blob: d8886cd31b7cf11746c55747cf35a5345856897e [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include <array>
#include <map>
namespace aco {
static void aco_log(Program *program, enum radv_compiler_debug_level level,
const char *prefix, const char *file, unsigned line,
const char *fmt, va_list args)
{
char *msg;
msg = ralloc_strdup(NULL, prefix);
ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
ralloc_asprintf_append(&msg, " ");
ralloc_vasprintf_append(&msg, fmt, args);
if (program->debug.func)
program->debug.func(program->debug.private_data, level, msg);
fprintf(stderr, "%s\n", msg);
ralloc_free(msg);
}
void _aco_perfwarn(Program *program, const char *file, unsigned line,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
aco_log(program, RADV_COMPILER_DEBUG_LEVEL_PERFWARN,
"ACO PERFWARN:\n", file, line, fmt, args);
va_end(args);
}
void _aco_err(Program *program, const char *file, unsigned line,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
aco_log(program, RADV_COMPILER_DEBUG_LEVEL_ERROR,
"ACO ERROR:\n", file, line, fmt, args);
va_end(args);
}
bool validate_ir(Program* program)
{
bool is_valid = true;
auto check = [&program, &is_valid](bool check, const char * msg, aco::Instruction * instr) -> void {
if (!check) {
char *out;
size_t outsize;
FILE *memf = open_memstream(&out, &outsize);
fprintf(memf, "%s: ", msg);
aco_print_instr(instr, memf);
fclose(memf);
aco_err(program, out);
free(out);
is_valid = false;
}
};
auto check_block = [&program, &is_valid](bool check, const char * msg, aco::Block * block) -> void {
if (!check) {
aco_err(program, "%s: BB%u", msg, block->index);
is_valid = false;
}
};
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& instr : block.instructions) {
/* check base format */
Format base_format = instr->format;
base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA);
base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP);
if ((uint32_t)base_format & (uint32_t)Format::VOP1)
base_format = Format::VOP1;
else if ((uint32_t)base_format & (uint32_t)Format::VOP2)
base_format = Format::VOP2;
else if ((uint32_t)base_format & (uint32_t)Format::VOPC)
base_format = Format::VOPC;
else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) {
if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
instr->opcode == aco_opcode::v_interp_p2_f16) {
/* v_interp_*_fp16 are considered VINTRP by the compiler but
* they are emitted as VOP3.
*/
base_format = Format::VOP3;
} else {
base_format = Format::VINTRP;
}
}
check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get());
/* check VOP3 modifiers */
if (((uint32_t)instr->format & (uint32_t)Format::VOP3) && instr->format != Format::VOP3) {
check(base_format == Format::VOP2 ||
base_format == Format::VOP1 ||
base_format == Format::VOPC ||
base_format == Format::VINTRP,
"Format cannot have VOP3A/VOP3B applied", instr.get());
}
/* check SDWA */
if (instr->isSDWA()) {
check(base_format == Format::VOP2 ||
base_format == Format::VOP1 ||
base_format == Format::VOPC,
"Format cannot have SDWA applied", instr.get());
check(program->chip_class >= GFX8, "SDWA is GFX8+ only", instr.get());
SDWA_instruction *sdwa = static_cast<SDWA_instruction*>(instr.get());
check(sdwa->omod == 0 || program->chip_class >= GFX9, "SDWA omod only supported on GFX9+", instr.get());
if (base_format == Format::VOPC) {
check(sdwa->clamp == false || program->chip_class == GFX8, "SDWA VOPC clamp only supported on GFX8", instr.get());
check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) ||
program->chip_class >= GFX9,
"SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get());
}
if (instr->operands.size() >= 3) {
check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc,
"3rd operand must be fixed to vcc with SDWA", instr.get());
}
if (instr->definitions.size() >= 2) {
check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc,
"2nd definition must be fixed to vcc with SDWA", instr.get());
}
check(instr->opcode != aco_opcode::v_madmk_f32 &&
instr->opcode != aco_opcode::v_madak_f32 &&
instr->opcode != aco_opcode::v_madmk_f16 &&
instr->opcode != aco_opcode::v_madak_f16 &&
instr->opcode != aco_opcode::v_readfirstlane_b32 &&
instr->opcode != aco_opcode::v_clrexcp &&
instr->opcode != aco_opcode::v_swap_b32,
"SDWA can't be used with this opcode", instr.get());
if (program->chip_class != GFX8) {
check(instr->opcode != aco_opcode::v_mac_f32 &&
instr->opcode != aco_opcode::v_mac_f16 &&
instr->opcode != aco_opcode::v_fmac_f32 &&
instr->opcode != aco_opcode::v_fmac_f16,
"SDWA can't be used with this opcode", instr.get());
}
for (unsigned i = 0; i < MIN2(instr->operands.size(), 2); i++) {
if (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword())
check((sdwa->sel[i] & sdwa_asuint) == (sdwa_isra | instr->operands[i].bytes()), "Unexpected SDWA sel for sub-dword operand", instr.get());
}
if (instr->definitions[0].regClass().is_subdword())
check((sdwa->dst_sel & sdwa_asuint) == (sdwa_isra | instr->definitions[0].bytes()), "Unexpected SDWA sel for sub-dword definition", instr.get());
}
/* check opsel */
if (instr->isVOP3()) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
check(vop3->opsel == 0 || program->chip_class >= GFX9, "Opsel is only supported on GFX9+", instr.get());
for (unsigned i = 0; i < 3; i++) {
if (i >= instr->operands.size() ||
(instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed()))
check((vop3->opsel & (1 << i)) == 0, "Unexpected opsel for operand", instr.get());
}
if (instr->definitions[0].regClass().is_subdword() && !instr->definitions[0].isFixed())
check((vop3->opsel & (1 << 3)) == 0, "Unexpected opsel for sub-dword definition", instr.get());
}
/* check for undefs */
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isUndefined()) {
bool flat = instr->format == Format::FLAT || instr->format == Format::SCRATCH || instr->format == Format::GLOBAL;
bool can_be_undef = is_phi(instr) || instr->format == Format::EXP ||
instr->format == Format::PSEUDO_REDUCTION ||
instr->opcode == aco_opcode::p_create_vector ||
(flat && i == 1) || (instr->format == Format::MIMG && i == 1) ||
((instr->format == Format::MUBUF || instr->format == Format::MTBUF) && i == 1);
check(can_be_undef, "Undefs can only be used in certain operands", instr.get());
} else {
check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || instr->operands[i].isConstant(), "Uninitialized Operand", instr.get());
}
}
/* check subdword definitions */
for (unsigned i = 0; i < instr->definitions.size(); i++) {
if (instr->definitions[i].regClass().is_subdword())
check(instr->format == Format::PSEUDO || instr->definitions[i].bytes() <= 4, "Only Pseudo instructions can write subdword registers larger than 4 bytes", instr.get());
}
if (instr->isSALU() || instr->isVALU()) {
/* check literals */
Operand literal(s1);
for (unsigned i = 0; i < instr->operands.size(); i++)
{
Operand op = instr->operands[i];
if (!op.isLiteral())
continue;
check(instr->format == Format::SOP1 ||
instr->format == Format::SOP2 ||
instr->format == Format::SOPC ||
instr->format == Format::VOP1 ||
instr->format == Format::VOP2 ||
instr->format == Format::VOPC ||
(instr->isVOP3() && program->chip_class >= GFX10),
"Literal applied on wrong instruction format", instr.get());
check(literal.isUndefined() || (literal.size() == op.size() && literal.constantValue() == op.constantValue()), "Only 1 Literal allowed", instr.get());
literal = op;
check(!instr->isVALU() || instr->isVOP3() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get());
}
/* check num sgprs for VALU */
if (instr->isVALU()) {
bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
instr->opcode == aco_opcode::v_lshrrev_b64 ||
instr->opcode == aco_opcode::v_ashrrev_i64;
unsigned const_bus_limit = 1;
if (program->chip_class >= GFX10 && !is_shift64)
const_bus_limit = 2;
uint32_t scalar_mask = instr->isVOP3() ? 0x7 : 0x5;
if (instr->isSDWA())
scalar_mask = program->chip_class >= GFX9 ? 0x7 : 0x4;
if ((int) instr->format & (int) Format::VOPC ||
instr->opcode == aco_opcode::v_readfirstlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32_e64) {
check(instr->definitions[0].getTemp().type() == RegType::sgpr,
"Wrong Definition type for VALU instruction", instr.get());
} else {
check(instr->definitions[0].getTemp().type() == RegType::vgpr,
"Wrong Definition type for VALU instruction", instr.get());
}
unsigned num_sgprs = 0;
unsigned sgpr[] = {0, 0};
for (unsigned i = 0; i < instr->operands.size(); i++)
{
Operand op = instr->operands[i];
if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32_e64) {
check(i != 1 ||
(op.isTemp() && op.regClass().type() == RegType::sgpr) ||
op.isConstant(),
"Must be a SGPR or a constant", instr.get());
check(i == 1 ||
(op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4),
"Wrong Operand type for VALU instruction", instr.get());
continue;
}
if (instr->opcode == aco_opcode::v_writelane_b32 ||
instr->opcode == aco_opcode::v_writelane_b32_e64) {
check(i != 2 ||
(op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4),
"Wrong Operand type for VALU instruction", instr.get());
check(i == 2 ||
(op.isTemp() && op.regClass().type() == RegType::sgpr) ||
op.isConstant(),
"Must be a SGPR or a constant", instr.get());
continue;
}
if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) {
check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", instr.get());
if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
if (num_sgprs < 2)
sgpr[num_sgprs++] = op.tempId();
}
}
if (op.isConstant() && !op.isLiteral())
check(scalar_mask & (1 << i), "Wrong source position for constant argument", instr.get());
}
check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, "Too many SGPRs/literals", instr.get());
}
if (instr->format == Format::SOP1 || instr->format == Format::SOP2) {
check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get());
for (const Operand& op : instr->operands) {
check(op.isConstant() || op.regClass().type() <= RegType::sgpr,
"Wrong Operand type for SALU instruction", instr.get());
}
}
}
switch (instr->format) {
case Format::PSEUDO: {
if (instr->opcode == aco_opcode::p_parallelcopy) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (!instr->definitions[i].regClass().is_subdword())
continue;
Operand op = instr->operands[i];
check(!op.isLiteral(), "Sub-dword copies cannot take literals", instr.get());
if (op.isConstant() || (op.hasRegClass() && op.regClass().type() == RegType::sgpr))
check(program->chip_class >= GFX9, "Sub-dword pseudo instructions can only take constants or SGPRs on GFX9+", instr.get());
}
} else {
bool is_subdword = false;
bool has_const_sgpr = false;
bool has_literal = false;
for (Definition def : instr->definitions)
is_subdword |= def.regClass().is_subdword();
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->opcode == aco_opcode::p_extract_vector && i == 1)
continue;
Operand op = instr->operands[i];
is_subdword |= op.hasRegClass() && op.regClass().is_subdword();
has_const_sgpr |= op.isConstant() || (op.hasRegClass() && op.regClass().type() == RegType::sgpr);
has_literal |= op.isLiteral();
}
check(!is_subdword || !has_const_sgpr || program->chip_class >= GFX9,
"Sub-dword pseudo instructions can only take constants or SGPRs on GFX9+", instr.get());
}
if (instr->opcode == aco_opcode::p_create_vector) {
unsigned size = 0;
for (const Operand& op : instr->operands) {
size += op.bytes();
}
check(size == instr->definitions[0].bytes(), "Definition size does not match operand sizes", instr.get());
if (instr->definitions[0].getTemp().type() == RegType::sgpr) {
for (const Operand& op : instr->operands) {
check(op.isConstant() || op.regClass().type() == RegType::sgpr,
"Wrong Operand type for scalar vector", instr.get());
}
}
} else if (instr->opcode == aco_opcode::p_extract_vector) {
check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get());
check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= instr->operands[0].bytes(), "Index out of range", instr.get());
check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr,
"Cannot extract SGPR value from VGPR vector", instr.get());
} else if (instr->opcode == aco_opcode::p_split_vector) {
check(instr->operands[0].isTemp(), "Operand must be a temporary", instr.get());
unsigned size = 0;
for (const Definition& def : instr->definitions) {
size += def.bytes();
}
check(size == instr->operands[0].bytes(), "Operand size does not match definition sizes", instr.get());
if (instr->operands[0].getTemp().type() == RegType::vgpr) {
for (const Definition& def : instr->definitions)
check(def.regClass().type() == RegType::vgpr, "Wrong Definition type for VGPR split_vector", instr.get());
}
} else if (instr->opcode == aco_opcode::p_parallelcopy) {
check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get());
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isTemp())
check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) ||
(instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr),
"Operand and Definition types do not match", instr.get());
}
} else if (instr->opcode == aco_opcode::p_phi) {
check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "Logical Phi Definition must be vgpr", instr.get());
} else if (instr->opcode == aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands)
check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get());
check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
}
break;
}
case Format::SMEM: {
if (instr->operands.size() >= 1)
check((instr->operands[0].isFixed() && !instr->operands[0].isConstant()) ||
(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr), "SMEM operands must be sgpr", instr.get());
if (instr->operands.size() >= 2)
check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr),
"SMEM offset must be constant or sgpr", instr.get());
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get());
break;
}
case Format::MTBUF:
case Format::MUBUF: {
check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get());
check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr,
"VADDR must be in vgpr for VMEM instructions", instr.get());
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get());
check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get());
break;
}
case Format::MIMG: {
check(instr->operands.size() == 3, "MIMG instructions must have exactly 3 operands", instr.get());
check(instr->operands[0].hasRegClass() && (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8),
"MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get());
if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr)
check(instr->operands[1].regClass() == s4, "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get());
else if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr)
check((instr->definitions.empty() || instr->definitions[0].regClass() == instr->operands[1].regClass() ||
instr->opcode == aco_opcode::image_atomic_cmpswap || instr->opcode == aco_opcode::image_atomic_fcmpswap),
"MIMG operands[1] (VDATA) must be the same as definitions[0] for atomics", instr.get());
check(instr->operands[2].hasRegClass() && instr->operands[2].regClass().type() == RegType::vgpr,
"MIMG operands[2] (VADDR) must be VGPR", instr.get());
check(instr->definitions.empty() || (instr->definitions[0].isTemp() && instr->definitions[0].regClass().type() == RegType::vgpr),
"MIMG definitions[0] (VDATA) must be VGPR", instr.get());
break;
}
case Format::DS: {
for (const Operand& op : instr->operands) {
check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0,
"Only VGPRs are valid DS instruction operands", instr.get());
}
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get());
break;
}
case Format::EXP: {
for (unsigned i = 0; i < 4; i++)
check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr,
"Only VGPRs are valid Export arguments", instr.get());
break;
}
case Format::FLAT:
check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get());
/* fallthrough */
case Format::GLOBAL:
case Format::SCRATCH: {
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get());
check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr,
"FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get());
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get());
else
check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get());
break;
}
default:
break;
}
}
}
/* validate CFG */
for (unsigned i = 0; i < program->blocks.size(); i++) {
Block& block = program->blocks[i];
check_block(block.index == i, "block.index must match actual index", &block);
/* predecessors/successors should be sorted */
for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++)
check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++)
check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++)
check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++)
check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block);
/* critical edges are not allowed */
if (block.linear_preds.size() > 1) {
for (unsigned pred : block.linear_preds)
check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]);
for (unsigned pred : block.logical_preds)
check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]);
}
}
return is_valid;
}
/* RA validation */
namespace {
struct Location {
Location() : block(NULL), instr(NULL) {}
Block *block;
Instruction *instr; //NULL if it's the block's live-in
};
struct Assignment {
Location defloc;
Location firstloc;
PhysReg reg;
};
bool ra_fail(Program *program, Location loc, Location loc2, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
char msg[1024];
vsprintf(msg, fmt, args);
va_end(args);
char *out;
size_t outsize;
FILE *memf = open_memstream(&out, &outsize);
fprintf(memf, "RA error found at instruction in BB%d:\n", loc.block->index);
if (loc.instr) {
aco_print_instr(loc.instr, memf);
fprintf(memf, "\n%s", msg);
} else {
fprintf(memf, "%s", msg);
}
if (loc2.block) {
fprintf(memf, " in BB%d:\n", loc2.block->index);
aco_print_instr(loc2.instr, memf);
}
fprintf(memf, "\n\n");
fclose(memf);
aco_err(program, out);
free(out);
return true;
}
bool validate_subdword_operand(chip_class chip, const aco_ptr<Instruction>& instr, unsigned index)
{
Operand op = instr->operands[index];
unsigned byte = op.physReg().byte();
if (instr->opcode == aco_opcode::p_as_uniform)
return byte == 0;
if (instr->format == Format::PSEUDO && chip >= GFX8)
return true;
if (instr->isSDWA() && (static_cast<SDWA_instruction *>(instr.get())->sel[index] & sdwa_asuint) == (sdwa_isra | op.bytes()))
return true;
if (byte == 2 && can_use_opsel(chip, instr->opcode, index, 1))
return true;
switch (instr->opcode) {
case aco_opcode::v_cvt_f32_ubyte1:
if (byte == 1)
return true;
break;
case aco_opcode::v_cvt_f32_ubyte2:
if (byte == 2)
return true;
break;
case aco_opcode::v_cvt_f32_ubyte3:
if (byte == 3)
return true;
break;
case aco_opcode::ds_write_b8_d16_hi:
case aco_opcode::ds_write_b16_d16_hi:
if (byte == 2 && index == 1)
return true;
break;
case aco_opcode::buffer_store_byte_d16_hi:
case aco_opcode::buffer_store_short_d16_hi:
if (byte == 2 && index == 3)
return true;
break;
case aco_opcode::flat_store_byte_d16_hi:
case aco_opcode::flat_store_short_d16_hi:
case aco_opcode::scratch_store_byte_d16_hi:
case aco_opcode::scratch_store_short_d16_hi:
case aco_opcode::global_store_byte_d16_hi:
case aco_opcode::global_store_short_d16_hi:
if (byte == 2 && index == 2)
return true;
default:
break;
}
return byte == 0;
}
bool validate_subdword_definition(chip_class chip, const aco_ptr<Instruction>& instr)
{
Definition def = instr->definitions[0];
unsigned byte = def.physReg().byte();
if (instr->format == Format::PSEUDO && chip >= GFX8)
return true;
if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
return true;
if (byte == 2 && can_use_opsel(chip, instr->opcode, -1, 1))
return true;
switch (instr->opcode) {
case aco_opcode::buffer_load_ubyte_d16_hi:
case aco_opcode::buffer_load_short_d16_hi:
case aco_opcode::flat_load_ubyte_d16_hi:
case aco_opcode::flat_load_short_d16_hi:
case aco_opcode::scratch_load_ubyte_d16_hi:
case aco_opcode::scratch_load_short_d16_hi:
case aco_opcode::global_load_ubyte_d16_hi:
case aco_opcode::global_load_short_d16_hi:
case aco_opcode::ds_read_u8_d16_hi:
case aco_opcode::ds_read_u16_d16_hi:
return byte == 2;
default:
break;
}
return byte == 0;
}
unsigned get_subdword_bytes_written(Program *program, const aco_ptr<Instruction>& instr, unsigned index)
{
chip_class chip = program->chip_class;
Definition def = instr->definitions[index];
if (instr->format == Format::PSEUDO)
return chip >= GFX8 ? def.bytes() : def.size() * 4u;
if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
return def.bytes();
switch (instr->opcode) {
case aco_opcode::buffer_load_ubyte_d16:
case aco_opcode::buffer_load_short_d16:
case aco_opcode::flat_load_ubyte_d16:
case aco_opcode::flat_load_short_d16:
case aco_opcode::scratch_load_ubyte_d16:
case aco_opcode::scratch_load_short_d16:
case aco_opcode::global_load_ubyte_d16:
case aco_opcode::global_load_short_d16:
case aco_opcode::ds_read_u8_d16:
case aco_opcode::ds_read_u16_d16:
case aco_opcode::buffer_load_ubyte_d16_hi:
case aco_opcode::buffer_load_short_d16_hi:
case aco_opcode::flat_load_ubyte_d16_hi:
case aco_opcode::flat_load_short_d16_hi:
case aco_opcode::scratch_load_ubyte_d16_hi:
case aco_opcode::scratch_load_short_d16_hi:
case aco_opcode::global_load_ubyte_d16_hi:
case aco_opcode::global_load_short_d16_hi:
case aco_opcode::ds_read_u8_d16_hi:
case aco_opcode::ds_read_u16_d16_hi:
return program->sram_ecc_enabled ? 4 : 2;
case aco_opcode::v_mad_f16:
case aco_opcode::v_mad_u16:
case aco_opcode::v_mad_i16:
case aco_opcode::v_fma_f16:
case aco_opcode::v_div_fixup_f16:
case aco_opcode::v_interp_p2_f16:
if (chip >= GFX9)
return 2;
default:
break;
}
return MAX2(chip >= GFX10 ? def.bytes() : 4, instr_info.definition_size[(int)instr->opcode] / 8u);
}
} /* end namespace */
bool validate_ra(Program *program) {
if (!(debug_flags & DEBUG_VALIDATE_RA))
return false;
bool err = false;
aco::live live_vars = aco::live_var_analysis(program);
std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size());
std::map<unsigned, Assignment> assignments;
for (Block& block : program->blocks) {
Location loc;
loc.block = &block;
for (aco_ptr<Instruction>& instr : block.instructions) {
if (instr->opcode == aco_opcode::p_phi) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isTemp() &&
instr->operands[i].getTemp().type() == RegType::sgpr &&
instr->operands[i].isFirstKill())
phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp());
}
}
loc.instr = instr.get();
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand& op = instr->operands[i];
if (!op.isTemp())
continue;
if (!op.isFixed())
err |= ra_fail(program, loc, Location(), "Operand %d is not assigned a register", i);
if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg())
err |= ra_fail(program, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i);
if ((op.getTemp().type() == RegType::vgpr && op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) ||
(op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < program->sgpr_limit))
err |= ra_fail(program, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i);
if (op.physReg() == vcc && !program->needs_vcc)
err |= ra_fail(program, loc, Location(), "Operand %d fixed to vcc but needs_vcc=false", i);
if (op.regClass().is_subdword() && !validate_subdword_operand(program->chip_class, instr, i))
err |= ra_fail(program, loc, Location(), "Operand %d not aligned correctly", i);
if (!assignments[op.tempId()].firstloc.block)
assignments[op.tempId()].firstloc = loc;
if (!assignments[op.tempId()].defloc.block)
assignments[op.tempId()].reg = op.physReg();
}
for (unsigned i = 0; i < instr->definitions.size(); i++) {
Definition& def = instr->definitions[i];
if (!def.isTemp())
continue;
if (!def.isFixed())
err |= ra_fail(program, loc, Location(), "Definition %d is not assigned a register", i);
if (assignments[def.tempId()].defloc.block)
err |= ra_fail(program, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId());
if ((def.getTemp().type() == RegType::vgpr && def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) ||
(def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < program->sgpr_limit))
err |= ra_fail(program, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i);
if (def.physReg() == vcc && !program->needs_vcc)
err |= ra_fail(program, loc, Location(), "Definition %d fixed to vcc but needs_vcc=false", i);
if (def.regClass().is_subdword() && !validate_subdword_definition(program->chip_class, instr))
err |= ra_fail(program, loc, Location(), "Definition %d not aligned correctly", i);
if (!assignments[def.tempId()].firstloc.block)
assignments[def.tempId()].firstloc = loc;
assignments[def.tempId()].defloc = loc;
assignments[def.tempId()].reg = def.physReg();
}
}
}
for (Block& block : program->blocks) {
Location loc;
loc.block = &block;
std::array<unsigned, 2048> regs; /* register file in bytes */
regs.fill(0);
std::set<Temp> live;
for (unsigned id : live_vars.live_out[block.index])
live.insert(Temp(id, program->temp_rc[id]));
/* remove killed p_phi sgpr operands */
for (Temp tmp : phi_sgpr_ops[block.index])
live.erase(tmp);
/* check live out */
for (Temp tmp : live) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.bytes(); i++) {
if (regs[reg.reg_b + i]) {
err |= ra_fail(program, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
}
regs[reg.reg_b + i] = tmp.id();
}
}
regs.fill(0);
for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) {
aco_ptr<Instruction>& instr = *it;
/* check killed p_phi sgpr operands */
if (instr->opcode == aco_opcode::p_logical_end) {
for (Temp tmp : phi_sgpr_ops[block.index]) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.bytes(); i++) {
if (regs[reg.reg_b + i])
err |= ra_fail(program, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
}
live.emplace(tmp);
}
}
for (const Definition& def : instr->definitions) {
if (!def.isTemp())
continue;
live.erase(def.getTemp());
}
/* don't count phi operands as live-in, since they are actually
* killed when they are copied at the predecessor */
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands) {
if (!op.isTemp())
continue;
live.insert(op.getTemp());
}
}
}
for (Temp tmp : live) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.bytes(); i++)
regs[reg.reg_b + i] = tmp.id();
}
for (aco_ptr<Instruction>& instr : block.instructions) {
loc.instr = instr.get();
/* remove killed p_phi operands from regs */
if (instr->opcode == aco_opcode::p_logical_end) {
for (Temp tmp : phi_sgpr_ops[block.index]) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.bytes(); i++)
regs[reg.reg_b + i] = 0;
}
}
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands) {
if (!op.isTemp())
continue;
if (op.isFirstKillBeforeDef()) {
for (unsigned j = 0; j < op.getTemp().bytes(); j++)
regs[op.physReg().reg_b + j] = 0;
}
}
}
for (unsigned i = 0; i < instr->definitions.size(); i++) {
Definition& def = instr->definitions[i];
if (!def.isTemp())
continue;
Temp tmp = def.getTemp();
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned j = 0; j < tmp.bytes(); j++) {
if (regs[reg.reg_b + j])
err |= ra_fail(program, loc, assignments.at(regs[reg.reg_b + j]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]);
regs[reg.reg_b + j] = tmp.id();
}
if (def.regClass().is_subdword() && def.bytes() < 4) {
unsigned written = get_subdword_bytes_written(program, instr, i);
/* If written=4, the instruction still might write the upper half. In that case, it's the lower half that isn't preserved */
for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) {
unsigned written_reg = reg.reg() * 4u + j;
if (regs[written_reg] && regs[written_reg] != def.tempId())
err |= ra_fail(program, loc, assignments.at(regs[written_reg]).defloc, "Assignment of element %d of %%%d overwrites the full register taken by %%%d from instruction", i, tmp.id(), regs[written_reg]);
}
}
}
for (const Definition& def : instr->definitions) {
if (!def.isTemp())
continue;
if (def.isKill()) {
for (unsigned j = 0; j < def.getTemp().bytes(); j++)
regs[def.physReg().reg_b + j] = 0;
}
}
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands) {
if (!op.isTemp())
continue;
if (op.isLateKill() && op.isFirstKill()) {
for (unsigned j = 0; j < op.getTemp().bytes(); j++)
regs[op.physReg().reg_b + j] = 0;
}
}
}
}
}
return err;
}
}