blob: eac027f9e67aaf0de4a3753d2b9a46a665622a72 [file] [log] [blame]
/*
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/ralloc.h"
#include "util/register_allocate.h"
#include "common/v3d_device_info.h"
#include "v3d_compiler.h"
#define QPU_R(i) { .magic = false, .index = i }
#define ACC_INDEX 0
#define ACC_COUNT 6
#define PHYS_INDEX (ACC_INDEX + ACC_COUNT)
#define PHYS_COUNT 64
static inline bool
qinst_writes_tmu(struct qinst *inst)
{
return (inst->dst.file == QFILE_MAGIC &&
v3d_qpu_magic_waddr_is_tmu(inst->dst.index));
}
static bool
is_last_ldtmu(struct qinst *inst, struct qblock *block)
{
list_for_each_entry_from(struct qinst, scan_inst, inst->link.next,
&block->instructions, link) {
if (scan_inst->qpu.sig.ldtmu)
return false;
if (qinst_writes_tmu(scan_inst))
return true;
}
return true;
}
static bool
vir_is_mov_uniform(struct v3d_compile *c, int temp)
{
struct qinst *def = c->defs[temp];
return def && def->qpu.sig.ldunif;
}
static int
v3d_choose_spill_node(struct v3d_compile *c, struct ra_graph *g,
uint32_t *temp_to_node)
{
const float tmu_scale = 5;
float block_scale = 1.0;
float spill_costs[c->num_temps];
bool in_tmu_operation = false;
bool started_last_seg = false;
for (unsigned i = 0; i < c->num_temps; i++)
spill_costs[i] = 0.0;
/* XXX: Scale the cost up when inside of a loop. */
vir_for_each_block(block, c) {
vir_for_each_inst(inst, block) {
/* We can't insert a new TMU operation while currently
* in a TMU operation, and we can't insert new thread
* switches after starting output writes.
*/
bool no_spilling =
(in_tmu_operation ||
(c->threads > 1 && started_last_seg));
for (int i = 0; i < vir_get_nsrc(inst); i++) {
if (inst->src[i].file != QFILE_TEMP)
continue;
int temp = inst->src[i].index;
if (vir_is_mov_uniform(c, temp)) {
spill_costs[temp] += block_scale;
} else if (!no_spilling) {
spill_costs[temp] += (block_scale *
tmu_scale);
} else {
BITSET_CLEAR(c->spillable, temp);
}
}
if (inst->dst.file == QFILE_TEMP) {
int temp = inst->dst.index;
if (vir_is_mov_uniform(c, temp)) {
/* We just rematerialize the unform
* later.
*/
} else if (!no_spilling) {
spill_costs[temp] += (block_scale *
tmu_scale);
} else {
BITSET_CLEAR(c->spillable, temp);
}
}
/* Refuse to spill a ldvary's dst, because that means
* that ldvary's r5 would end up being used across a
* thrsw.
*/
if (inst->qpu.sig.ldvary) {
assert(inst->dst.file == QFILE_TEMP);
BITSET_CLEAR(c->spillable, inst->dst.index);
}
if (inst->is_last_thrsw)
started_last_seg = true;
if (v3d_qpu_writes_vpm(&inst->qpu) ||
v3d_qpu_uses_tlb(&inst->qpu))
started_last_seg = true;
/* Track when we're in between a TMU setup and the
* final LDTMU or TMUWT from that TMU setup. We can't
* spill/fill any temps during that time, because that
* involves inserting a new TMU setup/LDTMU sequence.
*/
if (inst->qpu.sig.ldtmu &&
is_last_ldtmu(inst, block))
in_tmu_operation = false;
if (inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
inst->qpu.alu.add.op == V3D_QPU_A_TMUWT)
in_tmu_operation = false;
if (qinst_writes_tmu(inst))
in_tmu_operation = true;
}
}
for (unsigned i = 0; i < c->num_temps; i++) {
int node = temp_to_node[i];
if (BITSET_TEST(c->spillable, i))
ra_set_node_spill_cost(g, node, spill_costs[i]);
}
return ra_get_best_spill_node(g);
}
/* The spill offset for this thread takes a bit of setup, so do it once at
* program start.
*/
void
v3d_setup_spill_base(struct v3d_compile *c)
{
c->cursor = vir_before_block(vir_entry_block(c));
int start_num_temps = c->num_temps;
/* Each thread wants to be in a separate region of the scratch space
* so that the QPUs aren't fighting over cache lines. We have the
* driver keep a single global spill BO rather than
* per-spilling-program BOs, so we need a uniform from the driver for
* what the per-thread scale is.
*/
struct qreg thread_offset =
vir_UMUL(c,
vir_TIDX(c),
vir_uniform(c, QUNIFORM_SPILL_SIZE_PER_THREAD, 0));
/* Each channel in a reg is 4 bytes, so scale them up by that. */
struct qreg element_offset = vir_SHL(c, vir_EIDX(c),
vir_uniform_ui(c, 2));
c->spill_base = vir_ADD(c,
vir_ADD(c, thread_offset, element_offset),
vir_uniform(c, QUNIFORM_SPILL_OFFSET, 0));
/* Make sure that we don't spill the spilling setup instructions. */
for (int i = start_num_temps; i < c->num_temps; i++)
BITSET_CLEAR(c->spillable, i);
c->cursor = vir_after_block(c->cur_block);
}
static void
v3d_emit_spill_tmua(struct v3d_compile *c, uint32_t spill_offset)
{
vir_ADD_dest(c, vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_TMUA),
c->spill_base,
vir_uniform_ui(c, spill_offset));
}
static void
v3d_spill_reg(struct v3d_compile *c, int spill_temp)
{
bool is_uniform = vir_is_mov_uniform(c, spill_temp);
uint32_t spill_offset = 0;
if (!is_uniform) {
uint32_t spill_offset = c->spill_size;
c->spill_size += V3D_CHANNELS * sizeof(uint32_t);
if (spill_offset == 0)
v3d_setup_spill_base(c);
}
struct qinst *last_thrsw = c->last_thrsw;
assert(!last_thrsw || last_thrsw->is_last_thrsw);
int start_num_temps = c->num_temps;
int uniform_index = ~0;
if (is_uniform) {
struct qinst *orig_unif = c->defs[spill_temp];
uniform_index = orig_unif->uniform;
}
vir_for_each_inst_inorder_safe(inst, c) {
for (int i = 0; i < vir_get_nsrc(inst); i++) {
if (inst->src[i].file != QFILE_TEMP ||
inst->src[i].index != spill_temp) {
continue;
}
c->cursor = vir_before_inst(inst);
if (is_uniform) {
struct qreg unif =
vir_uniform(c,
c->uniform_contents[uniform_index],
c->uniform_data[uniform_index]);
inst->src[i] = unif;
} else {
v3d_emit_spill_tmua(c, spill_offset);
vir_emit_thrsw(c);
inst->src[i] = vir_LDTMU(c);
c->fills++;
}
}
if (inst->dst.file == QFILE_TEMP &&
inst->dst.index == spill_temp) {
if (is_uniform) {
c->cursor.link = NULL;
vir_remove_instruction(c, inst);
} else {
c->cursor = vir_after_inst(inst);
inst->dst.index = c->num_temps++;
vir_MOV_dest(c, vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_TMUD),
inst->dst);
v3d_emit_spill_tmua(c, spill_offset);
vir_emit_thrsw(c);
vir_TMUWT(c);
c->spills++;
c->tmu_dirty_rcl = true;
}
}
/* If we didn't have a last-thrsw inserted by nir_to_vir and
* we've been inserting thrsws, then insert a new last_thrsw
* right before we start the vpm/tlb sequence for the last
* thread segment.
*/
if (!is_uniform && !last_thrsw && c->last_thrsw &&
(v3d_qpu_writes_vpm(&inst->qpu) ||
v3d_qpu_uses_tlb(&inst->qpu))) {
c->cursor = vir_before_inst(inst);
vir_emit_thrsw(c);
last_thrsw = c->last_thrsw;
last_thrsw->is_last_thrsw = true;
}
}
/* Make sure c->last_thrsw is the actual last thrsw, not just one we
* inserted in our most recent unspill.
*/
if (last_thrsw)
c->last_thrsw = last_thrsw;
/* Don't allow spilling of our spilling instructions. There's no way
* they can help get things colored.
*/
for (int i = start_num_temps; i < c->num_temps; i++)
BITSET_CLEAR(c->spillable, i);
}
struct v3d_ra_select_callback_data {
uint32_t next_acc;
uint32_t next_phys;
};
static unsigned int
v3d_ra_select_callback(unsigned int n, BITSET_WORD *regs, void *data)
{
struct v3d_ra_select_callback_data *v3d_ra = data;
int r5 = ACC_INDEX + 5;
/* Choose r5 for our ldunifs if possible (nobody else can load to that
* reg, and it keeps the QPU cond field free from being occupied by
* ldunifrf).
*/
if (BITSET_TEST(regs, r5))
return r5;
/* Choose an accumulator if possible (I think it's lower power than
* phys regs), but round-robin through them to give post-RA
* instruction selection more options.
*/
for (int i = 0; i < ACC_COUNT; i++) {
int acc_off = (v3d_ra->next_acc + i) % ACC_COUNT;
int acc = ACC_INDEX + acc_off;
if (BITSET_TEST(regs, acc)) {
v3d_ra->next_acc = acc_off + 1;
return acc;
}
}
for (int i = 0; i < PHYS_COUNT; i++) {
int phys_off = (v3d_ra->next_phys + i) % PHYS_COUNT;
int phys = PHYS_INDEX + phys_off;
if (BITSET_TEST(regs, phys)) {
v3d_ra->next_phys = phys_off + 1;
return phys;
}
}
unreachable("RA must pass us at least one possible reg.");
}
bool
vir_init_reg_sets(struct v3d_compiler *compiler)
{
/* Allocate up to 3 regfile classes, for the ways the physical
* register file can be divided up for fragment shader threading.
*/
int max_thread_index = (compiler->devinfo->ver >= 40 ? 2 : 3);
compiler->regs = ra_alloc_reg_set(compiler, PHYS_INDEX + PHYS_COUNT,
true);
if (!compiler->regs)
return false;
for (int threads = 0; threads < max_thread_index; threads++) {
compiler->reg_class_any[threads] =
ra_alloc_reg_class(compiler->regs);
compiler->reg_class_r5[threads] =
ra_alloc_reg_class(compiler->regs);
compiler->reg_class_phys_or_acc[threads] =
ra_alloc_reg_class(compiler->regs);
compiler->reg_class_phys[threads] =
ra_alloc_reg_class(compiler->regs);
for (int i = PHYS_INDEX;
i < PHYS_INDEX + (PHYS_COUNT >> threads); i++) {
ra_class_add_reg(compiler->regs,
compiler->reg_class_phys_or_acc[threads], i);
ra_class_add_reg(compiler->regs,
compiler->reg_class_phys[threads], i);
ra_class_add_reg(compiler->regs,
compiler->reg_class_any[threads], i);
}
for (int i = ACC_INDEX + 0; i < ACC_INDEX + ACC_COUNT - 1; i++) {
ra_class_add_reg(compiler->regs,
compiler->reg_class_phys_or_acc[threads], i);
ra_class_add_reg(compiler->regs,
compiler->reg_class_any[threads], i);
}
/* r5 can only store a single 32-bit value, so not much can
* use it.
*/
ra_class_add_reg(compiler->regs,
compiler->reg_class_r5[threads],
ACC_INDEX + 5);
ra_class_add_reg(compiler->regs,
compiler->reg_class_any[threads],
ACC_INDEX + 5);
}
ra_set_finalize(compiler->regs, NULL);
return true;
}
struct node_to_temp_map {
uint32_t temp;
uint32_t priority;
};
static int
node_to_temp_priority(const void *in_a, const void *in_b)
{
const struct node_to_temp_map *a = in_a;
const struct node_to_temp_map *b = in_b;
return a->priority - b->priority;
}
#define CLASS_BIT_PHYS (1 << 0)
#define CLASS_BIT_ACC (1 << 1)
#define CLASS_BIT_R5 (1 << 4)
#define CLASS_BITS_ANY (CLASS_BIT_PHYS | \
CLASS_BIT_ACC | \
CLASS_BIT_R5)
/**
* Returns a mapping from QFILE_TEMP indices to struct qpu_regs.
*
* The return value should be freed by the caller.
*/
struct qpu_reg *
v3d_register_allocate(struct v3d_compile *c, bool *spilled)
{
struct node_to_temp_map map[c->num_temps];
uint32_t temp_to_node[c->num_temps];
uint8_t class_bits[c->num_temps];
int acc_nodes[ACC_COUNT];
struct v3d_ra_select_callback_data callback_data = {
.next_acc = 0,
/* Start at RF3, to try to keep the TLB writes from using
* RF0-2.
*/
.next_phys = 3,
};
*spilled = false;
vir_calculate_live_intervals(c);
/* Convert 1, 2, 4 threads to 0, 1, 2 index.
*
* V3D 4.x has double the physical register space, so 64 physical regs
* are available at both 1x and 2x threading, and 4x has 32.
*/
int thread_index = ffs(c->threads) - 1;
if (c->devinfo->ver >= 40) {
if (thread_index >= 1)
thread_index--;
}
struct ra_graph *g = ra_alloc_interference_graph(c->compiler->regs,
c->num_temps +
ARRAY_SIZE(acc_nodes));
ra_set_select_reg_callback(g, v3d_ra_select_callback, &callback_data);
/* Make some fixed nodes for the accumulators, which we will need to
* interfere with when ops have implied r3/r4 writes or for the thread
* switches. We could represent these as classes for the nodes to
* live in, but the classes take up a lot of memory to set up, so we
* don't want to make too many.
*/
for (int i = 0; i < ARRAY_SIZE(acc_nodes); i++) {
acc_nodes[i] = c->num_temps + i;
ra_set_node_reg(g, acc_nodes[i], ACC_INDEX + i);
}
for (uint32_t i = 0; i < c->num_temps; i++) {
map[i].temp = i;
map[i].priority = c->temp_end[i] - c->temp_start[i];
}
qsort(map, c->num_temps, sizeof(map[0]), node_to_temp_priority);
for (uint32_t i = 0; i < c->num_temps; i++) {
temp_to_node[map[i].temp] = i;
}
/* Figure out our register classes and preallocated registers. We
* start with any temp being able to be in any file, then instructions
* incrementally remove bits that the temp definitely can't be in.
*/
memset(class_bits, CLASS_BITS_ANY, sizeof(class_bits));
int ip = 0;
vir_for_each_inst_inorder(inst, c) {
/* If the instruction writes r3/r4 (and optionally moves its
* result to a temp), nothing else can be stored in r3/r4 across
* it.
*/
if (vir_writes_r3(c->devinfo, inst)) {
for (int i = 0; i < c->num_temps; i++) {
if (c->temp_start[i] < ip &&
c->temp_end[i] > ip) {
ra_add_node_interference(g,
temp_to_node[i],
acc_nodes[3]);
}
}
}
if (vir_writes_r4(c->devinfo, inst)) {
for (int i = 0; i < c->num_temps; i++) {
if (c->temp_start[i] < ip &&
c->temp_end[i] > ip) {
ra_add_node_interference(g,
temp_to_node[i],
acc_nodes[4]);
}
}
}
if (inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU) {
switch (inst->qpu.alu.add.op) {
case V3D_QPU_A_LDVPMV_IN:
case V3D_QPU_A_LDVPMV_OUT:
case V3D_QPU_A_LDVPMD_IN:
case V3D_QPU_A_LDVPMD_OUT:
case V3D_QPU_A_LDVPMP:
case V3D_QPU_A_LDVPMG_IN:
case V3D_QPU_A_LDVPMG_OUT:
/* LDVPMs only store to temps (the MA flag
* decides whether the LDVPM is in or out)
*/
assert(inst->dst.file == QFILE_TEMP);
class_bits[inst->dst.index] &= CLASS_BIT_PHYS;
break;
case V3D_QPU_A_RECIP:
case V3D_QPU_A_RSQRT:
case V3D_QPU_A_EXP:
case V3D_QPU_A_LOG:
case V3D_QPU_A_SIN:
case V3D_QPU_A_RSQRT2:
/* The SFU instructions write directly to the
* phys regfile.
*/
assert(inst->dst.file == QFILE_TEMP);
class_bits[inst->dst.index] &= CLASS_BIT_PHYS;
break;
default:
break;
}
}
if (inst->src[0].file == QFILE_REG) {
switch (inst->src[0].index) {
case 0:
case 1:
case 2:
case 3:
/* Payload setup instructions: Force allocate
* the dst to the given register (so the MOV
* will disappear).
*/
assert(inst->qpu.alu.mul.op == V3D_QPU_M_MOV);
assert(inst->dst.file == QFILE_TEMP);
ra_set_node_reg(g,
temp_to_node[inst->dst.index],
PHYS_INDEX +
inst->src[0].index);
break;
}
}
if (inst->dst.file == QFILE_TEMP) {
/* Only a ldunif gets to write to R5, which only has a
* single 32-bit channel of storage.
*/
if (!inst->qpu.sig.ldunif) {
class_bits[inst->dst.index] &= ~CLASS_BIT_R5;
} else {
/* Until V3D 4.x, we could only load a uniform
* to r5, so we'll need to spill if uniform
* loads interfere with each other.
*/
if (c->devinfo->ver < 40) {
class_bits[inst->dst.index] &=
CLASS_BIT_R5;
}
}
}
if (inst->qpu.sig.thrsw) {
/* All accumulators are invalidated across a thread
* switch.
*/
for (int i = 0; i < c->num_temps; i++) {
if (c->temp_start[i] < ip && c->temp_end[i] > ip)
class_bits[i] &= CLASS_BIT_PHYS;
}
}
ip++;
}
for (uint32_t i = 0; i < c->num_temps; i++) {
if (class_bits[i] == CLASS_BIT_PHYS) {
ra_set_node_class(g, temp_to_node[i],
c->compiler->reg_class_phys[thread_index]);
} else if (class_bits[i] == (CLASS_BIT_R5)) {
ra_set_node_class(g, temp_to_node[i],
c->compiler->reg_class_r5[thread_index]);
} else if (class_bits[i] == (CLASS_BIT_PHYS | CLASS_BIT_ACC)) {
ra_set_node_class(g, temp_to_node[i],
c->compiler->reg_class_phys_or_acc[thread_index]);
} else {
assert(class_bits[i] == CLASS_BITS_ANY);
ra_set_node_class(g, temp_to_node[i],
c->compiler->reg_class_any[thread_index]);
}
}
for (uint32_t i = 0; i < c->num_temps; i++) {
for (uint32_t j = i + 1; j < c->num_temps; j++) {
if (!(c->temp_start[i] >= c->temp_end[j] ||
c->temp_start[j] >= c->temp_end[i])) {
ra_add_node_interference(g,
temp_to_node[i],
temp_to_node[j]);
}
}
}
/* Debug code to force a bit of register spilling, for running across
* conformance tests to make sure that spilling works.
*/
int force_register_spills = 0;
if (c->spill_size <
V3D_CHANNELS * sizeof(uint32_t) * force_register_spills) {
int node = v3d_choose_spill_node(c, g, temp_to_node);
if (node != -1) {
v3d_spill_reg(c, map[node].temp);
ralloc_free(g);
*spilled = true;
return NULL;
}
}
bool ok = ra_allocate(g);
if (!ok) {
int node = v3d_choose_spill_node(c, g, temp_to_node);
/* Don't emit spills using the TMU until we've dropped thread
* conut first.
*/
if (node != -1 &&
(vir_is_mov_uniform(c, map[node].temp) ||
thread_index == 0)) {
v3d_spill_reg(c, map[node].temp);
/* Ask the outer loop to call back in. */
*spilled = true;
}
ralloc_free(g);
return NULL;
}
struct qpu_reg *temp_registers = calloc(c->num_temps,
sizeof(*temp_registers));
for (uint32_t i = 0; i < c->num_temps; i++) {
int ra_reg = ra_get_node_reg(g, temp_to_node[i]);
if (ra_reg < PHYS_INDEX) {
temp_registers[i].magic = true;
temp_registers[i].index = (V3D_QPU_WADDR_R0 +
ra_reg - ACC_INDEX);
} else {
temp_registers[i].magic = false;
temp_registers[i].index = ra_reg - PHYS_INDEX;
}
}
ralloc_free(g);
return temp_registers;
}