blob: d0b0dd83b46e3abdc3f59f0f4f3ff3dff4d93f97 [file] [log] [blame]
/*
* Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "util/ralloc.h"
#include "util/u_math.h"
#include "ir3.h"
#include "ir3_compiler.h"
/*
* Legalize:
*
* We currently require that scheduling ensures that we have enough nop's
* in all the right places. The legalize step mostly handles fixing up
* instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's
* into fewer nop's w/ rpt flag.
*/
struct ir3_legalize_ctx {
struct ir3_compiler *compiler;
struct ir3_shader_variant *so;
gl_shader_stage type;
int max_bary;
};
struct ir3_legalize_state {
regmask_t needs_ss;
regmask_t needs_ss_war; /* write after read */
regmask_t needs_sy;
};
struct ir3_legalize_block_data {
bool valid;
struct ir3_legalize_state state;
};
/* We want to evaluate each block from the position of any other
* predecessor block, in order that the flags set are the union of
* all possible program paths.
*
* To do this, we need to know the output state (needs_ss/ss_war/sy)
* of all predecessor blocks. The tricky thing is loops, which mean
* that we can't simply recursively process each predecessor block
* before legalizing the current block.
*
* How we handle that is by looping over all the blocks until the
* results converge. If the output state of a given block changes
* in a given pass, this means that all successor blocks are not
* yet fully legalized.
*/
static bool
legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
{
struct ir3_legalize_block_data *bd = block->data;
if (bd->valid)
return false;
struct ir3_instruction *last_input = NULL;
struct ir3_instruction *last_rel = NULL;
struct ir3_instruction *last_n = NULL;
struct list_head instr_list;
struct ir3_legalize_state prev_state = bd->state;
struct ir3_legalize_state *state = &bd->state;
bool last_input_needs_ss = false;
bool has_tex_prefetch = false;
/* our input state is the OR of all predecessor blocks' state: */
set_foreach(block->predecessors, entry) {
struct ir3_block *predecessor = (struct ir3_block *)entry->key;
struct ir3_legalize_block_data *pbd = predecessor->data;
struct ir3_legalize_state *pstate = &pbd->state;
/* Our input (ss)/(sy) state is based on OR'ing the output
* state of all our predecessor blocks
*/
regmask_or(&state->needs_ss,
&state->needs_ss, &pstate->needs_ss);
regmask_or(&state->needs_ss_war,
&state->needs_ss_war, &pstate->needs_ss_war);
regmask_or(&state->needs_sy,
&state->needs_sy, &pstate->needs_sy);
}
/* remove all the instructions from the list, we'll be adding
* them back in as we go
*/
list_replace(&block->instr_list, &instr_list);
list_inithead(&block->instr_list);
foreach_instr_safe (n, &instr_list) {
struct ir3_register *reg;
unsigned i;
n->flags &= ~(IR3_INSTR_SS | IR3_INSTR_SY);
/* _meta::tex_prefetch instructions removed later in
* collect_tex_prefetches()
*/
if (is_meta(n) && (n->opc != OPC_META_TEX_PREFETCH))
continue;
if (is_input(n)) {
struct ir3_register *inloc = n->regs[1];
assert(inloc->flags & IR3_REG_IMMED);
ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
}
if (last_n && is_barrier(last_n)) {
n->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
last_input_needs_ss = false;
regmask_init(&state->needs_ss_war);
regmask_init(&state->needs_ss);
regmask_init(&state->needs_sy);
}
if (last_n && (last_n->opc == OPC_IF)) {
n->flags |= IR3_INSTR_SS;
regmask_init(&state->needs_ss_war);
regmask_init(&state->needs_ss);
}
/* NOTE: consider dst register too.. it could happen that
* texture sample instruction (for example) writes some
* components which are unused. A subsequent instruction
* that writes the same register can race w/ the sam instr
* resulting in undefined results:
*/
for (i = 0; i < n->regs_count; i++) {
reg = n->regs[i];
if (reg_gpr(reg)) {
/* TODO: we probably only need (ss) for alu
* instr consuming sfu result.. need to make
* some tests for both this and (sy)..
*/
if (regmask_get(&state->needs_ss, reg)) {
n->flags |= IR3_INSTR_SS;
last_input_needs_ss = false;
regmask_init(&state->needs_ss_war);
regmask_init(&state->needs_ss);
}
if (regmask_get(&state->needs_sy, reg)) {
n->flags |= IR3_INSTR_SY;
regmask_init(&state->needs_sy);
}
}
/* TODO: is it valid to have address reg loaded from a
* relative src (ie. mova a0, c<a0.x+4>)? If so, the
* last_rel check below should be moved ahead of this:
*/
if (reg->flags & IR3_REG_RELATIV)
last_rel = n;
}
if (n->regs_count > 0) {
reg = n->regs[0];
if (regmask_get(&state->needs_ss_war, reg)) {
n->flags |= IR3_INSTR_SS;
last_input_needs_ss = false;
regmask_init(&state->needs_ss_war);
regmask_init(&state->needs_ss);
}
if (last_rel && (reg->num == regid(REG_A0, 0))) {
last_rel->flags |= IR3_INSTR_UL;
last_rel = NULL;
}
}
/* cat5+ does not have an (ss) bit, if needed we need to
* insert a nop to carry the sync flag. Would be kinda
* clever if we were aware of this during scheduling, but
* this should be a pretty rare case:
*/
if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) {
struct ir3_instruction *nop;
nop = ir3_NOP(block);
nop->flags |= IR3_INSTR_SS;
n->flags &= ~IR3_INSTR_SS;
}
/* need to be able to set (ss) on first instruction: */
if (list_is_empty(&block->instr_list) && (opc_cat(n->opc) >= 5))
ir3_NOP(block);
if (ctx->compiler->samgq_workaround &&
ctx->type == MESA_SHADER_VERTEX && n->opc == OPC_SAMGQ) {
struct ir3_instruction *samgp;
list_delinit(&n->node);
for (i = 0; i < 4; i++) {
samgp = ir3_instr_clone(n);
samgp->opc = OPC_SAMGP0 + i;
if (i > 1)
samgp->flags |= IR3_INSTR_SY;
}
} else {
list_addtail(&n->node, &block->instr_list);
}
if (n->opc == OPC_DSXPP_1 || n->opc == OPC_DSYPP_1) {
struct ir3_instruction *op_p = ir3_instr_clone(n);
op_p->flags = IR3_INSTR_P;
ctx->so->need_fine_derivatives = true;
}
if (is_sfu(n))
regmask_set(&state->needs_ss, n->regs[0]);
if (is_tex_or_prefetch(n)) {
regmask_set(&state->needs_sy, n->regs[0]);
if (n->opc == OPC_META_TEX_PREFETCH)
has_tex_prefetch = true;
} else if (n->opc == OPC_RESINFO) {
regmask_set(&state->needs_ss, n->regs[0]);
ir3_NOP(block)->flags |= IR3_INSTR_SS;
last_input_needs_ss = false;
} else if (is_load(n)) {
/* seems like ldlv needs (ss) bit instead?? which is odd but
* makes a bunch of flat-varying tests start working on a4xx.
*/
if ((n->opc == OPC_LDLV) || (n->opc == OPC_LDL) || (n->opc == OPC_LDLW))
regmask_set(&state->needs_ss, n->regs[0]);
else
regmask_set(&state->needs_sy, n->regs[0]);
} else if (is_atomic(n->opc)) {
if (n->flags & IR3_INSTR_G) {
if (ctx->compiler->gpu_id >= 600) {
/* New encoding, returns result via second src: */
regmask_set(&state->needs_sy, n->regs[3]);
} else {
regmask_set(&state->needs_sy, n->regs[0]);
}
} else {
regmask_set(&state->needs_ss, n->regs[0]);
}
}
if (is_ssbo(n->opc) || (is_atomic(n->opc) && (n->flags & IR3_INSTR_G)))
ctx->so->has_ssbo = true;
/* both tex/sfu appear to not always immediately consume
* their src register(s):
*/
if (is_tex(n) || is_sfu(n) || is_mem(n)) {
foreach_src (reg, n) {
if (reg_gpr(reg))
regmask_set(&state->needs_ss_war, reg);
}
}
if (is_input(n)) {
last_input = n;
last_input_needs_ss |= (n->opc == OPC_LDLV);
}
last_n = n;
}
if (last_input) {
assert(block == list_first_entry(&block->shader->block_list,
struct ir3_block, node));
/* special hack.. if using ldlv to bypass interpolation,
* we need to insert a dummy bary.f on which we can set
* the (ei) flag:
*/
if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) {
struct ir3_instruction *baryf;
/* (ss)bary.f (ei)r63.x, 0, r0.x */
baryf = ir3_instr_create(block, OPC_BARY_F);
ir3_reg_create(baryf, regid(63, 0), 0);
ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
ir3_reg_create(baryf, regid(0, 0), 0);
/* insert the dummy bary.f after last_input: */
list_delinit(&baryf->node);
list_add(&baryf->node, &last_input->node);
last_input = baryf;
/* by definition, we need (ss) since we are inserting
* the dummy bary.f immediately after the ldlv:
*/
last_input_needs_ss = true;
}
last_input->regs[0]->flags |= IR3_REG_EI;
if (last_input_needs_ss)
last_input->flags |= IR3_INSTR_SS;
} else if (has_tex_prefetch) {
/* texture prefetch, but *no* inputs.. we need to insert a
* dummy bary.f at the top of the shader to unblock varying
* storage:
*/
struct ir3_instruction *baryf;
/* (ss)bary.f (ei)r63.x, 0, r0.x */
baryf = ir3_instr_create(block, OPC_BARY_F);
ir3_reg_create(baryf, regid(63, 0), 0)->flags |= IR3_REG_EI;
ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
ir3_reg_create(baryf, regid(0, 0), 0);
/* insert the dummy bary.f at head: */
list_delinit(&baryf->node);
list_add(&baryf->node, &block->instr_list);
}
if (last_rel)
last_rel->flags |= IR3_INSTR_UL;
bd->valid = true;
if (memcmp(&prev_state, state, sizeof(*state))) {
/* our output state changed, this invalidates all of our
* successors:
*/
for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) {
if (!block->successors[i])
break;
struct ir3_legalize_block_data *pbd = block->successors[i]->data;
pbd->valid = false;
}
}
return true;
}
/* NOTE: branch instructions are always the last instruction(s)
* in the block. We take advantage of this as we resolve the
* branches, since "if (foo) break;" constructs turn into
* something like:
*
* block3 {
* ...
* 0029:021: mov.s32s32 r62.x, r1.y
* 0082:022: br !p0.x, target=block5
* 0083:023: br p0.x, target=block4
* // succs: if _[0029:021: mov.s32s32] block4; else block5;
* }
* block4 {
* 0084:024: jump, target=block6
* // succs: block6;
* }
* block5 {
* 0085:025: jump, target=block7
* // succs: block7;
* }
*
* ie. only instruction in block4/block5 is a jump, so when
* resolving branches we can easily detect this by checking
* that the first instruction in the target block is itself
* a jump, and setup the br directly to the jump's target
* (and strip back out the now unreached jump)
*
* TODO sometimes we end up with things like:
*
* br !p0.x, #2
* br p0.x, #12
* add.u r0.y, r0.y, 1
*
* If we swapped the order of the branches, we could drop one.
*/
static struct ir3_block *
resolve_dest_block(struct ir3_block *block)
{
/* special case for last block: */
if (!block->successors[0])
return block;
/* NOTE that we may or may not have inserted the jump
* in the target block yet, so conditions to resolve
* the dest to the dest block's successor are:
*
* (1) successor[1] == NULL &&
* (2) (block-is-empty || only-instr-is-jump)
*/
if (block->successors[1] == NULL) {
if (list_is_empty(&block->instr_list)) {
return block->successors[0];
} else if (list_length(&block->instr_list) == 1) {
struct ir3_instruction *instr = list_first_entry(
&block->instr_list, struct ir3_instruction, node);
if (instr->opc == OPC_JUMP)
return block->successors[0];
}
}
return block;
}
static void
remove_unused_block(struct ir3_block *old_target)
{
list_delinit(&old_target->node);
/* cleanup dangling predecessors: */
for (unsigned i = 0; i < ARRAY_SIZE(old_target->successors); i++) {
if (old_target->successors[i]) {
struct ir3_block *succ = old_target->successors[i];
_mesa_set_remove_key(succ->predecessors, old_target);
}
}
}
static void
retarget_jump(struct ir3_instruction *instr, struct ir3_block *new_target)
{
struct ir3_block *old_target = instr->cat0.target;
struct ir3_block *cur_block = instr->block;
/* update current blocks successors to reflect the retargetting: */
if (cur_block->successors[0] == old_target) {
cur_block->successors[0] = new_target;
} else {
debug_assert(cur_block->successors[1] == old_target);
cur_block->successors[1] = new_target;
}
/* update new target's predecessors: */
_mesa_set_add(new_target->predecessors, cur_block);
/* and remove old_target's predecessor: */
debug_assert(_mesa_set_search(old_target->predecessors, cur_block));
_mesa_set_remove_key(old_target->predecessors, cur_block);
if (old_target->predecessors->entries == 0)
remove_unused_block(old_target);
instr->cat0.target = new_target;
}
static bool
resolve_jump(struct ir3_instruction *instr)
{
struct ir3_block *tblock =
resolve_dest_block(instr->cat0.target);
struct ir3_instruction *target;
if (tblock != instr->cat0.target) {
retarget_jump(instr, tblock);
return true;
}
target = list_first_entry(&tblock->instr_list,
struct ir3_instruction, node);
/* TODO maybe a less fragile way to do this. But we are expecting
* a pattern from sched_block() that looks like:
*
* br !p0.x, #else-block
* br p0.x, #if-block
*
* if the first branch target is +2, or if 2nd branch target is +1
* then we can just drop the jump.
*/
unsigned next_block;
if (instr->cat0.inv == true)
next_block = 2;
else
next_block = 1;
if (target->ip == (instr->ip + next_block)) {
list_delinit(&instr->node);
return true;
} else {
instr->cat0.immed =
(int)target->ip - (int)instr->ip;
}
return false;
}
/* resolve jumps, removing jumps/branches to immediately following
* instruction which we end up with from earlier stages. Since
* removing an instruction can invalidate earlier instruction's
* branch offsets, we need to do this iteratively until no more
* branches are removed.
*/
static bool
resolve_jumps(struct ir3 *ir)
{
foreach_block (block, &ir->block_list)
foreach_instr (instr, &block->instr_list)
if (is_flow(instr) && instr->cat0.target)
if (resolve_jump(instr))
return true;
return false;
}
static void mark_jp(struct ir3_block *block)
{
struct ir3_instruction *target = list_first_entry(&block->instr_list,
struct ir3_instruction, node);
target->flags |= IR3_INSTR_JP;
}
/* Mark points where control flow converges or diverges.
*
* Divergence points could actually be re-convergence points where
* "parked" threads are recoverged with threads that took the opposite
* path last time around. Possibly it is easier to think of (jp) as
* "the execution mask might have changed".
*/
static void
mark_xvergence_points(struct ir3 *ir)
{
foreach_block (block, &ir->block_list) {
if (block->predecessors->entries > 1) {
/* if a block has more than one possible predecessor, then
* the first instruction is a convergence point.
*/
mark_jp(block);
} else if (block->predecessors->entries == 1) {
/* If a block has one predecessor, which has multiple possible
* successors, it is a divergence point.
*/
set_foreach(block->predecessors, entry) {
struct ir3_block *predecessor = (struct ir3_block *)entry->key;
if (predecessor->successors[1]) {
mark_jp(block);
}
}
}
}
}
/* Insert the branch/jump instructions for flow control between blocks.
* Initially this is done naively, without considering if the successor
* block immediately follows the current block (ie. so no jump required),
* but that is cleaned up in resolve_jumps().
*
* TODO what ensures that the last write to p0.x in a block is the
* branch condition? Have we been getting lucky all this time?
*/
static void
block_sched(struct ir3 *ir)
{
foreach_block (block, &ir->block_list) {
if (block->successors[1]) {
/* if/else, conditional branches to "then" or "else": */
struct ir3_instruction *br;
debug_assert(block->condition);
/* create "else" branch first (since "then" block should
* frequently/always end up being a fall-thru):
*/
br = ir3_BR(block, block->condition, 0);
br->cat0.inv = true;
br->cat0.target = block->successors[1];
/* "then" branch: */
br = ir3_BR(block, block->condition, 0);
br->cat0.target = block->successors[0];
} else if (block->successors[0]) {
/* otherwise unconditional jump to next block: */
struct ir3_instruction *jmp;
jmp = ir3_JUMP(block);
jmp->cat0.target = block->successors[0];
}
}
}
/* Here we workaround the fact that kill doesn't actually kill the thread as
* GL expects. The last instruction always needs to be an end instruction,
* which means that if we're stuck in a loop where kill is the only way out,
* then we may have to jump out to the end. kill may also have the d3d
* semantics of converting the thread to a helper thread, rather than setting
* the exec mask to 0, in which case the helper thread could get stuck in an
* infinite loop.
*
* We do this late, both to give the scheduler the opportunity to reschedule
* kill instructions earlier and to avoid having to create a separate basic
* block.
*
* TODO: Assuming that the wavefront doesn't stop as soon as all threads are
* killed, we might benefit by doing this more aggressively when the remaining
* part of the program after the kill is large, since that would let us
* skip over the instructions when there are no non-killed threads left.
*/
static void
kill_sched(struct ir3 *ir, struct ir3_shader_variant *so)
{
/* True if we know that this block will always eventually lead to the end
* block:
*/
bool always_ends = true;
bool added = false;
struct ir3_block *last_block =
list_last_entry(&ir->block_list, struct ir3_block, node);
foreach_block_rev (block, &ir->block_list) {
for (unsigned i = 0; i < 2 && block->successors[i]; i++) {
if (block->successors[i]->start_ip <= block->end_ip)
always_ends = false;
}
if (always_ends)
continue;
foreach_instr_safe (instr, &block->instr_list) {
if (instr->opc != OPC_KILL)
continue;
struct ir3_instruction *br = ir3_instr_create(block, OPC_BR);
br->regs[1] = instr->regs[1];
br->cat0.target =
list_last_entry(&ir->block_list, struct ir3_block, node);
list_del(&br->node);
list_add(&br->node, &instr->node);
added = true;
}
}
if (added) {
/* I'm not entirely sure how the branchstack works, but we probably
* need to add at least one entry for the divergence which is resolved
* at the end:
*/
so->branchstack++;
/* We don't update predecessors/successors, so we have to do this
* manually:
*/
mark_jp(last_block);
}
}
/* Insert nop's required to make this a legal/valid shader program: */
static void
nop_sched(struct ir3 *ir)
{
foreach_block (block, &ir->block_list) {
struct ir3_instruction *last = NULL;
struct list_head instr_list;
/* remove all the instructions from the list, we'll be adding
* them back in as we go
*/
list_replace(&block->instr_list, &instr_list);
list_inithead(&block->instr_list);
foreach_instr_safe (instr, &instr_list) {
unsigned delay = ir3_delay_calc(block, instr, false, true);
/* NOTE: I think the nopN encoding works for a5xx and
* probably a4xx, but not a3xx. So far only tested on
* a6xx.
*/
if ((delay > 0) && (ir->compiler->gpu_id >= 600) && last &&
((opc_cat(last->opc) == 2) || (opc_cat(last->opc) == 3))) {
/* the previous cat2/cat3 instruction can encode at most 3 nop's: */
unsigned transfer = MIN2(delay, 3 - last->nop);
last->nop += transfer;
delay -= transfer;
}
if ((delay > 0) && last && (last->opc == OPC_NOP)) {
/* the previous nop can encode at most 5 repeats: */
unsigned transfer = MIN2(delay, 5 - last->repeat);
last->repeat += transfer;
delay -= transfer;
}
if (delay > 0) {
debug_assert(delay <= 6);
ir3_NOP(block)->repeat = delay - 1;
}
list_addtail(&instr->node, &block->instr_list);
last = instr;
}
}
}
void
ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary)
{
struct ir3_legalize_ctx *ctx = rzalloc(ir, struct ir3_legalize_ctx);
bool progress;
ctx->so = so;
ctx->max_bary = -1;
ctx->compiler = ir->compiler;
ctx->type = ir->type;
/* allocate per-block data: */
foreach_block (block, &ir->block_list) {
block->data = rzalloc(ctx, struct ir3_legalize_block_data);
}
ir3_remove_nops(ir);
/* process each block: */
do {
progress = false;
foreach_block (block, &ir->block_list) {
progress |= legalize_block(ctx, block);
}
} while (progress);
*max_bary = ctx->max_bary;
block_sched(ir);
if (so->type == MESA_SHADER_FRAGMENT)
kill_sched(ir, so);
nop_sched(ir);
do {
ir3_count_instructions(ir);
} while(resolve_jumps(ir));
mark_xvergence_points(ir);
ralloc_free(ctx);
}