blob: fadc76a79af7f1bf06c9c425f1003cfd6c20c3aa [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "common/gen_l3_config.h"
#include "anv_private.h"
#include "brw_nir.h"
#include "anv_nir.h"
#include "spirv/nir_spirv.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
// Shader functions
VkResult anv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = anv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void anv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
#define SPIR_V_MAGIC_NUMBER 0x07230203
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_compile_to_nir(struct anv_device *device,
struct anv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
if (strcmp(entrypoint_name, "main") != 0) {
anv_finishme("Multiple shaders per module not really supported");
}
const struct brw_compiler *compiler =
device->instance->physicalDevice.compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage].NirOptions;
uint32_t *spirv = (uint32_t *) module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
spec_entries[i].data = *(const uint32_t *)data;
}
}
nir_function *entry_point =
spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, NULL, nir_options);
nir_shader *nir = entry_point->shader;
assert(nir->stage == stage);
nir_validate_shader(nir);
free(spec_entries);
if (stage == MESA_SHADER_FRAGMENT) {
nir_lower_wpos_center(nir);
nir_validate_shader(nir);
}
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
nir_lower_constant_initializers(nir, nir_var_local);
nir_validate_shader(nir);
nir_lower_returns(nir);
nir_validate_shader(nir);
nir_inline_functions(nir);
nir_validate_shader(nir);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
nir_remove_dead_variables(nir, nir_var_shader_in |
nir_var_shader_out |
nir_var_system_value);
nir_validate_shader(nir);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
nir_lower_constant_initializers(nir, ~0);
nir_validate_shader(nir);
nir_propagate_invariant(nir);
nir_validate_shader(nir);
nir_lower_io_to_temporaries(entry_point->shader, entry_point->impl,
true, false);
nir_lower_system_values(nir);
nir_validate_shader(nir);
/* Vulkan uses the separate-shader linking model */
nir->info->separate_shader = true;
nir = brw_preprocess_nir(compiler, nir);
nir_lower_clip_cull_distance_arrays(nir);
nir_validate_shader(nir);
if (stage == MESA_SHADER_FRAGMENT)
anv_nir_lower_input_attachments(nir);
nir_shader_gather_info(nir, entry_point->impl);
return nir;
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->alloc);
if (pipeline->blend_state.map)
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
vk_free2(&device->alloc, pAllocator, pipeline);
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
/* [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST] = _3DPRIM_PATCHLIST_1 */
};
static void
populate_sampler_prog_key(const struct gen_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_vs_prog_key(const struct gen_device_info *devinfo,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_gs_prog_key(const struct gen_device_info *devinfo,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_wm_prog_key(const struct gen_device_info *devinfo,
const VkGraphicsPipelineCreateInfo *info,
struct brw_wm_prog_key *key)
{
ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* TODO: Fill out key->input_slots_valid */
/* Vulkan doesn't specify a default */
key->high_quality_derivatives = false;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
key->nr_color_regions =
render_pass->subpasses[info->subpass].color_count;
key->replicate_alpha = key->nr_color_regions > 1 &&
info->pMultisampleState &&
info->pMultisampleState->alphaToCoverageEnable;
if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
key->persample_interp =
(info->pMultisampleState->minSampleShading *
info->pMultisampleState->rasterizationSamples) > 1;
key->multisample_fbo = true;
}
}
static void
populate_cs_prog_key(const struct gen_device_info *devinfo,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static nir_shader *
anv_pipeline_compile(struct anv_pipeline *pipeline,
struct anv_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
struct brw_stage_prog_data *prog_data,
struct anv_pipeline_bind_map *map)
{
nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
module, entrypoint, stage,
spec_info);
if (nir == NULL)
return NULL;
anv_nir_lower_push_constants(nir);
/* Figure out the number of parameters */
prog_data->nr_params = 0;
if (nir->num_uniforms > 0) {
/* If the shader uses any push constants at all, we'll just give
* them the maximum possible number
*/
assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
}
if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
if (nir->info->num_images > 0) {
prog_data->nr_params += nir->info->num_images * BRW_IMAGE_PARAM_SIZE;
pipeline->needs_data_cache = true;
}
if (stage == MESA_SHADER_COMPUTE)
((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
prog_data->nr_params++; /* The CS Thread ID uniform */
if (nir->info->num_ssbos > 0)
pipeline->needs_data_cache = true;
if (prog_data->nr_params > 0) {
/* XXX: I think we're leaking this */
prog_data->param = (const union gl_constant_value **)
malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
/* We now set the param values to be offsets into a
* anv_push_constant_data structure. Since the compiler doesn't
* actually dereference any of the gl_constant_value pointers in the
* params array, it doesn't really matter what we put here.
*/
struct anv_push_constants *null_data = NULL;
if (nir->num_uniforms > 0) {
/* Fill out the push constants section of the param array */
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
prog_data->param[i] = (const union gl_constant_value *)
&null_data->client_data[i * sizeof(float)];
}
}
/* Set up dynamic offsets */
anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
if (pipeline->layout)
anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);
/* nir_lower_io will only handle the push constants; we need to set this
* to the full number of possible uniforms.
*/
nir->num_uniforms = prog_data->nr_params * 4;
return nir;
}
static void
anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
{
prog_data->binding_table.size_bytes = 0;
prog_data->binding_table.texture_start = bias;
prog_data->binding_table.gather_texture_start = bias;
prog_data->binding_table.ubo_start = bias;
prog_data->binding_table.ssbo_start = bias;
prog_data->binding_table.image_start = bias;
}
static struct anv_shader_bin *
anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const void *key_data, uint32_t key_size,
const void *kernel_data, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
const struct anv_pipeline_bind_map *bind_map)
{
if (cache) {
return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
kernel_data, kernel_size,
prog_data, prog_data_size,
bind_map);
} else {
return anv_shader_bin_create(pipeline->device, key_data, key_size,
kernel_data, kernel_size,
prog_data, prog_data_size,
prog_data->param, bind_map);
}
}
static void
anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
gl_shader_stage stage,
struct anv_shader_bin *shader)
{
pipeline->shaders[stage] = shader;
pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
}
static VkResult
anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_bind_map map;
struct brw_vs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_vs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
pipeline->layout, spec_info);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_vs_prog_data prog_data = { 0, };
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_VERTEX, spec_info,
&prog_data.base.base, &map);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
anv_fill_binding_table(&prog_data.base.base, 0);
void *mem_ctx = ralloc_context(NULL);
ralloc_steal(mem_ctx, nir);
prog_data.inputs_read = nir->info->inputs_read;
brw_compute_vue_map(&pipeline->device->info,
&prog_data.base.vue_map,
nir->info->outputs_written,
nir->info->separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, false, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_bind_map map;
struct brw_gs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_gs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
pipeline->layout, spec_info);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_gs_prog_data prog_data = { 0, };
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_GEOMETRY, spec_info,
&prog_data.base.base, &map);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
anv_fill_binding_table(&prog_data.base.base, 0);
void *mem_ctx = ralloc_context(NULL);
ralloc_steal(mem_ctx, nir);
brw_compute_vue_map(&pipeline->device->info,
&prog_data.base.vue_map,
nir->info->outputs_written,
nir->info->separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* TODO: SIMD8 GS */
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_bind_map map;
struct brw_wm_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_wm_prog_key(&pipeline->device->info, info, &key);
if (cache) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
pipeline->layout, spec_info);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_wm_prog_data prog_data = { 0, };
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_to_descriptor + 8,
.sampler_to_descriptor = sampler_to_descriptor
};
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_FRAGMENT, spec_info,
&prog_data.base, &map);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
unsigned num_rts = 0;
struct anv_pipeline_binding rt_bindings[8];
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_foreach_variable_safe(var, &nir->outputs) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
unsigned rt = var->data.location - FRAG_RESULT_DATA0;
if (rt >= key.nr_color_regions) {
/* Out-of-bounds, throw it away */
var->data.mode = nir_var_local;
exec_node_remove(&var->node);
exec_list_push_tail(&impl->locals, &var->node);
continue;
}
/* Give it a new, compacted, location */
var->data.location = FRAG_RESULT_DATA0 + num_rts;
unsigned array_len =
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
assert(num_rts + array_len <= 8);
for (unsigned i = 0; i < array_len; i++) {
rt_bindings[num_rts + i] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = rt + i,
};
}
num_rts += array_len;
}
if (num_rts == 0) {
/* If we have no render targets, we need a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = UINT8_MAX,
};
num_rts = 1;
}
assert(num_rts <= 8);
map.surface_to_descriptor -= num_rts;
map.surface_count += num_rts;
assert(map.surface_count <= 256);
memcpy(map.surface_to_descriptor, rt_bindings,
num_rts * sizeof(*rt_bindings));
anv_fill_binding_table(&prog_data.base, num_rts);
void *mem_ctx = ralloc_context(NULL);
ralloc_steal(mem_ctx, nir);
unsigned code_size;
const unsigned *shader_code =
brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, -1, -1, true, false, NULL, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);
return VK_SUCCESS;
}
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_bind_map map;
struct brw_cs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_cs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
pipeline->layout, spec_info);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_cs_prog_data prog_data = { 0, };
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_COMPUTE, spec_info,
&prog_data.base, &map);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
anv_fill_binding_table(&prog_data.base, 1);
void *mem_ctx = ralloc_context(NULL);
ralloc_steal(mem_ctx, nir);
unsigned code_size;
const unsigned *shader_code =
brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
-1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);
return VK_SUCCESS;
}
/**
* Copy pipeline state not marked as dynamic.
* Dynamic state is pipeline state which hasn't been provided at pipeline
* creation time, but is dynamically provided afterwards using various
* vkCmdSet* functions.
*
* The set of state considered "non_dynamic" is determined by the pieces of
* state that have their corresponding VkDynamicState enums omitted from
* VkPipelineDynamicStateCreateInfo::pDynamicStates.
*
* @param[out] pipeline Destination non_dynamic state.
* @param[in] pCreateInfo Source of non_dynamic state to be copied.
*/
static void
copy_non_dynamic_state(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pViewportState is [...] NULL if the pipeline
* has rasterization disabled.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
bool uses_color_att = false;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i] != VK_ATTACHMENT_UNUSED) {
uses_color_att = true;
break;
}
}
if (uses_color_att &&
!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pColorBlendState);
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
assert(pCreateInfo->pDepthStencilState);
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
}
pipeline->dynamic_state_mask = states;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
assert(info->pRasterizationState);
if (!info->pRasterizationState->rasterizerDiscardEnable) {
assert(info->pViewportState);
assert(info->pMultisampleState);
if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0)
assert(info->pColorBlendState);
}
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
assert(info->pTessellationState);
break;
default:
break;
}
}
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct gen_device_info *devinfo = &pipeline->device->info;
const struct gen_l3_weights w =
gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
pipeline->urb.total_size =
gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
VkResult result;
anv_validate {
anv_pipeline_validate_create_info(pCreateInfo);
}
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
if (result != VK_SUCCESS)
return result;
pipeline->batch.alloc = alloc;
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
copy_non_dynamic_state(pipeline, pCreateInfo);
pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
pCreateInfo->pRasterizationState->depthClampEnable;
pipeline->needs_data_cache = false;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
pipeline->active_stages = 0;
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
pStages[stage] = &pCreateInfo->pStages[i];
modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
}
if (modules[MESA_SHADER_VERTEX]) {
result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_VERTEX],
pStages[MESA_SHADER_VERTEX]->pName,
pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
if (modules[MESA_SHADER_TESS_CTRL] || modules[MESA_SHADER_TESS_EVAL])
anv_finishme("no tessellation support");
if (modules[MESA_SHADER_GEOMETRY]) {
result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_GEOMETRY],
pStages[MESA_SHADER_GEOMETRY]->pName,
pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
if (modules[MESA_SHADER_FRAGMENT]) {
result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_FRAGMENT],
pStages[MESA_SHADER_FRAGMENT]->pName,
pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
anv_pipeline_setup_l3_config(pipeline, false);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
pipeline->vb_used |= 1 << desc->binding;
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->binding_stride[desc->binding] = desc->stride;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->inputRate) {
default:
case VK_VERTEX_INPUT_RATE_VERTEX:
pipeline->instancing_enable[desc->binding] = false;
break;
case VK_VERTEX_INPUT_RATE_INSTANCE:
pipeline->instancing_enable[desc->binding] = true;
break;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
return VK_SUCCESS;
compile_fail:
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
return result;
}