blob: 6448987e3c2b71dd58013156dae812d831194ae1 [file] [log] [blame]
/*
* Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "util/dag.h"
#include "util/u_math.h"
#include "ir3.h"
#include "ir3_compiler.h"
#ifdef DEBUG
#define SCHED_DEBUG (ir3_shader_debug & IR3_DBG_SCHEDMSGS)
#else
#define SCHED_DEBUG 0
#endif
#define d(fmt, ...) do { if (SCHED_DEBUG) { \
printf("SCHED: "fmt"\n", ##__VA_ARGS__); \
} } while (0)
#define di(instr, fmt, ...) do { if (SCHED_DEBUG) { \
printf("SCHED: "fmt": ", ##__VA_ARGS__); \
ir3_print_instr(instr); \
} } while (0)
/*
* Instruction Scheduling:
*
* A block-level pre-RA scheduler, which works by creating a DAG of
* instruction dependencies, and heuristically picking a DAG head
* (instruction with no unscheduled dependencies).
*
* Where possible, it tries to pick instructions that avoid nop delay
* slots, but it will prefer to pick instructions that reduce (or do
* not increase) the number of live values.
*
* If the only possible choices are instructions that increase the
* number of live values, it will try to pick the one with the earliest
* consumer (based on pre-sched program order).
*
* There are a few special cases that need to be handled, since sched
* is currently independent of register allocation. Usages of address
* register (a0.x) or predicate register (p0.x) must be serialized. Ie.
* if you have two pairs of instructions that write the same special
* register and then read it, then those pairs cannot be interleaved.
* To solve this, when we are in such a scheduling "critical section",
* and we encounter a conflicting write to a special register, we try
* to schedule any remaining instructions that use that value first.
*
* TODO we can detect too-large live_values here.. would be a good place
* to "spill" cheap things, like move from uniform/immed. (Constructing
* list of ssa def consumers before sched pass would make this easier.
* Also, in general it is general it might be best not to re-use load_immed
* across blocks.
*
* TODO we can use (abs)/(neg) src modifiers in a lot of cases to reduce
* the # of immediates in play (or at least that would help with
* dEQP-GLES31.functional.ubo.random.all_per_block_buffers.*).. probably
* do this in a nir pass that inserts fneg/etc? The cp pass should fold
* these into src modifiers..
*/
struct ir3_sched_ctx {
struct ir3_block *block; /* the current block */
struct dag *dag;
struct list_head unscheduled_list; /* unscheduled instructions */
struct ir3_instruction *scheduled; /* last scheduled instr */
struct ir3_instruction *addr0; /* current a0.x user, if any */
struct ir3_instruction *addr1; /* current a1.x user, if any */
struct ir3_instruction *pred; /* current p0.x user, if any */
int remaining_kills;
int remaining_tex;
bool error;
int sfu_delay;
int tex_delay;
};
struct ir3_sched_node {
struct dag_node dag; /* must be first for util_dynarray_foreach */
struct ir3_instruction *instr;
unsigned delay;
unsigned max_delay;
/* For instructions that are a meta:collect src, once we schedule
* the first src of the collect, the entire vecN is live (at least
* from the PoV of the first RA pass.. the 2nd scalar pass can fill
* in some of the gaps, but often not all). So we want to help out
* RA, and realize that as soon as we schedule the first collect
* src, there is no penalty to schedule the remainder (ie. they
* don't make additional values live). In fact we'd prefer to
* schedule the rest ASAP to minimize the live range of the vecN.
*
* For instructions that are the src of a collect, we track the
* corresponding collect, and mark them as partially live as soon
* as any one of the src's is scheduled.
*/
struct ir3_instruction *collect;
bool partially_live;
/* Is this instruction a direct or indirect dependency for a kill?
* If so, we should prioritize it when possible
*/
bool kill_path;
/* This node represents a shader output. A semi-common pattern in
* shaders is something along the lines of:
*
* fragcolor.w = 1.0
*
* Which we'd prefer to schedule as late as possible, since it
* produces a live value that is never killed/consumed. So detect
* outputs up-front, and avoid scheduling them unless the reduce
* register pressure (or at least are neutral)
*/
bool output;
};
#define foreach_sched_node(__n, __list) \
list_for_each_entry(struct ir3_sched_node, __n, __list, dag.link)
static void sched_node_init(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr);
static void sched_node_add_dep(struct ir3_instruction *instr, struct ir3_instruction *src, int i);
static bool is_scheduled(struct ir3_instruction *instr)
{
return !!(instr->flags & IR3_INSTR_MARK);
}
static void
schedule(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
debug_assert(ctx->block == instr->block);
/* remove from depth list:
*/
list_delinit(&instr->node);
if (writes_addr0(instr)) {
debug_assert(ctx->addr0 == NULL);
ctx->addr0 = instr;
}
if (writes_addr1(instr)) {
debug_assert(ctx->addr1 == NULL);
ctx->addr1 = instr;
}
if (writes_pred(instr)) {
debug_assert(ctx->pred == NULL);
ctx->pred = instr;
}
instr->flags |= IR3_INSTR_MARK;
di(instr, "schedule");
list_addtail(&instr->node, &instr->block->instr_list);
ctx->scheduled = instr;
if (is_kill(instr)){
assert(ctx->remaining_kills > 0);
ctx->remaining_kills--;
}
struct ir3_sched_node *n = instr->data;
/* If this instruction is a meta:collect src, mark the remaining
* collect srcs as partially live.
*/
if (n->collect) {
foreach_ssa_src (src, n->collect) {
if (src->block != instr->block)
continue;
struct ir3_sched_node *sn = src->data;
sn->partially_live = true;
}
}
dag_prune_head(ctx->dag, &n->dag);
if (is_meta(instr) && (instr->opc != OPC_META_TEX_PREFETCH))
return;
if (is_sfu(instr)) {
ctx->sfu_delay = 8;
} else if (check_src_cond(instr, is_sfu)) {
ctx->sfu_delay = 0;
} else if (ctx->sfu_delay > 0) {
ctx->sfu_delay--;
}
if (is_tex_or_prefetch(instr)) {
/* NOTE that this isn't an attempt to hide texture fetch latency,
* but an attempt to hide the cost of switching to another warp.
* If we can, we'd like to try to schedule another texture fetch
* before scheduling something that would sync.
*/
ctx->tex_delay = 10;
assert(ctx->remaining_tex > 0);
ctx->remaining_tex--;
} else if (check_src_cond(instr, is_tex_or_prefetch)) {
ctx->tex_delay = 0;
} else if (ctx->tex_delay > 0) {
ctx->tex_delay--;
}
}
struct ir3_sched_notes {
/* there is at least one kill which could be scheduled, except
* for unscheduled bary.f's:
*/
bool blocked_kill;
/* there is at least one instruction that could be scheduled,
* except for conflicting address/predicate register usage:
*/
bool addr0_conflict, addr1_conflict, pred_conflict;
};
/* could an instruction be scheduled if specified ssa src was scheduled? */
static bool
could_sched(struct ir3_instruction *instr, struct ir3_instruction *src)
{
foreach_ssa_src (other_src, instr) {
/* if dependency not scheduled, we aren't ready yet: */
if ((src != other_src) && !is_scheduled(other_src)) {
return false;
}
}
return true;
}
/* Check if instruction is ok to schedule. Make sure it is not blocked
* by use of addr/predicate register, etc.
*/
static bool
check_instr(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
struct ir3_instruction *instr)
{
debug_assert(!is_scheduled(instr));
if (ctx->remaining_kills && (is_tex(instr) || is_mem(instr))) {
/* avoid texture/memory access if we have unscheduled kills
* that could make the expensive operation unnecessary. By
* definition, if there are remaining kills, and this instr
* is not a dependency of a kill, there are other instructions
* that we can choose from.
*/
struct ir3_sched_node *n = instr->data;
if (!n->kill_path)
return false;
}
/* For instructions that write address register we need to
* make sure there is at least one instruction that uses the
* addr value which is otherwise ready.
*
* NOTE if any instructions use pred register and have other
* src args, we would need to do the same for writes_pred()..
*/
if (writes_addr0(instr)) {
struct ir3 *ir = instr->block->shader;
bool ready = false;
for (unsigned i = 0; (i < ir->a0_users_count) && !ready; i++) {
struct ir3_instruction *indirect = ir->a0_users[i];
if (!indirect)
continue;
if (indirect->address != instr)
continue;
ready = could_sched(indirect, instr);
}
/* nothing could be scheduled, so keep looking: */
if (!ready)
return false;
}
if (writes_addr1(instr)) {
struct ir3 *ir = instr->block->shader;
bool ready = false;
for (unsigned i = 0; (i < ir->a1_users_count) && !ready; i++) {
struct ir3_instruction *indirect = ir->a1_users[i];
if (!indirect)
continue;
if (indirect->address != instr)
continue;
ready = could_sched(indirect, instr);
}
/* nothing could be scheduled, so keep looking: */
if (!ready)
return false;
}
/* if this is a write to address/predicate register, and that
* register is currently in use, we need to defer until it is
* free:
*/
if (writes_addr0(instr) && ctx->addr0) {
debug_assert(ctx->addr0 != instr);
notes->addr0_conflict = true;
return false;
}
if (writes_addr1(instr) && ctx->addr1) {
debug_assert(ctx->addr1 != instr);
notes->addr1_conflict = true;
return false;
}
if (writes_pred(instr) && ctx->pred) {
debug_assert(ctx->pred != instr);
notes->pred_conflict = true;
return false;
}
/* if the instruction is a kill, we need to ensure *every*
* bary.f is scheduled. The hw seems unhappy if the thread
* gets killed before the end-input (ei) flag is hit.
*
* We could do this by adding each bary.f instruction as
* virtual ssa src for the kill instruction. But we have
* fixed length instr->regs[].
*
* TODO we could handle this by false-deps now, probably.
*/
if (is_kill(instr)) {
struct ir3 *ir = instr->block->shader;
for (unsigned i = 0; i < ir->baryfs_count; i++) {
struct ir3_instruction *baryf = ir->baryfs[i];
if (baryf->flags & IR3_INSTR_UNUSED)
continue;
if (!is_scheduled(baryf)) {
notes->blocked_kill = true;
return false;
}
}
}
return true;
}
/* Find the instr->ip of the closest use of an instruction, in
* pre-sched order. This isn't going to be the same as post-sched
* order, but it is a reasonable approximation to limit scheduling
* instructions *too* early. This is mostly to prevent bad behavior
* in cases where we have a large number of possible instructions
* to choose, to avoid creating too much parallelism (ie. blowing
* up register pressure)
*
* See dEQP-GLES31.functional.atomic_counter.layout.reverse_offset.inc_dec.8_counters_5_calls_1_thread
*/
static int
nearest_use(struct ir3_instruction *instr)
{
unsigned nearest = ~0;
foreach_ssa_use (use, instr)
if (!is_scheduled(use))
nearest = MIN2(nearest, use->ip);
/* slight hack.. this heuristic tends to push bary.f's to later
* in the shader, closer to their uses. But we actually would
* prefer to get these scheduled earlier, to unlock varying
* storage for more VS jobs:
*/
if (is_input(instr))
nearest /= 2;
return nearest;
}
static int
use_count(struct ir3_instruction *instr)
{
unsigned cnt = 0;
foreach_ssa_use (use, instr)
if (!is_scheduled(use))
cnt++;
return cnt;
}
/* find net change to live values if instruction were scheduled: */
static int
live_effect(struct ir3_instruction *instr)
{
struct ir3_sched_node *n = instr->data;
int new_live = n->partially_live ? 0 : dest_regs(instr);
int freed_live = 0;
/* if we schedule something that causes a vecN to be live,
* then count all it's other components too:
*/
if (n->collect)
new_live *= n->collect->regs_count - 1;
foreach_ssa_src_n (src, n, instr) {
if (__is_false_dep(instr, n))
continue;
if (instr->block != src->block)
continue;
if (use_count(src) == 1)
freed_live += dest_regs(src);
}
return new_live - freed_live;
}
/* Determine if this is an instruction that we'd prefer not to schedule
* yet, in order to avoid an (ss)/(sy) sync. This is limited by the
* sfu_delay/tex_delay counters, ie. the more cycles it has been since
* the last SFU/tex, the less costly a sync would be.
*/
static bool
would_sync(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
if (ctx->sfu_delay) {
if (check_src_cond(instr, is_sfu))
return true;
}
/* We mostly just want to try to schedule another texture fetch
* before scheduling something that would (sy) sync, so we can
* limit this rule to cases where there are remaining texture
* fetches
*/
if (ctx->tex_delay && ctx->remaining_tex) {
if (check_src_cond(instr, is_tex_or_prefetch))
return true;
}
return false;
}
static struct ir3_sched_node *
choose_instr_inc(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
bool avoid_sync, bool avoid_output);
/**
* Chooses an instruction to schedule using the Goodman/Hsu (1988) CSR (Code
* Scheduling for Register pressure) heuristic.
*
* Only handles the case of choosing instructions that reduce register pressure
* or are even.
*/
static struct ir3_sched_node *
choose_instr_dec(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
bool avoid_sync)
{
const char *mode = avoid_sync ? "-as" : "";
struct ir3_sched_node *chosen = NULL;
/* Find a ready inst with regs freed and pick the one with max cost. */
foreach_sched_node (n, &ctx->dag->heads) {
if (avoid_sync && would_sync(ctx, n->instr))
continue;
unsigned d = ir3_delay_calc(ctx->block, n->instr, false, false);
if (d > 0)
continue;
if (live_effect(n->instr) > -1)
continue;
if (!check_instr(ctx, notes, n->instr))
continue;
if (!chosen || chosen->max_delay < n->max_delay) {
chosen = n;
}
}
if (chosen) {
di(chosen->instr, "dec%s: chose (freed+ready)", mode);
return chosen;
}
/* Find a leader with regs freed and pick the one with max cost. */
foreach_sched_node (n, &ctx->dag->heads) {
if (avoid_sync && would_sync(ctx, n->instr))
continue;
if (live_effect(n->instr) > -1)
continue;
if (!check_instr(ctx, notes, n->instr))
continue;
if (!chosen || chosen->max_delay < n->max_delay) {
chosen = n;
}
}
if (chosen) {
di(chosen->instr, "dec%s: chose (freed)", mode);
return chosen;
}
/* Contra the paper, pick a leader with no effect on used regs. This may
* open up new opportunities, as otherwise a single-operand instr consuming
* a value will tend to block finding freeing that value. This had a
* massive effect on reducing spilling on V3D.
*
* XXX: Should this prioritize ready?
*/
foreach_sched_node (n, &ctx->dag->heads) {
if (avoid_sync && would_sync(ctx, n->instr))
continue;
unsigned d = ir3_delay_calc(ctx->block, n->instr, false, false);
if (d > 0)
continue;
if (live_effect(n->instr) > 0)
continue;
if (!check_instr(ctx, notes, n->instr))
continue;
if (!chosen || chosen->max_delay < n->max_delay)
chosen = n;
}
if (chosen) {
di(chosen->instr, "dec%s: chose (neutral+ready)", mode);
return chosen;
}
foreach_sched_node (n, &ctx->dag->heads) {
if (avoid_sync && would_sync(ctx, n->instr))
continue;
if (live_effect(n->instr) > 0)
continue;
if (!check_instr(ctx, notes, n->instr))
continue;
if (!chosen || chosen->max_delay < n->max_delay)
chosen = n;
}
if (chosen) {
di(chosen->instr, "dec%s: chose (neutral)", mode);
return chosen;
}
return choose_instr_inc(ctx, notes, avoid_sync, true);
}
/**
* When we can't choose an instruction that reduces register pressure or
* is neutral, we end up here to try and pick the least bad option.
*/
static struct ir3_sched_node *
choose_instr_inc(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
bool avoid_sync, bool avoid_output)
{
const char *mode = avoid_sync ? "-as" : "";
struct ir3_sched_node *chosen = NULL;
/*
* From hear on out, we are picking something that increases
* register pressure. So try to pick something which will
* be consumed soon:
*/
unsigned chosen_distance = 0;
/* Pick the max delay of the remaining ready set. */
foreach_sched_node (n, &ctx->dag->heads) {
if (avoid_output && n->output)
continue;
if (avoid_sync && would_sync(ctx, n->instr))
continue;
unsigned d = ir3_delay_calc(ctx->block, n->instr, false, false);
if (d > 0)
continue;
if (!check_instr(ctx, notes, n->instr))
continue;
unsigned distance = nearest_use(n->instr);
if (!chosen || distance < chosen_distance) {
chosen = n;
chosen_distance = distance;
}
}
if (chosen) {
di(chosen->instr, "inc%s: chose (distance+ready)", mode);
return chosen;
}
/* Pick the max delay of the remaining leaders. */
foreach_sched_node (n, &ctx->dag->heads) {
if (avoid_output && n->output)
continue;
if (avoid_sync && would_sync(ctx, n->instr))
continue;
if (!check_instr(ctx, notes, n->instr))
continue;
unsigned distance = nearest_use(n->instr);
if (!chosen || distance < chosen_distance) {
chosen = n;
chosen_distance = distance;
}
}
if (chosen) {
di(chosen->instr, "inc%s: chose (distance)", mode);
return chosen;
}
return NULL;
}
/* Handles instruction selections for instructions we want to prioritize
* even if csp/csr would not pick them.
*/
static struct ir3_sched_node *
choose_instr_prio(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes)
{
struct ir3_sched_node *chosen = NULL;
foreach_sched_node (n, &ctx->dag->heads) {
if (!is_meta(n->instr))
continue;
if (!chosen || (chosen->max_delay < n->max_delay))
chosen = n;
}
if (chosen) {
di(chosen->instr, "prio: chose (meta)");
return chosen;
}
return NULL;
}
static void
dump_state(struct ir3_sched_ctx *ctx)
{
if (!SCHED_DEBUG)
return;
foreach_sched_node (n, &ctx->dag->heads) {
di(n->instr, "maxdel=%3d le=%d del=%u ",
n->max_delay, live_effect(n->instr),
ir3_delay_calc(ctx->block, n->instr, false, false));
util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
struct ir3_sched_node *child = (struct ir3_sched_node *)edge->child;
di(child->instr, " -> (%d parents) ", child->dag.parent_count);
}
}
}
/* find instruction to schedule: */
static struct ir3_instruction *
choose_instr(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes)
{
struct ir3_sched_node *chosen;
dump_state(ctx);
chosen = choose_instr_prio(ctx, notes);
if (chosen)
return chosen->instr;
chosen = choose_instr_dec(ctx, notes, true);
if (chosen)
return chosen->instr;
chosen = choose_instr_dec(ctx, notes, false);
if (chosen)
return chosen->instr;
chosen = choose_instr_inc(ctx, notes, false, false);
if (chosen)
return chosen->instr;
return NULL;
}
static struct ir3_instruction *
split_instr(struct ir3_sched_ctx *ctx, struct ir3_instruction *orig_instr)
{
struct ir3_instruction *new_instr = ir3_instr_clone(orig_instr);
di(new_instr, "split instruction");
sched_node_init(ctx, new_instr);
return new_instr;
}
/* "spill" the address registers by remapping any unscheduled
* instructions which depend on the current address register
* to a clone of the instruction which wrote the address reg.
*/
static struct ir3_instruction *
split_addr(struct ir3_sched_ctx *ctx, struct ir3_instruction **addr,
struct ir3_instruction **users, unsigned users_count)
{
struct ir3_instruction *new_addr = NULL;
unsigned i;
debug_assert(*addr);
for (i = 0; i < users_count; i++) {
struct ir3_instruction *indirect = users[i];
if (!indirect)
continue;
/* skip instructions already scheduled: */
if (is_scheduled(indirect))
continue;
/* remap remaining instructions using current addr
* to new addr:
*/
if (indirect->address == *addr) {
if (!new_addr) {
new_addr = split_instr(ctx, *addr);
/* original addr is scheduled, but new one isn't: */
new_addr->flags &= ~IR3_INSTR_MARK;
}
indirect->address = new_addr;
/* don't need to remove old dag edge since old addr is
* already scheduled:
*/
sched_node_add_dep(indirect, new_addr, 0);
di(indirect, "new address");
}
}
/* all remaining indirects remapped to new addr: */
*addr = NULL;
return new_addr;
}
/* "spill" the predicate register by remapping any unscheduled
* instructions which depend on the current predicate register
* to a clone of the instruction which wrote the address reg.
*/
static struct ir3_instruction *
split_pred(struct ir3_sched_ctx *ctx)
{
struct ir3 *ir;
struct ir3_instruction *new_pred = NULL;
unsigned i;
debug_assert(ctx->pred);
ir = ctx->pred->block->shader;
for (i = 0; i < ir->predicates_count; i++) {
struct ir3_instruction *predicated = ir->predicates[i];
/* skip instructions already scheduled: */
if (is_scheduled(predicated))
continue;
/* remap remaining instructions using current pred
* to new pred:
*
* TODO is there ever a case when pred isn't first
* (and only) src?
*/
if (ssa(predicated->regs[1]) == ctx->pred) {
if (!new_pred) {
new_pred = split_instr(ctx, ctx->pred);
/* original pred is scheduled, but new one isn't: */
new_pred->flags &= ~IR3_INSTR_MARK;
}
predicated->regs[1]->instr = new_pred;
/* don't need to remove old dag edge since old pred is
* already scheduled:
*/
sched_node_add_dep(predicated, new_pred, 0);
di(predicated, "new predicate");
}
}
/* all remaining predicated remapped to new pred: */
ctx->pred = NULL;
return new_pred;
}
static void
sched_node_init(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
struct ir3_sched_node *n = rzalloc(ctx->dag, struct ir3_sched_node);
dag_init_node(ctx->dag, &n->dag);
n->instr = instr;
instr->data = n;
}
static void
sched_node_add_dep(struct ir3_instruction *instr, struct ir3_instruction *src, int i)
{
/* don't consider dependencies in other blocks: */
if (src->block != instr->block)
return;
/* we could have false-dep's that end up unused: */
if (src->flags & IR3_INSTR_UNUSED) {
debug_assert(__is_false_dep(instr, i));
return;
}
struct ir3_sched_node *n = instr->data;
struct ir3_sched_node *sn = src->data;
/* If src is consumed by a collect, track that to realize that once
* any of the collect srcs are live, we should hurry up and schedule
* the rest.
*/
if (instr->opc == OPC_META_COLLECT)
sn->collect = instr;
dag_add_edge(&sn->dag, &n->dag, NULL);
unsigned d = ir3_delayslots(src, instr, i, true);
n->delay = MAX2(n->delay, d);
}
static void
mark_kill_path(struct ir3_instruction *instr)
{
struct ir3_sched_node *n = instr->data;
n->kill_path = true;
foreach_ssa_src (src, instr) {
if (src->block != instr->block)
continue;
mark_kill_path(src);
}
}
/* Is it an output? */
static bool
is_output_collect(struct ir3_instruction *instr)
{
struct ir3 *ir = instr->block->shader;
for (unsigned i = 0; i < ir->outputs_count; i++) {
struct ir3_instruction *collect = ir->outputs[i];
assert(collect->opc == OPC_META_COLLECT);
if (instr == collect)
return true;
}
return false;
}
/* Is it's only use as output? */
static bool
is_output_only(struct ir3_instruction *instr)
{
if (!writes_gpr(instr))
return false;
if (!(instr->regs[0]->flags & IR3_REG_SSA))
return false;
foreach_ssa_use (use, instr)
if (!is_output_collect(use))
return false;
return true;
}
static void
sched_node_add_deps(struct ir3_instruction *instr)
{
/* Since foreach_ssa_src() already handles false-dep's we can construct
* the DAG easily in a single pass.
*/
foreach_ssa_src_n (src, i, instr) {
sched_node_add_dep(instr, src, i);
}
/* NOTE that all inputs must be scheduled before a kill, so
* mark these to be prioritized as well:
*/
if (is_kill(instr) || is_input(instr)) {
mark_kill_path(instr);
}
if (is_output_only(instr)) {
struct ir3_sched_node *n = instr->data;
n->output = true;
}
}
static void
sched_dag_max_delay_cb(struct dag_node *node, void *state)
{
struct ir3_sched_node *n = (struct ir3_sched_node *)node;
uint32_t max_delay = 0;
util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
struct ir3_sched_node *child = (struct ir3_sched_node *)edge->child;
max_delay = MAX2(child->max_delay, max_delay);
}
n->max_delay = MAX2(n->max_delay, max_delay + n->delay);
}
static void
sched_dag_init(struct ir3_sched_ctx *ctx)
{
ctx->dag = dag_create(ctx);
foreach_instr (instr, &ctx->unscheduled_list) {
sched_node_init(ctx, instr);
sched_node_add_deps(instr);
}
dag_traverse_bottom_up(ctx->dag, sched_dag_max_delay_cb, NULL);
}
static void
sched_dag_destroy(struct ir3_sched_ctx *ctx)
{
ralloc_free(ctx->dag);
ctx->dag = NULL;
}
static void
sched_block(struct ir3_sched_ctx *ctx, struct ir3_block *block)
{
ctx->block = block;
/* addr/pred writes are per-block: */
ctx->addr0 = NULL;
ctx->addr1 = NULL;
ctx->pred = NULL;
ctx->tex_delay = 0;
ctx->sfu_delay = 0;
/* move all instructions to the unscheduled list, and
* empty the block's instruction list (to which we will
* be inserting).
*/
list_replace(&block->instr_list, &ctx->unscheduled_list);
list_inithead(&block->instr_list);
sched_dag_init(ctx);
ctx->remaining_kills = 0;
ctx->remaining_tex = 0;
foreach_instr_safe (instr, &ctx->unscheduled_list) {
if (is_kill(instr))
ctx->remaining_kills++;
if (is_tex_or_prefetch(instr))
ctx->remaining_tex++;
}
/* First schedule all meta:input instructions, followed by
* tex-prefetch. We want all of the instructions that load
* values into registers before the shader starts to go
* before any other instructions. But in particular we
* want inputs to come before prefetches. This is because
* a FS's bary_ij input may not actually be live in the
* shader, but it should not be scheduled on top of any
* other input (but can be overwritten by a tex prefetch)
*/
foreach_instr_safe (instr, &ctx->unscheduled_list)
if (instr->opc == OPC_META_INPUT)
schedule(ctx, instr);
foreach_instr_safe (instr, &ctx->unscheduled_list)
if (instr->opc == OPC_META_TEX_PREFETCH)
schedule(ctx, instr);
while (!list_is_empty(&ctx->unscheduled_list)) {
struct ir3_sched_notes notes = {0};
struct ir3_instruction *instr;
instr = choose_instr(ctx, &notes);
if (instr) {
unsigned delay = ir3_delay_calc(ctx->block, instr, false, false);
d("delay=%u", delay);
/* and if we run out of instructions that can be scheduled,
* then it is time for nop's:
*/
debug_assert(delay <= 6);
while (delay > 0) {
ir3_NOP(block);
delay--;
}
schedule(ctx, instr);
} else {
struct ir3_instruction *new_instr = NULL;
struct ir3 *ir = block->shader;
/* nothing available to schedule.. if we are blocked on
* address/predicate register conflict, then break the
* deadlock by cloning the instruction that wrote that
* reg:
*/
if (notes.addr0_conflict) {
new_instr = split_addr(ctx, &ctx->addr0,
ir->a0_users, ir->a0_users_count);
} else if (notes.addr1_conflict) {
new_instr = split_addr(ctx, &ctx->addr1,
ir->a1_users, ir->a1_users_count);
} else if (notes.pred_conflict) {
new_instr = split_pred(ctx);
} else {
d("unscheduled_list:");
foreach_instr (instr, &ctx->unscheduled_list)
di(instr, "unscheduled: ");
debug_assert(0);
ctx->error = true;
return;
}
if (new_instr) {
list_delinit(&new_instr->node);
list_addtail(&new_instr->node, &ctx->unscheduled_list);
}
}
}
sched_dag_destroy(ctx);
}
int ir3_sched(struct ir3 *ir)
{
struct ir3_sched_ctx *ctx = rzalloc(NULL, struct ir3_sched_ctx);
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
instr->data = NULL;
}
}
ir3_count_instructions(ir);
ir3_clear_mark(ir);
ir3_find_ssa_uses(ir, ctx, false);
foreach_block (block, &ir->block_list) {
sched_block(ctx, block);
}
int ret = ctx->error ? -1 : 0;
ralloc_free(ctx);
return ret;
}
static unsigned
get_array_id(struct ir3_instruction *instr)
{
/* The expectation is that there is only a single array
* src or dst, ir3_cp should enforce this.
*/
for (unsigned i = 0; i < instr->regs_count; i++)
if (instr->regs[i]->flags & IR3_REG_ARRAY)
return instr->regs[i]->array.id;
unreachable("this was unexpected");
}
/* does instruction 'prior' need to be scheduled before 'instr'? */
static bool
depends_on(struct ir3_instruction *instr, struct ir3_instruction *prior)
{
/* TODO for dependencies that are related to a specific object, ie
* a specific SSBO/image/array, we could relax this constraint to
* make accesses to unrelated objects not depend on each other (at
* least as long as not declared coherent)
*/
if (((instr->barrier_class & IR3_BARRIER_EVERYTHING) && prior->barrier_class) ||
((prior->barrier_class & IR3_BARRIER_EVERYTHING) && instr->barrier_class))
return true;
if (instr->barrier_class & prior->barrier_conflict) {
if (!(instr->barrier_class & ~(IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W))) {
/* if only array barrier, then we can further limit false-deps
* by considering the array-id, ie reads/writes to different
* arrays do not depend on each other (no aliasing)
*/
if (get_array_id(instr) != get_array_id(prior)) {
return false;
}
}
return true;
}
return false;
}
static void
add_barrier_deps(struct ir3_block *block, struct ir3_instruction *instr)
{
struct list_head *prev = instr->node.prev;
struct list_head *next = instr->node.next;
/* add dependencies on previous instructions that must be scheduled
* prior to the current instruction
*/
while (prev != &block->instr_list) {
struct ir3_instruction *pi =
LIST_ENTRY(struct ir3_instruction, prev, node);
prev = prev->prev;
if (is_meta(pi))
continue;
if (instr->barrier_class == pi->barrier_class) {
ir3_instr_add_dep(instr, pi);
break;
}
if (depends_on(instr, pi))
ir3_instr_add_dep(instr, pi);
}
/* add dependencies on this instruction to following instructions
* that must be scheduled after the current instruction:
*/
while (next != &block->instr_list) {
struct ir3_instruction *ni =
LIST_ENTRY(struct ir3_instruction, next, node);
next = next->next;
if (is_meta(ni))
continue;
if (instr->barrier_class == ni->barrier_class) {
ir3_instr_add_dep(ni, instr);
break;
}
if (depends_on(ni, instr))
ir3_instr_add_dep(ni, instr);
}
}
/* before scheduling a block, we need to add any necessary false-dependencies
* to ensure that:
*
* (1) barriers are scheduled in the right order wrt instructions related
* to the barrier
*
* (2) reads that come before a write actually get scheduled before the
* write
*/
bool
ir3_sched_add_deps(struct ir3 *ir)
{
bool progress = false;
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
if (instr->barrier_class) {
add_barrier_deps(block, instr);
progress = true;
}
}
}
return progress;
}