blob: d060f378fe214f683c240a3f84c757def7c8d50f [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
*
*/
#include <algorithm>
#include <math.h>
#include "aco_ir.h"
#include "util/half_float.h"
#include "util/u_math.h"
namespace aco {
/**
* The optimizer works in 4 phases:
* (1) The first pass collects information for each ssa-def,
* propagates reg->reg operands of the same type, inline constants
* and neg/abs input modifiers.
* (2) The second pass combines instructions like mad, omod, clamp and
* propagates sgpr's on VALU instructions.
* This pass depends on information collected in the first pass.
* (3) The third pass goes backwards, and selects instructions,
* i.e. decides if a mad instruction is profitable and eliminates dead code.
* (4) The fourth pass cleans up the sequence: literals get applied and dead
* instructions are removed from the sequence.
*/
struct mad_info {
aco_ptr<Instruction> add_instr;
uint32_t mul_temp_id;
uint16_t literal_idx;
bool check_literal;
mad_info(aco_ptr<Instruction> instr, uint32_t id)
: add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
};
enum Label {
label_vec = 1 << 0,
label_constant_32bit = 1 << 1,
/* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and
* 32-bit operations but this shouldn't cause any issues because we don't
* look through any conversions */
label_abs = 1 << 2,
label_neg = 1 << 3,
label_mul = 1 << 4,
label_temp = 1 << 5,
label_literal = 1 << 6,
label_mad = 1 << 7,
label_omod2 = 1 << 8,
label_omod4 = 1 << 9,
label_omod5 = 1 << 10,
label_omod_success = 1 << 11,
label_clamp = 1 << 12,
label_clamp_success = 1 << 13,
label_undefined = 1 << 14,
label_vcc = 1 << 15,
label_b2f = 1 << 16,
label_add_sub = 1 << 17,
label_bitwise = 1 << 18,
label_minmax = 1 << 19,
label_vopc = 1 << 20,
label_uniform_bool = 1 << 21,
label_constant_64bit = 1 << 22,
label_uniform_bitwise = 1 << 23,
label_scc_invert = 1 << 24,
label_vcc_hint = 1 << 25,
label_scc_needed = 1 << 26,
label_b2i = 1 << 27,
label_constant_16bit = 1 << 29,
};
static constexpr uint64_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_vopc;
static constexpr uint64_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert | label_b2i;
static constexpr uint32_t val_labels = label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal;
struct ssa_info {
uint64_t label;
union {
uint32_t val;
Temp temp;
Instruction* instr;
};
ssa_info() : label(0) {}
void add_label(Label new_label)
{
/* Since all labels which use "instr" use it for the same thing
* (indicating the defining instruction), there is no need to clear
* any other instr labels. */
if (new_label & instr_labels)
label &= ~(temp_labels | val_labels); /* instr, temp and val alias */
if (new_label & temp_labels) {
label &= ~temp_labels;
label &= ~(instr_labels | val_labels); /* instr, temp and val alias */
}
uint32_t const_labels = label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit;
if (new_label & const_labels) {
label &= ~val_labels | const_labels;
label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */
} else if (new_label & val_labels) {
label &= ~val_labels;
label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */
}
label |= new_label;
}
void set_vec(Instruction* vec)
{
add_label(label_vec);
instr = vec;
}
bool is_vec()
{
return label & label_vec;
}
void set_constant(chip_class chip, uint64_t constant)
{
Operand op16((uint16_t)constant);
Operand op32((uint32_t)constant);
add_label(label_literal);
val = constant;
if (chip >= GFX8 && !op16.isLiteral())
add_label(label_constant_16bit);
if (!op32.isLiteral() || ((uint32_t)constant == 0x3e22f983 && chip >= GFX8))
add_label(label_constant_32bit);
if (constant <= 64) {
add_label(label_constant_64bit);
} else if (constant >= 0xFFFFFFFFFFFFFFF0) { /* [-16 .. -1] */
add_label(label_constant_64bit);
} else if (constant == 0x3FE0000000000000) { /* 0.5 */
add_label(label_constant_64bit);
} else if (constant == 0xBFE0000000000000) { /* -0.5 */
add_label(label_constant_64bit);
} else if (constant == 0x3FF0000000000000) { /* 1.0 */
add_label(label_constant_64bit);
} else if (constant == 0xBFF0000000000000) { /* -1.0 */
add_label(label_constant_64bit);
} else if (constant == 0x4000000000000000) { /* 2.0 */
add_label(label_constant_64bit);
} else if (constant == 0xC000000000000000) { /* -2.0 */
add_label(label_constant_64bit);
} else if (constant == 0x4010000000000000) { /* 4.0 */
add_label(label_constant_64bit);
} else if (constant == 0xC010000000000000) { /* -4.0 */
add_label(label_constant_64bit);
}
if (label & label_constant_64bit) {
val = Operand(constant).constantValue();
if (val != constant)
label &= ~(label_literal | label_constant_16bit | label_constant_32bit);
}
}
bool is_constant(unsigned bits)
{
switch (bits) {
case 8:
return label & label_literal;
case 16:
return label & label_constant_16bit;
case 32:
return label & label_constant_32bit;
case 64:
return label & label_constant_64bit;
}
return false;
}
bool is_literal(unsigned bits)
{
bool is_lit = label & label_literal;
switch (bits) {
case 8:
return false;
case 16:
return is_lit && ~(label & label_constant_16bit);
case 32:
return is_lit && ~(label & label_constant_32bit);
case 64:
return false;
}
return false;
}
bool is_constant_or_literal(unsigned bits)
{
if (bits == 64)
return label & label_constant_64bit;
else
return label & label_literal;
}
void set_abs(Temp abs_temp)
{
add_label(label_abs);
temp = abs_temp;
}
bool is_abs()
{
return label & label_abs;
}
void set_neg(Temp neg_temp)
{
add_label(label_neg);
temp = neg_temp;
}
bool is_neg()
{
return label & label_neg;
}
void set_neg_abs(Temp neg_abs_temp)
{
add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
temp = neg_abs_temp;
}
void set_mul(Instruction* mul)
{
add_label(label_mul);
instr = mul;
}
bool is_mul()
{
return label & label_mul;
}
void set_temp(Temp tmp)
{
add_label(label_temp);
temp = tmp;
}
bool is_temp()
{
return label & label_temp;
}
void set_mad(Instruction* mad, uint32_t mad_info_idx)
{
add_label(label_mad);
mad->pass_flags = mad_info_idx;
instr = mad;
}
bool is_mad()
{
return label & label_mad;
}
void set_omod2(Temp def)
{
add_label(label_omod2);
temp = def;
}
bool is_omod2()
{
return label & label_omod2;
}
void set_omod4(Temp def)
{
add_label(label_omod4);
temp = def;
}
bool is_omod4()
{
return label & label_omod4;
}
void set_omod5(Temp def)
{
add_label(label_omod5);
temp = def;
}
bool is_omod5()
{
return label & label_omod5;
}
void set_omod_success(Instruction* omod_instr)
{
add_label(label_omod_success);
instr = omod_instr;
}
bool is_omod_success()
{
return label & label_omod_success;
}
void set_clamp(Temp def)
{
add_label(label_clamp);
temp = def;
}
bool is_clamp()
{
return label & label_clamp;
}
void set_clamp_success(Instruction* clamp_instr)
{
add_label(label_clamp_success);
instr = clamp_instr;
}
bool is_clamp_success()
{
return label & label_clamp_success;
}
void set_undefined()
{
add_label(label_undefined);
}
bool is_undefined()
{
return label & label_undefined;
}
void set_vcc(Temp vcc)
{
add_label(label_vcc);
temp = vcc;
}
bool is_vcc()
{
return label & label_vcc;
}
void set_b2f(Temp val)
{
add_label(label_b2f);
temp = val;
}
bool is_b2f()
{
return label & label_b2f;
}
void set_add_sub(Instruction *add_sub_instr)
{
add_label(label_add_sub);
instr = add_sub_instr;
}
bool is_add_sub()
{
return label & label_add_sub;
}
void set_bitwise(Instruction *bitwise_instr)
{
add_label(label_bitwise);
instr = bitwise_instr;
}
bool is_bitwise()
{
return label & label_bitwise;
}
void set_uniform_bitwise()
{
add_label(label_uniform_bitwise);
}
bool is_uniform_bitwise()
{
return label & label_uniform_bitwise;
}
void set_minmax(Instruction *minmax_instr)
{
add_label(label_minmax);
instr = minmax_instr;
}
bool is_minmax()
{
return label & label_minmax;
}
void set_vopc(Instruction *vopc_instr)
{
add_label(label_vopc);
instr = vopc_instr;
}
bool is_vopc()
{
return label & label_vopc;
}
void set_scc_needed()
{
add_label(label_scc_needed);
}
bool is_scc_needed()
{
return label & label_scc_needed;
}
void set_scc_invert(Temp scc_inv)
{
add_label(label_scc_invert);
temp = scc_inv;
}
bool is_scc_invert()
{
return label & label_scc_invert;
}
void set_uniform_bool(Temp uniform_bool)
{
add_label(label_uniform_bool);
temp = uniform_bool;
}
bool is_uniform_bool()
{
return label & label_uniform_bool;
}
void set_vcc_hint()
{
add_label(label_vcc_hint);
}
bool is_vcc_hint()
{
return label & label_vcc_hint;
}
void set_b2i(Temp val)
{
add_label(label_b2i);
temp = val;
}
bool is_b2i()
{
return label & label_b2i;
}
};
struct opt_ctx {
Program* program;
std::vector<aco_ptr<Instruction>> instructions;
ssa_info* info;
std::pair<uint32_t,Temp> last_literal;
std::vector<mad_info> mad_infos;
std::vector<uint16_t> uses;
};
struct CmpInfo {
aco_opcode ordered;
aco_opcode unordered;
aco_opcode ordered_swapped;
aco_opcode unordered_swapped;
aco_opcode inverse;
aco_opcode f32;
unsigned size;
};
ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info);
bool can_swap_operands(aco_ptr<Instruction>& instr)
{
if (instr->operands[0].isConstant() ||
(instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
return false;
switch (instr->opcode) {
case aco_opcode::v_add_u32:
case aco_opcode::v_add_co_u32:
case aco_opcode::v_add_co_u32_e64:
case aco_opcode::v_add_i32:
case aco_opcode::v_add_f16:
case aco_opcode::v_add_f32:
case aco_opcode::v_mul_f16:
case aco_opcode::v_mul_f32:
case aco_opcode::v_or_b32:
case aco_opcode::v_and_b32:
case aco_opcode::v_xor_b32:
case aco_opcode::v_max_f16:
case aco_opcode::v_max_f32:
case aco_opcode::v_min_f16:
case aco_opcode::v_min_f32:
case aco_opcode::v_max_i32:
case aco_opcode::v_min_i32:
case aco_opcode::v_max_u32:
case aco_opcode::v_min_u32:
case aco_opcode::v_max_i16:
case aco_opcode::v_min_i16:
case aco_opcode::v_max_u16:
case aco_opcode::v_min_u16:
case aco_opcode::v_max_i16_e64:
case aco_opcode::v_min_i16_e64:
case aco_opcode::v_max_u16_e64:
case aco_opcode::v_min_u16_e64:
return true;
case aco_opcode::v_sub_f16:
instr->opcode = aco_opcode::v_subrev_f16;
return true;
case aco_opcode::v_sub_f32:
instr->opcode = aco_opcode::v_subrev_f32;
return true;
case aco_opcode::v_sub_co_u32:
instr->opcode = aco_opcode::v_subrev_co_u32;
return true;
case aco_opcode::v_sub_u16:
instr->opcode = aco_opcode::v_subrev_u16;
return true;
case aco_opcode::v_sub_u32:
instr->opcode = aco_opcode::v_subrev_u32;
return true;
default: {
CmpInfo info;
get_cmp_info(instr->opcode, &info);
if (info.ordered == instr->opcode) {
instr->opcode = info.ordered_swapped;
return true;
}
if (info.unordered == instr->opcode) {
instr->opcode = info.unordered_swapped;
return true;
}
return false;
}
}
}
bool can_use_VOP3(opt_ctx& ctx, const aco_ptr<Instruction>& instr)
{
if (instr->isVOP3())
return true;
if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
return false;
if (instr->isDPP() || instr->isSDWA())
return false;
return instr->opcode != aco_opcode::v_madmk_f32 &&
instr->opcode != aco_opcode::v_madak_f32 &&
instr->opcode != aco_opcode::v_madmk_f16 &&
instr->opcode != aco_opcode::v_madak_f16 &&
instr->opcode != aco_opcode::v_fmamk_f32 &&
instr->opcode != aco_opcode::v_fmaak_f32 &&
instr->opcode != aco_opcode::v_fmamk_f16 &&
instr->opcode != aco_opcode::v_fmaak_f16 &&
instr->opcode != aco_opcode::v_readlane_b32 &&
instr->opcode != aco_opcode::v_writelane_b32 &&
instr->opcode != aco_opcode::v_readfirstlane_b32;
}
bool can_apply_sgprs(aco_ptr<Instruction>& instr)
{
return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
instr->opcode != aco_opcode::v_readlane_b32 &&
instr->opcode != aco_opcode::v_readlane_b32_e64 &&
instr->opcode != aco_opcode::v_writelane_b32 &&
instr->opcode != aco_opcode::v_writelane_b32_e64;
}
void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
if (instr->isVOP3())
return;
aco_ptr<Instruction> tmp = std::move(instr);
Format format = asVOP3(tmp->format);
instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
for (unsigned i = 0; i < instr->definitions.size(); i++) {
instr->definitions[i] = tmp->definitions[i];
if (instr->definitions[i].isTemp()) {
ssa_info& info = ctx.info[instr->definitions[i].tempId()];
if (info.label & instr_labels && info.instr == tmp.get())
info.instr = instr.get();
}
}
}
/* only covers special cases */
bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
{
switch (opcode) {
case aco_opcode::v_interp_p2_f32:
case aco_opcode::v_mac_f32:
case aco_opcode::v_writelane_b32:
case aco_opcode::v_writelane_b32_e64:
case aco_opcode::v_cndmask_b32:
return operand != 2;
case aco_opcode::s_addk_i32:
case aco_opcode::s_mulk_i32:
case aco_opcode::p_wqm:
case aco_opcode::p_extract_vector:
case aco_opcode::p_split_vector:
case aco_opcode::v_readlane_b32:
case aco_opcode::v_readlane_b32_e64:
case aco_opcode::v_readfirstlane_b32:
return operand != 0;
default:
return true;
}
}
bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
{
if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
return operand != 1;
return true;
}
/* check constant bus and literal limitations */
bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
{
int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
Operand literal32(s1);
Operand literal64(s2);
unsigned num_sgprs = 0;
unsigned sgpr[] = {0, 0};
for (unsigned i = 0; i < num_operands; i++) {
Operand op = operands[i];
if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
/* two reads of the same SGPR count as 1 to the limit */
if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
if (num_sgprs < 2)
sgpr[num_sgprs++] = op.tempId();
limit--;
if (limit < 0)
return false;
}
} else if (op.isLiteral()) {
if (ctx.program->chip_class < GFX10)
return false;
if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
return false;
if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
return false;
/* Any number of 32-bit literals counts as only 1 to the limit. Same
* (but separately) for 64-bit literals. */
if (op.size() == 1 && literal32.isUndefined()) {
limit--;
literal32 = op;
} else if (op.size() == 2 && literal64.isUndefined()) {
limit--;
literal64 = op;
}
if (limit < 0)
return false;
}
}
return true;
}
bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset, bool prevent_overflow)
{
Operand op = instr->operands[op_index];
if (!op.isTemp())
return false;
Temp tmp = op.getTemp();
if (!ctx.info[tmp.id()].is_add_sub())
return false;
Instruction *add_instr = ctx.info[tmp.id()].instr;
switch (add_instr->opcode) {
case aco_opcode::v_add_u32:
case aco_opcode::v_add_co_u32:
case aco_opcode::v_add_co_u32_e64:
case aco_opcode::s_add_i32:
case aco_opcode::s_add_u32:
break;
default:
return false;
}
if (prevent_overflow && !add_instr->definitions[0].isNUW())
return false;
if (add_instr->usesModifiers())
return false;
for (unsigned i = 0; i < 2; i++) {
if (add_instr->operands[i].isConstant()) {
*offset = add_instr->operands[i].constantValue();
} else if (add_instr->operands[i].isTemp() &&
ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) {
*offset = ctx.info[add_instr->operands[i].tempId()].val;
} else {
continue;
}
if (!add_instr->operands[!i].isTemp())
continue;
uint32_t offset2 = 0;
if (parse_base_offset(ctx, add_instr, !i, base, &offset2, prevent_overflow)) {
*offset += offset2;
} else {
*base = add_instr->operands[!i].getTemp();
}
return true;
}
return false;
}
unsigned get_operand_size(aco_ptr<Instruction>& instr, unsigned index)
{
if (instr->format == Format::PSEUDO)
return instr->operands[index].bytes() * 8u;
else if (instr->opcode == aco_opcode::v_mad_u64_u32 || instr->opcode == aco_opcode::v_mad_i64_i32)
return index == 2 ? 64 : 32;
else if (instr->isVALU() || instr->isSALU())
return instr_info.operand_size[(int)instr->opcode];
else
return 0;
}
Operand get_constant_op(opt_ctx &ctx, ssa_info info, uint32_t bits)
{
if (bits == 8)
return Operand((uint8_t)info.val);
if (bits == 16)
return Operand((uint16_t)info.val);
// TODO: this functions shouldn't be needed if we store Operand instead of value.
Operand op(info.val, bits == 64);
if (info.is_literal(32) && info.val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
return op;
}
bool fixed_to_exec(Operand op)
{
return op.isFixed() && op.physReg() == exec;
}
void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
{
if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
ASSERTED bool all_const = false;
for (Operand& op : instr->operands)
all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal(32));
perfwarn(all_const, "All instruction operands are constant", instr.get());
}
for (unsigned i = 0; i < instr->operands.size(); i++)
{
if (!instr->operands[i].isTemp())
continue;
ssa_info info = ctx.info[instr->operands[i].tempId()];
/* propagate undef */
if (info.is_undefined() && is_phi(instr))
instr->operands[i] = Operand(instr->operands[i].regClass());
/* propagate reg->reg of same type */
if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
info = ctx.info[info.temp.id()];
}
/* SALU / PSEUDO: propagate inline constants */
if (instr->isSALU() || instr->format == Format::PSEUDO) {
bool is_subdword = false;
// TODO: optimize SGPR propagation for subdword pseudo instructions on gfx9+
if (instr->format == Format::PSEUDO) {
is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
[] (const Definition& def) { return def.regClass().is_subdword();});
is_subdword = is_subdword || std::any_of(instr->operands.begin(), instr->operands.end(),
[] (const Operand& op) { return op.hasRegClass() && op.regClass().is_subdword();});
if (is_subdword && ctx.program->chip_class < GFX9)
continue;
}
if (info.is_temp() && info.temp.type() == RegType::sgpr) {
instr->operands[i].setTemp(info.temp);
info = ctx.info[info.temp.id()];
} else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
/* propagate vgpr if it can take it */
switch (instr->opcode) {
case aco_opcode::p_create_vector:
case aco_opcode::p_split_vector:
case aco_opcode::p_extract_vector:
case aco_opcode::p_phi: {
const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
[] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
if (all_vgpr) {
instr->operands[i] = Operand(info.temp);
info = ctx.info[info.temp.id()];
}
break;
}
default:
break;
}
}
unsigned bits = get_operand_size(instr, i);
if ((info.is_constant(bits) || (!is_subdword && info.is_literal(bits) && instr->format == Format::PSEUDO)) &&
!instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
instr->operands[i] = get_constant_op(ctx, info, bits);
continue;
}
}
/* VALU: propagate neg, abs & inline constants */
else if (instr->isVALU()) {
if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
instr->operands[i].setTemp(info.temp);
info = ctx.info[info.temp.id()];
}
/* for instructions other than v_cndmask_b32, the size of the instruction should match the operand size */
unsigned can_use_mod = instr->opcode != aco_opcode::v_cndmask_b32 || instr->operands[i].getTemp().bytes() == 4;
can_use_mod = can_use_mod && instr_info.can_use_input_modifiers[(int)instr->opcode];
if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) {
if (!instr->isDPP())
to_VOP3(ctx, instr);
instr->operands[i] = Operand(info.temp);
if (instr->isDPP())
static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
else
static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
}
if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
instr->operands[i].setTemp(info.temp);
continue;
} else if (info.is_neg() && instr->opcode == aco_opcode::v_add_f16) {
instr->opcode = i ? aco_opcode::v_sub_f16 : aco_opcode::v_subrev_f16;
instr->operands[i].setTemp(info.temp);
continue;
} else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) {
if (!instr->isDPP())
to_VOP3(ctx, instr);
instr->operands[i].setTemp(info.temp);
if (instr->isDPP())
static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
else
static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
continue;
}
unsigned bits = get_operand_size(instr, i);
if (info.is_constant(bits) && alu_can_accept_constant(instr->opcode, i)) {
Operand op = get_constant_op(ctx, info, bits);
perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
instr->operands[i] = op;
continue;
} else if (!instr->isVOP3() && can_swap_operands(instr)) {
instr->operands[i] = instr->operands[0];
instr->operands[0] = op;
continue;
} else if (can_use_VOP3(ctx, instr)) {
to_VOP3(ctx, instr);
instr->operands[i] = op;
continue;
}
}
}
/* MUBUF: propagate constants and combine additions */
else if (instr->format == Format::MUBUF) {
MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
Temp base;
uint32_t offset;
while (info.is_temp())
info = ctx.info[info.temp.id()];
/* According to AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(), vaddr
* overflow for scratch accesses works only on GFX9+ and saddr overflow
* never works. Since swizzling is the only thing that separates
* scratch accesses and other accesses and swizzling changing how
* addressing works significantly, this probably applies to swizzled
* MUBUF accesses. */
bool vaddr_prevent_overflow = mubuf->swizzled && ctx.program->chip_class < GFX9;
bool saddr_prevent_overflow = mubuf->swizzled;
if (mubuf->offen && i == 1 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
assert(!mubuf->idxen);
instr->operands[1] = Operand(v1);
mubuf->offset += info.val;
mubuf->offen = false;
continue;
} else if (i == 2 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
instr->operands[2] = Operand((uint32_t) 0);
mubuf->offset += info.val;
continue;
} else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, vaddr_prevent_overflow) &&
base.regClass() == v1 && mubuf->offset + offset < 4096) {
assert(!mubuf->idxen);
instr->operands[1].setTemp(base);
mubuf->offset += offset;
continue;
} else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset, saddr_prevent_overflow) &&
base.regClass() == s1 && mubuf->offset + offset < 4096) {
instr->operands[i].setTemp(base);
mubuf->offset += offset;
continue;
}
}
/* DS: combine additions */
else if (instr->format == Format::DS) {
DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
Temp base;
uint32_t offset;
bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
if (has_usable_ds_offset &&
i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset, false) &&
base.regClass() == instr->operands[i].regClass() &&
instr->opcode != aco_opcode::ds_swizzle_b32) {
if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
if ((offset & mask) == 0 &&
ds->offset0 + (offset >> shifts) <= 255 &&
ds->offset1 + (offset >> shifts) <= 255) {
instr->operands[i].setTemp(base);
ds->offset0 += offset >> shifts;
ds->offset1 += offset >> shifts;
}
} else {
if (ds->offset0 + offset <= 65535) {
instr->operands[i].setTemp(base);
ds->offset0 += offset;
}
}
}
}
/* SMEM: propagate constants and combine additions */
else if (instr->format == Format::SMEM) {
SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
Temp base;
uint32_t offset;
bool prevent_overflow = smem->operands[0].size() > 2 || smem->prevent_overflow;
if (i == 1 && info.is_constant_or_literal(32) &&
((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
(ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
(ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
instr->operands[i] = Operand(info.val);
continue;
} else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, prevent_overflow) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
if (soe &&
(!ctx.info[smem->operands.back().tempId()].is_constant_or_literal(32) ||
ctx.info[smem->operands.back().tempId()].val != 0)) {
continue;
}
if (soe) {
smem->operands[1] = Operand(offset);
smem->operands.back() = Operand(base);
} else {
SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
new_instr->operands[0] = smem->operands[0];
new_instr->operands[1] = Operand(offset);
if (smem->definitions.empty())
new_instr->operands[2] = smem->operands[2];
new_instr->operands.back() = Operand(base);
if (!smem->definitions.empty())
new_instr->definitions[0] = smem->definitions[0];
new_instr->sync = smem->sync;
new_instr->glc = smem->glc;
new_instr->dlc = smem->dlc;
new_instr->nv = smem->nv;
new_instr->disable_wqm = smem->disable_wqm;
instr.reset(new_instr);
smem = static_cast<SMEM_instruction *>(instr.get());
}
continue;
}
}
else if (instr->format == Format::PSEUDO_BRANCH) {
if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
/* Flip the branch instruction to get rid of the scc_invert instruction */
instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
}
}
}
/* if this instruction doesn't define anything, return */
if (instr->definitions.empty())
return;
if ((uint16_t) instr->format & (uint16_t) Format::VOPC) {
ctx.info[instr->definitions[0].tempId()].set_vopc(instr.get());
return;
}
switch (instr->opcode) {
case aco_opcode::p_create_vector: {
bool copy_prop = instr->operands.size() == 1 && instr->operands[0].isTemp() &&
instr->operands[0].regClass() == instr->definitions[0].regClass();
if (copy_prop) {
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
break;
}
unsigned num_ops = instr->operands.size();
for (const Operand& op : instr->operands) {
if (op.isTemp() && ctx.info[op.tempId()].is_vec())
num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
}
if (num_ops != instr->operands.size()) {
aco_ptr<Instruction> old_vec = std::move(instr);
instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
instr->definitions[0] = old_vec->definitions[0];
unsigned k = 0;
for (Operand& old_op : old_vec->operands) {
if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
Operand op = ctx.info[old_op.tempId()].instr->operands[j];
if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
op.setTemp(ctx.info[op.tempId()].temp);
instr->operands[k++] = op;
}
} else {
instr->operands[k++] = old_op;
}
}
assert(k == num_ops);
}
ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
break;
}
case aco_opcode::p_split_vector: {
ssa_info& info = ctx.info[instr->operands[0].tempId()];
if (info.is_constant_or_literal(32)) {
uint32_t val = info.val;
for (Definition def : instr->definitions) {
uint32_t mask = u_bit_consecutive(0, def.bytes() * 8u);
ctx.info[def.tempId()].set_constant(ctx.program->chip_class, val & mask);
val >>= def.bytes() * 8u;
}
break;
} else if (!info.is_vec()) {
break;
}
Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
unsigned split_offset = 0;
unsigned vec_offset = 0;
unsigned vec_index = 0;
for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) {
while (vec_offset < split_offset && vec_index < vec->operands.size())
vec_offset += vec->operands[vec_index++].bytes();
if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes())
continue;
Operand vec_op = vec->operands[vec_index];
if (vec_op.isConstant()) {
ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->chip_class, vec_op.constantValue64());
} else if (vec_op.isUndefined()) {
ctx.info[instr->definitions[i].tempId()].set_undefined();
} else {
assert(vec_op.isTemp());
ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
}
}
break;
}
case aco_opcode::p_extract_vector: { /* mov */
ssa_info& info = ctx.info[instr->operands[0].tempId()];
const unsigned index = instr->operands[1].constantValue();
const unsigned dst_offset = index * instr->definitions[0].bytes();
if (info.is_constant_or_literal(32)) {
uint32_t mask = u_bit_consecutive(0, instr->definitions[0].bytes() * 8u);
ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, (info.val >> (dst_offset * 8u)) & mask);
break;
} else if (!info.is_vec()) {
break;
}
/* check if we index directly into a vector element */
Instruction* vec = info.instr;
unsigned offset = 0;
for (const Operand& op : vec->operands) {
if (offset < dst_offset) {
offset += op.bytes();
continue;
} else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
break;
}
/* convert this extract into a copy instruction */
instr->opcode = aco_opcode::p_parallelcopy;
instr->operands.pop_back();
instr->operands[0] = op;
if (op.isConstant()) {
ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, op.constantValue64());
} else if (op.isUndefined()) {
ctx.info[instr->definitions[0].tempId()].set_undefined();
} else {
assert(op.isTemp());
ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
}
break;
}
break;
}
case aco_opcode::s_mov_b32: /* propagate */
case aco_opcode::s_mov_b64:
case aco_opcode::v_mov_b32:
case aco_opcode::p_as_uniform:
if (instr->definitions[0].isFixed()) {
/* don't copy-propagate copies into fixed registers */
} else if (instr->usesModifiers()) {
// TODO
} else if (instr->operands[0].isConstant()) {
ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, instr->operands[0].constantValue64());
} else if (instr->operands[0].isTemp()) {
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
} else {
assert(instr->operands[0].isFixed());
}
break;
case aco_opcode::p_is_helper:
if (!ctx.program->needs_wqm)
ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, 0u);
break;
case aco_opcode::s_movk_i32: {
uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
v = v & 0x8000 ? (v | 0xffff0000) : v;
ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
break;
}
case aco_opcode::v_bfrev_b32:
case aco_opcode::s_brev_b32: {
if (instr->operands[0].isConstant()) {
uint32_t v = util_bitreverse(instr->operands[0].constantValue());
ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
}
break;
}
case aco_opcode::s_bfm_b32: {
if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
unsigned size = instr->operands[0].constantValue() & 0x1f;
unsigned start = instr->operands[1].constantValue() & 0x1f;
uint32_t v = ((1u << size) - 1u) << start;
ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
}
break;
}
case aco_opcode::v_mul_f16:
case aco_opcode::v_mul_f32: { /* omod */
/* TODO: try to move the negate/abs modifier to the consumer instead */
if (instr->usesModifiers())
break;
bool fp16 = instr->opcode == aco_opcode::v_mul_f16;
for (unsigned i = 0; i < 2; i++) {
if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
if (instr->operands[!i].constantValue() == (fp16 ? 0x4000 : 0x40000000)) { /* 2.0 */
ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
} else if (instr->operands[!i].constantValue() == (fp16 ? 0x4400 : 0x40800000)) { /* 4.0 */
ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
} else if (instr->operands[!i].constantValue() == (fp16 ? 0xb800 : 0x3f000000)) { /* 0.5 */
ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
} else if (instr->operands[!i].constantValue() == (fp16 ? 0x3c00 : 0x3f800000) &&
!(fp16 ? block.fp_mode.must_flush_denorms16_64 : block.fp_mode.must_flush_denorms32)) { /* 1.0 */
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
} else {
continue;
}
break;
}
}
break;
}
case aco_opcode::v_and_b32: { /* abs */
if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
instr->operands[1].getTemp().type() == RegType::vgpr &&
((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x7FFFFFFFu)) ||
(instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x7FFFu))))
ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
else
ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
break;
}
case aco_opcode::v_xor_b32: { /* neg */
if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x80000000u)) ||
(instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x8000u)))) {
if (ctx.info[instr->operands[1].tempId()].is_neg()) {
ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
} else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
instr->opcode = aco_opcode::v_or_b32;
ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
} else {
ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
}
}
} else {
ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
}
break;
}
case aco_opcode::v_med3_f16:
case aco_opcode::v_med3_f32: { /* clamp */
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
vop3->omod != 0 || vop3->opsel != 0)
break;
unsigned idx = 0;
bool found_zero = false, found_one = false;
bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
for (unsigned i = 0; i < 3; i++)
{
if (instr->operands[i].constantEquals(0))
found_zero = true;
else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
found_one = true;
else
idx = i;
}
if (found_zero && found_one && instr->operands[idx].isTemp()) {
ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
}
break;
}
case aco_opcode::v_cndmask_b32:
if (instr->operands[0].constantEquals(0) &&
instr->operands[1].constantEquals(0xFFFFFFFF))
ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
else if (instr->operands[0].constantEquals(0) &&
instr->operands[1].constantEquals(0x3f800000u))
ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
else if (instr->operands[0].constantEquals(0) &&
instr->operands[1].constantEquals(1))
ctx.info[instr->definitions[0].tempId()].set_b2i(instr->operands[2].getTemp());
ctx.info[instr->operands[2].tempId()].set_vcc_hint();
break;
case aco_opcode::v_cmp_lg_u32:
if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
instr->operands[0].constantEquals(0) &&
instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
break;
case aco_opcode::p_phi:
case aco_opcode::p_linear_phi: {
/* lower_bool_phis() can create phis like this */
bool all_same_temp = instr->operands[0].isTemp();
/* this check is needed when moving uniform loop counters out of a divergent loop */
if (all_same_temp)
all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
all_same_temp = false;
}
if (all_same_temp) {
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
} else {
bool all_undef = instr->operands[0].isUndefined();
for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
if (!instr->operands[i].isUndefined())
all_undef = false;
}
if (all_undef)
ctx.info[instr->definitions[0].tempId()].set_undefined();
}
break;
}
case aco_opcode::v_add_u32:
case aco_opcode::v_add_co_u32:
case aco_opcode::v_add_co_u32_e64:
case aco_opcode::s_add_i32:
case aco_opcode::s_add_u32:
ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
break;
case aco_opcode::s_not_b32:
case aco_opcode::s_not_b64:
if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
} else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
}
ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
break;
case aco_opcode::s_and_b32:
case aco_opcode::s_and_b64:
if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
/* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
break;
} else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
/* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
break;
} else if (ctx.info[instr->operands[0].tempId()].is_vopc()) {
Instruction* vopc_instr = ctx.info[instr->operands[0].tempId()].instr;
/* Remove superfluous s_and when the VOPC instruction uses the same exec and thus already produces the same result */
if (vopc_instr->pass_flags == instr->pass_flags) {
assert(instr->pass_flags > 0);
ctx.info[instr->definitions[0].tempId()].set_temp(vopc_instr->definitions[0].getTemp());
break;
}
}
}
/* fallthrough */
case aco_opcode::s_or_b32:
case aco_opcode::s_or_b64:
case aco_opcode::s_xor_b32:
case aco_opcode::s_xor_b64:
if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
})) {
ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
}
/* fallthrough */
case aco_opcode::s_lshl_b32:
case aco_opcode::v_or_b32:
case aco_opcode::v_lshlrev_b32:
ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
break;
case aco_opcode::v_min_f32:
case aco_opcode::v_min_f16:
case aco_opcode::v_min_u32:
case aco_opcode::v_min_i32:
case aco_opcode::v_min_u16:
case aco_opcode::v_min_i16:
case aco_opcode::v_max_f32:
case aco_opcode::v_max_f16:
case aco_opcode::v_max_u32:
case aco_opcode::v_max_i32:
case aco_opcode::v_max_u16:
case aco_opcode::v_max_i16:
ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
break;
case aco_opcode::s_cselect_b64:
case aco_opcode::s_cselect_b32:
if (instr->operands[0].constantEquals((unsigned) -1) &&
instr->operands[1].constantEquals(0)) {
/* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
}
if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
/* Flip the operands to get rid of the scc_invert instruction */
std::swap(instr->operands[0], instr->operands[1]);
instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
}
break;
case aco_opcode::p_wqm:
if (instr->operands[0].isTemp() &&
ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
}
break;
default:
break;
}
}
ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info)
{
info->ordered = aco_opcode::num_opcodes;
info->unordered = aco_opcode::num_opcodes;
info->ordered_swapped = aco_opcode::num_opcodes;
info->unordered_swapped = aco_opcode::num_opcodes;
switch (op) {
#define CMP2(ord, unord, ord_swap, unord_swap, sz) \
case aco_opcode::v_cmp_##ord##_f##sz:\
case aco_opcode::v_cmp_n##unord##_f##sz:\
info->ordered = aco_opcode::v_cmp_##ord##_f##sz;\
info->unordered = aco_opcode::v_cmp_n##unord##_f##sz;\
info->ordered_swapped = aco_opcode::v_cmp_##ord_swap##_f##sz;\
info->unordered_swapped = aco_opcode::v_cmp_n##unord_swap##_f##sz;\
info->inverse = op == aco_opcode::v_cmp_n##unord##_f##sz ? aco_opcode::v_cmp_##unord##_f##sz : aco_opcode::v_cmp_n##ord##_f##sz;\
info->f32 = op == aco_opcode::v_cmp_##ord##_f##sz ? aco_opcode::v_cmp_##ord##_f32 : aco_opcode::v_cmp_n##unord##_f32;\
info->size = sz;\
return true;
#define CMP(ord, unord, ord_swap, unord_swap) \
CMP2(ord, unord, ord_swap, unord_swap, 16)\
CMP2(ord, unord, ord_swap, unord_swap, 32)\
CMP2(ord, unord, ord_swap, unord_swap, 64)
CMP(lt, /*n*/ge, gt, /*n*/le)
CMP(eq, /*n*/lg, eq, /*n*/lg)
CMP(le, /*n*/gt, ge, /*n*/lt)
CMP(gt, /*n*/le, lt, /*n*/le)
CMP(lg, /*n*/eq, lg, /*n*/eq)
CMP(ge, /*n*/lt, le, /*n*/gt)
#undef CMP
#undef CMP2
#define ORD_TEST(sz) \
case aco_opcode::v_cmp_u_f##sz:\
info->f32 = aco_opcode::v_cmp_u_f32;\
info->inverse = aco_opcode::v_cmp_o_f##sz;\
info->size = sz;\
return true;\
case aco_opcode::v_cmp_o_f##sz:\
info->f32 = aco_opcode::v_cmp_o_f32;\
info->inverse = aco_opcode::v_cmp_u_f##sz;\
info->size = sz;\
return true;
ORD_TEST(16)
ORD_TEST(32)
ORD_TEST(64)
#undef ORD_TEST
default:
return false;
}
}
aco_opcode get_ordered(aco_opcode op)
{
CmpInfo info;
return get_cmp_info(op, &info) ? info.ordered : aco_opcode::num_opcodes;
}
aco_opcode get_unordered(aco_opcode op)
{
CmpInfo info;
return get_cmp_info(op, &info) ? info.unordered : aco_opcode::num_opcodes;
}
aco_opcode get_inverse(aco_opcode op)
{
CmpInfo info;
return get_cmp_info(op, &info) ? info.inverse : aco_opcode::num_opcodes;
}
aco_opcode get_f32_cmp(aco_opcode op)
{
CmpInfo info;
return get_cmp_info(op, &info) ? info.f32 : aco_opcode::num_opcodes;
}
unsigned get_cmp_bitsize(aco_opcode op)
{
CmpInfo info;
return get_cmp_info(op, &info) ? info.size : 0;
}
bool is_cmp(aco_opcode op)
{
CmpInfo info;
return get_cmp_info(op, &info) && info.ordered != aco_opcode::num_opcodes;
}
unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
{
if (ctx.info[tmp.id()].is_temp())
return ctx.info[tmp.id()].temp.id();
else
return tmp.id();
}
void decrease_uses(opt_ctx &ctx, Instruction* instr)
{
if (!--ctx.uses[instr->definitions[0].tempId()]) {
for (const Operand& op : instr->operands) {
if (op.isTemp())
ctx.uses[op.tempId()]--;
}
}
}
Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
{
if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
return nullptr;
if (!ignore_uses && ctx.uses[op.tempId()] > 1)
return nullptr;
Instruction *instr = ctx.info[op.tempId()].instr;
if (instr->definitions.size() == 2) {
assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
return nullptr;
}
return instr;
}
/* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
* s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
{
if (instr->definitions[0].regClass() != ctx.program->lane_mask)
return false;
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
return false;
bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
bool neg[2] = {false, false};
bool abs[2] = {false, false};
uint8_t opsel = 0;
Instruction *op_instr[2];
Temp op[2];
unsigned bitsize = 0;
for (unsigned i = 0; i < 2; i++) {
op_instr[i] = follow_operand(ctx, instr->operands[i], true);
if (!op_instr[i])
return false;
aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
unsigned op_bitsize = get_cmp_bitsize(op_instr[i]->opcode);
if (get_f32_cmp(op_instr[i]->opcode) != expected_cmp)
return false;
if (bitsize && op_bitsize != bitsize)
return false;
if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
return false;
if (op_instr[i]->isVOP3()) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
return false;
neg[i] = vop3->neg[0];
abs[i] = vop3->abs[0];
opsel |= (vop3->opsel & 1) << i;
}
Temp op0 = op_instr[i]->operands[0].getTemp();
Temp op1 = op_instr[i]->operands[1].getTemp();
if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
return false;
op[i] = op1;
bitsize = op_bitsize;
}
if (op[1].type() == RegType::sgpr)
std::swap(op[0], op[1]);
unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
return false;
ctx.uses[op[0].id()]++;
ctx.uses[op[1].id()]++;
decrease_uses(ctx, op_instr[0]);
decrease_uses(ctx, op_instr[1]);
aco_opcode new_op = aco_opcode::num_opcodes;
switch (bitsize) {
case 16:
new_op = is_or ? aco_opcode::v_cmp_u_f16 : aco_opcode::v_cmp_o_f16;
break;
case 32:
new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
break;
case 64:
new_op = is_or ? aco_opcode::v_cmp_u_f64 : aco_opcode::v_cmp_o_f64;
break;
}
Instruction *new_instr;
if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
for (unsigned i = 0; i < 2; i++) {
vop3->neg[i] = neg[i];
vop3->abs[i] = abs[i];
}
vop3->opsel = opsel;
new_instr = static_cast<Instruction *>(vop3);
} else {
new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
}
new_instr->operands[0] = Operand(op[0]);
new_instr->operands[1] = Operand(op[1]);
new_instr->definitions[0] = instr->definitions[0];
ctx.info[instr->definitions[0].tempId()].label = 0;
ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
instr.reset(new_instr);
return true;
}
/* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
* s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
{
if (instr->definitions[0].regClass() != ctx.program->lane_mask)
return false;
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
return false;
bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
if (!nan_test || !cmp)
return false;
if (get_f32_cmp(cmp->opcode) == expected_nan_test)
std::swap(nan_test, cmp);
else if (get_f32_cmp(nan_test->opcode) != expected_nan_test)
return false;
if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode))
return false;
if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
return false;
if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
return false;
unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
return false;
if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
return false;
ctx.uses[cmp->operands[0].tempId()]++;
ctx.uses[cmp->operands[1].tempId()]++;
decrease_uses(ctx, nan_test);
decrease_uses(ctx, cmp);
aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
Instruction *new_instr;
if (cmp->isVOP3()) {
VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
new_vop3->clamp = cmp_vop3->clamp;
new_vop3->omod = cmp_vop3->omod;
new_vop3->opsel = cmp_vop3->opsel;
new_instr = new_vop3;
} else {
new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
}
new_instr->operands[0] = cmp->operands[0];
new_instr->operands[1] = cmp->operands[1];
new_instr->definitions[0] = instr->definitions[0];
ctx.info[instr->definitions[0].tempId()].label = 0;
ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
instr.reset(new_instr);
return true;
}
/* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
* s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
{
if (instr->definitions[0].regClass() != ctx.program->lane_mask)
return false;
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
return false;
bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
if (!nan_test || !cmp)
return false;
aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
if (get_f32_cmp(cmp->opcode) == expected_nan_test)
std::swap(nan_test, cmp);
else if (get_f32_cmp(nan_test->opcode) != expected_nan_test)
return false;
if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode))
return false;
if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
return false;
if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
return false;
unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
if (prop_nan0 != prop_nan1)
return false;
if (nan_test->isVOP3()) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
return false;
}
int constant_operand = -1;
for (unsigned i = 0; i < 2; i++) {
if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
constant_operand = !i;
break;
}
}
if (constant_operand == -1)
return false;
uint32_t constant;
if (cmp->operands[constant_operand].isConstant()) {
constant = cmp->operands[constant_operand].constantValue();
} else if (cmp->operands[constant_operand].isTemp()) {
Temp tmp = cmp->operands[constant_operand].getTemp();
unsigned id = original_temp_id(ctx, tmp);
if (!ctx.info[id].is_constant_or_literal(32))
return false;
constant = ctx.info[id].val;
} else {
return false;
}
float constantf;
memcpy(&constantf, &constant, 4);
if (isnan(constantf))
return false;
if (cmp->operands[0].isTemp())
ctx.uses[cmp->operands[0].tempId()]++;
if (cmp->operands[1].isTemp())
ctx.uses[cmp->operands[1].tempId()]++;
decrease_uses(ctx, nan_test);
decrease_uses(ctx, cmp);
aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
Instruction *new_instr;
if (cmp->isVOP3()) {
VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
new_vop3->clamp = cmp_vop3->clamp;
new_vop3->omod = cmp_vop3->omod;
new_vop3->opsel = cmp_vop3->opsel;
new_instr = new_vop3;
} else {
new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
}
new_instr->operands[0] = cmp->operands[0];
new_instr->operands[1] = cmp->operands[1];
new_instr->definitions[0] = instr->definitions[0];
ctx.info[instr->definitions[0].tempId()].label = 0;
ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
instr.reset(new_instr);
return true;
}
/* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
{
if (instr->opcode != aco_opcode::s_not_b64)
return false;
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
return false;
if (!instr->operands[0].isTemp())
return false;
Instruction *cmp = follow_operand(ctx, instr->operands[0]);
if (!cmp)
return false;
aco_opcode new_opcode = get_inverse(cmp->opcode);
if (new_opcode == aco_opcode::num_opcodes)
return false;
if (cmp->operands[0].isTemp())
ctx.uses[cmp->operands[0].tempId()]++;
if (cmp->operands[1].isTemp())
ctx.uses[cmp->operands[1].tempId()]++;
decrease_uses(ctx, cmp);
Instruction *new_instr;
if (cmp->isVOP3()) {
VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
new_vop3->clamp = cmp_vop3->clamp;
new_vop3->omod = cmp_vop3->omod;
new_vop3->opsel = cmp_vop3->opsel;
new_instr = new_vop3;
} else {
new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
}
new_instr->operands[0] = cmp->operands[0];
new_instr->operands[1] = cmp->operands[1];
new_instr->definitions[0] = instr->definitions[0];
ctx.info[instr->definitions[0].tempId()].label = 0;
ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
instr.reset(new_instr);
return true;
}
/* op1(op2(1, 2), 0) if swap = false
* op1(0, op2(1, 2)) if swap = true */
bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
Instruction* op1_instr, bool swap, const char *shuffle_str,
Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
bool *op1_clamp, uint8_t *op1_omod,
bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
{
/* checks */
if (op1_instr->opcode != op1)
return false;
Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
if (!op2_instr || op2_instr->opcode != op2)
return false;
if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
return false;
VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
/* don't support inbetween clamp/omod */
if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
return false;
/* get operands and modifiers and check inbetween modifiers */
*op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
*op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
if (inbetween_neg)
*inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
else if (op1_vop3 && op1_vop3->neg[swap])
return false;
if (inbetween_abs)
*inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
else if (op1_vop3 && op1_vop3->abs[swap])
return false;
if (inbetween_opsel)
*inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
return false;
int shuffle[3];
shuffle[shuffle_str[0] - '0'] = 0;
shuffle[shuffle_str[1] - '0'] = 1;
shuffle[shuffle_str[2] - '0'] = 2;
operands[shuffle[0]] = op1_instr->operands[!swap];
neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
*opsel |= 1 << shuffle[0];
for (unsigned i = 0; i < 2; i++) {
operands[shuffle[i + 1]] = op2_instr->operands[i];
neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
if (op2_vop3 && op2_vop3->opsel & (1 << i))
*opsel |= 1 << shuffle[i + 1];
}
/* check operands */
if (!check_vop3_operands(ctx, 3, operands))
return false;
return true;
}
void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
bool clamp, unsigned omod)
{
VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
memcpy(new_instr->abs, abs, sizeof(bool[3]));
memcpy(new_instr->neg, neg, sizeof(bool[3]));
new_instr->clamp = clamp;
new_instr->omod = omod;
new_instr->opsel = opsel;
new_instr->operands[0] = operands[0];
new_instr->operands[1] = operands[1];
new_instr->operands[2] = operands[2];
new_instr->definitions[0] = instr->definitions[0];
ctx.info[instr->definitions[0].tempId()].label = 0;
instr.reset(new_instr);
}
bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
{
uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
(label_omod_success | label_clamp_success);
for (unsigned swap = 0; swap < 2; swap++) {
if (!((1 << swap) & ops))
continue;
Operand operands[3];
bool neg[3], abs[3], clamp;
uint8_t opsel = 0, omod = 0;
if (match_op3_for_vop3(ctx, instr->opcode, op2,
instr.get(), swap, shuffle,
operands, neg, abs, &opsel,
&clamp, &omod, NULL, NULL, NULL)) {
ctx.uses[instr->operands[swap].tempId()]--;
create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
if (omod_clamp & label_omod_success)
ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
if (omod_clamp & label_clamp_success)
ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
return true;
}
}
return false;
}
bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
{
if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
return true;
uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
(label_omod_success | label_clamp_success);
/* min(-max(a, b), c) -> min3(-a, -b, c) *
* max(-min(a, b), c) -> max3(-a, -b, c) */
for (unsigned swap = 0; swap < 2; swap++) {
Operand operands[3];
bool neg[3], abs[3], clamp;
uint8_t opsel = 0, omod = 0;
bool inbetween_neg;
if (match_op3_for_vop3(ctx, instr->opcode, opposite,
instr.get(), swap, "012",
operands, neg, abs, &opsel,
&clamp, &omod, &inbetween_neg, NULL, NULL) &&
inbetween_neg) {
ctx.uses[instr->operands[swap].tempId()]--;
neg[1] = true;
neg[2] = true;
create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
if (omod_clamp & label_omod_success)
ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
if (omod_clamp & label_clamp_success)
ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
return true;
}
}
return false;
}
/* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
* s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
* s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
* s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
* s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
* s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* checks */
if (!instr->operands[0].isTemp())
return false;
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
return false;
Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
if (!op2_instr)
return false;
switch (op2_instr->opcode) {
case aco_opcode::s_and_b32:
case aco_opcode::s_or_b32:
case aco_opcode::s_xor_b32:
case aco_opcode::s_and_b64:
case aco_opcode::s_or_b64:
case aco_opcode::s_xor_b64:
break;
default:
return false;
}
/* create instruction */
std::swap(instr->definitions[0], op2_instr->definitions[0]);
std::swap(instr->definitions[1], op2_instr->definitions[1]);
ctx.uses[instr->operands[0].tempId()]--;
ctx.info[op2_instr->definitions[0].tempId()].label = 0;
switch (op2_instr->opcode) {
case aco_opcode::s_and_b32:
op2_instr->opcode = aco_opcode::s_nand_b32;
break;
case aco_opcode::s_or_b32:
op2_instr->opcode = aco_opcode::s_nor_b32;
break;
case aco_opcode::s_xor_b32:
op2_instr->opcode = aco_opcode::s_xnor_b32;
break;
case aco_opcode::s_and_b64:
op2_instr->opcode = aco_opcode::s_nand_b64;
break;
case aco_opcode::s_or_b64:
op2_instr->opcode = aco_opcode::s_nor_b64;
break;
case aco_opcode::s_xor_b64:
op2_instr->opcode = aco_opcode::s_xnor_b64;
break;
default:
break;
}
return true;
}
/* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
* s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
* s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
* s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
return false;
for (unsigned i = 0; i < 2; i++) {
Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
continue;
if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
continue;
if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
continue;
ctx.uses[instr->operands[i].tempId()]--;
instr->operands[0] = instr->operands[!i];
instr->operands[1] = op2_instr->operands[0];
ctx.info[instr->definitions[0].tempId()].label = 0;
switch (instr->opcode) {
case aco_opcode::s_and_b32:
instr->opcode = aco_opcode::s_andn2_b32;
break;
case aco_opcode::s_or_b32:
instr->opcode = aco_opcode::s_orn2_b32;
break;
case aco_opcode::s_and_b64:
instr->opcode = aco_opcode::s_andn2_b64;
break;
case aco_opcode::s_or_b64:
instr->opcode = aco_opcode::s_orn2_b64;
break;
default:
break;
}
return true;
}
return false;
}
/* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
return false;
for (unsigned i = 0; i < 2; i++) {
Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
ctx.uses[op2_instr->definitions[1].tempId()])
continue;
if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
continue;
uint32_t shift = op2_instr->operands[1].constantValue();
if (shift < 1 || shift > 4)
continue;
if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
continue;
ctx.uses[instr->operands[i].tempId()]--;
instr->operands[1] = instr->operands[!i];
instr->operands[0] = op2_instr->operands[0];
ctx.info[instr->definitions[0].tempId()].label = 0;
instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
aco_opcode::s_lshl2_add_u32,
aco_opcode::s_lshl3_add_u32,
aco_opcode::s_lshl4_add_u32})[shift - 1];
return true;
}
return false;
}
bool combine_add_sub_b2i(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode new_op, uint8_t ops)
{
if (instr->usesModifiers())
return false;
for (unsigned i = 0; i < 2; i++) {
if (!((1 << i) & ops))
continue;
if (instr->operands[i].isTemp() &&
ctx.info[instr->operands[i].tempId()].is_b2i() &&
ctx.uses[instr->operands[i].tempId()] == 1) {
aco_ptr<Instruction> new_instr;
if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
new_instr.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 2));
} else if (ctx.program->chip_class >= GFX10 ||
(instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) {
new_instr.reset(create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOP2), 3, 2));
} else {
return false;
}
ctx.uses[instr->operands[i].tempId()]--;
new_instr->definitions[0] = instr->definitions[0];
new_instr->definitions[1] = instr->definitions.size() == 2 ? instr->definitions[1] :
Definition(ctx.program->allocateId(), ctx.program->lane_mask);
new_instr->definitions[1].setHint(vcc);
new_instr->operands[0] = Operand(0u);
new_instr->operands[1] = instr->operands[!i];
new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
instr = std::move(new_instr);
ctx.info[instr->definitions[0].tempId()].label = 0;
return true;
}
}
return false;
}
bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
{
switch (op) {
#define MINMAX(type, gfx9) \
case aco_opcode::v_min_##type:\
case aco_opcode::v_max_##type:\
case aco_opcode::v_med3_##type:\
*min = aco_opcode::v_min_##type;\
*max = aco_opcode::v_max_##type;\
*med3 = aco_opcode::v_med3_##type;\
*min3 = aco_opcode::v_min3_##type;\
*max3 = aco_opcode::v_max3_##type;\
*some_gfx9_only = gfx9;\
return true;
MINMAX(f32, false)
MINMAX(u32, false)
MINMAX(i32, false)
MINMAX(f16, true)
MINMAX(u16, true)
MINMAX(i16, true)
#undef MINMAX
default:
return false;
}
}
/* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
* v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
aco_opcode min, aco_opcode max, aco_opcode med)
{
/* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
* FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
* minVal > maxVal, which means we can always select it to a v_med3_f32 */
aco_opcode other_op;
if (instr->opcode == min)
other_op = max;
else if (instr->opcode == max)
other_op = min;
else
return false;
uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
(label_omod_success | label_clamp_success);
for (unsigned swap = 0; swap < 2; swap++) {
Operand operands[3];
bool neg[3], abs[3], clamp;
uint8_t opsel = 0, omod = 0;
if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
"012", operands, neg, abs, &opsel,
&clamp, &omod, NULL, NULL, NULL)) {
int const0_idx = -1, const1_idx = -1;
uint32_t const0 = 0, const1 = 0;
for (int i = 0; i < 3; i++) {
uint32_t val;
if (operands[i].isConstant()) {
val = operands[i].constantValue();
} else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal(32)) {
val = ctx.info[operands[i].tempId()].val;
} else {
continue;
}
if (const0_idx >= 0) {
const1_idx = i;
const1 = val;
} else {
const0_idx = i;
const0 = val;
}
}
if (const0_idx < 0 || const1_idx < 0)
continue;
if (opsel & (1 << const0_idx))
const0 >>= 16;
if (opsel & (1 << const1_idx))
const1 >>= 16;
int lower_idx = const0_idx;
switch (min) {
case aco_opcode::v_min_f32:
case aco_opcode::v_min_f16: {
float const0_f, const1_f;
if (min == aco_opcode::v_min_f32) {
memcpy(&const0_f, &const0, 4);
memcpy(&const1_f, &const1, 4);
} else {
const0_f = _mesa_half_to_float(const0);
const1_f = _mesa_half_to_float(const1);
}
if (abs[const0_idx]) const0_f = fabsf(const0_f);
if (abs[const1_idx]) const1_f = fabsf(const1_f);
if (neg[const0_idx]) const0_f = -const0_f;
if (neg[const1_idx]) const1_f = -const1_f;
lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
break;
}
case aco_opcode::v_min_u32: {
lower_idx = const0 < const1 ? const0_idx : const1_idx;
break;
}
case aco_opcode::v_min_u16: {
lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
break;
}
case aco_opcode::v_min_i32: {
int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
break;
}
case aco_opcode::v_min_i16: {
int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
break;
}
default:
break;
}
int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
if (instr->opcode == min) {
if (upper_idx != 0 || lower_idx == 0)
return false;
} else {
if (upper_idx == 0 || lower_idx != 0)
return false;
}
ctx.uses[instr->operands[swap].tempId()]--;
create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
if (omod_clamp & label_omod_success)
ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
if (omod_clamp & label_clamp_success)
ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
return true;
}
}
return false;
}
void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
{
bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
instr->opcode == aco_opcode::v_lshrrev_b64 ||
instr->opcode == aco_opcode::v_ashrrev_i64;
/* find candidates and create the set of sgprs already read */
unsigned sgpr_ids[2] = {0, 0};
uint32_t operand_mask = 0;
bool has_literal = false;
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isLiteral())
has_literal = true;
if (!instr->operands[i].isTemp())
continue;
if (instr->operands[i].getTemp().type() == RegType::sgpr) {
if (instr->operands[i].tempId() != sgpr_ids[0])
sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
}
ssa_info& info = ctx.info[instr->operands[i].tempId()];
if (info.is_temp() && info.temp.type() == RegType::sgpr)
operand_mask |= 1u << i;
}
unsigned max_sgprs = 1;
if (ctx.program->chip_class >= GFX10 && !is_shift64)
max_sgprs = 2;
if (has_literal)
max_sgprs--;
unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
/* keep on applying sgprs until there is nothing left to be done */
while (operand_mask) {
uint32_t sgpr_idx = 0;
uint32_t sgpr_info_id = 0;
uint32_t mask = operand_mask;
/* choose a sgpr */
while (mask) {
unsigned i = u_bit_scan(&mask);
uint16_t uses = ctx.uses[instr->operands[i].tempId()];
if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
sgpr_idx = i;
sgpr_info_id = instr->operands[i].tempId();
}
}
operand_mask &= ~(1u << sgpr_idx);
/* Applying two sgprs require making it VOP3, so don't do it unless it's
* definitively beneficial.
* TODO: this is too conservative because later the use count could be reduced to 1 */
if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
break;
Temp sgpr = ctx.info[sgpr_info_id].temp;
bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
if (new_sgpr && num_sgprs >= max_sgprs)
continue;
if (sgpr_idx == 0 || instr->isVOP3()) {
instr->operands[sgpr_idx] = Operand(sgpr);
} else if (can_swap_operands(instr)) {
instr->operands[sgpr_idx] = instr->operands[0];
instr->operands[0] = Operand(sgpr);
/* swap bits using a 4-entry LUT */
uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
operand_mask = (operand_mask & ~0x3) | swapped;
} else if (can_use_VOP3(ctx, instr)) {
to_VOP3(ctx, instr);
instr->operands[sgpr_idx] = Operand(sgpr);
} else {
continue;
}
if (new_sgpr)
sgpr_ids[num_sgprs++] = sgpr.id();
ctx.uses[sgpr_info_id]--;
ctx.uses[sgpr.id()]++;
}
}
bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
{
/* check if we could apply omod on predecessor */
if (instr->opcode == aco_opcode::v_mul_f32 || instr->opcode == aco_opcode::v_mul_f16) {
bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
if (op0 || op1) {
unsigned idx = op0 ? 0 : 1;
/* omod was successfully applied */
/* if the omod instruction is v_mad, we also have to change the original add */
if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].instr->pass_flags].add_instr.get();
if (ctx.info[instr->definitions[0].tempId()].is_clamp())
static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
add_instr->definitions[0] = instr->definitions[0];
}
Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
/* check if we have an additional clamp modifier */
if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
}
/* change definition ssa-id of modified instruction */
omod_instr->definitions[0] = instr->definitions[0];
/* change the definition of instr to something unused, e.g. the original omod def */
instr->definitions[0] = Definition(instr->operands[idx].getTemp());
ctx.uses[instr->definitions[0].tempId()] = 0;
return true;
}
if (!ctx.info[instr->definitions[0].tempId()].label) {
/* in all other cases, label this instruction as option for multiply-add */
ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
}
}
/* check if we could apply clamp on predecessor */
if (instr->opcode == aco_opcode::v_med3_f32 || instr->opcode == aco_opcode::v_med3_f16) {
bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
unsigned idx = 0;
bool found_zero = false, found_one = false;
for (unsigned i = 0; i < 3; i++)
{
if (instr->operands[i].constantEquals(0))
found_zero = true;
else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
found_one = true;
else
idx = i;
}
if (found_zero && found_one && instr->operands[idx].isTemp() &&
ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
/* clamp was successfully applied */
/* if the clamp instruction is v_mad, we also have to change the original add */
if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].instr->pass_flags].add_instr.get();
add_instr->definitions[0] = instr->definitions[0];
}
Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
/* change definition ssa-id of modified instruction */
clamp_instr->definitions[0] = instr->definitions[0];
/* change the definition of instr to something unused, e.g. the original omod def */
instr->definitions[0] = Definition(instr->operands[idx].getTemp());
ctx.uses[instr->definitions[0].tempId()] = 0;
return true;
}
}
/* omod has no effect if denormals are enabled */
/* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
bool can_use_omod = (instr->definitions[0].bytes() == 4 ? block.fp_mode.denorm32 : block.fp_mode.denorm16_64) == 0;
ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
to_VOP3(ctx, instr);
static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
def_info.set_omod_success(instr.get());
} else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
to_VOP3(ctx, instr);
static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
def_info.set_omod_success(instr.get());
} else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
to_VOP3(ctx, instr);
static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
def_info.set_omod_success(instr.get());
} else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
to_VOP3(ctx, instr);
static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
def_info.set_clamp_success(instr.get());
}
}
return false;
}
// TODO: we could possibly move the whole label_instruction pass to combine_instruction:
// this would mean that we'd have to fix the instruction uses while value propagation
void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
{
if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
return;
if (instr->isVALU()) {
if (can_apply_sgprs(instr))
apply_sgprs(ctx, instr);
if (apply_omod_clamp(ctx, block, instr))
return;
}
if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
instr->definitions[0].setHint(vcc);
}
/* TODO: There are still some peephole optimizations that could be done:
* - abs(a - b) -> s_absdiff_i32
* - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
* - patterns for v_alignbit_b32 and v_alignbyte_b32
* These aren't probably too interesting though.
* There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
* probably more useful than the previously mentioned optimizations.
* The various comparison optimizations also currently only work with 32-bit
* floats. */
/* neg(mul(a, b)) -> mul(neg(a), b) */
if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
Temp val = ctx.info[instr->definitions[0].tempId()].temp;
if (!ctx.info[val.id()].is_mul())
return;
Instruction* mul_instr = ctx.info[val.id()].instr;
if (mul_instr->operands[0].isLiteral())
return;
if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
return;
/* convert to mul(neg(a), b) */
ctx.uses[mul_instr->definitions[0].tempId()]--;
Definition def = instr->definitions[0];
/* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
instr.reset(create_instruction<VOP3A_instruction>(mul_instr->opcode, asVOP3(Format::VOP2), 2, 1));
instr->operands[0] = mul_instr->operands[0];
instr->operands[1] = mul_instr->operands[1];
instr->definitions[0] = def;
VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
if (mul_instr->isVOP3()) {
VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
new_mul->neg[0] = mul->neg[0] && !is_abs;
new_mul->neg[1] = mul->neg[1] && !is_abs;
new_mul->abs[0] = mul->abs[0] || is_abs;
new_mul->abs[1] = mul->abs[1] || is_abs;
new_mul->omod = mul->omod;
}
new_mul->neg[0] ^= true;
new_mul->clamp = false;
ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
return;
}
/* combine mul+add -> mad */
bool mad32 = instr->opcode == aco_opcode::v_add_f32 ||
instr->opcode == aco_opcode::v_sub_f32 ||
instr->opcode == aco_opcode::v_subrev_f32;
bool mad16 = instr->opcode == aco_opcode::v_add_f16 ||
instr->opcode == aco_opcode::v_sub_f16 ||
instr->opcode == aco_opcode::v_subrev_f16;
if (mad16 || mad32) {
bool need_fma = mad32 ? (block.fp_mode.denorm32 != 0 || ctx.program->chip_class >= GFX10_3) :
(block.fp_mode.denorm16_64 != 0 || ctx.program->chip_class >= GFX10);
if (need_fma && instr->definitions[0].isPrecise())
return;
if (need_fma && mad32 && !ctx.program->has_fast_fma32)
return;
uint32_t uses_src0 = UINT32_MAX;
uint32_t uses_src1 = UINT32_MAX;
Instruction* mul_instr = nullptr;
unsigned add_op_idx;
/* check if any of the operands is a multiplication */
ssa_info *op0_info = instr->operands[0].isTemp() ? &ctx.info[instr->operands[0].tempId()] : NULL;
ssa_info *op1_info = instr->operands[1].isTemp() ? &ctx.info[instr->operands[1].tempId()] : NULL;
if (op0_info && op0_info->is_mul() && (!need_fma || !op0_info->instr->definitions[0].isPrecise()))
uses_src0 = ctx.uses[instr->operands[0].tempId()];
if (op1_info && op1_info->is_mul() && (!need_fma || !op1_info->instr->definitions[0].isPrecise()))
uses_src1 = ctx.uses[instr->operands[1].tempId()];
/* find the 'best' mul instruction to combine with the add */
if (uses_src0 < uses_src1) {
mul_instr = op0_info->instr;
add_op_idx = 1;
} else if (uses_src1 < uses_src0) {
mul_instr = op1_info->instr;
add_op_idx = 0;
} else if (uses_src0 != UINT32_MAX) {
/* tiebreaker: quite random what to pick */
if (op0_info->instr->operands[0].isLiteral()) {
mul_instr = op1_info->instr;
add_op_idx = 0;
} else {
mul_instr = op0_info->instr;
add_op_idx = 1;
}
}
if (mul_instr) {
Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
bool neg[3] = {false, false, false};
bool abs[3] = {false, false, false};
unsigned omod = 0;
bool clamp = false;
op[0] = mul_instr->operands[0];
op[1] = mul_instr->operands[1];
op[2] = instr->operands[add_op_idx];
// TODO: would be better to check this before selecting a mul instr?
if (!check_vop3_operands(ctx, 3, op))
return;
if (mul_instr->isVOP3()) {
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
neg[0] = vop3->neg[0];
neg[1] = vop3->neg[1];
abs[0] = vop3->abs[0];
abs[1] = vop3->abs[1];
/* we cannot use these modifiers between mul and add */
if (vop3->clamp || vop3->omod)
return;
}
/* convert to mad */
ctx.uses[mul_instr->definitions[0].tempId()]--;
if (ctx.uses[mul_instr->definitions[0].tempId()]) {
if (op[0].isTemp())
ctx.uses[op[0].tempId()]++;
if (op[1].isTemp())
ctx.uses[op[1].tempId()]++;
}
if (instr->isVOP3()) {
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
neg[2] = vop3->neg[add_op_idx];
abs[2] = vop3->abs[add_op_idx];
omod = vop3->omod;
clamp = vop3->clamp;
/* abs of the multiplication result */
if (vop3->abs[1 - add_op_idx]) {
neg[0] = false;
neg[1] = false;
abs[0] = true;
abs[1] = true;
}
/* neg of the multiplication result */
neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
}
if (instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_sub_f16)
neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
else if (instr->opcode == aco_opcode::v_subrev_f32 || instr->opcode == aco_opcode::v_subrev_f16)
neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
aco_opcode mad_op = need_fma ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
if (mad16)
mad_op = need_fma ? (ctx.program->chip_class == GFX8 ? aco_opcode::v_fma_legacy_f16 : aco_opcode::v_fma_f16) :
(ctx.program->chip_class == GFX8 ? aco_opcode::v_mad_legacy_f16 : aco_opcode::v_mad_f16);
aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(mad_op, Format::VOP3A, 3, 1)};
for (unsigned i = 0; i < 3; i++)
{
mad->operands[i] = op[i];
mad->neg[i] = neg[i];
mad->abs[i] = abs[i];
}
mad->omod = omod;
mad->clamp = clamp;
mad->definitions[0] = instr->definitions[0];
/* mark this ssa_def to be re-checked for profitability and literals */
ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
instr.reset(mad.release());
return;
}
}
/* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
for (unsigned i = 0; i < 2; i++) {
if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
ctx.uses[instr->operands[i].tempId()] == 1 &&
instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
ctx.uses[instr->operands[i].tempId()]--;
ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
new_instr->operands[0] = Operand(0u);
new_instr->operands[1] = instr->operands[!i];
new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
new_instr->definitions[0] = instr->definitions[0];
instr.reset(new_instr.release());
ctx.info[instr->definitions[0].tempId()].label = 0;
return;
}
}
} else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_or_b32, "120", 1 | 2)) ;
else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
} else if (instr->opcode == aco_opcode::v_xor_b32 && ctx.program->chip_class >= GFX10) {
if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2)) ;
else combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2);
} else if (instr->opcode == aco_opcode::v_add_u32) {
if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) ;
else if (ctx.program->chip_class >= GFX9) {
if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_add_u32, "120", 1 | 2)) ;
else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
}
} else if (instr->opcode == aco_opcode::v_add_co_u32 ||
instr->opcode == aco_opcode::v_add_co_u32_e64) {
combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2);
} else if (instr->opcode == aco_opcode::v_sub_u32 ||
instr->opcode == aco_opcode::v_sub_co_u32 ||
instr->opcode == aco_opcode::v_sub_co_u32_e64) {
combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 2);
} else if (instr->opcode == aco_opcode::v_subrev_u32 ||
instr->opcode == aco_opcode::v_subrev_co_u32 ||
instr->opcode == aco_opcode::v_subrev_co_u32_e64) {
combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 1);
} else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
} else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
combine_salu_lshl_add(ctx, instr);
} else if (instr->opcode == aco_opcode::s_not_b32) {
combine_salu_not_bitwise(ctx, instr);
} else if (instr->opcode == aco_opcode::s_not_b64) {
if (combine_inverse_comparison(ctx, instr)) ;
else combine_salu_not_bitwise(ctx, instr);
} else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
if (combine_ordering_test(ctx, instr)) ;
else if (combine_comparison_ordering(ctx, instr)) ;
else if (combine_constant_comparison_ordering(ctx, instr)) ;
else combine_salu_n2(ctx, instr);
} else {
aco_opcode min, max, min3, max3, med3;
bool some_gfx9_only;
if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
(!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
else combine_clamp(ctx, instr, min, max, med3);
}
}
}
bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
{
switch (instr->opcode) {
case aco_opcode::s_and_b32:
case aco_opcode::s_and_b64:
instr->opcode = aco_opcode::s_and_b32;
break;
case aco_opcode::s_or_b32:
case aco_opcode::s_or_b64:
instr->opcode = aco_opcode::s_or_b32;
break;
case aco_opcode::s_xor_b32:
case aco_opcode::s_xor_b64:
instr->opcode = aco_opcode::s_absdiff_i32;
break;
default:
/* Don't transform other instructions. They are very unlikely to appear here. */
return false;
}
for (Operand &op : instr->operands) {
ctx.uses[op.tempId()]--;
if (ctx.info[op.tempId()].is_uniform_bool()) {
/* Just use the uniform boolean temp. */
op.setTemp(ctx.info[op.tempId()].temp);
} else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
/* Use the SCC definition of the predecessor instruction.
* This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
* and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
*/
Instruction *pred_instr = ctx.info[op.tempId()].instr;
assert(pred_instr->definitions.size() >= 2);
assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
op.setTemp(pred_instr->definitions[1].getTemp());
} else {
unreachable("Invalid operand on uniform bitwise instruction.");
}
ctx.uses[op.tempId()]++;
}
instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
assert(instr->operands[0].regClass() == s1);
assert(instr->operands[1].regClass() == s1);
return true;
}
void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
{
const uint32_t threshold = 4;
if (is_dead(ctx.uses, instr.get())) {
instr.reset();
return;
}
/* convert split_vector into a copy or extract_vector if only one definition is ever used */
if (instr->opcode == aco_opcode::p_split_vector) {
unsigned num_used = 0;
unsigned idx = 0;
unsigned split_offset = 0;
for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) {
if (ctx.uses[instr->definitions[i].tempId()]) {
num_used++;
idx = i;
split_offset = offset;
}
}
bool done = false;
if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
ctx.uses[instr->operands[0].tempId()] == 1) {
Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
unsigned off = 0;
Operand op;
for (Operand& vec_op : vec->operands) {
if (off == split_offset) {
op = vec_op;
break;
}
off += vec_op.bytes();
}
if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) {
ctx.uses[instr->operands[0].tempId()]--;
for (Operand& vec_op : vec->operands) {
if (vec_op.isTemp())
ctx.uses[vec_op.tempId()]--;
}
if (op.isTemp())
ctx.uses[op.tempId()]++;
aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
extract->operands[0] = op;
extract->definitions[0] = instr->definitions[idx];
instr.reset(extract.release());
done = true;
}
}
if (!done && num_used == 1 &&
instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 &&
split_offset % instr->definitions[idx].bytes() == 0) {
aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
extract->operands[0] = instr->operands[0];
extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes());
extract->definitions[0] = instr->definitions[idx];
instr.reset(extract.release());
}
}
mad_info* mad_info = NULL;
if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags];
/* re-check mad instructions */
if (ctx.uses[mad_info->mul_temp_id]) {
ctx.uses[mad_info->mul_temp_id]++;
if (instr->operands[0].isTemp())
ctx.uses[instr->operands[0].tempId()]--;
if (instr->operands[1].isTemp())
ctx.uses[instr->operands[1].tempId()]--;
instr.swap(mad_info->add_instr);
mad_info = NULL;
}
/* check literals */
else if (!instr->usesModifiers()) {
/* FMA can only take literals on GFX10+ */
if ((instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) &&
ctx.program->chip_class < GFX10)
return;
bool sgpr_used = false;
uint32_t literal_idx = 0;
uint32_t literal_uses = UINT32_MAX;
for (unsigned i = 0; i < instr->operands.size(); i++)
{
if (instr->operands[i].isConstant() && i > 0) {
literal_uses = UINT32_MAX;
break;
}
if (!instr->operands[i].isTemp())
continue;
unsigned bits = get_operand_size(instr, i);
/* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal(bits)) {
literal_uses = ctx.uses[instr->operands[i].tempId()];
literal_idx = i;
} else {
literal_uses = UINT32_MAX;
}
sgpr_used = true;
/* don't break because we still need to check constants */
} else if (!sgpr_used &&
ctx.info[instr->operands[i].tempId()].is_literal(bits) &&
ctx.uses[instr->operands[i].tempId()] < literal_uses) {
literal_uses = ctx.uses[instr->operands[i].tempId()];
literal_idx = i;
}
}
/* Limit the number of literals to apply to not increase the code
* size too much, but always apply literals for v_mad->v_madak
* because both instructions are 64-bit and this doesn't increase
* code size.
* TODO: try to apply the literals earlier to lower the number of
* uses below threshold
*/
if (literal_uses < threshold || literal_idx == 2) {
ctx.uses[instr->operands[literal_idx].tempId()]--;
mad_info->check_literal = true;
mad_info->literal_idx = literal_idx;
return;
}
}
}
/* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
if (instr->format == Format::PSEUDO_BRANCH &&
instr->operands.size() &&
instr->operands[0].isTemp()) {
ctx.info[instr->operands[0].tempId()].set_scc_needed();
return;
} else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
instr->opcode == aco_opcode::s_cselect_b32) &&
instr->operands[2].isTemp()) {
ctx.info[instr->operands[2].tempId()].set_scc_needed();
}
/* check for literals */
if (!instr->isSALU() && !instr->isVALU())
return;
/* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
if (instr->definitions.size() &&
ctx.uses[instr->definitions[0].tempId()] == 0 &&
ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
bool transform_done = to_uniform_bool_instr(ctx, instr);
if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
/* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
uint32_t def0_id = instr->definitions[0].getTemp().id();
uint32_t def1_id = instr->definitions[1].getTemp().id();
instr->definitions[0].setTemp(Temp(def1_id, s1));
instr->definitions[1].setTemp(Temp(def0_id, s1));
}
return;
}
if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
return; /* some encodings can't ever take literals */
/* we do not apply the literals yet as we don't know if it is profitable */
Operand current_literal(s1);
unsigned literal_id = 0;
unsigned literal_uses = UINT32_MAX;
Operand literal(s1);
unsigned num_operands = 1;
if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
num_operands = instr->operands.size();
/* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
else if (instr->isVALU() && instr->operands.size() >= 3)
return;
unsigned sgpr_ids[2] = {0, 0};
bool is_literal_sgpr = false;
uint32_t mask = 0;
/* choose a literal to apply */
for (unsigned i = 0; i < num_operands; i++) {
Operand op = instr->operands[i];
unsigned bits = get_operand_size(instr, i);
if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
op.tempId() != sgpr_ids[0])
sgpr_ids[!!sgpr_ids[0]] = op.tempId();
if (op.isLiteral()) {
current_literal = op;
continue;
} else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) {
continue;
}
if (!alu_can_accept_constant(instr->opcode, i))
continue;
if (ctx.uses[op.tempId()] < literal_uses) {
is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
mask = 0;
literal = Operand(ctx.info[op.tempId()].val);
literal_uses = ctx.uses[op.tempId()];
literal_id = op.tempId();
}
mask |= (op.tempId() == literal_id) << i;
}
/* don't go over the constant bus limit */
bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
instr->opcode == aco_opcode::v_lshrrev_b64 ||
instr->opcode == aco_opcode::v_ashrrev_i64;
unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
if (ctx.program->chip_class >= GFX10 && !is_shift64)
const_bus_limit = 2;
unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
if (num_sgprs == const_bus_limit && !is_literal_sgpr)
return;
if (literal_id && literal_uses < threshold &&
(current_literal.isUndefined() ||
(current_literal.size() == literal.size() &&
current_literal.constantValue() == literal.constantValue()))) {
/* mark the literal to be applied */
while (mask) {
unsigned i = u_bit_scan(&mask);
if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
ctx.uses[instr->operands[i].tempId()]--;
}
}
}
void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
{
/* Cleanup Dead Instructions */
if (!instr)
return;
/* apply literals on MAD */
if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags];
if (info->check_literal &&
(ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
aco_ptr<Instruction> new_mad;
aco_opcode new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f32 : aco_opcode::v_madmk_f32;
if (instr->opcode == aco_opcode::v_fma_f32)
new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
else if (instr->opcode == aco_opcode::v_mad_f16 || instr->opcode == aco_opcode::v_mad_legacy_f16)
new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f16 : aco_opcode::v_madmk_f16;
else if (instr->opcode == aco_opcode::v_fma_f16)
new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f16 : aco_opcode::v_fmamk_f16;
new_mad.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 1));
if (info->literal_idx == 2) { /* add literal -> madak */
new_mad->operands[0] = instr->operands[0];
new_mad->operands[1] = instr->operands[1];
} else { /* mul literal -> madmk */
new_mad->operands[0] = instr->operands[1 - info->literal_idx];
new_mad->operands[1] = instr->operands[2];
}
new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
new_mad->definitions[0] = instr->definitions[0];
ctx.instructions.emplace_back(std::move(new_mad));
return;
}
}
/* apply literals on other SALU/VALU */
if (instr->isSALU() || instr->isVALU()) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand op = instr->operands[i];
unsigned bits = get_operand_size(instr, i);
if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) {
Operand literal(ctx.info[op.tempId()].val);
if (instr->isVALU() && i > 0)
to_VOP3(ctx, instr);
instr->operands[i] = literal;
}
}
}
ctx.instructions.emplace_back(std::move(instr));
}
void optimize(Program* program)
{
opt_ctx ctx;
ctx.program = program;
std::vector<ssa_info> info(program->peekAllocationId());
ctx.info = info.data();
/* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& instr : block.instructions)
label_instruction(ctx, block, instr);
}
ctx.uses = dead_code_analysis(program);
/* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& instr : block.instructions)
combine_instruction(ctx, block, instr);
}
/* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
Block* block = &(*it);
for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
select_instruction(ctx, *it);
}
/* 4. Add literals to instructions */
for (Block& block : program->blocks) {
ctx.instructions.clear();
for (aco_ptr<Instruction>& instr : block.instructions)
apply_literals(ctx, instr);
block.instructions.swap(ctx.instructions);
}
}
}