg_program *ureg )
{
return ureg->nr_instructions;
}
/* Patch a given label (expressed as a token number) to point to a
* given instruction (expressed as an instruction number).
*/
void
ureg_fixup_label(struct ureg_program *ureg,
unsigned label_token,
unsigned instruction_number )
{
union tgsi_any_token *out = retrieve_token( ureg, DOMAIN_INSN, label_token );
out->insn_label.Label = instruction_number;
}
void
ureg_emit_texture(struct ureg_program *ureg,
unsigned extended_token,
enum tgsi_texture_type target,
enum tgsi_return_type return_type, unsigned num_offsets)
{
union tgsi_any_token *out, *insn;
out = get_tokens( ureg, DOMAIN_INSN, 1 );
insn = retrieve_token( ureg, DOMAIN_INSN, extended_token );
insn->insn.Texture = 1;
out[0].value = 0;
out[0].insn_texture.Texture = target;
out[0].insn_texture.NumOffsets = num_offsets;
out[0].insn_texture.ReturnType = return_type;
}
void
ureg_emit_texture_offset(struct ureg_program *ureg,
const struct tgsi_texture_offset *offset)
{
union tgsi_any_token *out;
out = get_tokens( ureg, DOMAIN_INSN, 1);
out[0].value = 0;
out[0].insn_texture_offset = *offset;
}
void
ureg_emit_memory(struct ureg_program *ureg,
unsigned extended_token,
unsigned qualifier,
enum tgsi_texture_type texture,
enum pipe_format format)
{
union tgsi_any_token *out, *insn;
out = get_tokens( ureg, DOMAIN_INSN, 1 );
insn = retrieve_token( ureg, DOMAIN_INSN, extended_token );
insn->insn.Memory = 1;
out[0].value = 0;
out[0].insn_memory.Qualifier = qualifier;
out[0].insn_memory.Texture = texture;
out[0].insn_memory.Format = format;
}
void
ureg_fixup_insn_size(struct ureg_program *ureg,
unsigned insn )
{
union tgsi_any_token *out = retrieve_token( ureg, DOMAIN_INSN, insn );
assert(out->insn.Type == TGSI_TOKEN_TYPE_INSTRUCTION);
out->insn.NrTokens = ureg->domain[DOMAIN_INSN].count - insn - 1;
}
void
ureg_insn(struct ureg_program *ureg,
enum tgsi_opcode opcode,
const struct ureg_dst *dst,
unsigned nr_dst,
const struct ureg_src *src,
unsigned nr_src,
unsigned precise )
{
struct ureg_emit_insn_result insn;
unsigned i;
boolean saturate;
if (nr_dst && ureg_dst_is_empty(dst[0])) {
return;
}
saturate = nr_dst ? dst[0].Saturate : FALSE;
insn = ureg_emit_insn(ureg,
opcode,
saturate,
precise,
nr_dst,
nr_src);
for (i = 0; i < nr_dst; i++)
ureg_emit_dst( ureg, dst[i] );
for (i = 0; i < nr_src; i++)
ureg_emit_src( ureg, src[i] );
ureg_fixup_insn_size( ureg, insn.insn_token );
}
void
ureg_tex_insn(struct ureg_program *ureg,
enum tgsi_opcode opcode,
const struct ureg_dst *dst,
unsigned nr_dst,
enum tgsi_texture_type target,
enum tgsi_return_type return_type,
const struct tgsi_texture_offset *texoffsets,
unsigned nr_offset,
const struct ureg_src *src,
unsigned nr_src )
{
struct ureg_emit_insn_result insn;
unsigned i;
boolean saturate;
if (nr_dst && ureg_dst_is_empty(dst[0])) {
return;
}
saturate = nr_dst ? dst[0].Saturate : FALSE;
insn = ureg_emit_insn(ureg,
opcode,
saturate,
0,
nr_dst,
nr_src);
ureg_emit_texture( ureg, insn.extended_token, target, return_type,
nr_offset );
for (i = 0; i < nr_offset; i++)
ureg_emit_texture_offset( ureg, &texoffsets[i]);
for (i = 0; i < nr_dst; i++)
ureg_emit_dst( ureg, dst[i] );
for (i = 0; i < nr_src; i++)
ureg_emit_src( ureg, src[i] );
ureg_fixup_insn_size( ureg, insn.insn_token );
}
void
ureg_memory_insn(struct ureg_program *ureg,
enum tgsi_opcode opcode,
const struct ureg_dst *dst,
unsigned nr_dst,
const struct ureg_src *src,
unsigned nr_src,
unsigned qualifier,
enum tgsi_texture_type texture,
enum pipe_format format)
{
struct ureg_emit_insn_result insn;
unsigned i;
insn = ureg_emit_insn(ureg,
opcode,
FALSE,
0,
nr_dst,
nr_src);
ureg_emit_memory(ureg, insn.extended_token, qualifier, texture, format);
for (i = 0; i < nr_dst; i++)
ureg_emit_dst(ureg, dst[i]);
for (i = 0; i < nr_src; i++)
ureg_emit_src(ureg, src[i]);
ureg_fixup_insn_size(ureg, insn.insn_token);
}
static void
emit_decl_semantic(struct ureg_program *ureg,
unsigned file,
unsigned first,
unsigned last,
enum tgsi_semantic semantic_name,
unsigned semantic_index,
unsigned streams,
unsigned usage_mask,
unsigned array_id,
boolean invariant)
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, array_id ? 4 : 3);
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 3;
out[0].decl.File = file;
out[0].decl.UsageMask = usage_mask;
out[0].decl.Semantic = 1;
out[0].decl.Array = array_id != 0;
out[0].decl.Invariant = invariant;
out[1].value = 0;
out[1].decl_range.First = first;
out[1].decl_range.Last = last;
out[2].value = 0;
out[2].decl_semantic.Name = semantic_name;
out[2].decl_semantic.Index = semantic_index;
out[2].decl_semantic.StreamX = streams & 3;
out[2].decl_semantic.StreamY = (streams >> 2) & 3;
out[2].decl_semantic.StreamZ = (streams >> 4) & 3;
out[2].decl_semantic.StreamW = (streams >> 6) & 3;
if (array_id) {
out[3].value = 0;
out[3].array.ArrayID = array_id;
}
}
static void
emit_decl_atomic_2d(struct ureg_program *ureg,
unsigned first,
unsigned last,
unsigned index2D,
unsigned array_id)
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, array_id ? 4 : 3);
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 3;
out[0].decl.File = TGSI_FILE_HW_ATOMIC;
out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW;
out[0].decl.Dimension = 1;
out[0].decl.Array = array_id != 0;
out[1].value = 0;
out[1].decl_range.First = first;
out[1].decl_range.Last = last;
out[2].value = 0;
out[2].decl_dim.Index2D = index2D;
if (array_id) {
out[3].value = 0;
out[3].array.ArrayID = array_id;
}
}
static void
emit_decl_fs(struct ureg_program *ureg,
unsigned file,
unsigned first,
unsigned last,
enum tgsi_semantic semantic_name,
unsigned semantic_index,
enum tgsi_interpolate_mode interpolate,
unsigned cylindrical_wrap,
enum tgsi_interpolate_loc interpolate_location,
unsigned array_id,
unsigned usage_mask)
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL,
array_id ? 5 : 4);
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 4;
out[0].decl.File = file;
out[0].decl.UsageMask = usage_mask;
out[0].decl.Interpolate = 1;
out[0].decl.Semantic = 1;
out[0].decl.Array = array_id != 0;
out[1].value = 0;
out[1].decl_range.First = first;
out[1].decl_range.Last = last;
out[2].value = 0;
out[2].decl_interp.Interpolate = interpolate;
out[2].decl_interp.CylindricalWrap = cylindrical_wrap;
out[2].decl_interp.Location = interpolate_location;
out[3].value = 0;
out[3].decl_semantic.Name = semantic_name;
out[3].decl_semantic.Index = semantic_index;
if (array_id) {
out[4].value = 0;
out[4].array.ArrayID = array_id;
}
}
static void
emit_decl_temps( struct ureg_program *ureg,
unsigned first, unsigned last,
boolean local,
unsigned arrayid )
{
union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL,
arrayid ? 3 : 2 );
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 2;
out[0].decl.File = TGSI_FILE_TEMPORARY;
out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW;
out[0].decl.Local = local;
out[1].value = 0;
out[1].decl_range.First = first;
out[1].decl_range.Last = last;
if (arrayid) {
out[0].decl.Array = 1;
out[2].value = 0;
out[2].array.ArrayID = arrayid;
}
}
static void emit_decl_range( struct ureg_program *ureg,
unsigned file,
unsigned first,
unsigned count )
{
union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL, 2 );
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 2;
out[0].decl.File = file;
out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW;
out[0].decl.Semantic = 0;
out[1].value = 0;
out[1].decl_range.First = first;
out[1].decl_range.Last = first + count - 1;
}
static void
emit_decl_range2D(struct ureg_program *ureg,
unsigned file,
unsigned first,
unsigned last,
unsigned index2D)
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 3);
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 3;
out[0].decl.File = file;
out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW;
out[0].decl.Dimension = 1;
out[1].value = 0;
out[1].decl_range.First = first;
out[1].decl_range.Last = last;
out[2].value = 0;
out[2].decl_dim.Index2D = index2D;
}
static void
emit_decl_sampler_view(struct ureg_program *ureg,
unsigned index,
enum tgsi_texture_type target,
enum tgsi_return_type return_type_x,
enum tgsi_return_type return_type_y,
enum tgsi_return_type return_type_z,
enum tgsi_return_type return_type_w )
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 3);
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 3;
out[0].decl.File = TGSI_FILE_SAMPLER_VIEW;
out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW;
out[1].value = 0;
out[1].decl_range.First = index;
out[1].decl_range.Last = index;
out[2].value = 0;
out[2].decl_sampler_view.Resource = target;
out[2].decl_sampler_view.ReturnTypeX = return_type_x;
out[2].decl_sampler_view.ReturnTypeY = return_type_y;
out[2].decl_sampler_view.ReturnTypeZ = return_type_z;
out[2].decl_sampler_view.ReturnTypeW = return_type_w;
}
static void
emit_decl_image(struct ureg_program *ureg,
unsigned index,
enum tgsi_texture_type target,
enum pipe_format format,
boolean wr,
boolean raw)
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 3);
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 3;
out[0].decl.File = TGSI_FILE_IMAGE;
out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW;
out[1].value = 0;
out[1].decl_range.First = index;
out[1].decl_range.Last = index;
out[2].value = 0;
out[2].decl_image.Resource = target;
out[2].decl_image.Writable = wr;
out[2].decl_image.Raw = raw;
out[2].decl_image.Format = format;
}
static void
emit_decl_buffer(struct ureg_program *ureg,
unsigned index,
bool atomic)
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 2);
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 2;
out[0].decl.File = TGSI_FILE_BUFFER;
out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW;
out[0].decl.Atomic = atomic;
out[1].value = 0;
out[1].decl_range.First = index;
out[1].decl_range.Last = index;
}
static void
emit_decl_memory(struct ureg_program *ureg, unsigned memory_type)
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 2);
out[0].value = 0;
out[0].decl.Type = TGSI_TOKEN_TYPE_DECLARATION;
out[0].decl.NrTokens = 2;
out[0].decl.File = TGSI_FILE_MEMORY;
out[0].decl.UsageMask = TGSI_WRITEMASK_XYZW;
out[0].decl.MemType = memory_type;
out[1].value = 0;
out[1].decl_range.First = memory_type;
out[1].decl_range.Last = memory_type;
}
static void
emit_immediate( struct ureg_program *ureg,
const unsigned *v,
unsigned type )
{
union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL, 5 );
out[0].value = 0;
out[0].imm.Type = TGSI_TOKEN_TYPE_IMMEDIATE;
out[0].imm.NrTokens = 5;
out[0].imm.DataType = type;
out[0].imm.Padding = 0;
out[1].imm_data.Uint = v[0];
out[2].imm_data.Uint = v[1];
out[3].imm_data.Uint = v[2];
out[4].imm_data.Uint = v[3];
}
static void
emit_property(struct ureg_program *ureg,
unsigned name,
unsigned data)
{
union tgsi_any_token *out = get_tokens(ureg, DOMAIN_DECL, 2);
out[0].value = 0;
out[0].prop.Type = TGSI_TOKEN_TYPE_PROPERTY;
out[0].prop.NrTokens = 2;
out[0].prop.PropertyName = name;
out[1].prop_data.Data = data;
}
static void emit_decls( struct ureg_program *ureg )
{
unsigned i,j;
for (i = 0; i < ARRAY_SIZE(ureg->properties); i++)
if (ureg->properties[i] != ~0u)
emit_property(ureg, i, ureg->properties[i]);
if (ureg->processor == PIPE_SHADER_VERTEX) {
for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
if (ureg->vs_inputs[i/32] & (1u << (i%32))) {
emit_decl_range( ureg, TGSI_FILE_INPUT, i, 1 );
}
}
} else if (ureg->processor == PIPE_SHADER_FRAGMENT) {
if (ureg->supports_any_inout_decl_range) {
for (i = 0; i < ureg->nr_inputs; i++) {
emit_decl_fs(ureg,
TGSI_FILE_INPUT,
ureg->input[i].first,
ureg->input[i].last,
ureg->input[i].semantic_name,
ureg->input[i].semantic_index,
ureg->input[i].interp,
ureg->input[i].cylindrical_wrap,
ureg->input[i].interp_location,
ureg->input[i].array_id,
ureg->input[i].usage_mask);
}
}
else {
for (i = 0; i < ureg->nr_inputs; i++) {
for (j = ureg->input[i].first; j <= ureg->input[i].last; j++) {
emit_decl_fs(ureg,
TGSI_FILE_INPUT,
j, j,
ureg->input[i].semantic_name,
ureg->input[i].semantic_index +
(j - ureg->input[i].first),
ureg->input[i].interp,
ureg->input[i].cylindrical_wrap,
ureg->input[i].interp_location, 0,
ureg->input[i].usage_mask);
}
}
}
} else {
if (ureg->supports_any_inout_decl_range) {
for (i = 0; i < ureg->nr_inputs; i++) {
emit_decl_semantic(ureg,
TGSI_FILE_INPUT,
ureg->input[i].first,
ureg->input[i].last,
ureg->input[i].semantic_name,
ureg->input[i].semantic_index,
0,
TGSI_WRITEMASK_XYZW,
ureg->input[i].array_id,
FALSE);
}
}
else {
for (i = 0; i < ureg->nr_inputs; i++) {
for (j = ureg->input[i].first; j <= ureg->input[i].last; j++) {
emit_decl_semantic(ureg,
TGSI_FILE_INPUT,
j, j,
ureg->input[i].semantic_name,
ureg->input[i].semantic_index +
(j - ureg->input[i].first),
0,
TGSI_WRITEMASK_XYZW, 0, FALSE);
}
}
}
}
for (i = 0; i < ureg->nr_system_values; i++) {
emit_decl_semantic(ureg,
TGSI_FILE_SYSTEM_VALUE,
i,
i,
ureg->system_value[i].semantic_name,
ureg->system_value[i].semantic_index,
0,
TGSI_WRITEMASK_XYZW, 0, FALSE);
}
if (ureg->supports_any_inout_decl_range) {
for (i = 0; i < ureg->nr_outputs; i++) {
emit_decl_semantic(ureg,
TGSI_FILE_OUTPUT,
ureg->output[i].first,
ureg->output[i].last,
ureg->output[i].semantic_name,
ureg->output[i].semantic_index,
ureg->output[i].streams,
ureg->output[i].usage_mask,
ureg->output[i].array_id,
ureg->output[i].invariant);
}
}
else {
for (i = 0; i < ureg->nr_outputs; i++) {
for (j = ureg->output[i].first; j <= ureg->output[i].last; j++) {
emit_decl_semantic(ureg,
TGSI_FILE_OUTPUT,
j, j,
ureg->output[i].semantic_name,
ureg->output[i].semantic_index +
(j - ureg->output[i].first),
ureg->output[i].streams,
ureg->output[i].usage_mask,
0,
ureg->output[i].invariant);
}
}
}
for (i = 0; i < ureg->nr_samplers; i++) {
emit_decl_range( ureg,
TGSI_FILE_SAMPLER,
ureg->sampler[i].Index, 1 );
}
for (i = 0; i < ureg->nr_sampler_views; i++) {
emit_decl_sampler_view(ureg,
ureg->sampler_view[i].index,
ureg->sampler_view[i].target,
ureg->sampler_view[i].return_type_x,
ureg->sampler_view[i].return_type_y,
ureg->sampler_view[i].return_type_z,
ureg->sampler_view[i].return_type_w);
}
for (i = 0; i < ureg->nr_images; i++) {
emit_decl_image(ureg,
ureg->image[i].index,
ureg->image[i].target,
ureg->image[i].format,
ureg->image[i].wr,
ureg->image[i].raw);
}
for (i = 0; i < ureg->nr_buffers; i++) {
emit_decl_buffer(ureg, ureg->buffer[i].index, ureg->buffer[i].atomic);
}
for (i = 0; i < TGSI_MEMORY_TYPE_COUNT; i++) {
if (ureg->use_memory[i])
emit_decl_memory(ureg, i);
}
for (i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
struct const_decl *decl = &ureg->const_decls[i];
if (decl->nr_constant_ranges) {
uint j;
for (j = 0; j < decl->nr_constant_ranges; j++) {
emit_decl_range2D(ureg,
TGSI_FILE_CONSTANT,
decl->constant_range[j].first,
decl->constant_range[j].last,
i);
}
}
}
for (i = 0; i < PIPE_MAX_HW_ATOMIC_BUFFERS; i++) {
struct hw_atomic_decl *decl = &ureg->hw_atomic_decls[i];
if (decl->nr_hw_atomic_ranges) {
uint j;
for (j = 0; j < decl->nr_hw_atomic_ranges; j++) {
emit_decl_atomic_2d(ureg,
decl->hw_atomic_range[j].first,
decl->hw_atomic_range[j].last,
i,
decl->hw_atomic_range[j].array_id);
}
}
}
if (ureg->nr_temps) {
unsigned array = 0;
for (i = 0; i < ureg->nr_temps;) {
boolean local = util_bitmask_get(ureg->local_temps, i);
unsigned first = i;
i = util_bitmask_get_next_index(ureg->decl_temps, i + 1);
if (i == UTIL_BITMASK_INVALID_INDEX)
i = ureg->nr_temps;
if (array < ureg->nr_array_temps && ureg->array_temps[array] == first)
emit_decl_temps( ureg, first, i - 1, local, ++array );
else
emit_decl_temps( ureg, first, i - 1, local, 0 );
}
}
if (ureg->nr_addrs) {
emit_decl_range( ureg,
TGSI_FILE_ADDRESS,
0, ureg->nr_addrs );
}
for (i = 0; i < ureg->nr_immediates; i++) {
emit_immediate( ureg,
ureg->immediate[i].value.u,
ureg->immediate[i].type );
}
}
/* Append the instruction tokens onto the declarations to build a
* contiguous stream suitable to send to the driver.
*/
static void copy_instructions( struct ureg_program *ureg )
{
unsigned nr_tokens = ureg->domain[DOMAIN_INSN].count;
union tgsi_any_token *out = get_tokens( ureg,
DOMAIN_DECL,
nr_tokens );
memcpy(out,
ureg->domain[DOMAIN_INSN].tokens,
nr_tokens * sizeof out[0] );
}
static void
fixup_header_size(struct ureg_program *ureg)
{
union tgsi_any_token *out = retrieve_token( ureg, DOMAIN_DECL, 0 );
out->header.BodySize = ureg->domain[DOMAIN_DECL].count - 2;
}
static void
emit_header( struct ureg_program *ureg )
{
union tgsi_any_token *out = get_tokens( ureg, DOMAIN_DECL, 2 );
out[0].header.HeaderSize = 2;
out[0].header.BodySize = 0;
out[1].processor.Processor = ureg->processor;
out[1].processor.Padding = 0;
}
const struct tgsi_token *ureg_finalize( struct ureg_program *ureg )
{
const struct tgsi_token *tokens;
switch (ureg->processor) {
case PIPE_SHADER_VERTEX:
case PIPE_SHADER_TESS_EVAL:
ureg_property(ureg, TGSI_PROPERTY_NEXT_SHADER,
ureg->next_shader_processor == -1 ?
PIPE_SHADER_FRAGMENT :
ureg->next_shader_processor);
break;
default:
; /* nothing */
}
emit_header( ureg );
emit_decls( ureg );
copy_instructions( ureg );
fixup_header_size( ureg );
if (ureg->domain[0].tokens == error_tokens ||
ureg->domain[1].tokens == error_tokens) {
debug_printf("%s: error in generated shader\n", __FUNCTION__);
assert(0);
return NULL;
}
tokens = &ureg->domain[DOMAIN_DECL].tokens[0].token;
if (0) {
debug_printf("%s: emitted shader %d tokens:\n", __FUNCTION__,
ureg->domain[DOMAIN_DECL].count);
tgsi_dump( tokens, 0 );
}
#if DEBUG
/* tgsi_sanity doesn't seem to return if there are too many constants. */
bool too_many_constants = false;
for (unsigned i = 0; i < ARRAY_SIZE(ureg->const_decls); i++) {
for (unsigned j = 0; j < ureg->const_decls[i].nr_constant_ranges; j++) {
if (ureg->const_decls[i].constant_range[j].last > 4096) {
too_many_constants = true;
break;
}
}
}
if (tokens && !too_many_constants && !tgsi_sanity_check(tokens)) {
debug_printf("tgsi_ureg.c, sanity check failed on generated tokens:\n");
tgsi_dump(tokens, 0);
assert(0);
}
#endif
return tokens;
}
void *ureg_create_shader( struct ureg_program *ureg,
struct pipe_context *pipe,
const struct pipe_stream_output_info *so )
{
struct pipe_shader_state state = {0};
pipe_shader_state_from_tgsi(&state, ureg_finalize(ureg));
if(!state.tokens)
return NULL;
if (so)
state.stream_output = *so;
switch (ureg->processor) {
case PIPE_SHADER_VERTEX:
return pipe->create_vs_state(pipe, &state);
case PIPE_SHADER_TESS_CTRL:
return pipe->create_tcs_state(pipe, &state);
case PIPE_SHADER_TESS_EVAL:
return pipe->create_tes_state(pipe, &state);
case PIPE_SHADER_GEOMETRY:
return pipe->create_gs_state(pipe, &state);
case PIPE_SHADER_FRAGMENT:
return pipe->create_fs_state(pipe, &state);
default:
return NULL;
}
}
const struct tgsi_token *ureg_get_tokens( struct ureg_program *ureg,
unsigned *nr_tokens )
{
const struct tgsi_token *tokens;
ureg_finalize(ureg);
tokens = &ureg->domain[DOMAIN_DECL].tokens[0].token;
if (nr_tokens)
*nr_tokens = ureg->domain[DOMAIN_DECL].count;
ureg->domain[DOMAIN_DECL].tokens = 0;
ureg->domain[DOMAIN_DECL].size = 0;
ureg->domain[DOMAIN_DECL].order = 0;
ureg->domain[DOMAIN_DECL].count = 0;
return tokens;
}
void ureg_free_tokens( const struct tgsi_token *tokens )
{
FREE((struct tgsi_token *)tokens);
}
struct ureg_program *
ureg_create(enum pipe_shader_type processor)
{
return ureg_create_with_screen(processor, NULL);
}
struct ureg_program *
ureg_create_with_screen(enum pipe_shader_type processor,
struct pipe_screen *screen)
{
uint i;
struct ureg_program *ureg = CALLOC_STRUCT( ureg_program );
if (!ureg)
goto no_ureg;
ureg->processor = processor;
ureg->supports_any_inout_decl_range =
screen &&
screen->get_shader_param(screen, processor,
PIPE_SHADER_CAP_TGSI_ANY_INOUT_DECL_RANGE) != 0;
ureg->next_shader_processor = -1;
for (i = 0; i < ARRAY_SIZE(ureg->properties); i++)
ureg->properties[i] = ~0;
ureg->free_temps = util_bitmask_create();
if (ureg->free_temps == NULL)
goto no_free_temps;
ureg->local_temps = util_bitmask_create();
if (ureg->local_temps == NULL)
goto no_local_temps;
ureg->decl_temps = util_bitmask_create();
if (ureg->decl_temps == NULL)
goto no_decl_temps;
return ureg;
no_decl_temps:
util_bitmask_destroy(ureg->local_temps);
no_local_temps:
util_bitmask_destroy(ureg->free_temps);
no_free_temps:
FREE(ureg);
no_ureg:
return NULL;
}
void
ureg_set_next_shader_processor(struct ureg_program *ureg, unsigned processor)
{
ureg->next_shader_processor = processor;
}
unsigned
ureg_get_nr_outputs( const struct ureg_program *ureg )
{
if (!ureg)
return 0;
return ureg->nr_outputs;
}
static void
ureg_setup_clipdist_info(struct ureg_program *ureg,
const struct shader_info *info)
{
if (info->clip_distance_array_size)
ureg_property(ureg, TGSI_PROPERTY_NUM_CLIPDIST_ENABLED,
info->clip_distance_array_size);
if (info->cull_distance_array_size)
ureg_property(ureg, TGSI_PROPERTY_NUM_CULLDIST_ENABLED,
info->cull_distance_array_size);
}
static void
ureg_setup_tess_ctrl_shader(struct ureg_program *ureg,
const struct shader_info *info)
{
ureg_property(ureg, TGSI_PROPERTY_TCS_VERTICES_OUT,
info->tess.tcs_vertices_out);
}
static void
ureg_setup_tess_eval_shader(struct ureg_program *ureg,
const struct shader_info *info)
{
if (info->tess.primitive_mode == GL_ISOLINES)
ureg_property(ureg, TGSI_PROPERTY_TES_PRIM_MODE, GL_LINES);
else
ureg_property(ureg, TGSI_PROPERTY_TES_PRIM_MODE,
info->tess.primitive_mode);
STATIC_ASSERT((TESS_SPACING_EQUAL + 1) % 3 == PIPE_TESS_SPACING_EQUAL);
STATIC_ASSERT((TESS_SPACING_FRACTIONAL_ODD + 1) % 3 ==
PIPE_TESS_SPACING_FRACTIONAL_ODD);
STATIC_ASSERT((TESS_SPACING_FRACTIONAL_EVEN + 1) % 3 ==
PIPE_TESS_SPACING_FRACTIONAL_EVEN);
ureg_property(ureg, TGSI_PROPERTY_TES_SPACING,
(info->tess.spacing + 1) % 3);
ureg_property(ureg, TGSI_PROPERTY_TES_VERTEX_ORDER_CW,
!info->tess.ccw);
ureg_property(ureg, TGSI_PROPERTY_TES_POINT_MODE,
info->tess.point_mode);
}
static void
ureg_setup_geometry_shader(struct ureg_program *ureg,
const struct shader_info *info)
{
ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM,
info->gs.input_primitive);
ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM,
info->gs.output_primitive);
ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES,
info->gs.vertices_out);
ureg_property(ureg, TGSI_PROPERTY_GS_INVOCATIONS,
info->gs.invocations);
}
static void
ureg_setup_fragment_shader(struct ureg_program *ureg,
const struct shader_info *info)
{
if (info->fs.early_fragment_tests || info->fs.post_depth_coverage) {
ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
if (info->fs.post_depth_coverage)
ureg_property(ureg, TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE, 1);
}
if (info->fs.depth_layout != FRAG_DEPTH_LAYOUT_NONE) {
switch (info->fs.depth_layout) {
case FRAG_DEPTH_LAYOUT_ANY:
ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
TGSI_FS_DEPTH_LAYOUT_ANY);
break;
case FRAG_DEPTH_LAYOUT_GREATER:
ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
TGSI_FS_DEPTH_LAYOUT_GREATER);
break;
case FRAG_DEPTH_LAYOUT_LESS:
ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
TGSI_FS_DEPTH_LAYOUT_LESS);
break;
case FRAG_DEPTH_LAYOUT_UNCHANGED:
ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
break;
default:
assert(0);
}
}
}
static void
ureg_setup_compute_shader(struct ureg_program *ureg,
const struct shader_info *info)
{
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
info->cs.local_size[0]);
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
info->cs.local_size[1]);
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
info->cs.local_size[2]);
if (info->cs.shared_size)
ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
}
void
ureg_setup_shader_info(struct ureg_program *ureg,
const struct shader_info *info)
{
if (info->layer_viewport_relative)
ureg_property(ureg, TGSI_PROPERTY_LAYER_VIEWPORT_RELATIVE, 1);
switch (info->stage) {
case MESA_SHADER_VERTEX:
ureg_setup_clipdist_info(ureg, info);
break;
case MESA_SHADER_TESS_CTRL:
ureg_setup_tess_ctrl_shader(ureg, info);
break;
case MESA_SHADER_TESS_EVAL:
ureg_setup_tess_eval_shader(ureg, info);
ureg_setup_clipdist_info(ureg, info);
ureg_set_next_shader_processor(ureg, pipe_shader_type_from_mesa(info->next_stage));
break;
case MESA_SHADER_GEOMETRY:
ureg_setup_geometry_shader(ureg, info);
ureg_setup_clipdist_info(ureg, info);
break;
case MESA_SHADER_FRAGMENT:
ureg_setup_fragment_shader(ureg, info);
break;
case MESA_SHADER_COMPUTE:
ureg_setup_compute_shader(ureg, info);
break;
default:
break;
}
}
void ureg_destroy( struct ureg_program *ureg )
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(ureg->domain); i++) {
if (ureg->domain[i].tokens &&
ureg->domain[i].tokens != error_tokens)
FREE(ureg->domain[i].tokens);
}
util_bitmask_destroy(ureg->free_temps);
util_bitmask_destroy(ureg->local_temps);
util_bitmask_destroy(ureg->decl_temps);
FREE(ureg);
}