blob: c4afab94caea90d215cd3e81d05d1204c402b6c7 [file] [log] [blame]
/*
* Copyright 2006 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <GL/gl.h>
#include <GL/internal/dri_interface.h>
#include "intel_batchbuffer.h"
#include "intel_mipmap_tree.h"
#include "intel_resolve_map.h"
#include "intel_tex.h"
#include "intel_blit.h"
#include "intel_fbo.h"
#include "brw_blorp.h"
#include "brw_context.h"
#include "brw_state.h"
#include "main/enums.h"
#include "main/fbobject.h"
#include "main/formats.h"
#include "main/glformats.h"
#include "main/texcompress_etc.h"
#include "main/teximage.h"
#include "main/streaming-load-memcpy.h"
#include "x86/common_x86_asm.h"
#define FILE_DEBUG_FLAG DEBUG_MIPTREE
static void *intel_miptree_map_raw(struct brw_context *brw,
struct intel_mipmap_tree *mt);
static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
static bool
intel_miptree_alloc_mcs(struct brw_context *brw,
struct intel_mipmap_tree *mt,
GLuint num_samples);
/**
* Determine which MSAA layout should be used by the MSAA surface being
* created, based on the chip generation and the surface type.
*/
static enum intel_msaa_layout
compute_msaa_layout(struct brw_context *brw, mesa_format format,
bool disable_aux_buffers)
{
/* Prior to Gen7, all MSAA surfaces used IMS layout. */
if (brw->gen < 7)
return INTEL_MSAA_LAYOUT_IMS;
/* In Gen7, IMS layout is only used for depth and stencil buffers. */
switch (_mesa_get_format_base_format(format)) {
case GL_DEPTH_COMPONENT:
case GL_STENCIL_INDEX:
case GL_DEPTH_STENCIL:
return INTEL_MSAA_LAYOUT_IMS;
default:
/* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
*
* This field must be set to 0 for all SINT MSRTs when all RT channels
* are not written
*
* In practice this means that we have to disable MCS for all signed
* integer MSAA buffers. The alternative, to disable MCS only when one
* of the render target channels is disabled, is impractical because it
* would require converting between CMS and UMS MSAA layouts on the fly,
* which is expensive.
*/
if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
return INTEL_MSAA_LAYOUT_UMS;
} else if (disable_aux_buffers) {
/* We can't use the CMS layout because it uses an aux buffer, the MCS
* buffer. So fallback to UMS, which is identical to CMS without the
* MCS. */
return INTEL_MSAA_LAYOUT_UMS;
} else {
return INTEL_MSAA_LAYOUT_CMS;
}
}
}
bool
intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
unsigned tiling)
{
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p326):
*
* - Support is limited to tiled render targets.
*
* Gen9 changes the restriction to Y-tile only.
*/
if (brw->gen >= 9)
return tiling == I915_TILING_Y;
else if (brw->gen >= 7)
return tiling != I915_TILING_NONE;
else
return false;
}
/**
* For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
* can be used. This doesn't (and should not) inspect any of the properties of
* the miptree's BO.
*
* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
* beneath the "Fast Color Clear" bullet (p326):
*
* - Support is for non-mip-mapped and non-array surface types only.
*
* And then later, on p327:
*
* - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
* 64bpp, and 128bpp.
*
* From the Skylake documentation, it is made clear that X-tiling is no longer
* supported:
*
* - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
* non-MSRTs only.
*/
bool
intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
const struct intel_mipmap_tree *mt)
{
/* MCS support does not exist prior to Gen7 */
if (brw->gen < 7)
return false;
if (mt->disable_aux_buffers)
return false;
/* This function applies only to non-multisampled render targets. */
if (mt->num_samples > 1)
return false;
/* MCS is only supported for color buffers */
switch (_mesa_get_format_base_format(mt->format)) {
case GL_DEPTH_COMPONENT:
case GL_DEPTH_STENCIL:
case GL_STENCIL_INDEX:
return false;
}
if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
return false;
const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
const bool arrayed = mt->physical_depth0 != 1;
if (arrayed) {
/* Multisample surfaces with the CMS layout are not layered surfaces,
* yet still have physical_depth0 > 1. Assert that we don't
* accidentally reject a multisampled surface here. We should have
* rejected it earlier by explicitly checking the sample count.
*/
assert(mt->num_samples <= 1);
}
/* Handle the hardware restrictions...
*
* All GENs have the following restriction: "MCS buffer for non-MSRT is
* supported only for RT formats 32bpp, 64bpp, and 128bpp."
*
* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
* Non-MultiSampler Render Target Restrictions) Support is for
* non-mip-mapped and non-array surface types only.
*
* From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
* Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
* surfaces are supported with MCS buffer layout with these alignments in
* the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
*
* From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
* Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
* surfaces are supported with MCS buffer layout with these alignments in
* the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
*/
if (brw->gen < 8 && (mip_mapped || arrayed))
return false;
/* There's no point in using an MCS buffer if the surface isn't in a
* renderable format.
*/
if (!brw->format_supported_as_render_target[mt->format])
return false;
if (brw->gen >= 9) {
mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
const uint32_t brw_format = brw_format_for_mesa_format(linear_format);
return isl_format_supports_lossless_compression(&brw->screen->devinfo,
brw_format);
} else
return true;
}
/* On Gen9 support for color buffer compression was extended to single
* sampled surfaces. This is a helper considering both auxiliary buffer
* type and number of samples telling if the given miptree represents
* the new single sampled case - also called lossless compression.
*/
bool
intel_miptree_is_lossless_compressed(const struct brw_context *brw,
const struct intel_mipmap_tree *mt)
{
/* Only available from Gen9 onwards. */
if (brw->gen < 9)
return false;
/* Compression always requires auxiliary buffer. */
if (!mt->mcs_buf)
return false;
/* Single sample compression is represented re-using msaa compression
* layout type: "Compressed Multisampled Surfaces".
*/
if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
return false;
/* And finally distinguish between msaa and single sample case. */
return mt->num_samples <= 1;
}
bool
intel_miptree_supports_lossless_compressed(struct brw_context *brw,
const struct intel_mipmap_tree *mt)
{
/* For now compression is only enabled for integer formats even though
* there exist supported floating point formats also. This is a heuristic
* decision based on current public benchmarks. In none of the cases these
* formats provided any improvement but a few cases were seen to regress.
* Hence these are left to to be enabled in the future when they are known
* to improve things.
*/
if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
return false;
/* Fast clear mechanism and lossless compression go hand in hand. */
if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
return false;
/* Fast clear can be also used to clear srgb surfaces by using equivalent
* linear format. This trick, however, can't be extended to be used with
* lossless compression and therefore a check is needed to see if the format
* really is linear.
*/
return _mesa_get_srgb_format_linear(mt->format) == mt->format;
}
/**
* Determine depth format corresponding to a depth+stencil format,
* for separate stencil.
*/
mesa_format
intel_depth_format_for_depthstencil_format(mesa_format format) {
switch (format) {
case MESA_FORMAT_Z24_UNORM_S8_UINT:
return MESA_FORMAT_Z24_UNORM_X8_UINT;
case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
return MESA_FORMAT_Z_FLOAT32;
default:
return format;
}
}
/**
* @param for_bo Indicates that the caller is
* intel_miptree_create_for_bo(). If true, then do not create
* \c stencil_mt.
*/
static struct intel_mipmap_tree *
intel_miptree_create_layout(struct brw_context *brw,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0,
GLuint num_samples,
uint32_t layout_flags)
{
struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
if (!mt)
return NULL;
DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
_mesa_enum_to_string(target),
_mesa_get_format_name(format),
first_level, last_level, depth0, mt);
if (target == GL_TEXTURE_1D_ARRAY)
assert(height0 == 1);
mt->target = target;
mt->format = format;
mt->first_level = first_level;
mt->last_level = last_level;
mt->logical_width0 = width0;
mt->logical_height0 = height0;
mt->logical_depth0 = depth0;
mt->disable_aux_buffers = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0;
mt->no_ccs = true;
mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
exec_list_make_empty(&mt->hiz_map);
exec_list_make_empty(&mt->color_resolve_map);
mt->cpp = _mesa_get_format_bytes(format);
mt->num_samples = num_samples;
mt->compressed = _mesa_is_format_compressed(format);
mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
mt->refcount = 1;
int depth_multiply = 1;
if (num_samples > 1) {
/* Adjust width/height/depth for MSAA */
mt->msaa_layout = compute_msaa_layout(brw, format,
mt->disable_aux_buffers);
if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
/* From the Ivybridge PRM, Volume 1, Part 1, page 108:
* "If the surface is multisampled and it is a depth or stencil
* surface or Multisampled Surface StorageFormat in SURFACE_STATE is
* MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
* proceeding:
*
* +----------------------------------------------------------------+
* | Num Multisamples | W_l = | H_l = |
* +----------------------------------------------------------------+
* | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
* | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
* | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
* | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
* +----------------------------------------------------------------+
* "
*
* Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
* format rather than UMS/CMS (array slices). The Sandybridge PRM,
* Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
*
* Another more complicated explanation for these adjustments comes
* from the Sandybridge PRM, volume 4, part 1, page 31:
*
* "Any of the other messages (sample*, LOD, load4) used with a
* (4x) multisampled surface will in-effect sample a surface with
* double the height and width as that indicated in the surface
* state. Each pixel position on the original-sized surface is
* replaced with a 2x2 of samples with the following arrangement:
*
* sample 0 sample 2
* sample 1 sample 3"
*
* Thus, when sampling from a multisampled texture, it behaves as
* though the layout in memory for (x,y,sample) is:
*
* (0,0,0) (0,0,2) (1,0,0) (1,0,2)
* (0,0,1) (0,0,3) (1,0,1) (1,0,3)
*
* (0,1,0) (0,1,2) (1,1,0) (1,1,2)
* (0,1,1) (0,1,3) (1,1,1) (1,1,3)
*
* However, the actual layout of multisampled data in memory is:
*
* (0,0,0) (1,0,0) (0,0,1) (1,0,1)
* (0,1,0) (1,1,0) (0,1,1) (1,1,1)
*
* (0,0,2) (1,0,2) (0,0,3) (1,0,3)
* (0,1,2) (1,1,2) (0,1,3) (1,1,3)
*
* This pattern repeats for each 2x2 pixel block.
*
* As a result, when calculating the size of our 4-sample buffer for
* an odd width or height, we have to align before scaling up because
* sample 3 is in that bottom right 2x2 block.
*/
switch (num_samples) {
case 2:
assert(brw->gen >= 8);
width0 = ALIGN(width0, 2) * 2;
height0 = ALIGN(height0, 2);
break;
case 4:
width0 = ALIGN(width0, 2) * 2;
height0 = ALIGN(height0, 2) * 2;
break;
case 8:
width0 = ALIGN(width0, 2) * 4;
height0 = ALIGN(height0, 2) * 2;
break;
case 16:
width0 = ALIGN(width0, 2) * 4;
height0 = ALIGN(height0, 2) * 4;
break;
default:
/* num_samples should already have been quantized to 0, 1, 2, 4, 8
* or 16.
*/
unreachable("not reached");
}
} else {
/* Non-interleaved */
depth_multiply = num_samples;
depth0 *= depth_multiply;
}
}
/* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
* be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
* Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
* used on Gen8 to make it pick a qpitch value which doesn't include space
* for the mipmaps. On Gen9 this is not necessary because it will
* automatically pick a packed qpitch value whenever mt->first_level ==
* mt->last_level.
* TODO: can we use it elsewhere?
* TODO: also disable this on Gen8 and pick the qpitch value like Gen9
*/
if (brw->gen >= 9) {
mt->array_layout = ALL_LOD_IN_EACH_SLICE;
} else {
switch (mt->msaa_layout) {
case INTEL_MSAA_LAYOUT_NONE:
case INTEL_MSAA_LAYOUT_IMS:
mt->array_layout = ALL_LOD_IN_EACH_SLICE;
break;
case INTEL_MSAA_LAYOUT_UMS:
case INTEL_MSAA_LAYOUT_CMS:
mt->array_layout = ALL_SLICES_AT_EACH_LOD;
break;
}
}
if (target == GL_TEXTURE_CUBE_MAP)
assert(depth0 == 6 * depth_multiply);
mt->physical_width0 = width0;
mt->physical_height0 = height0;
mt->physical_depth0 = depth0;
if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
_mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
(brw->must_use_separate_stencil ||
(brw->has_separate_stencil &&
intel_miptree_wants_hiz_buffer(brw, mt)))) {
uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
if (brw->gen == 6) {
stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
MIPTREE_LAYOUT_TILING_ANY;
}
mt->stencil_mt = intel_miptree_create(brw,
mt->target,
MESA_FORMAT_S_UINT8,
mt->first_level,
mt->last_level,
mt->logical_width0,
mt->logical_height0,
mt->logical_depth0,
num_samples,
stencil_flags);
if (!mt->stencil_mt) {
intel_miptree_release(&mt);
return NULL;
}
mt->stencil_mt->r8stencil_needs_update = true;
/* Fix up the Z miptree format for how we're splitting out separate
* stencil. Gen7 expects there to be no stencil bits in its depth buffer.
*/
mt->format = intel_depth_format_for_depthstencil_format(mt->format);
mt->cpp = 4;
if (format == mt->format) {
_mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
_mesa_get_format_name(mt->format));
}
}
if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
mt->array_layout = ALL_SLICES_AT_EACH_LOD;
/*
* Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
* multisampled or have an AUX buffer attached to it.
*
* GEN | MSRT | AUX_CCS_* or AUX_MCS
* -------------------------------------------
* 9 | HALIGN_16 | HALIGN_16
* 8 | HALIGN_ANY | HALIGN_16
* 7 | ? | ?
* 6 | ? | ?
*/
if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
} else if (brw->gen >= 9 && num_samples > 1) {
layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
} else {
const UNUSED bool is_lossless_compressed_aux =
brw->gen >= 9 && num_samples == 1 &&
mt->format == MESA_FORMAT_R_UINT32;
/* For now, nothing else has this requirement */
assert(is_lossless_compressed_aux ||
(layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
}
brw_miptree_layout(brw, mt, layout_flags);
if (mt->disable_aux_buffers)
assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
return mt;
}
/**
* Choose an appropriate uncompressed format for a requested
* compressed format, if unsupported.
*/
mesa_format
intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
{
/* No need to lower ETC formats on these platforms,
* they are supported natively.
*/
if (brw->gen >= 8 || brw->is_baytrail)
return format;
switch (format) {
case MESA_FORMAT_ETC1_RGB8:
return MESA_FORMAT_R8G8B8X8_UNORM;
case MESA_FORMAT_ETC2_RGB8:
return MESA_FORMAT_R8G8B8X8_UNORM;
case MESA_FORMAT_ETC2_SRGB8:
case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
return MESA_FORMAT_B8G8R8A8_SRGB;
case MESA_FORMAT_ETC2_RGBA8_EAC:
case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
return MESA_FORMAT_R8G8B8A8_UNORM;
case MESA_FORMAT_ETC2_R11_EAC:
return MESA_FORMAT_R_UNORM16;
case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
return MESA_FORMAT_R_SNORM16;
case MESA_FORMAT_ETC2_RG11_EAC:
return MESA_FORMAT_R16G16_UNORM;
case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
return MESA_FORMAT_R16G16_SNORM;
default:
/* Non ETC1 / ETC2 format */
return format;
}
}
/* This function computes Yf/Ys tiled bo size, alignment and pitch. */
static unsigned long
intel_get_yf_ys_bo_size(struct intel_mipmap_tree *mt, unsigned *alignment,
unsigned long *pitch)
{
uint32_t tile_width, tile_height;
unsigned long stride, size, aligned_y;
assert(mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE);
intel_get_tile_dims(mt->tiling, mt->tr_mode, mt->cpp,
&tile_width, &tile_height);
aligned_y = ALIGN(mt->total_height, tile_height);
stride = mt->total_width * mt->cpp;
stride = ALIGN(stride, tile_width);
size = stride * aligned_y;
if (mt->tr_mode == INTEL_MIPTREE_TRMODE_YF) {
assert(size % 4096 == 0);
*alignment = 4096;
} else {
assert(size % (64 * 1024) == 0);
*alignment = 64 * 1024;
}
*pitch = stride;
return size;
}
static struct intel_mipmap_tree *
miptree_create(struct brw_context *brw,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0,
GLuint num_samples,
uint32_t layout_flags)
{
struct intel_mipmap_tree *mt;
mesa_format tex_format = format;
mesa_format etc_format = MESA_FORMAT_NONE;
uint32_t alloc_flags = 0;
format = intel_lower_compressed_format(brw, format);
etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
mt = intel_miptree_create_layout(brw, target, format,
first_level, last_level, width0,
height0, depth0, num_samples,
layout_flags);
/*
* pitch == 0 || height == 0 indicates the null texture
*/
if (!mt || !mt->total_width || !mt->total_height) {
intel_miptree_release(&mt);
return NULL;
}
if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
mt->tiling = I915_TILING_Y;
if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
alloc_flags |= BO_ALLOC_FOR_RENDER;
unsigned long pitch;
mt->etc_format = etc_format;
if (mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) {
unsigned alignment = 0;
unsigned long size;
size = intel_get_yf_ys_bo_size(mt, &alignment, &pitch);
assert(size);
mt->bo = drm_intel_bo_alloc_for_render(brw->bufmgr, "miptree",
size, alignment);
} else {
if (format == MESA_FORMAT_S_UINT8) {
/* Align to size of W tile, 64x64. */
mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
ALIGN(mt->total_width, 64),
ALIGN(mt->total_height, 64),
mt->cpp, &mt->tiling, &pitch,
alloc_flags);
} else {
mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
mt->total_width, mt->total_height,
mt->cpp, &mt->tiling, &pitch,
alloc_flags);
}
}
mt->pitch = pitch;
return mt;
}
struct intel_mipmap_tree *
intel_miptree_create(struct brw_context *brw,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0,
GLuint num_samples,
uint32_t layout_flags)
{
struct intel_mipmap_tree *mt = miptree_create(
brw, target, format,
first_level, last_level,
width0, height0, depth0, num_samples,
layout_flags);
/* If the BO is too large to fit in the aperture, we need to use the
* BLT engine to support it. Prior to Sandybridge, the BLT paths can't
* handle Y-tiling, so we need to fall back to X.
*/
if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
mt->tiling == I915_TILING_Y) {
unsigned long pitch = mt->pitch;
const uint32_t alloc_flags =
(layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
BO_ALLOC_FOR_RENDER : 0;
perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
mt->total_width, mt->total_height);
mt->tiling = I915_TILING_X;
drm_intel_bo_unreference(mt->bo);
mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
mt->total_width, mt->total_height, mt->cpp,
&mt->tiling, &pitch, alloc_flags);
mt->pitch = pitch;
}
mt->offset = 0;
if (!mt->bo) {
intel_miptree_release(&mt);
return NULL;
}
if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
assert(mt->num_samples > 1);
if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
intel_miptree_release(&mt);
return NULL;
}
}
/* If this miptree is capable of supporting fast color clears, set
* fast_clear_state appropriately to ensure that fast clears will occur.
* Allocation of the MCS miptree will be deferred until the first fast
* clear actually occurs or when compressed single sampled buffer is
* written by the GPU for the first time.
*/
if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
mt->no_ccs = false;
assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
/* On Gen9+ clients are not currently capable of consuming compressed
* single-sampled buffers. Disabling compression allows us to skip
* resolves.
*/
const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
const bool is_lossless_compressed =
unlikely(!lossless_compression_disabled) &&
brw->gen >= 9 && !mt->is_scanout &&
intel_miptree_supports_lossless_compressed(brw, mt);
if (is_lossless_compressed) {
intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
}
}
return mt;
}
struct intel_mipmap_tree *
intel_miptree_create_for_bo(struct brw_context *brw,
drm_intel_bo *bo,
mesa_format format,
uint32_t offset,
uint32_t width,
uint32_t height,
uint32_t depth,
int pitch,
uint32_t layout_flags)
{
struct intel_mipmap_tree *mt;
uint32_t tiling, swizzle;
GLenum target;
drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
/* Nothing will be able to use this miptree with the BO if the offset isn't
* aligned.
*/
if (tiling != I915_TILING_NONE)
assert(offset % 4096 == 0);
/* miptrees can't handle negative pitch. If you need flipping of images,
* that's outside of the scope of the mt.
*/
assert(pitch >= 0);
target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
/* The BO already has a tiling format and we shouldn't confuse the lower
* layers by making it try to find a tiling format again.
*/
assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
layout_flags |= MIPTREE_LAYOUT_FOR_BO;
mt = intel_miptree_create_layout(brw, target, format,
0, 0,
width, height, depth, 0,
layout_flags);
if (!mt)
return NULL;
drm_intel_bo_reference(bo);
mt->bo = bo;
mt->pitch = pitch;
mt->offset = offset;
mt->tiling = tiling;
return mt;
}
/**
* For a singlesample renderbuffer, this simply wraps the given BO with a
* miptree.
*
* For a multisample renderbuffer, this wraps the window system's
* (singlesample) BO with a singlesample miptree attached to the
* intel_renderbuffer, then creates a multisample miptree attached to irb->mt
* that will contain the actual rendering (which is lazily resolved to
* irb->singlesample_mt).
*/
void
intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
struct intel_renderbuffer *irb,
drm_intel_bo *bo,
uint32_t width, uint32_t height,
uint32_t pitch)
{
struct intel_mipmap_tree *singlesample_mt = NULL;
struct intel_mipmap_tree *multisample_mt = NULL;
struct gl_renderbuffer *rb = &irb->Base.Base;
mesa_format format = rb->Format;
int num_samples = rb->NumSamples;
/* Only the front and back buffers, which are color buffers, are allocated
* through the image loader.
*/
assert(_mesa_get_format_base_format(format) == GL_RGB ||
_mesa_get_format_base_format(format) == GL_RGBA);
singlesample_mt = intel_miptree_create_for_bo(intel,
bo,
format,
0,
width,
height,
1,
pitch,
MIPTREE_LAYOUT_FOR_SCANOUT);
if (!singlesample_mt)
goto fail;
/* If this miptree is capable of supporting fast color clears, set
* mcs_state appropriately to ensure that fast clears will occur.
* Allocation of the MCS miptree will be deferred until the first fast
* clear actually occurs.
*/
if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
singlesample_mt->no_ccs = false;
}
if (num_samples == 0) {
intel_miptree_release(&irb->mt);
irb->mt = singlesample_mt;
assert(!irb->singlesample_mt);
} else {
intel_miptree_release(&irb->singlesample_mt);
irb->singlesample_mt = singlesample_mt;
if (!irb->mt ||
irb->mt->logical_width0 != width ||
irb->mt->logical_height0 != height) {
multisample_mt = intel_miptree_create_for_renderbuffer(intel,
format,
width,
height,
num_samples);
if (!multisample_mt)
goto fail;
irb->need_downsample = false;
intel_miptree_release(&irb->mt);
irb->mt = multisample_mt;
}
}
return;
fail:
intel_miptree_release(&irb->singlesample_mt);
intel_miptree_release(&irb->mt);
return;
}
struct intel_mipmap_tree*
intel_miptree_create_for_renderbuffer(struct brw_context *brw,
mesa_format format,
uint32_t width,
uint32_t height,
uint32_t num_samples)
{
struct intel_mipmap_tree *mt;
uint32_t depth = 1;
bool ok;
GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
MIPTREE_LAYOUT_TILING_ANY |
MIPTREE_LAYOUT_FOR_SCANOUT;
mt = intel_miptree_create(brw, target, format, 0, 0,
width, height, depth, num_samples,
layout_flags);
if (!mt)
goto fail;
if (intel_miptree_wants_hiz_buffer(brw, mt)) {
ok = intel_miptree_alloc_hiz(brw, mt);
if (!ok)
goto fail;
}
return mt;
fail:
intel_miptree_release(&mt);
return NULL;
}
void
intel_miptree_reference(struct intel_mipmap_tree **dst,
struct intel_mipmap_tree *src)
{
if (*dst == src)
return;
intel_miptree_release(dst);
if (src) {
src->refcount++;
DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
}
*dst = src;
}
static void
intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer *hiz_buf)
{
if (hiz_buf == NULL)
return;
if (hiz_buf->mt)
intel_miptree_release(&hiz_buf->mt);
else
drm_intel_bo_unreference(hiz_buf->aux_base.bo);
free(hiz_buf);
}
void
intel_miptree_release(struct intel_mipmap_tree **mt)
{
if (!*mt)
return;
DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
if (--(*mt)->refcount <= 0) {
GLuint i;
DBG("%s deleting %p\n", __func__, *mt);
drm_intel_bo_unreference((*mt)->bo);
intel_miptree_release(&(*mt)->stencil_mt);
intel_miptree_release(&(*mt)->r8stencil_mt);
intel_miptree_hiz_buffer_free((*mt)->hiz_buf);
if ((*mt)->mcs_buf) {
drm_intel_bo_unreference((*mt)->mcs_buf->bo);
free((*mt)->mcs_buf);
}
intel_resolve_map_clear(&(*mt)->hiz_map);
intel_resolve_map_clear(&(*mt)->color_resolve_map);
intel_miptree_release(&(*mt)->plane[0]);
intel_miptree_release(&(*mt)->plane[1]);
for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
free((*mt)->level[i].slice);
}
free(*mt);
}
*mt = NULL;
}
void
intel_get_image_dims(struct gl_texture_image *image,
int *width, int *height, int *depth)
{
switch (image->TexObject->Target) {
case GL_TEXTURE_1D_ARRAY:
/* For a 1D Array texture the OpenGL API will treat the image height as
* the number of array slices. For Intel hardware, we treat the 1D array
* as a 2D Array with a height of 1. So, here we want to swap image
* height and depth.
*/
assert(image->Depth == 1);
*width = image->Width;
*height = 1;
*depth = image->Height;
break;
case GL_TEXTURE_CUBE_MAP:
/* For Cube maps, the mesa/main api layer gives us a depth of 1 even
* though we really have 6 slices.
*/
assert(image->Depth == 1);
*width = image->Width;
*height = image->Height;
*depth = 6;
break;
default:
*width = image->Width;
*height = image->Height;
*depth = image->Depth;
break;
}
}
/**
* Can the image be pulled into a unified mipmap tree? This mirrors
* the completeness test in a lot of ways.
*
* Not sure whether I want to pass gl_texture_image here.
*/
bool
intel_miptree_match_image(struct intel_mipmap_tree *mt,
struct gl_texture_image *image)
{
struct intel_texture_image *intelImage = intel_texture_image(image);
GLuint level = intelImage->base.Base.Level;
int width, height, depth;
/* glTexImage* choose the texture object based on the target passed in, and
* objects can't change targets over their lifetimes, so this should be
* true.
*/
assert(image->TexObject->Target == mt->target);
mesa_format mt_format = mt->format;
if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
if (mt->etc_format != MESA_FORMAT_NONE)
mt_format = mt->etc_format;
if (image->TexFormat != mt_format)
return false;
intel_get_image_dims(image, &width, &height, &depth);
if (mt->target == GL_TEXTURE_CUBE_MAP)
depth = 6;
int level_depth = mt->level[level].depth;
if (mt->num_samples > 1) {
switch (mt->msaa_layout) {
case INTEL_MSAA_LAYOUT_NONE:
case INTEL_MSAA_LAYOUT_IMS:
break;
case INTEL_MSAA_LAYOUT_UMS:
case INTEL_MSAA_LAYOUT_CMS:
level_depth /= mt->num_samples;
break;
}
}
/* Test image dimensions against the base level image adjusted for
* minification. This will also catch images not present in the
* tree, changed targets, etc.
*/
if (width != minify(mt->logical_width0, level - mt->first_level) ||
height != minify(mt->logical_height0, level - mt->first_level) ||
depth != level_depth) {
return false;
}
if (image->NumSamples != mt->num_samples)
return false;
return true;
}
void
intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
GLuint level,
GLuint x, GLuint y, GLuint d)
{
mt->level[level].depth = d;
mt->level[level].level_x = x;
mt->level[level].level_y = y;
DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
level, d, x, y);
assert(mt->level[level].slice == NULL);
mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
mt->level[level].slice[0].x_offset = mt->level[level].level_x;
mt->level[level].slice[0].y_offset = mt->level[level].level_y;
}
void
intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
GLuint level, GLuint img,
GLuint x, GLuint y)
{
if (img == 0 && level == 0)
assert(x == 0 && y == 0);
assert(img < mt->level[level].depth);
mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
DBG("%s level %d img %d pos %d,%d\n",
__func__, level, img,
mt->level[level].slice[img].x_offset,
mt->level[level].slice[img].y_offset);
}
void
intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
GLuint level, GLuint slice,
GLuint *x, GLuint *y)
{
assert(slice < mt->level[level].depth);
*x = mt->level[level].slice[slice].x_offset;
*y = mt->level[level].slice[slice].y_offset;
}
/**
* This function computes the tile_w (in bytes) and tile_h (in rows) of
* different tiling patterns. If the BO is untiled, tile_w is set to cpp
* and tile_h is set to 1.
*/
void
intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
uint32_t *tile_w, uint32_t *tile_h)
{
if (tr_mode == INTEL_MIPTREE_TRMODE_NONE) {
switch (tiling) {
case I915_TILING_X:
*tile_w = 512;
*tile_h = 8;
break;
case I915_TILING_Y:
*tile_w = 128;
*tile_h = 32;
break;
case I915_TILING_NONE:
*tile_w = cpp;
*tile_h = 1;
break;
default:
unreachable("not reached");
}
} else {
uint32_t aspect_ratio = 1;
assert(_mesa_is_pow_two(cpp));
switch (cpp) {
case 1:
*tile_h = 64;
break;
case 2:
case 4:
*tile_h = 32;
break;
case 8:
case 16:
*tile_h = 16;
break;
default:
unreachable("not reached");
}
if (cpp == 2 || cpp == 8)
aspect_ratio = 2;
if (tr_mode == INTEL_MIPTREE_TRMODE_YS)
*tile_h *= 4;
*tile_w = *tile_h * aspect_ratio * cpp;
}
}
/**
* This function computes masks that may be used to select the bits of the X
* and Y coordinates that indicate the offset within a tile. If the BO is
* untiled, the masks are set to 0.
*/
void
intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
uint32_t *mask_x, uint32_t *mask_y)
{
uint32_t tile_w_bytes, tile_h;
intel_get_tile_dims(tiling, tr_mode, cpp, &tile_w_bytes, &tile_h);
*mask_x = tile_w_bytes / cpp - 1;
*mask_y = tile_h - 1;
}
/**
* Compute the offset (in bytes) from the start of the BO to the given x
* and y coordinate. For tiled BOs, caller must ensure that x and y are
* multiples of the tile size.
*/
uint32_t
intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
uint32_t x, uint32_t y)
{
int cpp = mt->cpp;
uint32_t pitch = mt->pitch;
uint32_t tiling = mt->tiling;
switch (tiling) {
default:
unreachable("not reached");
case I915_TILING_NONE:
return y * pitch + x * cpp;
case I915_TILING_X:
assert((x % (512 / cpp)) == 0);
assert((y % 8) == 0);
return y * pitch + x / (512 / cpp) * 4096;
case I915_TILING_Y:
assert((x % (128 / cpp)) == 0);
assert((y % 32) == 0);
return y * pitch + x / (128 / cpp) * 4096;
}
}
/**
* Rendering with tiled buffers requires that the base address of the buffer
* be aligned to a page boundary. For renderbuffers, and sometimes with
* textures, we may want the surface to point at a texture image level that
* isn't at a page boundary.
*
* This function returns an appropriately-aligned base offset
* according to the tiling restrictions, plus any required x/y offset
* from there.
*/
uint32_t
intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
GLuint level, GLuint slice,
uint32_t *tile_x,
uint32_t *tile_y)
{
uint32_t x, y;
uint32_t mask_x, mask_y;
intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp, &mask_x, &mask_y);
intel_miptree_get_image_offset(mt, level, slice, &x, &y);
*tile_x = x & mask_x;
*tile_y = y & mask_y;
return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
}
static void
intel_miptree_copy_slice_sw(struct brw_context *brw,
struct intel_mipmap_tree *dst_mt,
struct intel_mipmap_tree *src_mt,
int level,
int slice,
int width,
int height)
{
void *src, *dst;
ptrdiff_t src_stride, dst_stride;
int cpp = dst_mt->cpp;
intel_miptree_map(brw, src_mt,
level, slice,
0, 0,
width, height,
GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
&src, &src_stride);
intel_miptree_map(brw, dst_mt,
level, slice,
0, 0,
width, height,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
BRW_MAP_DIRECT_BIT,
&dst, &dst_stride);
DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
_mesa_get_format_name(src_mt->format),
src_mt, src, src_stride,
_mesa_get_format_name(dst_mt->format),
dst_mt, dst, dst_stride,
width, height);
int row_size = cpp * width;
if (src_stride == row_size &&
dst_stride == row_size) {
memcpy(dst, src, row_size * height);
} else {
for (int i = 0; i < height; i++) {
memcpy(dst, src, row_size);
dst += dst_stride;
src += src_stride;
}
}
intel_miptree_unmap(brw, dst_mt, level, slice);
intel_miptree_unmap(brw, src_mt, level, slice);
/* Don't forget to copy the stencil data over, too. We could have skipped
* passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
* shuffling the two data sources in/out of temporary storage instead of
* the direct mapping we get this way.
*/
if (dst_mt->stencil_mt) {
assert(src_mt->stencil_mt);
intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
level, slice, width, height);
}
}
static void
intel_miptree_copy_slice(struct brw_context *brw,
struct intel_mipmap_tree *dst_mt,
struct intel_mipmap_tree *src_mt,
int level,
int face,
int depth)
{
mesa_format format = src_mt->format;
uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
int slice;
if (face > 0)
slice = face;
else
slice = depth;
assert(depth < src_mt->level[level].depth);
assert(src_mt->format == dst_mt->format);
if (dst_mt->compressed) {
unsigned int i, j;
_mesa_get_format_block_size(dst_mt->format, &i, &j);
height = ALIGN_NPOT(height, j) / j;
width = ALIGN_NPOT(width, i) / i;
}
/* If it's a packed depth/stencil buffer with separate stencil, the blit
* below won't apply since we can't do the depth's Y tiling or the
* stencil's W tiling in the blitter.
*/
if (src_mt->stencil_mt) {
intel_miptree_copy_slice_sw(brw,
dst_mt, src_mt,
level, slice,
width, height);
return;
}
uint32_t dst_x, dst_y, src_x, src_y;
intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
_mesa_get_format_name(src_mt->format),
src_mt, src_x, src_y, src_mt->pitch,
_mesa_get_format_name(dst_mt->format),
dst_mt, dst_x, dst_y, dst_mt->pitch,
width, height);
if (!intel_miptree_blit(brw,
src_mt, level, slice, 0, 0, false,
dst_mt, level, slice, 0, 0, false,
width, height, GL_COPY)) {
perf_debug("miptree validate blit for %s failed\n",
_mesa_get_format_name(format));
intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
width, height);
}
}
/**
* Copies the image's current data to the given miptree, and associates that
* miptree with the image.
*
* If \c invalidate is true, then the actual image data does not need to be
* copied, but the image still needs to be associated to the new miptree (this
* is set to true if we're about to clear the image).
*/
void
intel_miptree_copy_teximage(struct brw_context *brw,
struct intel_texture_image *intelImage,
struct intel_mipmap_tree *dst_mt,
bool invalidate)
{
struct intel_mipmap_tree *src_mt = intelImage->mt;
struct intel_texture_object *intel_obj =
intel_texture_object(intelImage->base.Base.TexObject);
int level = intelImage->base.Base.Level;
int face = intelImage->base.Base.Face;
GLuint depth;
if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
depth = intelImage->base.Base.Height;
else
depth = intelImage->base.Base.Depth;
if (!invalidate) {
for (int slice = 0; slice < depth; slice++) {
intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
}
}
intel_miptree_reference(&intelImage->mt, dst_mt);
intel_obj->needs_validate = true;
}
static void
intel_miptree_init_mcs(struct brw_context *brw,
struct intel_mipmap_tree *mt,
int init_value)
{
assert(mt->mcs_buf != NULL);
/* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
*
* When MCS buffer is enabled and bound to MSRT, it is required that it
* is cleared prior to any rendering.
*
* Since we don't use the MCS buffer for any purpose other than rendering,
* it makes sense to just clear it immediately upon allocation.
*
* Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
*/
const int ret = brw_bo_map_gtt(brw, mt->mcs_buf->bo, "miptree");
if (unlikely(ret)) {
fprintf(stderr, "Failed to map mcs buffer into GTT\n");
drm_intel_bo_unreference(mt->mcs_buf->bo);
free(mt->mcs_buf);
return;
}
void *data = mt->mcs_buf->bo->virtual;
memset(data, init_value, mt->mcs_buf->size);
drm_intel_bo_unmap(mt->mcs_buf->bo);
}
static struct intel_miptree_aux_buffer *
intel_mcs_miptree_buf_create(struct brw_context *brw,
struct intel_mipmap_tree *mt,
mesa_format format,
unsigned mcs_width,
unsigned mcs_height,
uint32_t layout_flags)
{
struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
struct intel_mipmap_tree *temp_mt;
if (!buf)
return NULL;
/* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
*
* "The MCS surface must be stored as Tile Y."
*/
layout_flags |= MIPTREE_LAYOUT_TILING_Y;
temp_mt = miptree_create(brw,
mt->target,
format,
mt->first_level,
mt->last_level,
mcs_width,
mcs_height,
mt->logical_depth0,
0 /* num_samples */,
layout_flags);
if (!temp_mt) {
free(buf);
return NULL;
}
buf->bo = temp_mt->bo;
buf->offset = temp_mt->offset;
buf->size = temp_mt->total_height * temp_mt->pitch;
buf->pitch = temp_mt->pitch;
buf->qpitch = temp_mt->qpitch;
/* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
* structure should go away. We use miptree create simply as a means to make
* sure all the constraints for the buffer are satisfied.
*/
drm_intel_bo_reference(temp_mt->bo);
intel_miptree_release(&temp_mt);
return buf;
}
static bool
intel_miptree_alloc_mcs(struct brw_context *brw,
struct intel_mipmap_tree *mt,
GLuint num_samples)
{
assert(brw->gen >= 7); /* MCS only used on Gen7+ */
assert(mt->mcs_buf == NULL);
assert(!mt->disable_aux_buffers);
/* Choose the correct format for the MCS buffer. All that really matters
* is that we allocate the right buffer size, since we'll always be
* accessing this miptree using MCS-specific hardware mechanisms, which
* infer the correct format based on num_samples.
*/
mesa_format format;
switch (num_samples) {
case 2:
case 4:
/* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
* each sample).
*/
format = MESA_FORMAT_R_UNORM8;
break;
case 8:
/* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
* for each sample, plus 8 padding bits).
*/
format = MESA_FORMAT_R_UINT32;
break;
case 16:
/* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
* for each sample).
*/
format = MESA_FORMAT_RG_UINT32;
break;
default:
unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
};
mt->mcs_buf =
intel_mcs_miptree_buf_create(brw, mt,
format,
mt->logical_width0,
mt->logical_height0,
MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
if (!mt->mcs_buf)
return false;
intel_miptree_init_mcs(brw, mt, 0xFF);
/* Multisampled miptrees are only supported for single level. */
assert(mt->first_level == 0);
intel_miptree_set_fast_clear_state(brw, mt, mt->first_level, 0,
mt->logical_depth0,
INTEL_FAST_CLEAR_STATE_CLEAR);
return true;
}
bool
intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
struct intel_mipmap_tree *mt,
bool is_lossless_compressed)
{
assert(mt->mcs_buf == NULL);
assert(!mt->disable_aux_buffers);
assert(!mt->no_ccs);
struct isl_surf temp_main_surf;
struct isl_surf temp_ccs_surf;
/* Create first an ISL presentation for the main color surface and let ISL
* calculate equivalent CCS surface against it.
*/
intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
return false;
assert(temp_ccs_surf.size &&
(temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
if (!buf)
return false;
buf->size = temp_ccs_surf.size;
buf->pitch = temp_ccs_surf.row_pitch;
buf->qpitch = isl_surf_get_array_pitch_sa_rows(&temp_ccs_surf);
/* In case of compression mcs buffer needs to be initialised requiring the
* buffer to be immediately mapped to cpu space for writing. Therefore do
* not use the gpu access flag which can cause an unnecessary delay if the
* backing pages happened to be just used by the GPU.
*/
const uint32_t alloc_flags =
is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
uint32_t tiling = I915_TILING_Y;
unsigned long pitch;
/* ISL has stricter set of alignment rules then the drm allocator.
* Therefore one can pass the ISL dimensions in terms of bytes instead of
* trying to recalculate based on different format block sizes.
*/
buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "ccs-miptree",
buf->pitch, buf->size / buf->pitch,
1, &tiling, &pitch, alloc_flags);
if (buf->bo) {
assert(pitch == buf->pitch);
assert(tiling == I915_TILING_Y);
} else {
free(buf);
return false;
}
mt->mcs_buf = buf;
/* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
* used for lossless compression which requires similar initialisation
* as multi-sample compression.
*/
if (is_lossless_compressed) {
/* Hardware sets the auxiliary buffer to all zeroes when it does full
* resolve. Initialize it accordingly in case the first renderer is
* cpu (or other none compression aware party).
*
* This is also explicitly stated in the spec (MCS Buffer for Render
* Target(s)):
* "If Software wants to enable Color Compression without Fast clear,
* Software needs to initialize MCS with zeros."
*/
intel_miptree_init_mcs(brw, mt, 0);
mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
}
return true;
}
/**
* Helper for intel_miptree_alloc_hiz() that sets
* \c mt->level[level].has_hiz. Return true if and only if
* \c has_hiz was set.
*/
static bool
intel_miptree_level_enable_hiz(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level)
{
assert(mt->hiz_buf);
if (brw->gen >= 8 || brw->is_haswell) {
uint32_t width = minify(mt->physical_width0, level);
uint32_t height = minify(mt->physical_height0, level);
/* Disable HiZ for LOD > 0 unless the width is 8 aligned
* and the height is 4 aligned. This allows our HiZ support
* to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
* we can grow the width & height to allow the HiZ op to
* force the proper size alignments.
*/
if (level > 0 && ((width & 7) || (height & 3))) {
DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
return false;
}
}
DBG("mt %p level %d: HiZ enabled\n", mt, level);
mt->level[level].has_hiz = true;
return true;
}
/**
* Helper for intel_miptree_alloc_hiz() that determines the required hiz
* buffer dimensions and allocates a bo for the hiz buffer.
*/
static struct intel_miptree_hiz_buffer *
intel_gen7_hiz_buf_create(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
unsigned z_width = mt->logical_width0;
unsigned z_height = mt->logical_height0;
const unsigned z_depth = MAX2(mt->logical_depth0, 1);
unsigned hz_width, hz_height;
struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
if (!buf)
return NULL;
/* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
* adjustments required for Z_Height and Z_Width based on multisampling.
*/
switch (mt->num_samples) {
case 0:
case 1:
break;
case 2:
case 4:
z_width *= 2;
z_height *= 2;
break;
case 8:
z_width *= 4;
z_height *= 2;
break;
default:
unreachable("unsupported sample count");
}
const unsigned vertical_align = 8; /* 'j' in the docs */
const unsigned H0 = z_height;
const unsigned h0 = ALIGN(H0, vertical_align);
const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
const unsigned Z0 = z_depth;
/* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
hz_width = ALIGN(z_width, 16);
if (mt->target == GL_TEXTURE_3D) {
unsigned H_i = H0;
unsigned Z_i = Z0;
hz_height = 0;
for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
unsigned h_i = ALIGN(H_i, vertical_align);
/* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
hz_height += h_i * Z_i;
H_i = minify(H_i, 1);
Z_i = minify(Z_i, 1);
}
/* HZ_Height =
* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
*/
hz_height = DIV_ROUND_UP(hz_height, 2);
} else {
const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
/* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
}
unsigned long pitch;
uint32_t tiling = I915_TILING_Y;
buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
hz_width, hz_height, 1,
&tiling, &pitch,
BO_ALLOC_FOR_RENDER);
if (!buf->aux_base.bo) {
free(buf);
return NULL;
} else if (tiling != I915_TILING_Y) {
drm_intel_bo_unreference(buf->aux_base.bo);
free(buf);
return NULL;
}
buf->aux_base.size = hz_width * hz_height;
buf->aux_base.pitch = pitch;
return buf;
}
/**
* Helper for intel_miptree_alloc_hiz() that determines the required hiz
* buffer dimensions and allocates a bo for the hiz buffer.
*/
static struct intel_miptree_hiz_buffer *
intel_gen8_hiz_buf_create(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
unsigned z_width = mt->logical_width0;
unsigned z_height = mt->logical_height0;
const unsigned z_depth = MAX2(mt->logical_depth0, 1);
unsigned hz_width, hz_height;
struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
if (!buf)
return NULL;
/* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
* adjustments required for Z_Height and Z_Width based on multisampling.
*/
if (brw->gen < 9) {
switch (mt->num_samples) {
case 0:
case 1:
break;
case 2:
case 4:
z_width *= 2;
z_height *= 2;
break;
case 8:
z_width *= 4;
z_height *= 2;
break;
default:
unreachable("unsupported sample count");
}
}
const unsigned vertical_align = 8; /* 'j' in the docs */
const unsigned H0 = z_height;
const unsigned h0 = ALIGN(H0, vertical_align);
const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
const unsigned Z0 = z_depth;
/* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
hz_width = ALIGN(z_width, 16);
unsigned H_i = H0;
unsigned Z_i = Z0;
unsigned sum_h_i = 0;
unsigned hz_height_3d_sum = 0;
for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
unsigned i = level - mt->first_level;
unsigned h_i = ALIGN(H_i, vertical_align);
/* sum(i=2 to m; h_i) */
if (i >= 2) {
sum_h_i += h_i;
}
/* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
hz_height_3d_sum += h_i * Z_i;
H_i = minify(H_i, 1);
Z_i = minify(Z_i, 1);
}
/* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
if (mt->target == GL_TEXTURE_3D) {
/* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
} else {
/* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
}
unsigned long pitch;
uint32_t tiling = I915_TILING_Y;
buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
hz_width, hz_height, 1,
&tiling, &pitch,
BO_ALLOC_FOR_RENDER);
if (!buf->aux_base.bo) {
free(buf);
return NULL;
} else if (tiling != I915_TILING_Y) {
drm_intel_bo_unreference(buf->aux_base.bo);
free(buf);
return NULL;
}
buf->aux_base.size = hz_width * hz_height;
buf->aux_base.pitch = pitch;
return buf;
}
static struct intel_miptree_hiz_buffer *
intel_hiz_miptree_buf_create(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
if (brw->gen == 6)
layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
if (!buf)
return NULL;
layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
buf->mt = intel_miptree_create(brw,
mt->target,
mt->format,
mt->first_level,
mt->last_level,
mt->logical_width0,
mt->logical_height0,
mt->logical_depth0,
mt->num_samples,
layout_flags);
if (!buf->mt) {
free(buf);
return NULL;
}
buf->aux_base.bo = buf->mt->bo;
buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
buf->aux_base.pitch = buf->mt->pitch;
buf->aux_base.qpitch = buf->mt->qpitch;
return buf;
}
bool
intel_miptree_wants_hiz_buffer(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
if (!brw->has_hiz)
return false;
if (mt->hiz_buf != NULL)
return false;
if (mt->disable_aux_buffers)
return false;
switch (mt->format) {
case MESA_FORMAT_Z_FLOAT32:
case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
case MESA_FORMAT_Z24_UNORM_X8_UINT:
case MESA_FORMAT_Z24_UNORM_S8_UINT:
case MESA_FORMAT_Z_UNORM16:
return true;
default:
return false;
}
}
bool
intel_miptree_alloc_hiz(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
assert(mt->hiz_buf == NULL);
assert(!mt->disable_aux_buffers);
if (brw->gen == 7) {
mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
} else if (brw->gen >= 8) {
mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
} else {
mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
}
if (!mt->hiz_buf)
return false;
/* Mark that all slices need a HiZ resolve. */
for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
if (!intel_miptree_level_enable_hiz(brw, mt, level))
continue;
for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
exec_node_init(&m->link);
m->level = level;
m->layer = layer;
m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
exec_list_push_tail(&mt->hiz_map, &m->link);
}
}
return true;
}
/**
* Can the miptree sample using the hiz buffer?
*/
bool
intel_miptree_sample_with_hiz(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
/* It's unclear how well supported sampling from the hiz buffer is on GEN8,
* so keep things conservative for now and never enable it unless we're SKL+.
*/
if (brw->gen < 9) {
return false;
}
if (!mt->hiz_buf) {
return false;
}
/* It seems the hardware won't fallback to the depth buffer if some of the
* mipmap levels aren't available in the HiZ buffer. So we need all levels
* of the texture to be HiZ enabled.
*/
for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
if (!intel_miptree_level_has_hiz(mt, level))
return false;
}
/* If compressed multisampling is enabled, then we use it for the auxiliary
* buffer instead.
*
* From the BDW PRM (Volume 2d: Command Reference: Structures
* RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
*
* "If this field is set to AUX_HIZ, Number of Multisamples must be
* MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
*
* There is no such blurb for 1D textures, but there is sufficient evidence
* that this is broken on SKL+.
*/
return (mt->num_samples <= 1 &&
mt->target != GL_TEXTURE_3D &&
mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
}
/**
* Does the miptree slice have hiz enabled?
*/
bool
intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
{
intel_miptree_check_level_layer(mt, level, 0);
return mt->level[level].has_hiz;
}
void
intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
uint32_t level,
uint32_t layer)
{
if (!intel_miptree_level_has_hiz(mt, level))
return;
intel_resolve_map_set(&mt->hiz_map,
level, layer, BLORP_HIZ_OP_HIZ_RESOLVE);
}
void
intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
uint32_t level,
uint32_t layer)
{
if (!intel_miptree_level_has_hiz(mt, level))
return;
intel_resolve_map_set(&mt->hiz_map,
level, layer, BLORP_HIZ_OP_DEPTH_RESOLVE);
}
void
intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
uint32_t level)
{
uint32_t layer;
uint32_t end_layer = mt->level[level].depth;
for (layer = 0; layer < end_layer; layer++) {
intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
}
}
static bool
intel_miptree_slice_resolve(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level,
uint32_t layer,
enum blorp_hiz_op need)
{
intel_miptree_check_level_layer(mt, level, layer);
struct intel_resolve_map *item =
intel_resolve_map_get(&mt->hiz_map, level, layer);
if (!item || item->need != need)
return false;
intel_hiz_exec(brw, mt, level, layer, need);
intel_resolve_map_remove(item);
return true;
}
bool
intel_miptree_slice_resolve_hiz(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level,
uint32_t layer)
{
return intel_miptree_slice_resolve(brw, mt, level, layer,
BLORP_HIZ_OP_HIZ_RESOLVE);
}
bool
intel_miptree_slice_resolve_depth(struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t level,
uint32_t layer)
{
return intel_miptree_slice_resolve(brw, mt, level, layer,
BLORP_HIZ_OP_DEPTH_RESOLVE);
}
static bool
intel_miptree_all_slices_resolve(struct brw_context *brw,
struct intel_mipmap_tree *mt,
enum blorp_hiz_op need)
{
bool did_resolve = false;
foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
if (map->need != need)
continue;
intel_hiz_exec(brw, mt, map->level, map->layer, need);
intel_resolve_map_remove(map);
did_resolve = true;
}
return did_resolve;
}
bool
intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
return intel_miptree_all_slices_resolve(brw, mt,
BLORP_HIZ_OP_HIZ_RESOLVE);
}
bool
intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
return intel_miptree_all_slices_resolve(brw, mt,
BLORP_HIZ_OP_DEPTH_RESOLVE);
}
enum intel_fast_clear_state
intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree *mt,
unsigned level, unsigned layer)
{
intel_miptree_check_level_layer(mt, level, layer);
const struct intel_resolve_map *item =
intel_resolve_map_const_get(&mt->color_resolve_map, level, layer);
if (!item)
return INTEL_FAST_CLEAR_STATE_RESOLVED;
return item->fast_clear_state;
}
static void
intel_miptree_check_color_resolve(const struct brw_context *brw,
const struct intel_mipmap_tree *mt,
unsigned level, unsigned layer)
{
if (mt->no_ccs || !mt->mcs_buf)
return;
/* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
assert(brw->gen >= 8 ||
(level == 0 && mt->first_level == 0 && mt->last_level == 0));
/* Compression of arrayed msaa surfaces is supported. */
if (mt->num_samples > 1)
return;
/* Fast color clear is supported for non-msaa arrays only on Gen8+. */
assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
(void)level;
(void)layer;
}
void
intel_miptree_set_fast_clear_state(const struct brw_context *brw,
struct intel_mipmap_tree *mt,
unsigned level,
unsigned first_layer,
unsigned num_layers,
enum intel_fast_clear_state new_state)
{
/* Setting the state to resolved means removing the item from the list
* altogether.
*/
assert(new_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
intel_miptree_check_color_resolve(brw, mt, level, first_layer);
assert(first_layer + num_layers <= mt->physical_depth0);
for (unsigned i = 0; i < num_layers; i++)
intel_resolve_map_set(&mt->color_resolve_map, level,
first_layer + i, new_state);
}
bool
intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
unsigned start_level, unsigned num_levels,
unsigned start_layer, unsigned num_layers)
{
return intel_resolve_map_find_any(&mt->color_resolve_map,
start_level, num_levels,
start_layer, num_layers) != NULL;
}
void
intel_miptree_used_for_rendering(const struct brw_context *brw,
struct intel_mipmap_tree *mt, unsigned level,
unsigned start_layer, unsigned num_layers)
{
const bool is_lossless_compressed =
intel_miptree_is_lossless_compressed(brw, mt);
for (unsigned i = 0; i < num_layers; ++i) {
const enum intel_fast_clear_state fast_clear_state =
intel_miptree_get_fast_clear_state(mt, level, start_layer + i);
/* If the buffer was previously in fast clear state, change it to
* unresolved state, since it won't be guaranteed to be clear after
* rendering occurs.
*/
if (is_lossless_compressed ||
fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR) {
intel_miptree_set_fast_clear_state(
brw, mt, level, start_layer + i, 1,
INTEL_FAST_CLEAR_STATE_UNRESOLVED);
}
}
}
static bool
intel_miptree_needs_color_resolve(const struct brw_context *brw,
const struct intel_mipmap_tree *mt,
int flags)
{
if (mt->no_ccs)
return false;
const bool is_lossless_compressed =
intel_miptree_is_lossless_compressed(brw, mt);
/* From gen9 onwards there is new compression scheme for single sampled
* surfaces called "lossless compressed". These don't need to be always
* resolved.
*/
if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) && is_lossless_compressed)
return false;
/* Fast color clear resolves only make sense for non-MSAA buffers. */
if (mt->msaa_layout != INTEL_MSAA_LAYOUT_NONE && !is_lossless_compressed)
return false;
return true;
}
bool
intel_miptree_resolve_color(struct brw_context *brw,
struct intel_mipmap_tree *mt, unsigned level,
unsigned start_layer, unsigned num_layers,
int flags)
{
intel_miptree_check_color_resolve(brw, mt, level, start_layer);
if (!intel_miptree_needs_color_resolve(brw, mt, flags))
return false;
/* Arrayed fast clear is only supported for gen8+. */
assert(brw->gen >= 8 || num_layers == 1);
bool resolved = false;
for (unsigned i = 0; i < num_layers; ++i) {
intel_miptree_check_level_layer(mt, level, start_layer + i);
struct intel_resolve_map *item =
intel_resolve_map_get(&mt->color_resolve_map, level,
start_layer + i);
if (item) {
assert(item->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
brw_blorp_resolve_color(brw, mt, level, start_layer);
intel_resolve_map_remove(item);
resolved = true;
}
}
return resolved;
}
void
intel_miptree_all_slices_resolve_color(struct brw_context *brw,
struct intel_mipmap_tree *mt,
int flags)
{
if (!intel_miptree_needs_color_resolve(brw, mt, flags))
return;
foreach_list_typed_safe(struct intel_resolve_map, map, link,
&mt->color_resolve_map) {
assert(map->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
brw_blorp_resolve_color(brw, mt, map->level, map->layer);
intel_resolve_map_remove(map);
}
}
/**
* Make it possible to share the BO backing the given miptree with another
* process or another miptree.
*
* Fast color clears are unsafe with shared buffers, so we need to resolve and
* then discard the MCS buffer, if present. We also set the no_ccs flag to
* ensure that no MCS buffer gets allocated in the future.
*
* HiZ is similarly unsafe with shared buffers.
*/
void
intel_miptree_make_shareable(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
/* MCS buffers are also used for multisample buffers, but we can't resolve
* away a multisample MCS buffer because it's an integral part of how the
* pixel data is stored. Fortunately this code path should never be
* reached for multisample buffers.
*/
assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
if (mt->mcs_buf) {
intel_miptree_all_slices_resolve_color(brw, mt, 0);
mt->no_ccs = true;
drm_intel_bo_unreference(mt->mcs_buf->bo);
free(mt->mcs_buf);
mt->mcs_buf = NULL;
}
if (mt->hiz_buf) {
intel_miptree_all_slices_resolve_depth(brw, mt);
intel_miptree_hiz_buffer_free(mt->hiz_buf);
mt->hiz_buf = NULL;
}
mt->disable_aux_buffers = true;
}
/**
* \brief Get pointer offset into stencil buffer.
*
* The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
* must decode the tile's layout in software.
*
* See
* - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
* Format.
* - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
*
* Even though the returned offset is always positive, the return type is
* signed due to
* commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
* mesa: Fix return type of _mesa_get_format_bytes() (#37351)
*/
static intptr_t
intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
{
uint32_t tile_size = 4096;
uint32_t tile_width = 64;
uint32_t tile_height = 64;
uint32_t row_size = 64 * stride;
uint32_t tile_x = x / tile_width;
uint32_t tile_y = y / tile_height;
/* The byte's address relative to the tile's base addres. */
uint32_t byte_x = x % tile_width;
uint32_t byte_y = y % tile_height;
uintptr_t u = tile_y * row_size
+ tile_x * tile_size
+ 512 * (byte_x / 8)
+ 64 * (byte_y / 8)
+ 32 * ((byte_y / 4) % 2)
+ 16 * ((byte_x / 4) % 2)
+ 8 * ((byte_y / 2) % 2)
+ 4 * ((byte_x / 2) % 2)
+ 2 * (byte_y % 2)
+ 1 * (byte_x % 2);
if (swizzled) {
/* adjust for bit6 swizzling */
if (((byte_x / 8) % 2) == 1) {
if (((byte_y / 8) % 2) == 0) {
u += 64;
} else {
u -= 64;
}
}
}
return u;
}
void
intel_miptree_updownsample(struct brw_context *brw,
struct intel_mipmap_tree *src,
struct intel_mipmap_tree *dst)
{
brw_blorp_blit_miptrees(brw,
src, 0 /* level */, 0 /* layer */,
src->format, SWIZZLE_XYZW,
dst, 0 /* level */, 0 /* layer */, dst->format,
0, 0,
src->logical_width0, src->logical_height0,
0, 0,
dst->logical_width0, dst->logical_height0,
GL_NEAREST, false, false /*mirror x, y*/,
false, false);
if (src->stencil_mt) {
brw_blorp_blit_miptrees(brw,
src->stencil_mt, 0 /* level */, 0 /* layer */,
src->stencil_mt->format, SWIZZLE_XYZW,
dst->stencil_mt, 0 /* level */, 0 /* layer */,
dst->stencil_mt->format,
0, 0,
src->logical_width0, src->logical_height0,
0, 0,
dst->logical_width0, dst->logical_height0,
GL_NEAREST, false, false /*mirror x, y*/,
false, false /* decode/encode srgb */);
}
}
void
intel_update_r8stencil(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
assert(brw->gen >= 7);
struct intel_mipmap_tree *src =
mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
return;
if (!mt->r8stencil_mt) {
const uint32_t r8stencil_flags =
MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
MIPTREE_LAYOUT_DISABLE_AUX;
assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD */
mt->r8stencil_mt = intel_miptree_create(brw,
src->target,
MESA_FORMAT_R_UINT8,
src->first_level,
src->last_level,
src->logical_width0,
src->logical_height0,
src->logical_depth0,
src->num_samples,
r8stencil_flags);
assert(mt->r8stencil_mt);
}
struct intel_mipmap_tree *dst = mt->r8stencil_mt;
for (int level = src->first_level; level <= src->last_level; level++) {
const unsigned depth = src->level[level].depth;
const int layers_per_blit =
(dst->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
dst->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
dst->num_samples : 1;
for (unsigned layer = 0; layer < depth; layer++) {
brw_blorp_blit_miptrees(brw,
src, level, layer,
src->format, SWIZZLE_X,
dst, level, layers_per_blit * layer,
MESA_FORMAT_R_UNORM8,
0, 0,
minify(src->logical_width0, level),
minify(src->logical_height0, level),
0, 0,
minify(dst->logical_width0, level),
minify(dst->logical_height0, level),
GL_NEAREST, false, false /*mirror x, y*/,
false, false /* decode/encode srgb */);
}
}
brw_render_cache_set_check_flush(brw, dst->bo);
src->r8stencil_needs_update = false;
}
static void *
intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
{
/* CPU accesses to color buffers don't understand fast color clears, so
* resolve any pending fast color clears before we map.
*/
intel_miptree_all_slices_resolve_color(brw, mt, 0);
drm_intel_bo *bo = mt->bo;
if (drm_intel_bo_references(brw->batch.bo, bo))
intel_batchbuffer_flush(brw);
if (mt->tiling != I915_TILING_NONE)
brw_bo_map_gtt(brw, bo, "miptree");
else
brw_bo_map(brw, bo, true, "miptree");
return bo->virtual;
}
static void
intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
{
drm_intel_bo_unmap(mt->bo);
}
static void
intel_miptree_map_gtt(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
unsigned int bw, bh;
void *base;
unsigned int image_x, image_y;
intptr_t x = map->x;
intptr_t y = map->y;
/* For compressed formats, the stride is the number of bytes per
* row of blocks. intel_miptree_get_image_offset() already does
* the divide.
*/
_mesa_get_format_block_size(mt->format, &bw, &bh);
assert(y % bh == 0);
assert(x % bw == 0);
y /= bh;
x /= bw;
base = intel_miptree_map_raw(brw, mt) + mt->offset;
if (base == NULL)
map->ptr = NULL;
else {
/* Note that in the case of cube maps, the caller must have passed the
* slice number referencing the face.
*/
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
x += image_x;
y += image_y;
map->stride = mt->pitch;
map->ptr = base + y * map->stride + x * mt->cpp;
}
DBG("%s: %d,%d %dx%d from mt %p (%s) "
"%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, _mesa_get_format_name(mt->format),
x, y, map->ptr, map->stride);
}
static void
intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
{
intel_miptree_unmap_raw(mt);
}
static void
intel_miptree_map_blit(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
/* first_level */ 0,
/* last_level */ 0,
map->w, map->h, 1,
/* samples */ 0,
MIPTREE_LAYOUT_TILING_NONE);
if (!map->linear_mt) {
fprintf(stderr, "Failed to allocate blit temporary\n");
goto fail;
}
map->stride = map->linear_mt->pitch;
/* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
* INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
* invalidate is set, since we'll be writing the whole rectangle from our
* temporary buffer back out.
*/
if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
if (!intel_miptree_blit(brw,
mt, level, slice,
map->x, map->y, false,
map->linear_mt, 0, 0,
0, 0, false,
map->w, map->h, GL_COPY)) {
fprintf(stderr, "Failed to blit\n");
goto fail;
}
}
map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, _mesa_get_format_name(mt->format),
level, slice, map->ptr, map->stride);
return;
fail:
intel_miptree_release(&map->linear_mt);
map->ptr = NULL;
map->stride = 0;
}
static void
intel_miptree_unmap_blit(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
struct gl_context *ctx = &brw->ctx;
intel_miptree_unmap_raw(map->linear_mt);
if (map->mode & GL_MAP_WRITE_BIT) {
bool ok = intel_miptree_blit(brw,
map->linear_mt, 0, 0,
0, 0, false,
mt, level, slice,
map->x, map->y, false,
map->w, map->h, GL_COPY);
WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
}
intel_miptree_release(&map->linear_mt);
}
/**
* "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
*/
#if defined(USE_SSE41)
static void
intel_miptree_map_movntdqa(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
assert(map->mode & GL_MAP_READ_BIT);
assert(!(map->mode & GL_MAP_WRITE_BIT));
DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, _mesa_get_format_name(mt->format),
level, slice, map->ptr, map->stride);
/* Map the original image */
uint32_t image_x;
uint32_t image_y;
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
image_x += map->x;
image_y += map->y;
void *src = intel_miptree_map_raw(brw, mt);
if (!src)
return;
src += mt->offset;
src += image_y * mt->pitch;
src += image_x * mt->cpp;
/* Due to the pixel offsets for the particular image being mapped, our
* src pointer may not be 16-byte aligned. However, if the pitch is
* divisible by 16, then the amount by which it's misaligned will remain
* consistent from row to row.
*/
assert((mt->pitch % 16) == 0);
const int misalignment = ((uintptr_t) src) & 15;
/* Create an untiled temporary buffer for the mapping. */
const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
map->stride = ALIGN(misalignment + width_bytes, 16);
map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
/* Offset the destination so it has the same misalignment as src. */
map->ptr = map->buffer + misalignment;
assert((((uintptr_t) map->ptr) & 15) == misalignment);
for (uint32_t y = 0; y < map->h; y++) {
void *dst_ptr = map->ptr + y * map->stride;
void *src_ptr = src + y * mt->pitch;
_mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
}
intel_miptree_unmap_raw(mt);
}
static void
intel_miptree_unmap_movntdqa(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
_mesa_align_free(map->buffer);
map->buffer = NULL;
map->ptr = NULL;
}
#endif
static void
intel_miptree_map_s8(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
map->stride = map->w;
map->buffer = map->ptr = malloc(map->stride * map->h);
if (!map->buffer)
return;
/* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
* INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
* invalidate is set, since we'll be writing the whole rectangle from our
* temporary buffer back out.
*/
if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
uint8_t *untiled_s8_map = map->ptr;
uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
unsigned int image_x, image_y;
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
for (uint32_t y = 0; y < map->h; y++) {
for (uint32_t x = 0; x < map->w; x++) {
ptrdiff_t offset = intel_offset_S8(mt->pitch,
x + image_x + map->x,
y + image_y + map->y,
brw->has_swizzling);
untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
}
}
intel_miptree_unmap_raw(mt);
DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
} else {
DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, map->ptr, map->stride);
}
}
static void
intel_miptree_unmap_s8(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
if (map->mode & GL_MAP_WRITE_BIT) {
unsigned int image_x, image_y;
uint8_t *untiled_s8_map = map->ptr;
uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
for (uint32_t y = 0; y < map->h; y++) {
for (uint32_t x = 0; x < map->w; x++) {
ptrdiff_t offset = intel_offset_S8(mt->pitch,
image_x + x + map->x,
image_y + y + map->y,
brw->has_swizzling);
tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
}
}
intel_miptree_unmap_raw(mt);
}
free(map->buffer);
}
static void
intel_miptree_map_etc(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
assert(mt->etc_format != MESA_FORMAT_NONE);
if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
}
assert(map->mode & GL_MAP_WRITE_BIT);
assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
map->w, map->h, 1));
map->ptr = map->buffer;
}
static void
intel_miptree_unmap_etc(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
uint32_t image_x;
uint32_t image_y;
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
image_x += map->x;
image_y += map->y;
uint8_t *dst = intel_miptree_map_raw(brw, mt)
+ image_y * mt->pitch
+ image_x * mt->cpp;
if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
_mesa_etc1_unpack_rgba8888(dst, mt->pitch,
map->ptr, map->stride,
map->w, map->h);
else
_mesa_unpack_etc2_format(dst, mt->pitch,
map->ptr, map->stride,
map->w, map->h, mt->etc_format);
intel_miptree_unmap_raw(mt);
free(map->buffer);
}
/**
* Mapping function for packed depth/stencil miptrees backed by real separate
* miptrees for depth and stencil.
*
* On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
* separate from the depth buffer. Yet at the GL API level, we have to expose
* packed depth/stencil textures and FBO attachments, and Mesa core expects to
* be able to map that memory for texture storage and glReadPixels-type
* operations. We give Mesa core that access by mallocing a temporary and
* copying the data between the actual backing store and the temporary.
*/
static void
intel_miptree_map_depthstencil(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
struct intel_mipmap_tree *z_mt = mt;
struct intel_mipmap_tree *s_mt = mt->stencil_mt;
bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
int packed_bpp = map_z32f_x24s8 ? 8 : 4;
map->stride = map->w * packed_bpp;
map->buffer = map->ptr = malloc(map->stride * map->h);
if (!map->buffer)
return;
/* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
* INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
* invalidate is set, since we'll be writing the whole rectangle from our
* temporary buffer back out.
*/
if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
uint32_t *packed_map = map->ptr;
uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
unsigned int s_image_x, s_image_y;
unsigned int z_image_x, z_image_y;
intel_miptree_get_image_offset(s_mt, level, slice,
&s_image_x, &s_image_y);
intel_miptree_get_image_offset(z_mt, level, slice,
&z_image_x, &z_image_y);
for (uint32_t y = 0; y < map->h; y++) {
for (uint32_t x = 0; x < map->w; x++) {
int map_x = map->x + x, map_y = map->y + y;
ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
map_x + s_image_x,
map_y + s_image_y,
brw->has_swizzling);
ptrdiff_t z_offset = ((map_y + z_image_y) *
(z_mt->pitch / 4) +
(map_x + z_image_x));
uint8_t s = s_map[s_offset];
uint32_t z = z_map[z_offset];
if (map_z32f_x24s8) {
packed_map[(y * map->w + x) * 2 + 0] = z;
packed_map[(y * map->w + x) * 2 + 1] = s;
} else {
packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
}
}
}
intel_miptree_unmap_raw(s_mt);
intel_miptree_unmap_raw(z_mt);
DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
__func__,
map->x, map->y, map->w, map->h,
z_mt, map->x + z_image_x, map->y + z_image_y,
s_mt, map->x + s_image_x, map->y + s_image_y,
map->ptr, map->stride);
} else {
DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, map->ptr, map->stride);
}
}
static void
intel_miptree_unmap_depthstencil(struct brw_context *brw,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
struct intel_mipmap_tree *z_mt = mt;
struct intel_mipmap_tree *s_mt = mt->stencil_mt;
bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
if (map->mode & GL_MAP_WRITE_BIT) {
uint32_t *packed_map = map->ptr;
uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
unsigned int s_image_x, s_image_y;
unsigned int z_image_x, z_image_y;
intel_miptree_get_image_offset(s_mt, level, slice,
&s_image_x, &s_image_y);
intel_miptree_get_image_offset(z_mt, level, slice,
&z_image_x, &z_image_y);
for (uint32_t y = 0; y < map->h; y++) {
for (uint32_t x = 0; x < map->w; x++) {
ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
x + s_image_x + map->x,
y + s_image_y + map->y,
brw->has_swizzling);
ptrdiff_t z_offset = ((y + z_image_y + map->y) *
(z_mt->pitch / 4) +
(x + z_image_x + map->x));
if (map_z32f_x24s8) {
z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
} else {
uint32_t packed = packed_map[y * map->w + x];
s_map[s_offset] = packed >> 24;
z_map[z_offset] = packed;
}
}
}
intel_miptree_unmap_raw(s_mt);
intel_miptree_unmap_raw(z_mt);
DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
__func__,
map->x, map->y, map->w, map->h,
z_mt, _mesa_get_format_name(z_mt->format),
map->x + z_image_x, map->y + z_image_y,
s_mt, map->x + s_image_x, map->y + s_image_y,
map->ptr, map->stride);
}
free(map->buffer);
}
/**
* Create and attach a map to the miptree at (level, slice). Return the
* attached map.
*/
static struct intel_miptree_map*
intel_miptree_attach_map(struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice,
unsigned int x,
unsigned int y,
unsigned int w,
unsigned int h,
GLbitfield mode)
{
struct intel_miptree_map *map = calloc(1, sizeof(*map));
if (!map)
return NULL;
assert(mt->level[level].slice[slice].map == NULL);
mt->level[level].slice[slice].map = map;
map->mode = mode;
map->x = x;
map->y = y;
map->w = w;
map->h = h;
return map;
}
/**
* Release the map at (level, slice).
*/
static void
intel_miptree_release_map(struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice)
{
struct intel_miptree_map **map;
map = &mt->level[level].slice[slice].map;
free(*map);
*map = NULL;
}
static bool
can_blit_slice(struct intel_mipmap_tree *mt,
unsigned int level, unsigned int slice)
{
/* See intel_miptree_blit() for details on the 32k pitch limit. */
if (mt->pitch >= 32768)
return false;
return true;
}
static bool
use_intel_mipree_map_blit(struct brw_context *brw,
struct intel_mipmap_tree *mt,
GLbitfield mode,
unsigned int level,
unsigned int slice)
{
if (brw->has_llc &&
/* It's probably not worth swapping to the blit ring because of
* all the overhead involved. But, we must use blitter for the
* surfaces with INTEL_MIPTREE_TRMODE_{YF,YS}.
*/
(!(mode & GL_MAP_WRITE_BIT) ||
mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) &&
!mt->compressed &&
(mt->tiling == I915_TILING_X ||
/* Prior to Sandybridge, the blitter can't handle Y tiling */
(brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
/* Fast copy blit on skl+ supports all tiling formats. */
brw->gen >= 9) &&
can_blit_slice(mt, level, slice))
return true;
if (mt->tiling != I915_TILING_NONE &&
mt->bo->size >= brw->max_gtt_map_object_size) {
assert(can_blit_slice(mt, level, slice));
return true;
}
return false;
}
/**
* Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
* exceed 32 bits but to diminish the likelihood subtle bugs in pointer
* arithmetic overflow.
*
* If you call this function and use \a out_stride, then you're doing pointer
* arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
* bugs. The caller must still take care to avoid 32-bit overflow errors in
* all arithmetic expressions that contain buffer offsets and pixel sizes,
* which usually have type uint32_t or GLuint.
*/
void
intel_miptree_map(struct brw_context *brw,
struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice,
unsigned int x,
unsigned int y,
unsigned int w,
unsigned int h,
GLbitfield mode,
void **out_ptr,
ptrdiff_t *out_stride)
{
struct intel_miptree_map *map;
assert(mt->num_samples <= 1);
map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
if (!map){
*out_ptr = NULL;
*out_stride = 0;
return;
}
intel_miptree_slice_resolve_depth(brw, mt, level, slice);
if (map->mode & GL_MAP_WRITE_BIT) {
intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
}
if (mt->format == MESA_FORMAT_S_UINT8) {
intel_miptree_map_s8(brw, mt, map, level, slice);
} else if (mt->etc_format != MESA_FORMAT_NONE &&
!(mode & BRW_MAP_DIRECT_BIT)) {
intel_miptree_map_etc(brw, mt, map, level, slice);
} else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
intel_miptree_map_depthstencil(brw, mt, map, level, slice);
} else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
intel_miptree_map_blit(brw, mt, map, level, slice);
#if defined(USE_SSE41)
} else if (!(mode & GL_MAP_WRITE_BIT) &&
!mt->compressed && cpu_has_sse4_1 &&
(mt->pitch % 16 == 0)) {
intel_miptree_map_movntdqa(brw, mt, map, level, slice);
#endif
} else {
/* intel_miptree_map_gtt() doesn't support surfaces with Yf/Ys tiling. */
assert(mt->tr_mode == INTEL_MIPTREE_TRMODE_NONE);
intel_miptree_map_gtt(brw, mt, map, level, slice);
}
*out_ptr = map->ptr;
*out_stride = map->stride;
if (map->ptr == NULL)
intel_miptree_release_map(mt, level, slice);
}
void
intel_miptree_unmap(struct brw_context *brw,
struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice)
{
struct intel_miptree_map *map = mt->level[level].slice[slice].map;
assert(mt->num_samples <= 1);
if (!map)
return;
DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
mt, _mesa_get_format_name(mt->format), level, slice);
if (mt->format == MESA_FORMAT_S_UINT8) {
intel_miptree_unmap_s8(brw, mt, map, level, slice);
} else if (mt->etc_format != MESA_FORMAT_NONE &&
!(map->mode & BRW_MAP_DIRECT_BIT)) {
intel_miptree_unmap_etc(brw, mt, map, level, slice);
} else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
} else if (map->linear_mt) {
intel_miptree_unmap_blit(brw, mt, map, level, slice);
#if defined(USE_SSE41)
} else if (map->buffer && cpu_has_sse4_1) {
intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
#endif
} else {
intel_miptree_unmap_gtt(mt);
}
intel_miptree_release_map(mt, level, slice);
}
enum isl_surf_dim
get_isl_surf_dim(GLenum target)
{
switch (target) {
case GL_TEXTURE_1D:
case GL_TEXTURE_1D_ARRAY:
return ISL_SURF_DIM_1D;
case GL_TEXTURE_2D:
case GL_TEXTURE_2D_ARRAY:
case GL_TEXTURE_RECTANGLE:
case GL_TEXTURE_CUBE_MAP:
case GL_TEXTURE_CUBE_MAP_ARRAY:
case GL_TEXTURE_2D_MULTISAMPLE:
case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
case GL_TEXTURE_EXTERNAL_OES:
return ISL_SURF_DIM_2D;
case GL_TEXTURE_3D:
return ISL_SURF_DIM_3D;
}
unreachable("Invalid texture target");
}
enum isl_dim_layout
get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
GLenum target)
{
switch (target) {
case GL_TEXTURE_1D:
case GL_TEXTURE_1D_ARRAY:
return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
case GL_TEXTURE_2D:
case GL_TEXTURE_2D_ARRAY:
case GL_TEXTURE_RECTANGLE:
case GL_TEXTURE_2D_MULTISAMPLE:
case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
case GL_TEXTURE_EXTERNAL_OES:
return ISL_DIM_LAYOUT_GEN4_2D;
case GL_TEXTURE_CUBE_MAP:
case GL_TEXTURE_CUBE_MAP_ARRAY:
return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
ISL_DIM_LAYOUT_GEN4_2D);
case GL_TEXTURE_3D:
return (devinfo->gen >= 9 ?
ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
}
unreachable("Invalid texture target");
}
enum isl_tiling
intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
{
if (mt->format == MESA_FORMAT_S_UINT8) {
return ISL_TILING_W;
} else {
switch (mt->tiling) {
case I915_TILING_NONE:
return ISL_TILING_LINEAR;
case I915_TILING_X:
return ISL_TILING_X;
case I915_TILING_Y:
switch (mt->tr_mode) {
case INTEL_MIPTREE_TRMODE_NONE:
return ISL_TILING_Y0;
case INTEL_MIPTREE_TRMODE_YF:
return ISL_TILING_Yf;
case INTEL_MIPTREE_TRMODE_YS:
return ISL_TILING_Ys;
default:
unreachable("Invalid tiled resource mode");
}
default:
unreachable("Invalid tiling mode");
}
}
}
void
intel_miptree_get_isl_surf(struct brw_context *brw,
const struct intel_mipmap_tree *mt,
struct isl_surf *surf)
{
surf->dim = get_isl_surf_dim(mt->target);
surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
mt->tiling, mt->target);
if (mt->num_samples > 1) {
switch (mt->msaa_layout) {
case INTEL_MSAA_LAYOUT_IMS:
surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
break;
case INTEL_MSAA_LAYOUT_UMS:
case INTEL_MSAA_LAYOUT_CMS:
surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
break;
default:
unreachable("Invalid MSAA layout");
}
} else {
surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
}
surf->tiling = intel_miptree_get_isl_tiling(mt);
if (mt->format == MESA_FORMAT_S_UINT8) {
/* The ISL definition of row_pitch matches the surface state pitch field
* a bit better than intel_mipmap_tree. In particular, ISL incorporates
* the factor of 2 for W-tiling in row_pitch.
*/
surf->row_pitch = 2 * mt->pitch;
} else {
surf->row_pitch = mt->pitch;
}
surf->format = translate_tex_format(brw, mt->format, false);
if (brw->gen >= 9) {
if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
/* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
surf->image_alignment_el = isl_extent3d(64, 1, 1);
} else {
/* On gen9+, intel_mipmap_tree stores the horizontal and vertical
* alignment in terms of surface elements like we want.
*/
surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
}
} else {
/* On earlier gens it's stored in pixels. */
unsigned bw, bh;
_mesa_get_format_block_size(mt->format, &bw, &bh);
surf->image_alignment_el =
isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
}
surf->logical_level0_px.width = mt->logical_width0;
surf->logical_level0_px.height = mt->logical_height0;
if (surf->dim == ISL_SURF_DIM_3D) {
surf->logical_level0_px.depth = mt->logical_depth0;
surf->logical_level0_px.array_len = 1;
} else {
surf->logical_level0_px.depth = 1;
surf->logical_level0_px.array_len = mt->logical_depth0;
}
surf->phys_level0_sa.width = mt->physical_width0;
surf->phys_level0_sa.height = mt->physical_height0;
if (surf->dim == ISL_SURF_DIM_3D) {
surf->phys_level0_sa.depth = mt->physical_depth0;
surf->phys_level0_sa.array_len = 1;
} else {
surf->phys_level0_sa.depth = 1;
surf->phys_level0_sa.array_len = mt->physical_depth0;
}
surf->levels = mt->last_level + 1;
surf->samples = MAX2(mt->num_samples, 1);
surf->size = 0; /* TODO */
surf->alignment = 0; /* TODO */
switch (surf->dim_layout) {
case ISL_DIM_LAYOUT_GEN4_2D:
case ISL_DIM_LAYOUT_GEN4_3D:
if (brw->gen >= 9) {
surf->array_pitch_el_rows = mt->qpitch;
} else {
unsigned bw, bh;
_mesa_get_format_block_size(mt->format, &bw, &bh);
assert(mt->qpitch % bh == 0);
surf->array_pitch_el_rows = mt->qpitch / bh;
}
break;
case ISL_DIM_LAYOUT_GEN9_1D:
surf->array_pitch_el_rows = 1;
break;
}
switch (mt->array_layout) {
case ALL_LOD_IN_EACH_SLICE:
surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
break;
case ALL_SLICES_AT_EACH_LOD:
surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
break;
default:
unreachable("Invalid array layout");
}
GLenum base_format = _mesa_get_format_base_format(mt->format);
switch (base_format) {
case GL_DEPTH_COMPONENT:
surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
break;
case GL_STENCIL_INDEX:
surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
if (brw->gen >= 8)
surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
break;
case GL_DEPTH_STENCIL:
/* In this case we only texture from the depth part */
surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
ISL_SURF_USAGE_TEXTURE_BIT;
break;
default:
surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
if (brw->format_supported_as_render_target[mt->format])
surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
break;
}
if (_mesa_is_cube_map_texture(mt->target))
surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
}
/* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
* USED FOR ANY REAL CALCULATIONS. THE ONLY VALID USE OF SUCH A SURFACE IS TO
* PASS IT INTO isl_surf_fill_state.
*/
void
intel_miptree_get_aux_isl_surf(struct brw_context *brw,
const struct intel_mipmap_tree *mt,
struct isl_surf *surf,
enum isl_aux_usage *usage)
{
uint32_t aux_pitch, aux_qpitch;
if (mt->mcs_buf) {
aux_pitch = mt->mcs_buf->pitch;
aux_qpitch = mt->mcs_buf->qpitch;
if (mt->num_samples > 1) {
assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
*usage = ISL_AUX_USAGE_MCS;
} else if (intel_miptree_is_lossless_compressed(brw, mt)) {
assert(brw->gen >= 9);
*usage = ISL_AUX_USAGE_CCS_E;
} else if (!mt->no_ccs) {
*usage = ISL_AUX_USAGE_CCS_D;
} else {
unreachable("Invalid MCS miptree");
}
} else if (mt->hiz_buf) {
if (mt->hiz_buf->mt) {
aux_pitch = mt->hiz_buf->mt->pitch;
aux_qpitch = mt->hiz_buf->mt->qpitch;
} else {
aux_pitch = mt->hiz_buf->aux_base.pitch;
aux_qpitch = mt->hiz_buf->aux_base.qpitch;
}
*usage = ISL_AUX_USAGE_HIZ;
} else {
*usage = ISL_AUX_USAGE_NONE;
return;
}
/* Start with a copy of the original surface. */
intel_miptree_get_isl_surf(brw, mt, surf);
/* Figure out the format and tiling of the auxiliary surface */
switch (*usage) {
case ISL_AUX_USAGE_NONE:
unreachable("Invalid auxiliary usage");
case ISL_AUX_USAGE_HIZ:
isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
break;
case ISL_AUX_USAGE_MCS:
/*
* From the SKL PRM:
* "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
* HALIGN 16 must be used."
*/
if (brw->gen >= 9)
assert(mt->halign == 16);
isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
break;
case ISL_AUX_USAGE_CCS_D:
case ISL_AUX_USAGE_CCS_E:
/*
* From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
*
* "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
*
* From the hardware spec for GEN9:
*
* "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
* HALIGN 16 must be used."
*/
assert(mt->num_samples <= 1);
if (brw->gen >= 8)
assert(mt->halign == 16);
isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
break;
}
/* We want the pitch of the actual aux buffer. */
surf->row_pitch = aux_pitch;
/* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
* is in elements. This doesn't match intel_mipmap_tree::qpitch which is
* in elements of the primary color surface so we have to divide by the
* compression block height.
*/
surf->array_pitch_el_rows =
aux_qpitch / isl_format_get_layout(surf->format)->bh;
}
union isl_color_value
intel_miptree_get_isl_clear_color(struct brw_context *brw,
const struct intel_mipmap_tree *mt)
{
union isl_color_value clear_color;
if (_mesa_get_format_base_format(mt->format) == GL_DEPTH_COMPONENT) {
clear_color.i32[0] = mt->depth_clear_value;
clear_color.i32[1] = 0;
clear_color.i32[2] = 0;
clear_color.i32[3] = 0;
} else if (brw->gen >= 9) {
clear_color.i32[0] = mt->gen9_fast_clear_color.i[0];
clear_color.i32[1] = mt->gen9_fast_clear_color.i[1];
clear_color.i32[2] = mt->gen9_fast_clear_color.i[2];
clear_color.i32[3] = mt->gen9_fast_clear_color.i[3];
} else if (_mesa_is_format_integer(mt->format)) {
clear_color.i32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
clear_color.i32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
clear_color.i32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
clear_color.i32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
} else {
clear_color.f32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
clear_color.f32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
clear_color.f32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
clear_color.f32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
}
return clear_color;
}