blob: 9f11fe27eb869dc5631cb7adc5434cd5bf93a632 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
* Copyright © 2014-2017 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file
*
* The basic model of the list scheduler is to take a basic block, compute a
* DAG of the dependencies, and make a list of the DAG heads. Heuristically
* pick a DAG head, then put all the children that are now DAG heads into the
* list of things to schedule.
*
* The goal of scheduling here is to pack pairs of operations together in a
* single QPU instruction.
*/
#include "qpu/qpu_disasm.h"
#include "v3d_compiler.h"
#include "util/ralloc.h"
#include "util/dag.h"
static bool debug;
struct schedule_node_child;
struct schedule_node {
struct dag_node dag;
struct list_head link;
struct qinst *inst;
/* Longest cycles + instruction_latency() of any parent of this node. */
uint32_t unblocked_time;
/**
* Minimum number of cycles from scheduling this instruction until the
* end of the program, based on the slowest dependency chain through
* the children.
*/
uint32_t delay;
/**
* cycles between this instruction being scheduled and when its result
* can be consumed.
*/
uint32_t latency;
};
/* When walking the instructions in reverse, we need to swap before/after in
* add_dep().
*/
enum direction { F, R };
struct schedule_state {
const struct v3d_device_info *devinfo;
struct dag *dag;
struct schedule_node *last_r[6];
struct schedule_node *last_rf[64];
struct schedule_node *last_sf;
struct schedule_node *last_vpm_read;
struct schedule_node *last_tmu_write;
struct schedule_node *last_tmu_config;
struct schedule_node *last_tlb;
struct schedule_node *last_vpm;
struct schedule_node *last_unif;
struct schedule_node *last_rtop;
enum direction dir;
/* Estimated cycle when the current instruction would start. */
uint32_t time;
};
static void
add_dep(struct schedule_state *state,
struct schedule_node *before,
struct schedule_node *after,
bool write)
{
bool write_after_read = !write && state->dir == R;
void *edge_data = (void *)(uintptr_t)write_after_read;
if (!before || !after)
return;
assert(before != after);
if (state->dir == F)
dag_add_edge(&before->dag, &after->dag, edge_data);
else
dag_add_edge(&after->dag, &before->dag, edge_data);
}
static void
add_read_dep(struct schedule_state *state,
struct schedule_node *before,
struct schedule_node *after)
{
add_dep(state, before, after, false);
}
static void
add_write_dep(struct schedule_state *state,
struct schedule_node **before,
struct schedule_node *after)
{
add_dep(state, *before, after, true);
*before = after;
}
static bool
qpu_inst_is_tlb(const struct v3d_qpu_instr *inst)
{
if (inst->sig.ldtlb || inst->sig.ldtlbu)
return true;
if (inst->type != V3D_QPU_INSTR_TYPE_ALU)
return false;
if (inst->alu.add.magic_write &&
(inst->alu.add.waddr == V3D_QPU_WADDR_TLB ||
inst->alu.add.waddr == V3D_QPU_WADDR_TLBU))
return true;
if (inst->alu.mul.magic_write &&
(inst->alu.mul.waddr == V3D_QPU_WADDR_TLB ||
inst->alu.mul.waddr == V3D_QPU_WADDR_TLBU))
return true;
return false;
}
static void
process_mux_deps(struct schedule_state *state, struct schedule_node *n,
enum v3d_qpu_mux mux)
{
switch (mux) {
case V3D_QPU_MUX_A:
add_read_dep(state, state->last_rf[n->inst->qpu.raddr_a], n);
break;
case V3D_QPU_MUX_B:
if (!n->inst->qpu.sig.small_imm) {
add_read_dep(state,
state->last_rf[n->inst->qpu.raddr_b], n);
}
break;
default:
add_read_dep(state, state->last_r[mux - V3D_QPU_MUX_R0], n);
break;
}
}
static void
process_waddr_deps(struct schedule_state *state, struct schedule_node *n,
uint32_t waddr, bool magic)
{
if (!magic) {
add_write_dep(state, &state->last_rf[waddr], n);
} else if (v3d_qpu_magic_waddr_is_tmu(waddr)) {
/* XXX perf: For V3D 4.x, we could reorder TMU writes other
* than the TMUS/TMUD/TMUA to improve scheduling flexibility.
*/
add_write_dep(state, &state->last_tmu_write, n);
switch (waddr) {
case V3D_QPU_WADDR_TMUS:
case V3D_QPU_WADDR_TMUSCM:
case V3D_QPU_WADDR_TMUSF:
case V3D_QPU_WADDR_TMUSLOD:
add_write_dep(state, &state->last_tmu_config, n);
break;
default:
break;
}
} else if (v3d_qpu_magic_waddr_is_sfu(waddr)) {
/* Handled by v3d_qpu_writes_r4() check. */
} else {
switch (waddr) {
case V3D_QPU_WADDR_R0:
case V3D_QPU_WADDR_R1:
case V3D_QPU_WADDR_R2:
add_write_dep(state,
&state->last_r[waddr - V3D_QPU_WADDR_R0],
n);
break;
case V3D_QPU_WADDR_R3:
case V3D_QPU_WADDR_R4:
case V3D_QPU_WADDR_R5:
/* Handled by v3d_qpu_writes_r*() checks below. */
break;
case V3D_QPU_WADDR_VPM:
case V3D_QPU_WADDR_VPMU:
add_write_dep(state, &state->last_vpm, n);
break;
case V3D_QPU_WADDR_TLB:
case V3D_QPU_WADDR_TLBU:
add_write_dep(state, &state->last_tlb, n);
break;
case V3D_QPU_WADDR_SYNC:
case V3D_QPU_WADDR_SYNCB:
case V3D_QPU_WADDR_SYNCU:
/* For CS barrier(): Sync against any other memory
* accesses. There doesn't appear to be any need for
* barriers to affect ALU operations.
*/
add_write_dep(state, &state->last_tmu_write, n);
break;
case V3D_QPU_WADDR_NOP:
break;
default:
fprintf(stderr, "Unknown waddr %d\n", waddr);
abort();
}
}
}
/**
* Common code for dependencies that need to be tracked both forward and
* backward.
*
* This is for things like "all reads of r4 have to happen between the r4
* writes that surround them".
*/
static void
calculate_deps(struct schedule_state *state, struct schedule_node *n)
{
const struct v3d_device_info *devinfo = state->devinfo;
struct qinst *qinst = n->inst;
struct v3d_qpu_instr *inst = &qinst->qpu;
/* If the input and output segments are shared, then all VPM reads to
* a location need to happen before all writes. We handle this by
* serializing all VPM operations for now.
*/
bool separate_vpm_segment = false;
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
if (inst->branch.cond != V3D_QPU_BRANCH_COND_ALWAYS)
add_read_dep(state, state->last_sf, n);
/* XXX: BDI */
/* XXX: BDU */
/* XXX: ub */
/* XXX: raddr_a */
add_write_dep(state, &state->last_unif, n);
return;
}
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
/* XXX: LOAD_IMM */
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0)
process_mux_deps(state, n, inst->alu.add.a);
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1)
process_mux_deps(state, n, inst->alu.add.b);
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0)
process_mux_deps(state, n, inst->alu.mul.a);
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1)
process_mux_deps(state, n, inst->alu.mul.b);
switch (inst->alu.add.op) {
case V3D_QPU_A_VPMSETUP:
/* Could distinguish read/write by unpacking the uniform. */
add_write_dep(state, &state->last_vpm, n);
add_write_dep(state, &state->last_vpm_read, n);
break;
case V3D_QPU_A_STVPMV:
case V3D_QPU_A_STVPMD:
case V3D_QPU_A_STVPMP:
add_write_dep(state, &state->last_vpm, n);
break;
case V3D_QPU_A_LDVPMV_IN:
case V3D_QPU_A_LDVPMD_IN:
case V3D_QPU_A_LDVPMG_IN:
case V3D_QPU_A_LDVPMP:
if (!separate_vpm_segment)
add_write_dep(state, &state->last_vpm, n);
break;
case V3D_QPU_A_VPMWT:
add_read_dep(state, state->last_vpm, n);
break;
case V3D_QPU_A_MSF:
add_read_dep(state, state->last_tlb, n);
break;
case V3D_QPU_A_SETMSF:
case V3D_QPU_A_SETREVF:
add_write_dep(state, &state->last_tlb, n);
break;
default:
break;
}
switch (inst->alu.mul.op) {
case V3D_QPU_M_MULTOP:
case V3D_QPU_M_UMUL24:
/* MULTOP sets rtop, and UMUL24 implicitly reads rtop and
* resets it to 0. We could possibly reorder umul24s relative
* to each other, but for now just keep all the MUL parts in
* order.
*/
add_write_dep(state, &state->last_rtop, n);
break;
default:
break;
}
if (inst->alu.add.op != V3D_QPU_A_NOP) {
process_waddr_deps(state, n, inst->alu.add.waddr,
inst->alu.add.magic_write);
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
process_waddr_deps(state, n, inst->alu.mul.waddr,
inst->alu.mul.magic_write);
}
if (v3d_qpu_sig_writes_address(devinfo, &inst->sig)) {
process_waddr_deps(state, n, inst->sig_addr,
inst->sig_magic);
}
if (v3d_qpu_writes_r3(devinfo, inst))
add_write_dep(state, &state->last_r[3], n);
if (v3d_qpu_writes_r4(devinfo, inst))
add_write_dep(state, &state->last_r[4], n);
if (v3d_qpu_writes_r5(devinfo, inst))
add_write_dep(state, &state->last_r[5], n);
if (inst->sig.thrsw) {
/* All accumulator contents and flags are undefined after the
* switch.
*/
for (int i = 0; i < ARRAY_SIZE(state->last_r); i++)
add_write_dep(state, &state->last_r[i], n);
add_write_dep(state, &state->last_sf, n);
add_write_dep(state, &state->last_rtop, n);
/* Scoreboard-locking operations have to stay after the last
* thread switch.
*/
add_write_dep(state, &state->last_tlb, n);
add_write_dep(state, &state->last_tmu_write, n);
add_write_dep(state, &state->last_tmu_config, n);
}
if (v3d_qpu_waits_on_tmu(inst)) {
/* TMU loads are coming from a FIFO, so ordering is important.
*/
add_write_dep(state, &state->last_tmu_write, n);
}
if (inst->sig.wrtmuc)
add_write_dep(state, &state->last_tmu_config, n);
if (inst->sig.ldtlb | inst->sig.ldtlbu)
add_write_dep(state, &state->last_tlb, n);
if (inst->sig.ldvpm) {
add_write_dep(state, &state->last_vpm_read, n);
/* At least for now, we're doing shared I/O segments, so queue
* all writes after all reads.
*/
if (!separate_vpm_segment)
add_write_dep(state, &state->last_vpm, n);
}
/* inst->sig.ldunif or sideband uniform read */
if (vir_has_uniform(qinst))
add_write_dep(state, &state->last_unif, n);
if (v3d_qpu_reads_flags(inst))
add_read_dep(state, state->last_sf, n);
if (v3d_qpu_writes_flags(inst))
add_write_dep(state, &state->last_sf, n);
}
static void
calculate_forward_deps(struct v3d_compile *c, struct dag *dag,
struct list_head *schedule_list)
{
struct schedule_state state;
memset(&state, 0, sizeof(state));
state.dag = dag;
state.devinfo = c->devinfo;
state.dir = F;
list_for_each_entry(struct schedule_node, node, schedule_list, link)
calculate_deps(&state, node);
}
static void
calculate_reverse_deps(struct v3d_compile *c, struct dag *dag,
struct list_head *schedule_list)
{
struct schedule_state state;
memset(&state, 0, sizeof(state));
state.dag = dag;
state.devinfo = c->devinfo;
state.dir = R;
list_for_each_entry_rev(struct schedule_node, node, schedule_list,
link) {
calculate_deps(&state, (struct schedule_node *)node);
}
}
struct choose_scoreboard {
struct dag *dag;
int tick;
int last_magic_sfu_write_tick;
int last_stallable_sfu_reg;
int last_stallable_sfu_tick;
int last_ldvary_tick;
int last_uniforms_reset_tick;
int last_thrsw_tick;
bool tlb_locked;
};
static bool
mux_reads_too_soon(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst, enum v3d_qpu_mux mux)
{
switch (mux) {
case V3D_QPU_MUX_R4:
if (scoreboard->tick - scoreboard->last_magic_sfu_write_tick <= 2)
return true;
break;
case V3D_QPU_MUX_R5:
if (scoreboard->tick - scoreboard->last_ldvary_tick <= 1)
return true;
break;
default:
break;
}
return false;
}
static bool
reads_too_soon_after_write(struct choose_scoreboard *scoreboard,
struct qinst *qinst)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
/* XXX: Branching off of raddr. */
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
return false;
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
if (inst->alu.add.op != V3D_QPU_A_NOP) {
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0 &&
mux_reads_too_soon(scoreboard, inst, inst->alu.add.a)) {
return true;
}
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1 &&
mux_reads_too_soon(scoreboard, inst, inst->alu.add.b)) {
return true;
}
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0 &&
mux_reads_too_soon(scoreboard, inst, inst->alu.mul.a)) {
return true;
}
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1 &&
mux_reads_too_soon(scoreboard, inst, inst->alu.mul.b)) {
return true;
}
}
/* XXX: imm */
return false;
}
static bool
writes_too_soon_after_write(const struct v3d_device_info *devinfo,
struct choose_scoreboard *scoreboard,
struct qinst *qinst)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
/* Don't schedule any other r4 write too soon after an SFU write.
* This would normally be prevented by dependency tracking, but might
* occur if a dead SFU computation makes it to scheduling.
*/
if (scoreboard->tick - scoreboard->last_magic_sfu_write_tick < 2 &&
v3d_qpu_writes_r4(devinfo, inst))
return true;
return false;
}
static bool
pixel_scoreboard_too_soon(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
return (scoreboard->tick == 0 && qpu_inst_is_tlb(inst));
}
static bool
qpu_instruction_uses_rf(const struct v3d_qpu_instr *inst,
uint32_t waddr) {
if (inst->type != V3D_QPU_INSTR_TYPE_ALU)
return false;
if (v3d_qpu_uses_mux(inst, V3D_QPU_MUX_A) &&
inst->raddr_a == waddr)
return true;
if (v3d_qpu_uses_mux(inst, V3D_QPU_MUX_B) &&
!inst->sig.small_imm && (inst->raddr_b == waddr))
return true;
return false;
}
static bool
mux_read_stalls(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
return scoreboard->tick == scoreboard->last_stallable_sfu_tick + 1 &&
qpu_instruction_uses_rf(inst,
scoreboard->last_stallable_sfu_reg);
}
/* We define a max schedule priority to allow negative priorities as result of
* substracting this max when an instruction stalls. So instructions that
* stall have lower priority than regular instructions. */
#define MAX_SCHEDULE_PRIORITY 16
static int
get_instruction_priority(const struct v3d_qpu_instr *inst)
{
uint32_t baseline_score;
uint32_t next_score = 0;
/* Schedule TLB operations as late as possible, to get more
* parallelism between shaders.
*/
if (qpu_inst_is_tlb(inst))
return next_score;
next_score++;
/* Schedule texture read results collection late to hide latency. */
if (v3d_qpu_waits_on_tmu(inst))
return next_score;
next_score++;
/* Default score for things that aren't otherwise special. */
baseline_score = next_score;
next_score++;
/* Schedule texture read setup early to hide their latency better. */
if (v3d_qpu_writes_tmu(inst))
return next_score;
next_score++;
/* We should increase the maximum if we assert here */
assert(next_score < MAX_SCHEDULE_PRIORITY);
return baseline_score;
}
static bool
qpu_magic_waddr_is_periph(enum v3d_qpu_waddr waddr)
{
return (v3d_qpu_magic_waddr_is_tmu(waddr) ||
v3d_qpu_magic_waddr_is_sfu(waddr) ||
v3d_qpu_magic_waddr_is_tlb(waddr) ||
v3d_qpu_magic_waddr_is_vpm(waddr) ||
v3d_qpu_magic_waddr_is_tsy(waddr));
}
static bool
qpu_accesses_peripheral(const struct v3d_qpu_instr *inst)
{
if (v3d_qpu_uses_vpm(inst))
return true;
if (v3d_qpu_uses_sfu(inst))
return true;
if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
if (inst->alu.add.op != V3D_QPU_A_NOP &&
inst->alu.add.magic_write &&
qpu_magic_waddr_is_periph(inst->alu.add.waddr)) {
return true;
}
if (inst->alu.add.op == V3D_QPU_A_TMUWT)
return true;
if (inst->alu.mul.op != V3D_QPU_M_NOP &&
inst->alu.mul.magic_write &&
qpu_magic_waddr_is_periph(inst->alu.mul.waddr)) {
return true;
}
}
return (inst->sig.ldvpm ||
inst->sig.ldtmu ||
inst->sig.ldtlb ||
inst->sig.ldtlbu ||
inst->sig.wrtmuc);
}
static bool
qpu_compatible_peripheral_access(const struct v3d_device_info *devinfo,
const struct v3d_qpu_instr *a,
const struct v3d_qpu_instr *b)
{
const bool a_uses_peripheral = qpu_accesses_peripheral(a);
const bool b_uses_peripheral = qpu_accesses_peripheral(b);
/* We can always do one peripheral access per instruction. */
if (!a_uses_peripheral || !b_uses_peripheral)
return true;
if (devinfo->ver < 41)
return false;
/* V3D 4.1 and later allow TMU read along with a VPM read or write, and
* WRTMUC with a TMU magic register write (other than tmuc).
*/
if ((a->sig.ldtmu && v3d_qpu_uses_vpm(b)) ||
(b->sig.ldtmu && v3d_qpu_uses_vpm(a))) {
return true;
}
if ((a->sig.wrtmuc && v3d_qpu_writes_tmu_not_tmuc(b)) ||
(b->sig.wrtmuc && v3d_qpu_writes_tmu_not_tmuc(a))) {
return true;
}
return false;
}
static bool
qpu_merge_inst(const struct v3d_device_info *devinfo,
struct v3d_qpu_instr *result,
const struct v3d_qpu_instr *a,
const struct v3d_qpu_instr *b)
{
if (a->type != V3D_QPU_INSTR_TYPE_ALU ||
b->type != V3D_QPU_INSTR_TYPE_ALU) {
return false;
}
if (!qpu_compatible_peripheral_access(devinfo, a, b))
return false;
struct v3d_qpu_instr merge = *a;
if (b->alu.add.op != V3D_QPU_A_NOP) {
if (a->alu.add.op != V3D_QPU_A_NOP)
return false;
merge.alu.add = b->alu.add;
merge.flags.ac = b->flags.ac;
merge.flags.apf = b->flags.apf;
merge.flags.auf = b->flags.auf;
}
if (b->alu.mul.op != V3D_QPU_M_NOP) {
if (a->alu.mul.op != V3D_QPU_M_NOP)
return false;
merge.alu.mul = b->alu.mul;
merge.flags.mc = b->flags.mc;
merge.flags.mpf = b->flags.mpf;
merge.flags.muf = b->flags.muf;
}
if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_A)) {
if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_A) &&
a->raddr_a != b->raddr_a) {
return false;
}
merge.raddr_a = b->raddr_a;
}
if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_B)) {
if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_B) &&
(a->raddr_b != b->raddr_b ||
a->sig.small_imm != b->sig.small_imm)) {
return false;
}
merge.raddr_b = b->raddr_b;
}
merge.sig.thrsw |= b->sig.thrsw;
merge.sig.ldunif |= b->sig.ldunif;
merge.sig.ldunifrf |= b->sig.ldunifrf;
merge.sig.ldunifa |= b->sig.ldunifa;
merge.sig.ldunifarf |= b->sig.ldunifarf;
merge.sig.ldtmu |= b->sig.ldtmu;
merge.sig.ldvary |= b->sig.ldvary;
merge.sig.ldvpm |= b->sig.ldvpm;
merge.sig.small_imm |= b->sig.small_imm;
merge.sig.ldtlb |= b->sig.ldtlb;
merge.sig.ldtlbu |= b->sig.ldtlbu;
merge.sig.ucb |= b->sig.ucb;
merge.sig.rotate |= b->sig.rotate;
merge.sig.wrtmuc |= b->sig.wrtmuc;
if (v3d_qpu_sig_writes_address(devinfo, &a->sig) &&
v3d_qpu_sig_writes_address(devinfo, &b->sig))
return false;
merge.sig_addr |= b->sig_addr;
merge.sig_magic |= b->sig_magic;
uint64_t packed;
bool ok = v3d_qpu_instr_pack(devinfo, &merge, &packed);
*result = merge;
/* No modifying the real instructions on failure. */
assert(ok || (a != result && b != result));
return ok;
}
static struct schedule_node *
choose_instruction_to_schedule(const struct v3d_device_info *devinfo,
struct choose_scoreboard *scoreboard,
struct schedule_node *prev_inst)
{
struct schedule_node *chosen = NULL;
int chosen_prio = 0;
/* Don't pair up anything with a thread switch signal -- emit_thrsw()
* will handle pairing it along with filling the delay slots.
*/
if (prev_inst) {
if (prev_inst->inst->qpu.sig.thrsw)
return NULL;
}
list_for_each_entry(struct schedule_node, n, &scoreboard->dag->heads,
dag.link) {
const struct v3d_qpu_instr *inst = &n->inst->qpu;
/* Don't choose the branch instruction until it's the last one
* left. We'll move it up to fit its delay slots after we
* choose it.
*/
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH &&
!list_is_singular(&scoreboard->dag->heads)) {
continue;
}
/* "An instruction must not read from a location in physical
* regfile A or B that was written to by the previous
* instruction."
*/
if (reads_too_soon_after_write(scoreboard, n->inst))
continue;
if (writes_too_soon_after_write(devinfo, scoreboard, n->inst))
continue;
/* "A scoreboard wait must not occur in the first two
* instructions of a fragment shader. This is either the
* explicit Wait for Scoreboard signal or an implicit wait
* with the first tile-buffer read or write instruction."
*/
if (pixel_scoreboard_too_soon(scoreboard, inst))
continue;
/* ldunif and ldvary both write r5, but ldunif does so a tick
* sooner. If the ldvary's r5 wasn't used, then ldunif might
* otherwise get scheduled so ldunif and ldvary try to update
* r5 in the same tick.
*
* XXX perf: To get good pipelining of a sequence of varying
* loads, we need to figure out how to pair the ldvary signal
* up to the instruction before the last r5 user in the
* previous ldvary sequence. Currently, it usually pairs with
* the last r5 user.
*/
if ((inst->sig.ldunif || inst->sig.ldunifa) &&
scoreboard->tick == scoreboard->last_ldvary_tick + 1) {
continue;
}
/* If we're trying to pair with another instruction, check
* that they're compatible.
*/
if (prev_inst) {
/* Don't pair up a thread switch signal -- we'll
* handle pairing it when we pick it on its own.
*/
if (inst->sig.thrsw)
continue;
if (prev_inst->inst->uniform != -1 &&
n->inst->uniform != -1)
continue;
/* Don't merge in something that will lock the TLB.
* Hopwefully what we have in inst will release some
* other instructions, allowing us to delay the
* TLB-locking instruction until later.
*/
if (!scoreboard->tlb_locked && qpu_inst_is_tlb(inst))
continue;
struct v3d_qpu_instr merged_inst;
if (!qpu_merge_inst(devinfo, &merged_inst,
&prev_inst->inst->qpu, inst)) {
continue;
}
}
int prio = get_instruction_priority(inst);
if (mux_read_stalls(scoreboard, inst)) {
/* Don't merge an instruction that stalls */
if (prev_inst)
continue;
else {
/* Any instruction that don't stall will have
* higher scheduling priority */
prio -= MAX_SCHEDULE_PRIORITY;
assert(prio < 0);
}
}
/* Found a valid instruction. If nothing better comes along,
* this one works.
*/
if (!chosen) {
chosen = n;
chosen_prio = prio;
continue;
}
if (prio > chosen_prio) {
chosen = n;
chosen_prio = prio;
} else if (prio < chosen_prio) {
continue;
}
if (n->delay > chosen->delay) {
chosen = n;
chosen_prio = prio;
} else if (n->delay < chosen->delay) {
continue;
}
}
return chosen;
}
static void
update_scoreboard_for_magic_waddr(struct choose_scoreboard *scoreboard,
enum v3d_qpu_waddr waddr)
{
if (v3d_qpu_magic_waddr_is_sfu(waddr))
scoreboard->last_magic_sfu_write_tick = scoreboard->tick;
}
static void
update_scoreboard_for_sfu_stall_waddr(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
if (v3d_qpu_instr_is_sfu(inst)) {
scoreboard->last_stallable_sfu_reg = inst->alu.add.waddr;
scoreboard->last_stallable_sfu_tick = scoreboard->tick;
}
}
static void
update_scoreboard_for_chosen(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
return;
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
if (inst->alu.add.op != V3D_QPU_A_NOP) {
if (inst->alu.add.magic_write) {
update_scoreboard_for_magic_waddr(scoreboard,
inst->alu.add.waddr);
} else {
update_scoreboard_for_sfu_stall_waddr(scoreboard,
inst);
}
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
if (inst->alu.mul.magic_write) {
update_scoreboard_for_magic_waddr(scoreboard,
inst->alu.mul.waddr);
}
}
if (inst->sig.ldvary)
scoreboard->last_ldvary_tick = scoreboard->tick;
if (qpu_inst_is_tlb(inst))
scoreboard->tlb_locked = true;
}
static void
dump_state(const struct v3d_device_info *devinfo, struct dag *dag)
{
list_for_each_entry(struct schedule_node, n, &dag->heads, dag.link) {
fprintf(stderr, " t=%4d: ", n->unblocked_time);
v3d_qpu_dump(devinfo, &n->inst->qpu);
fprintf(stderr, "\n");
util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
struct schedule_node *child =
(struct schedule_node *)edge->child;
if (!child)
continue;
fprintf(stderr, " - ");
v3d_qpu_dump(devinfo, &child->inst->qpu);
fprintf(stderr, " (%d parents, %c)\n",
child->dag.parent_count,
edge->data ? 'w' : 'r');
}
}
}
static uint32_t magic_waddr_latency(enum v3d_qpu_waddr waddr,
const struct v3d_qpu_instr *after)
{
/* Apply some huge latency between texture fetch requests and getting
* their results back.
*
* FIXME: This is actually pretty bogus. If we do:
*
* mov tmu0_s, a
* <a bit of math>
* mov tmu0_s, b
* load_tmu0
* <more math>
* load_tmu0
*
* we count that as worse than
*
* mov tmu0_s, a
* mov tmu0_s, b
* <lots of math>
* load_tmu0
* <more math>
* load_tmu0
*
* because we associate the first load_tmu0 with the *second* tmu0_s.
*/
if (v3d_qpu_magic_waddr_is_tmu(waddr) && v3d_qpu_waits_on_tmu(after))
return 100;
/* Assume that anything depending on us is consuming the SFU result. */
if (v3d_qpu_magic_waddr_is_sfu(waddr))
return 3;
return 1;
}
static uint32_t
instruction_latency(struct schedule_node *before, struct schedule_node *after)
{
const struct v3d_qpu_instr *before_inst = &before->inst->qpu;
const struct v3d_qpu_instr *after_inst = &after->inst->qpu;
uint32_t latency = 1;
if (before_inst->type != V3D_QPU_INSTR_TYPE_ALU ||
after_inst->type != V3D_QPU_INSTR_TYPE_ALU)
return latency;
if (before_inst->alu.add.magic_write) {
latency = MAX2(latency,
magic_waddr_latency(before_inst->alu.add.waddr,
after_inst));
}
if (before_inst->alu.mul.magic_write) {
latency = MAX2(latency,
magic_waddr_latency(before_inst->alu.mul.waddr,
after_inst));
}
if (v3d_qpu_instr_is_sfu(before_inst))
return 2;
return latency;
}
/** Recursive computation of the delay member of a node. */
static void
compute_delay(struct dag_node *node, void *state)
{
struct schedule_node *n = (struct schedule_node *)node;
n->delay = 1;
util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
struct schedule_node *child =
(struct schedule_node *)edge->child;
n->delay = MAX2(n->delay, (child->delay +
instruction_latency(n, child)));
}
}
/* Removes a DAG head, but removing only the WAR edges. (dag_prune_head()
* should be called on it later to finish pruning the other edges).
*/
static void
pre_remove_head(struct dag *dag, struct schedule_node *n)
{
list_delinit(&n->dag.link);
util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
if (edge->data)
dag_remove_edge(dag, edge);
}
}
static void
mark_instruction_scheduled(struct dag *dag,
uint32_t time,
struct schedule_node *node)
{
if (!node)
return;
util_dynarray_foreach(&node->dag.edges, struct dag_edge, edge) {
struct schedule_node *child =
(struct schedule_node *)edge->child;
if (!child)
continue;
uint32_t latency = instruction_latency(node, child);
child->unblocked_time = MAX2(child->unblocked_time,
time + latency);
}
dag_prune_head(dag, &node->dag);
}
static void
insert_scheduled_instruction(struct v3d_compile *c,
struct qblock *block,
struct choose_scoreboard *scoreboard,
struct qinst *inst)
{
list_addtail(&inst->link, &block->instructions);
update_scoreboard_for_chosen(scoreboard, &inst->qpu);
c->qpu_inst_count++;
scoreboard->tick++;
}
static struct qinst *
vir_nop()
{
struct qreg undef = vir_nop_reg();
struct qinst *qinst = vir_add_inst(V3D_QPU_A_NOP, undef, undef, undef);
return qinst;
}
static void
emit_nop(struct v3d_compile *c, struct qblock *block,
struct choose_scoreboard *scoreboard)
{
insert_scheduled_instruction(c, block, scoreboard, vir_nop());
}
static bool
qpu_instruction_valid_in_thrend_slot(struct v3d_compile *c,
const struct qinst *qinst, int slot)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
/* Only TLB Z writes are prohibited in the last slot, but we don't
* have those flagged so prohibit all TLB ops for now.
*/
if (slot == 2 && qpu_inst_is_tlb(inst))
return false;
if (slot > 0 && qinst->uniform != ~0)
return false;
if (v3d_qpu_uses_vpm(inst))
return false;
if (inst->sig.ldvary)
return false;
if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
/* GFXH-1625: TMUWT not allowed in the final instruction. */
if (slot == 2 && inst->alu.add.op == V3D_QPU_A_TMUWT)
return false;
/* No writing physical registers at the end. */
if (!inst->alu.add.magic_write ||
!inst->alu.mul.magic_write) {
return false;
}
if (c->devinfo->ver < 40 && inst->alu.add.op == V3D_QPU_A_SETMSF)
return false;
/* RF0-2 might be overwritten during the delay slots by
* fragment shader setup.
*/
if (inst->raddr_a < 3 &&
(inst->alu.add.a == V3D_QPU_MUX_A ||
inst->alu.add.b == V3D_QPU_MUX_A ||
inst->alu.mul.a == V3D_QPU_MUX_A ||
inst->alu.mul.b == V3D_QPU_MUX_A)) {
return false;
}
if (inst->raddr_b < 3 &&
!inst->sig.small_imm &&
(inst->alu.add.a == V3D_QPU_MUX_B ||
inst->alu.add.b == V3D_QPU_MUX_B ||
inst->alu.mul.a == V3D_QPU_MUX_B ||
inst->alu.mul.b == V3D_QPU_MUX_B)) {
return false;
}
}
return true;
}
static bool
valid_thrsw_sequence(struct v3d_compile *c, struct choose_scoreboard *scoreboard,
struct qinst *qinst, int instructions_in_sequence,
bool is_thrend)
{
/* No emitting our thrsw while the previous thrsw hasn't happened yet. */
if (scoreboard->last_thrsw_tick + 3 >
scoreboard->tick - instructions_in_sequence) {
return false;
}
for (int slot = 0; slot < instructions_in_sequence; slot++) {
/* No scheduling SFU when the result would land in the other
* thread. The simulator complains for safety, though it
* would only occur for dead code in our case.
*/
if (slot > 0 &&
qinst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
(v3d_qpu_magic_waddr_is_sfu(qinst->qpu.alu.add.waddr) ||
v3d_qpu_magic_waddr_is_sfu(qinst->qpu.alu.mul.waddr))) {
return false;
}
if (slot > 0 && qinst->qpu.sig.ldvary)
return false;
if (is_thrend &&
!qpu_instruction_valid_in_thrend_slot(c, qinst, slot)) {
return false;
}
/* Note that the list is circular, so we can only do this up
* to instructions_in_sequence.
*/
qinst = (struct qinst *)qinst->link.next;
}
return true;
}
/**
* Emits a THRSW signal in the stream, trying to move it up to pair with
* another instruction.
*/
static int
emit_thrsw(struct v3d_compile *c,
struct qblock *block,
struct choose_scoreboard *scoreboard,
struct qinst *inst,
bool is_thrend)
{
int time = 0;
/* There should be nothing in a thrsw inst being scheduled other than
* the signal bits.
*/
assert(inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU);
assert(inst->qpu.alu.add.op == V3D_QPU_A_NOP);
assert(inst->qpu.alu.mul.op == V3D_QPU_M_NOP);
/* Find how far back into previous instructions we can put the THRSW. */
int slots_filled = 0;
struct qinst *merge_inst = NULL;
vir_for_each_inst_rev(prev_inst, block) {
struct v3d_qpu_sig sig = prev_inst->qpu.sig;
sig.thrsw = true;
uint32_t packed_sig;
if (!v3d_qpu_sig_pack(c->devinfo, &sig, &packed_sig))
break;
if (!valid_thrsw_sequence(c, scoreboard,
prev_inst, slots_filled + 1,
is_thrend)) {
break;
}
merge_inst = prev_inst;
if (++slots_filled == 3)
break;
}
bool needs_free = false;
if (merge_inst) {
merge_inst->qpu.sig.thrsw = true;
needs_free = true;
scoreboard->last_thrsw_tick = scoreboard->tick - slots_filled;
} else {
scoreboard->last_thrsw_tick = scoreboard->tick;
insert_scheduled_instruction(c, block, scoreboard, inst);
time++;
slots_filled++;
merge_inst = inst;
}
/* Insert any extra delay slot NOPs we need. */
for (int i = 0; i < 3 - slots_filled; i++) {
emit_nop(c, block, scoreboard);
time++;
}
/* If we're emitting the last THRSW (other than program end), then
* signal that to the HW by emitting two THRSWs in a row.
*/
if (inst->is_last_thrsw) {
struct qinst *second_inst =
(struct qinst *)merge_inst->link.next;
second_inst->qpu.sig.thrsw = true;
}
/* If we put our THRSW into another instruction, free up the
* instruction that didn't end up scheduled into the list.
*/
if (needs_free)
free(inst);
return time;
}
static uint32_t
schedule_instructions(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
enum quniform_contents *orig_uniform_contents,
uint32_t *orig_uniform_data,
uint32_t *next_uniform)
{
const struct v3d_device_info *devinfo = c->devinfo;
uint32_t time = 0;
while (!list_is_empty(&scoreboard->dag->heads)) {
struct schedule_node *chosen =
choose_instruction_to_schedule(devinfo,
scoreboard,
NULL);
struct schedule_node *merge = NULL;
/* If there are no valid instructions to schedule, drop a NOP
* in.
*/
struct qinst *qinst = chosen ? chosen->inst : vir_nop();
struct v3d_qpu_instr *inst = &qinst->qpu;
if (debug) {
fprintf(stderr, "t=%4d: current list:\n",
time);
dump_state(devinfo, scoreboard->dag);
fprintf(stderr, "t=%4d: chose: ", time);
v3d_qpu_dump(devinfo, inst);
fprintf(stderr, "\n");
}
/* We can't mark_instruction_scheduled() the chosen inst until
* we're done identifying instructions to merge, so put the
* merged instructions on a list for a moment.
*/
struct list_head merged_list;
list_inithead(&merged_list);
/* Schedule this instruction onto the QPU list. Also try to
* find an instruction to pair with it.
*/
if (chosen) {
time = MAX2(chosen->unblocked_time, time);
pre_remove_head(scoreboard->dag, chosen);
while ((merge =
choose_instruction_to_schedule(devinfo,
scoreboard,
chosen))) {
time = MAX2(merge->unblocked_time, time);
pre_remove_head(scoreboard->dag, chosen);
list_addtail(&merge->link, &merged_list);
(void)qpu_merge_inst(devinfo, inst,
inst, &merge->inst->qpu);
if (merge->inst->uniform != -1) {
chosen->inst->uniform =
merge->inst->uniform;
}
if (debug) {
fprintf(stderr, "t=%4d: merging: ",
time);
v3d_qpu_dump(devinfo, &merge->inst->qpu);
fprintf(stderr, "\n");
fprintf(stderr, " result: ");
v3d_qpu_dump(devinfo, inst);
fprintf(stderr, "\n");
}
}
if (mux_read_stalls(scoreboard, inst))
c->qpu_inst_stalled_count++;
}
/* Update the uniform index for the rewritten location --
* branch target updating will still need to change
* c->uniform_data[] using this index.
*/
if (qinst->uniform != -1) {
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
block->branch_uniform = *next_uniform;
c->uniform_data[*next_uniform] =
orig_uniform_data[qinst->uniform];
c->uniform_contents[*next_uniform] =
orig_uniform_contents[qinst->uniform];
qinst->uniform = *next_uniform;
(*next_uniform)++;
}
if (debug) {
fprintf(stderr, "\n");
}
/* Now that we've scheduled a new instruction, some of its
* children can be promoted to the list of instructions ready to
* be scheduled. Update the children's unblocked time for this
* DAG edge as we do so.
*/
mark_instruction_scheduled(scoreboard->dag, time, chosen);
list_for_each_entry(struct schedule_node, merge, &merged_list,
link) {
mark_instruction_scheduled(scoreboard->dag, time, merge);
/* The merged VIR instruction doesn't get re-added to the
* block, so free it now.
*/
free(merge->inst);
}
if (inst->sig.thrsw) {
time += emit_thrsw(c, block, scoreboard, qinst, false);
} else {
insert_scheduled_instruction(c, block,
scoreboard, qinst);
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
block->branch_qpu_ip = c->qpu_inst_count - 1;
/* Fill the delay slots.
*
* We should fill these with actual instructions,
* instead, but that will probably need to be done
* after this, once we know what the leading
* instructions of the successors are (so we can
* handle A/B register file write latency)
*/
for (int i = 0; i < 3; i++)
emit_nop(c, block, scoreboard);
}
}
}
return time;
}
static uint32_t
qpu_schedule_instructions_block(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
enum quniform_contents *orig_uniform_contents,
uint32_t *orig_uniform_data,
uint32_t *next_uniform)
{
void *mem_ctx = ralloc_context(NULL);
scoreboard->dag = dag_create(mem_ctx);
struct list_head setup_list;
list_inithead(&setup_list);
/* Wrap each instruction in a scheduler structure. */
while (!list_is_empty(&block->instructions)) {
struct qinst *qinst = (struct qinst *)block->instructions.next;
struct schedule_node *n =
rzalloc(mem_ctx, struct schedule_node);
dag_init_node(scoreboard->dag, &n->dag);
n->inst = qinst;
list_del(&qinst->link);
list_addtail(&n->link, &setup_list);
}
calculate_forward_deps(c, scoreboard->dag, &setup_list);
calculate_reverse_deps(c, scoreboard->dag, &setup_list);
dag_traverse_bottom_up(scoreboard->dag, compute_delay, NULL);
uint32_t cycles = schedule_instructions(c, scoreboard, block,
orig_uniform_contents,
orig_uniform_data,
next_uniform);
ralloc_free(mem_ctx);
scoreboard->dag = NULL;
return cycles;
}
static void
qpu_set_branch_targets(struct v3d_compile *c)
{
vir_for_each_block(block, c) {
/* The end block of the program has no branch. */
if (!block->successors[0])
continue;
/* If there was no branch instruction, then the successor
* block must follow immediately after this one.
*/
if (block->branch_qpu_ip == ~0) {
assert(block->end_qpu_ip + 1 ==
block->successors[0]->start_qpu_ip);
continue;
}
/* Walk back through the delay slots to find the branch
* instr.
*/
struct list_head *entry = block->instructions.prev;
for (int i = 0; i < 3; i++)
entry = entry->prev;
struct qinst *branch = container_of(entry, branch, link);
assert(branch->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH);
/* Make sure that the if-we-don't-jump
* successor was scheduled just after the
* delay slots.
*/
assert(!block->successors[1] ||
block->successors[1]->start_qpu_ip ==
block->branch_qpu_ip + 4);
branch->qpu.branch.offset =
((block->successors[0]->start_qpu_ip -
(block->branch_qpu_ip + 4)) *
sizeof(uint64_t));
/* Set up the relative offset to jump in the
* uniform stream.
*
* Use a temporary here, because
* uniform_data[inst->uniform] may be shared
* between multiple instructions.
*/
assert(c->uniform_contents[branch->uniform] == QUNIFORM_CONSTANT);
c->uniform_data[branch->uniform] =
(block->successors[0]->start_uniform -
(block->branch_uniform + 1)) * 4;
}
}
uint32_t
v3d_qpu_schedule_instructions(struct v3d_compile *c)
{
const struct v3d_device_info *devinfo = c->devinfo;
struct qblock *end_block = list_last_entry(&c->blocks,
struct qblock, link);
/* We reorder the uniforms as we schedule instructions, so save the
* old data off and replace it.
*/
uint32_t *uniform_data = c->uniform_data;
enum quniform_contents *uniform_contents = c->uniform_contents;
c->uniform_contents = ralloc_array(c, enum quniform_contents,
c->num_uniforms);
c->uniform_data = ralloc_array(c, uint32_t, c->num_uniforms);
c->uniform_array_size = c->num_uniforms;
uint32_t next_uniform = 0;
struct choose_scoreboard scoreboard;
memset(&scoreboard, 0, sizeof(scoreboard));
scoreboard.last_ldvary_tick = -10;
scoreboard.last_magic_sfu_write_tick = -10;
scoreboard.last_uniforms_reset_tick = -10;
scoreboard.last_thrsw_tick = -10;
scoreboard.last_stallable_sfu_tick = -10;
if (debug) {
fprintf(stderr, "Pre-schedule instructions\n");
vir_for_each_block(block, c) {
fprintf(stderr, "BLOCK %d\n", block->index);
list_for_each_entry(struct qinst, qinst,
&block->instructions, link) {
v3d_qpu_dump(devinfo, &qinst->qpu);
fprintf(stderr, "\n");
}
}
fprintf(stderr, "\n");
}
uint32_t cycles = 0;
vir_for_each_block(block, c) {
block->start_qpu_ip = c->qpu_inst_count;
block->branch_qpu_ip = ~0;
block->start_uniform = next_uniform;
cycles += qpu_schedule_instructions_block(c,
&scoreboard,
block,
uniform_contents,
uniform_data,
&next_uniform);
block->end_qpu_ip = c->qpu_inst_count - 1;
}
/* Emit the program-end THRSW instruction. */;
struct qinst *thrsw = vir_nop();
thrsw->qpu.sig.thrsw = true;
emit_thrsw(c, end_block, &scoreboard, thrsw, true);
qpu_set_branch_targets(c);
assert(next_uniform == c->num_uniforms);
return cycles;
}