blob: eaa85f27a08c955bfc0f91818fc8c9c72f53377a [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <amdgpu.h>
#include "drm-uapi/amdgpu_drm.h"
#include <assert.h>
#include <pthread.h>
#include <errno.h>
#include "util/u_memory.h"
#include "ac_debug.h"
#include "radv_radeon_winsys.h"
#include "radv_amdgpu_cs.h"
#include "radv_amdgpu_bo.h"
#include "sid.h"
enum {
VIRTUAL_BUFFER_HASH_TABLE_SIZE = 1024
};
struct radv_amdgpu_cs {
struct radeon_cmdbuf base;
struct radv_amdgpu_winsys *ws;
struct amdgpu_cs_ib_info ib;
struct radeon_winsys_bo *ib_buffer;
uint8_t *ib_mapped;
unsigned max_num_buffers;
unsigned num_buffers;
struct drm_amdgpu_bo_list_entry *handles;
struct radeon_winsys_bo **old_ib_buffers;
unsigned num_old_ib_buffers;
unsigned max_num_old_ib_buffers;
unsigned *ib_size_ptr;
VkResult status;
bool is_chained;
int buffer_hash_table[1024];
unsigned hw_ip;
unsigned num_virtual_buffers;
unsigned max_num_virtual_buffers;
struct radeon_winsys_bo **virtual_buffers;
int *virtual_buffer_hash_table;
/* For chips that don't support chaining. */
struct radeon_cmdbuf *old_cs_buffers;
unsigned num_old_cs_buffers;
};
static inline struct radv_amdgpu_cs *
radv_amdgpu_cs(struct radeon_cmdbuf *base)
{
return (struct radv_amdgpu_cs*)base;
}
static int ring_to_hw_ip(enum ring_type ring)
{
switch (ring) {
case RING_GFX:
return AMDGPU_HW_IP_GFX;
case RING_DMA:
return AMDGPU_HW_IP_DMA;
case RING_COMPUTE:
return AMDGPU_HW_IP_COMPUTE;
default:
unreachable("unsupported ring");
}
}
struct radv_amdgpu_cs_request {
/** Specify flags with additional information */
uint64_t flags;
/** Specify HW IP block type to which to send the IB. */
unsigned ip_type;
/** IP instance index if there are several IPs of the same type. */
unsigned ip_instance;
/**
* Specify ring index of the IP. We could have several rings
* in the same IP. E.g. 0 for SDMA0 and 1 for SDMA1.
*/
uint32_t ring;
/**
* List handle with resources used by this request. This is a raw
* bo list handle used by the kernel.
*/
uint32_t resources;
/**
* Number of dependencies this Command submission needs to
* wait for before starting execution.
*/
uint32_t number_of_dependencies;
/**
* Array of dependencies which need to be met before
* execution can start.
*/
struct amdgpu_cs_fence *dependencies;
/** Number of IBs to submit in the field ibs. */
uint32_t number_of_ibs;
/**
* IBs to submit. Those IBs will be submit together as single entity
*/
struct amdgpu_cs_ib_info *ibs;
/**
* The returned sequence number for the command submission
*/
uint64_t seq_no;
/**
* The fence information
*/
struct amdgpu_cs_fence_info fence_info;
};
static int radv_amdgpu_signal_sems(struct radv_amdgpu_ctx *ctx,
uint32_t ip_type,
uint32_t ring,
struct radv_winsys_sem_info *sem_info);
static int radv_amdgpu_cs_submit(struct radv_amdgpu_ctx *ctx,
struct radv_amdgpu_cs_request *request,
struct radv_winsys_sem_info *sem_info);
static void radv_amdgpu_request_to_fence(struct radv_amdgpu_ctx *ctx,
struct radv_amdgpu_fence *fence,
struct radv_amdgpu_cs_request *req)
{
fence->fence.context = ctx->ctx;
fence->fence.ip_type = req->ip_type;
fence->fence.ip_instance = req->ip_instance;
fence->fence.ring = req->ring;
fence->fence.fence = req->seq_no;
fence->user_ptr = (volatile uint64_t*)(ctx->fence_map + req->ip_type * MAX_RINGS_PER_TYPE + req->ring);
}
static struct radeon_winsys_fence *radv_amdgpu_create_fence()
{
struct radv_amdgpu_fence *fence = calloc(1, sizeof(struct radv_amdgpu_fence));
fence->fence.fence = UINT64_MAX;
return (struct radeon_winsys_fence*)fence;
}
static void radv_amdgpu_destroy_fence(struct radeon_winsys_fence *_fence)
{
struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence;
free(fence);
}
static void radv_amdgpu_reset_fence(struct radeon_winsys_fence *_fence)
{
struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence;
fence->fence.fence = UINT64_MAX;
}
static void radv_amdgpu_signal_fence(struct radeon_winsys_fence *_fence)
{
struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence;
fence->fence.fence = 0;
}
static bool radv_amdgpu_is_fence_waitable(struct radeon_winsys_fence *_fence)
{
struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence;
return fence->fence.fence < UINT64_MAX;
}
static bool radv_amdgpu_fence_wait(struct radeon_winsys *_ws,
struct radeon_winsys_fence *_fence,
bool absolute,
uint64_t timeout)
{
struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence;
unsigned flags = absolute ? AMDGPU_QUERY_FENCE_TIMEOUT_IS_ABSOLUTE : 0;
int r;
uint32_t expired = 0;
/* Special casing 0 and UINT64_MAX so that they work without user_ptr/fence.ctx */
if (fence->fence.fence == UINT64_MAX)
return false;
if (fence->fence.fence == 0)
return true;
if (fence->user_ptr) {
if (*fence->user_ptr >= fence->fence.fence)
return true;
if (!absolute && !timeout)
return false;
}
/* Now use the libdrm query. */
r = amdgpu_cs_query_fence_status(&fence->fence,
timeout,
flags,
&expired);
if (r) {
fprintf(stderr, "amdgpu: radv_amdgpu_cs_query_fence_status failed.\n");
return false;
}
if (expired)
return true;
return false;
}
static bool radv_amdgpu_fences_wait(struct radeon_winsys *_ws,
struct radeon_winsys_fence *const *_fences,
uint32_t fence_count,
bool wait_all,
uint64_t timeout)
{
struct amdgpu_cs_fence *fences = malloc(sizeof(struct amdgpu_cs_fence) * fence_count);
int r;
uint32_t expired = 0, first = 0;
if (!fences)
return false;
for (uint32_t i = 0; i < fence_count; ++i)
fences[i] = ((struct radv_amdgpu_fence *)_fences[i])->fence;
/* Now use the libdrm query. */
r = amdgpu_cs_wait_fences(fences, fence_count, wait_all,
timeout, &expired, &first);
free(fences);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_cs_wait_fences failed.\n");
return false;
}
if (expired)
return true;
return false;
}
static void radv_amdgpu_cs_destroy(struct radeon_cmdbuf *rcs)
{
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(rcs);
if (cs->ib_buffer)
cs->ws->base.buffer_destroy(cs->ib_buffer);
else
free(cs->base.buf);
for (unsigned i = 0; i < cs->num_old_ib_buffers; ++i)
cs->ws->base.buffer_destroy(cs->old_ib_buffers[i]);
for (unsigned i = 0; i < cs->num_old_cs_buffers; ++i) {
struct radeon_cmdbuf *rcs = &cs->old_cs_buffers[i];
free(rcs->buf);
}
free(cs->old_cs_buffers);
free(cs->old_ib_buffers);
free(cs->virtual_buffers);
free(cs->virtual_buffer_hash_table);
free(cs->handles);
free(cs);
}
static void radv_amdgpu_init_cs(struct radv_amdgpu_cs *cs,
enum ring_type ring_type)
{
for (int i = 0; i < ARRAY_SIZE(cs->buffer_hash_table); ++i)
cs->buffer_hash_table[i] = -1;
cs->hw_ip = ring_to_hw_ip(ring_type);
}
static struct radeon_cmdbuf *
radv_amdgpu_cs_create(struct radeon_winsys *ws,
enum ring_type ring_type)
{
struct radv_amdgpu_cs *cs;
uint32_t ib_size = 20 * 1024 * 4;
cs = calloc(1, sizeof(struct radv_amdgpu_cs));
if (!cs)
return NULL;
cs->ws = radv_amdgpu_winsys(ws);
radv_amdgpu_init_cs(cs, ring_type);
if (cs->ws->use_ib_bos) {
cs->ib_buffer = ws->buffer_create(ws, ib_size, 0,
RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS |
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_READ_ONLY,
RADV_BO_PRIORITY_CS);
if (!cs->ib_buffer) {
free(cs);
return NULL;
}
cs->ib_mapped = ws->buffer_map(cs->ib_buffer);
if (!cs->ib_mapped) {
ws->buffer_destroy(cs->ib_buffer);
free(cs);
return NULL;
}
cs->ib.ib_mc_address = radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va;
cs->base.buf = (uint32_t *)cs->ib_mapped;
cs->base.max_dw = ib_size / 4 - 4;
cs->ib_size_ptr = &cs->ib.size;
cs->ib.size = 0;
ws->cs_add_buffer(&cs->base, cs->ib_buffer);
} else {
cs->base.buf = malloc(16384);
cs->base.max_dw = 4096;
if (!cs->base.buf) {
free(cs);
return NULL;
}
}
return &cs->base;
}
static void radv_amdgpu_cs_grow(struct radeon_cmdbuf *_cs, size_t min_size)
{
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs);
if (cs->status != VK_SUCCESS) {
cs->base.cdw = 0;
return;
}
if (!cs->ws->use_ib_bos) {
const uint64_t limit_dws = 0xffff8;
uint64_t ib_dws = MAX2(cs->base.cdw + min_size,
MIN2(cs->base.max_dw * 2, limit_dws));
/* The total ib size cannot exceed limit_dws dwords. */
if (ib_dws > limit_dws)
{
/* The maximum size in dwords has been reached,
* try to allocate a new one.
*/
cs->old_cs_buffers =
realloc(cs->old_cs_buffers,
(cs->num_old_cs_buffers + 1) * sizeof(*cs->old_cs_buffers));
if (!cs->old_cs_buffers) {
cs->status = VK_ERROR_OUT_OF_HOST_MEMORY;
cs->base.cdw = 0;
return;
}
/* Store the current one for submitting it later. */
cs->old_cs_buffers[cs->num_old_cs_buffers].cdw = cs->base.cdw;
cs->old_cs_buffers[cs->num_old_cs_buffers].max_dw = cs->base.max_dw;
cs->old_cs_buffers[cs->num_old_cs_buffers].buf = cs->base.buf;
cs->num_old_cs_buffers++;
/* Reset the cs, it will be re-allocated below. */
cs->base.cdw = 0;
cs->base.buf = NULL;
/* Re-compute the number of dwords to allocate. */
ib_dws = MAX2(cs->base.cdw + min_size,
MIN2(cs->base.max_dw * 2, limit_dws));
if (ib_dws > limit_dws) {
fprintf(stderr, "amdgpu: Too high number of "
"dwords to allocate\n");
cs->status = VK_ERROR_OUT_OF_HOST_MEMORY;
return;
}
}
uint32_t *new_buf = realloc(cs->base.buf, ib_dws * 4);
if (new_buf) {
cs->base.buf = new_buf;
cs->base.max_dw = ib_dws;
} else {
cs->status = VK_ERROR_OUT_OF_HOST_MEMORY;
cs->base.cdw = 0;
}
return;
}
uint64_t ib_size = MAX2(min_size * 4 + 16, cs->base.max_dw * 4 * 2);
/* max that fits in the chain size field. */
ib_size = MIN2(ib_size, 0xfffff);
while (!cs->base.cdw || (cs->base.cdw & 7) != 4)
radeon_emit(&cs->base, PKT3_NOP_PAD);
*cs->ib_size_ptr |= cs->base.cdw + 4;
if (cs->num_old_ib_buffers == cs->max_num_old_ib_buffers) {
cs->max_num_old_ib_buffers = MAX2(1, cs->max_num_old_ib_buffers * 2);
cs->old_ib_buffers = realloc(cs->old_ib_buffers,
cs->max_num_old_ib_buffers * sizeof(void*));
}
cs->old_ib_buffers[cs->num_old_ib_buffers++] = cs->ib_buffer;
cs->ib_buffer = cs->ws->base.buffer_create(&cs->ws->base, ib_size, 0,
RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS |
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_READ_ONLY,
RADV_BO_PRIORITY_CS);
if (!cs->ib_buffer) {
cs->base.cdw = 0;
cs->status = VK_ERROR_OUT_OF_DEVICE_MEMORY;
cs->ib_buffer = cs->old_ib_buffers[--cs->num_old_ib_buffers];
}
cs->ib_mapped = cs->ws->base.buffer_map(cs->ib_buffer);
if (!cs->ib_mapped) {
cs->ws->base.buffer_destroy(cs->ib_buffer);
cs->base.cdw = 0;
/* VK_ERROR_MEMORY_MAP_FAILED is not valid for vkEndCommandBuffer. */
cs->status = VK_ERROR_OUT_OF_DEVICE_MEMORY;
cs->ib_buffer = cs->old_ib_buffers[--cs->num_old_ib_buffers];
}
cs->ws->base.cs_add_buffer(&cs->base, cs->ib_buffer);
radeon_emit(&cs->base, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(&cs->base, radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va);
radeon_emit(&cs->base, radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va >> 32);
radeon_emit(&cs->base, S_3F2_CHAIN(1) | S_3F2_VALID(1));
cs->ib_size_ptr = cs->base.buf + cs->base.cdw - 1;
cs->base.buf = (uint32_t *)cs->ib_mapped;
cs->base.cdw = 0;
cs->base.max_dw = ib_size / 4 - 4;
}
static VkResult radv_amdgpu_cs_finalize(struct radeon_cmdbuf *_cs)
{
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs);
if (cs->ws->use_ib_bos) {
while (!cs->base.cdw || (cs->base.cdw & 7) != 0)
radeon_emit(&cs->base, PKT3_NOP_PAD);
*cs->ib_size_ptr |= cs->base.cdw;
cs->is_chained = false;
}
return cs->status;
}
static void radv_amdgpu_cs_reset(struct radeon_cmdbuf *_cs)
{
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs);
cs->base.cdw = 0;
cs->status = VK_SUCCESS;
for (unsigned i = 0; i < cs->num_buffers; ++i) {
unsigned hash = cs->handles[i].bo_handle &
(ARRAY_SIZE(cs->buffer_hash_table) - 1);
cs->buffer_hash_table[hash] = -1;
}
for (unsigned i = 0; i < cs->num_virtual_buffers; ++i) {
unsigned hash = ((uintptr_t)cs->virtual_buffers[i] >> 6) & (VIRTUAL_BUFFER_HASH_TABLE_SIZE - 1);
cs->virtual_buffer_hash_table[hash] = -1;
}
cs->num_buffers = 0;
cs->num_virtual_buffers = 0;
if (cs->ws->use_ib_bos) {
cs->ws->base.cs_add_buffer(&cs->base, cs->ib_buffer);
for (unsigned i = 0; i < cs->num_old_ib_buffers; ++i)
cs->ws->base.buffer_destroy(cs->old_ib_buffers[i]);
cs->num_old_ib_buffers = 0;
cs->ib.ib_mc_address = radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va;
cs->ib_size_ptr = &cs->ib.size;
cs->ib.size = 0;
} else {
for (unsigned i = 0; i < cs->num_old_cs_buffers; ++i) {
struct radeon_cmdbuf *rcs = &cs->old_cs_buffers[i];
free(rcs->buf);
}
free(cs->old_cs_buffers);
cs->old_cs_buffers = NULL;
cs->num_old_cs_buffers = 0;
}
}
static int radv_amdgpu_cs_find_buffer(struct radv_amdgpu_cs *cs,
uint32_t bo)
{
unsigned hash = bo & (ARRAY_SIZE(cs->buffer_hash_table) - 1);
int index = cs->buffer_hash_table[hash];
if (index == -1)
return -1;
if (cs->handles[index].bo_handle == bo)
return index;
for (unsigned i = 0; i < cs->num_buffers; ++i) {
if (cs->handles[i].bo_handle == bo) {
cs->buffer_hash_table[hash] = i;
return i;
}
}
return -1;
}
static void radv_amdgpu_cs_add_buffer_internal(struct radv_amdgpu_cs *cs,
uint32_t bo, uint8_t priority)
{
unsigned hash;
int index = radv_amdgpu_cs_find_buffer(cs, bo);
if (index != -1 || cs->status != VK_SUCCESS)
return;
if (cs->num_buffers == cs->max_num_buffers) {
unsigned new_count = MAX2(1, cs->max_num_buffers * 2);
struct drm_amdgpu_bo_list_entry *new_entries =
realloc(cs->handles, new_count * sizeof(struct drm_amdgpu_bo_list_entry));
if (new_entries) {
cs->max_num_buffers = new_count;
cs->handles = new_entries;
} else {
cs->status = VK_ERROR_OUT_OF_HOST_MEMORY;
return;
}
}
cs->handles[cs->num_buffers].bo_handle = bo;
cs->handles[cs->num_buffers].bo_priority = priority;
hash = bo & (ARRAY_SIZE(cs->buffer_hash_table) - 1);
cs->buffer_hash_table[hash] = cs->num_buffers;
++cs->num_buffers;
}
static void radv_amdgpu_cs_add_virtual_buffer(struct radeon_cmdbuf *_cs,
struct radeon_winsys_bo *bo)
{
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs);
unsigned hash = ((uintptr_t)bo >> 6) & (VIRTUAL_BUFFER_HASH_TABLE_SIZE - 1);
if (!cs->virtual_buffer_hash_table) {
cs->virtual_buffer_hash_table = malloc(VIRTUAL_BUFFER_HASH_TABLE_SIZE * sizeof(int));
for (int i = 0; i < VIRTUAL_BUFFER_HASH_TABLE_SIZE; ++i)
cs->virtual_buffer_hash_table[i] = -1;
}
if (cs->virtual_buffer_hash_table[hash] >= 0) {
int idx = cs->virtual_buffer_hash_table[hash];
if (cs->virtual_buffers[idx] == bo) {
return;
}
for (unsigned i = 0; i < cs->num_virtual_buffers; ++i) {
if (cs->virtual_buffers[i] == bo) {
cs->virtual_buffer_hash_table[hash] = i;
return;
}
}
}
if(cs->max_num_virtual_buffers <= cs->num_virtual_buffers) {
cs->max_num_virtual_buffers = MAX2(2, cs->max_num_virtual_buffers * 2);
cs->virtual_buffers = realloc(cs->virtual_buffers, sizeof(struct radv_amdgpu_virtual_virtual_buffer*) * cs->max_num_virtual_buffers);
}
cs->virtual_buffers[cs->num_virtual_buffers] = bo;
cs->virtual_buffer_hash_table[hash] = cs->num_virtual_buffers;
++cs->num_virtual_buffers;
}
static void radv_amdgpu_cs_add_buffer(struct radeon_cmdbuf *_cs,
struct radeon_winsys_bo *_bo)
{
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs);
struct radv_amdgpu_winsys_bo *bo = radv_amdgpu_winsys_bo(_bo);
if (bo->is_virtual) {
radv_amdgpu_cs_add_virtual_buffer(_cs, _bo);
return;
}
if (bo->base.is_local)
return;
radv_amdgpu_cs_add_buffer_internal(cs, bo->bo_handle, bo->priority);
}
static void radv_amdgpu_cs_execute_secondary(struct radeon_cmdbuf *_parent,
struct radeon_cmdbuf *_child)
{
struct radv_amdgpu_cs *parent = radv_amdgpu_cs(_parent);
struct radv_amdgpu_cs *child = radv_amdgpu_cs(_child);
for (unsigned i = 0; i < child->num_buffers; ++i) {
radv_amdgpu_cs_add_buffer_internal(parent,
child->handles[i].bo_handle,
child->handles[i].bo_priority);
}
for (unsigned i = 0; i < child->num_virtual_buffers; ++i) {
radv_amdgpu_cs_add_buffer(&parent->base, child->virtual_buffers[i]);
}
if (parent->ws->use_ib_bos) {
if (parent->base.cdw + 4 > parent->base.max_dw)
radv_amdgpu_cs_grow(&parent->base, 4);
radeon_emit(&parent->base, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(&parent->base, child->ib.ib_mc_address);
radeon_emit(&parent->base, child->ib.ib_mc_address >> 32);
radeon_emit(&parent->base, child->ib.size);
} else {
if (parent->base.cdw + child->base.cdw > parent->base.max_dw)
radv_amdgpu_cs_grow(&parent->base, child->base.cdw);
memcpy(parent->base.buf + parent->base.cdw, child->base.buf, 4 * child->base.cdw);
parent->base.cdw += child->base.cdw;
}
}
static int radv_amdgpu_create_bo_list(struct radv_amdgpu_winsys *ws,
struct radeon_cmdbuf **cs_array,
unsigned count,
struct radv_amdgpu_winsys_bo **extra_bo_array,
unsigned num_extra_bo,
struct radeon_cmdbuf *extra_cs,
const struct radv_winsys_bo_list *radv_bo_list,
uint32_t *bo_list)
{
int r = 0;
if (ws->debug_all_bos) {
struct radv_amdgpu_winsys_bo *bo;
struct drm_amdgpu_bo_list_entry *handles;
unsigned num = 0;
pthread_mutex_lock(&ws->global_bo_list_lock);
handles = malloc(sizeof(handles[0]) * ws->num_buffers);
if (!handles) {
pthread_mutex_unlock(&ws->global_bo_list_lock);
return -ENOMEM;
}
LIST_FOR_EACH_ENTRY(bo, &ws->global_bo_list, global_list_item) {
assert(num < ws->num_buffers);
handles[num].bo_handle = bo->bo_handle;
handles[num].bo_priority = bo->priority;
num++;
}
r = amdgpu_bo_list_create_raw(ws->dev, ws->num_buffers,
handles, bo_list);
free(handles);
pthread_mutex_unlock(&ws->global_bo_list_lock);
} else if (count == 1 && !num_extra_bo && !extra_cs && !radv_bo_list &&
!radv_amdgpu_cs(cs_array[0])->num_virtual_buffers) {
struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs*)cs_array[0];
if (cs->num_buffers == 0) {
*bo_list = 0;
return 0;
}
r = amdgpu_bo_list_create_raw(ws->dev, cs->num_buffers, cs->handles,
bo_list);
} else {
unsigned total_buffer_count = num_extra_bo;
unsigned unique_bo_count = num_extra_bo;
for (unsigned i = 0; i < count; ++i) {
struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs*)cs_array[i];
total_buffer_count += cs->num_buffers;
for (unsigned j = 0; j < cs->num_virtual_buffers; ++j)
total_buffer_count += radv_amdgpu_winsys_bo(cs->virtual_buffers[j])->bo_count;
}
if (extra_cs) {
total_buffer_count += ((struct radv_amdgpu_cs*)extra_cs)->num_buffers;
}
if (radv_bo_list) {
total_buffer_count += radv_bo_list->count;
}
if (total_buffer_count == 0) {
*bo_list = 0;
return 0;
}
struct drm_amdgpu_bo_list_entry *handles = malloc(sizeof(struct drm_amdgpu_bo_list_entry) * total_buffer_count);
if (!handles)
return -ENOMEM;
for (unsigned i = 0; i < num_extra_bo; i++) {
handles[i].bo_handle = extra_bo_array[i]->bo_handle;
handles[i].bo_priority = extra_bo_array[i]->priority;
}
for (unsigned i = 0; i < count + !!extra_cs; ++i) {
struct radv_amdgpu_cs *cs;
if (i == count)
cs = (struct radv_amdgpu_cs*)extra_cs;
else
cs = (struct radv_amdgpu_cs*)cs_array[i];
if (!cs->num_buffers)
continue;
if (unique_bo_count == 0 && !cs->num_virtual_buffers) {
memcpy(handles, cs->handles, cs->num_buffers * sizeof(struct drm_amdgpu_bo_list_entry));
unique_bo_count = cs->num_buffers;
continue;
}
int unique_bo_so_far = unique_bo_count;
for (unsigned j = 0; j < cs->num_buffers; ++j) {
bool found = false;
for (unsigned k = 0; k < unique_bo_so_far; ++k) {
if (handles[k].bo_handle == cs->handles[j].bo_handle) {
found = true;
break;
}
}
if (!found) {
handles[unique_bo_count] = cs->handles[j];
++unique_bo_count;
}
}
for (unsigned j = 0; j < cs->num_virtual_buffers; ++j) {
struct radv_amdgpu_winsys_bo *virtual_bo = radv_amdgpu_winsys_bo(cs->virtual_buffers[j]);
for(unsigned k = 0; k < virtual_bo->bo_count; ++k) {
struct radv_amdgpu_winsys_bo *bo = virtual_bo->bos[k];
bool found = false;
for (unsigned m = 0; m < unique_bo_count; ++m) {
if (handles[m].bo_handle == bo->bo_handle) {
found = true;
break;
}
}
if (!found) {
handles[unique_bo_count].bo_handle = bo->bo_handle;
handles[unique_bo_count].bo_priority = bo->priority;
++unique_bo_count;
}
}
}
}
if (radv_bo_list) {
unsigned unique_bo_so_far = unique_bo_count;
for (unsigned i = 0; i < radv_bo_list->count; ++i) {
struct radv_amdgpu_winsys_bo *bo = radv_amdgpu_winsys_bo(radv_bo_list->bos[i]);
bool found = false;
for (unsigned j = 0; j < unique_bo_so_far; ++j) {
if (bo->bo_handle == handles[j].bo_handle) {
found = true;
break;
}
}
if (!found) {
handles[unique_bo_count].bo_handle = bo->bo_handle;
handles[unique_bo_count].bo_priority = bo->priority;
++unique_bo_count;
}
}
}
if (unique_bo_count > 0) {
r = amdgpu_bo_list_create_raw(ws->dev, unique_bo_count, handles,
bo_list);
} else {
*bo_list = 0;
}
free(handles);
}
return r;
}
static struct amdgpu_cs_fence_info radv_set_cs_fence(struct radv_amdgpu_ctx *ctx, int ip_type, int ring)
{
struct amdgpu_cs_fence_info ret = {0};
if (ctx->fence_map) {
ret.handle = radv_amdgpu_winsys_bo(ctx->fence_bo)->bo;
ret.offset = (ip_type * MAX_RINGS_PER_TYPE + ring) * sizeof(uint64_t);
}
return ret;
}
static void radv_assign_last_submit(struct radv_amdgpu_ctx *ctx,
struct radv_amdgpu_cs_request *request)
{
radv_amdgpu_request_to_fence(ctx,
&ctx->last_submission[request->ip_type][request->ring],
request);
}
static int radv_amdgpu_winsys_cs_submit_chained(struct radeon_winsys_ctx *_ctx,
int queue_idx,
struct radv_winsys_sem_info *sem_info,
const struct radv_winsys_bo_list *radv_bo_list,
struct radeon_cmdbuf **cs_array,
unsigned cs_count,
struct radeon_cmdbuf *initial_preamble_cs,
struct radeon_cmdbuf *continue_preamble_cs,
struct radeon_winsys_fence *_fence)
{
int r;
struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx);
struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence;
struct radv_amdgpu_cs *cs0 = radv_amdgpu_cs(cs_array[0]);
uint32_t bo_list;
struct radv_amdgpu_cs_request request = {0};
struct amdgpu_cs_ib_info ibs[2];
unsigned number_of_ibs = 1;
for (unsigned i = cs_count; i--;) {
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i]);
if (cs->is_chained) {
*cs->ib_size_ptr -= 4;
cs->is_chained = false;
}
if (i + 1 < cs_count) {
struct radv_amdgpu_cs *next = radv_amdgpu_cs(cs_array[i + 1]);
assert(cs->base.cdw + 4 <= cs->base.max_dw);
cs->is_chained = true;
*cs->ib_size_ptr += 4;
cs->base.buf[cs->base.cdw + 0] = PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0);
cs->base.buf[cs->base.cdw + 1] = next->ib.ib_mc_address;
cs->base.buf[cs->base.cdw + 2] = next->ib.ib_mc_address >> 32;
cs->base.buf[cs->base.cdw + 3] = S_3F2_CHAIN(1) | S_3F2_VALID(1) | next->ib.size;
}
}
/* Create a buffer object list. */
r = radv_amdgpu_create_bo_list(cs0->ws, cs_array, cs_count, NULL, 0,
initial_preamble_cs, radv_bo_list,
&bo_list);
if (r) {
fprintf(stderr, "amdgpu: buffer list creation failed for the "
"chained submission(%d)\n", r);
return r;
}
/* Configure the CS request. */
if (initial_preamble_cs) {
ibs[0] = radv_amdgpu_cs(initial_preamble_cs)->ib;
ibs[1] = cs0->ib;
number_of_ibs++;
} else {
ibs[0] = cs0->ib;
}
request.ip_type = cs0->hw_ip;
request.ring = queue_idx;
request.number_of_ibs = number_of_ibs;
request.ibs = ibs;
request.resources = bo_list;
request.fence_info = radv_set_cs_fence(ctx, cs0->hw_ip, queue_idx);
/* Submit the CS. */
r = radv_amdgpu_cs_submit(ctx, &request, sem_info);
if (r) {
if (r == -ENOMEM)
fprintf(stderr, "amdgpu: Not enough memory for command submission.\n");
else
fprintf(stderr, "amdgpu: The CS has been rejected, "
"see dmesg for more information.\n");
}
amdgpu_bo_list_destroy_raw(ctx->ws->dev, bo_list);
if (r)
return r;
if (fence)
radv_amdgpu_request_to_fence(ctx, fence, &request);
radv_assign_last_submit(ctx, &request);
return 0;
}
static int radv_amdgpu_winsys_cs_submit_fallback(struct radeon_winsys_ctx *_ctx,
int queue_idx,
struct radv_winsys_sem_info *sem_info,
const struct radv_winsys_bo_list *radv_bo_list,
struct radeon_cmdbuf **cs_array,
unsigned cs_count,
struct radeon_cmdbuf *initial_preamble_cs,
struct radeon_cmdbuf *continue_preamble_cs,
struct radeon_winsys_fence *_fence)
{
int r;
struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx);
struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence;
uint32_t bo_list;
struct radv_amdgpu_cs_request request = {};
struct amdgpu_cs_ib_info *ibs;
struct radv_amdgpu_cs *cs0;
unsigned number_of_ibs;
assert(cs_count);
cs0 = radv_amdgpu_cs(cs_array[0]);
/* Compute the number of IBs for this submit. */
number_of_ibs = cs_count + !!initial_preamble_cs;
/* Create a buffer object list. */
r = radv_amdgpu_create_bo_list(cs0->ws, &cs_array[0], cs_count, NULL, 0,
initial_preamble_cs, radv_bo_list,
&bo_list);
if (r) {
fprintf(stderr, "amdgpu: buffer list creation failed "
"for the fallback submission (%d)\n", r);
return r;
}
ibs = malloc(number_of_ibs * sizeof(*ibs));
if (!ibs) {
amdgpu_bo_list_destroy_raw(ctx->ws->dev, bo_list);
return -ENOMEM;
}
/* Configure the CS request. */
if (initial_preamble_cs)
ibs[0] = radv_amdgpu_cs(initial_preamble_cs)->ib;
for (unsigned i = 0; i < cs_count; i++) {
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i]);
ibs[i + !!initial_preamble_cs] = cs->ib;
if (cs->is_chained) {
*cs->ib_size_ptr -= 4;
cs->is_chained = false;
}
}
request.ip_type = cs0->hw_ip;
request.ring = queue_idx;
request.resources = bo_list;
request.number_of_ibs = number_of_ibs;
request.ibs = ibs;
request.fence_info = radv_set_cs_fence(ctx, cs0->hw_ip, queue_idx);
/* Submit the CS. */
r = radv_amdgpu_cs_submit(ctx, &request, sem_info);
if (r) {
if (r == -ENOMEM)
fprintf(stderr, "amdgpu: Not enough memory for command submission.\n");
else
fprintf(stderr, "amdgpu: The CS has been rejected, "
"see dmesg for more information.\n");
}
amdgpu_bo_list_destroy_raw(ctx->ws->dev, bo_list);
free(ibs);
if (r)
return r;
if (fence)
radv_amdgpu_request_to_fence(ctx, fence, &request);
radv_assign_last_submit(ctx, &request);
return 0;
}
static int radv_amdgpu_winsys_cs_submit_sysmem(struct radeon_winsys_ctx *_ctx,
int queue_idx,
struct radv_winsys_sem_info *sem_info,
const struct radv_winsys_bo_list *radv_bo_list,
struct radeon_cmdbuf **cs_array,
unsigned cs_count,
struct radeon_cmdbuf *initial_preamble_cs,
struct radeon_cmdbuf *continue_preamble_cs,
struct radeon_winsys_fence *_fence)
{
int r;
struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx);
struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence;
struct radv_amdgpu_cs *cs0 = radv_amdgpu_cs(cs_array[0]);
struct radeon_winsys *ws = (struct radeon_winsys*)cs0->ws;
uint32_t bo_list;
struct radv_amdgpu_cs_request request;
uint32_t pad_word = PKT3_NOP_PAD;
bool emit_signal_sem = sem_info->cs_emit_signal;
if (radv_amdgpu_winsys(ws)->info.chip_class == GFX6)
pad_word = 0x80000000;
assert(cs_count);
for (unsigned i = 0; i < cs_count;) {
struct amdgpu_cs_ib_info *ibs;
struct radeon_winsys_bo **bos;
struct radeon_cmdbuf *preamble_cs = i ? continue_preamble_cs : initial_preamble_cs;
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i]);
unsigned number_of_ibs;
uint32_t *ptr;
unsigned cnt = 0;
unsigned size = 0;
unsigned pad_words = 0;
/* Compute the number of IBs for this submit. */
number_of_ibs = cs->num_old_cs_buffers + 1;
ibs = malloc(number_of_ibs * sizeof(*ibs));
if (!ibs)
return -ENOMEM;
bos = malloc(number_of_ibs * sizeof(*bos));
if (!bos) {
free(ibs);
return -ENOMEM;
}
if (number_of_ibs > 1) {
/* Special path when the maximum size in dwords has
* been reached because we need to handle more than one
* IB per submit.
*/
struct radeon_cmdbuf **new_cs_array;
unsigned idx = 0;
new_cs_array = malloc(cs->num_old_cs_buffers *
sizeof(*new_cs_array));
assert(new_cs_array);
for (unsigned j = 0; j < cs->num_old_cs_buffers; j++)
new_cs_array[idx++] = &cs->old_cs_buffers[j];
new_cs_array[idx++] = cs_array[i];
for (unsigned j = 0; j < number_of_ibs; j++) {
struct radeon_cmdbuf *rcs = new_cs_array[j];
bool needs_preamble = preamble_cs && j == 0;
unsigned size = 0;
if (needs_preamble)
size += preamble_cs->cdw;
size += rcs->cdw;
assert(size < 0xffff8);
while (!size || (size & 7)) {
size++;
pad_words++;
}
bos[j] = ws->buffer_create(ws, 4 * size, 4096,
RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS |
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_READ_ONLY,
RADV_BO_PRIORITY_CS);
ptr = ws->buffer_map(bos[j]);
if (needs_preamble) {
memcpy(ptr, preamble_cs->buf, preamble_cs->cdw * 4);
ptr += preamble_cs->cdw;
}
memcpy(ptr, rcs->buf, 4 * rcs->cdw);
ptr += rcs->cdw;
for (unsigned k = 0; k < pad_words; ++k)
*ptr++ = pad_word;
ibs[j].size = size;
ibs[j].ib_mc_address = radv_buffer_get_va(bos[j]);
ibs[j].flags = 0;
}
cnt++;
free(new_cs_array);
} else {
if (preamble_cs)
size += preamble_cs->cdw;
while (i + cnt < cs_count && 0xffff8 - size >= radv_amdgpu_cs(cs_array[i + cnt])->base.cdw) {
size += radv_amdgpu_cs(cs_array[i + cnt])->base.cdw;
++cnt;
}
while (!size || (size & 7)) {
size++;
pad_words++;
}
assert(cnt);
bos[0] = ws->buffer_create(ws, 4 * size, 4096,
RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS |
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_READ_ONLY,
RADV_BO_PRIORITY_CS);
ptr = ws->buffer_map(bos[0]);
if (preamble_cs) {
memcpy(ptr, preamble_cs->buf, preamble_cs->cdw * 4);
ptr += preamble_cs->cdw;
}
for (unsigned j = 0; j < cnt; ++j) {
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i + j]);
memcpy(ptr, cs->base.buf, 4 * cs->base.cdw);
ptr += cs->base.cdw;
}
for (unsigned j = 0; j < pad_words; ++j)
*ptr++ = pad_word;
ibs[0].size = size;
ibs[0].ib_mc_address = radv_buffer_get_va(bos[0]);
ibs[0].flags = 0;
}
r = radv_amdgpu_create_bo_list(cs0->ws, &cs_array[i], cnt,
(struct radv_amdgpu_winsys_bo **)bos,
number_of_ibs, preamble_cs,
radv_bo_list, &bo_list);
if (r) {
fprintf(stderr, "amdgpu: buffer list creation failed "
"for the sysmem submission (%d)\n", r);
free(ibs);
free(bos);
return r;
}
memset(&request, 0, sizeof(request));
request.ip_type = cs0->hw_ip;
request.ring = queue_idx;
request.resources = bo_list;
request.number_of_ibs = number_of_ibs;
request.ibs = ibs;
request.fence_info = radv_set_cs_fence(ctx, cs0->hw_ip, queue_idx);
sem_info->cs_emit_signal = (i == cs_count - cnt) ? emit_signal_sem : false;
r = radv_amdgpu_cs_submit(ctx, &request, sem_info);
if (r) {
if (r == -ENOMEM)
fprintf(stderr, "amdgpu: Not enough memory for command submission.\n");
else
fprintf(stderr, "amdgpu: The CS has been rejected, "
"see dmesg for more information.\n");
}
amdgpu_bo_list_destroy_raw(ctx->ws->dev, bo_list);
for (unsigned j = 0; j < number_of_ibs; j++) {
ws->buffer_destroy(bos[j]);
}
free(ibs);
free(bos);
if (r)
return r;
i += cnt;
}
if (fence)
radv_amdgpu_request_to_fence(ctx, fence, &request);
radv_assign_last_submit(ctx, &request);
return 0;
}
static int radv_amdgpu_winsys_cs_submit(struct radeon_winsys_ctx *_ctx,
int queue_idx,
struct radeon_cmdbuf **cs_array,
unsigned cs_count,
struct radeon_cmdbuf *initial_preamble_cs,
struct radeon_cmdbuf *continue_preamble_cs,
struct radv_winsys_sem_info *sem_info,
const struct radv_winsys_bo_list *bo_list,
bool can_patch,
struct radeon_winsys_fence *_fence)
{
struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[0]);
struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx);
int ret;
assert(sem_info);
if (!cs->ws->use_ib_bos) {
ret = radv_amdgpu_winsys_cs_submit_sysmem(_ctx, queue_idx, sem_info, bo_list, cs_array,
cs_count, initial_preamble_cs, continue_preamble_cs, _fence);
} else if (can_patch) {
ret = radv_amdgpu_winsys_cs_submit_chained(_ctx, queue_idx, sem_info, bo_list, cs_array,
cs_count, initial_preamble_cs, continue_preamble_cs, _fence);
} else {
ret = radv_amdgpu_winsys_cs_submit_fallback(_ctx, queue_idx, sem_info, bo_list, cs_array,
cs_count, initial_preamble_cs, continue_preamble_cs, _fence);
}
radv_amdgpu_signal_sems(ctx, cs->hw_ip, queue_idx, sem_info);
return ret;
}
static void *radv_amdgpu_winsys_get_cpu_addr(void *_cs, uint64_t addr)
{
struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs *)_cs;
void *ret = NULL;
if (!cs->ib_buffer)
return NULL;
for (unsigned i = 0; i <= cs->num_old_ib_buffers; ++i) {
struct radv_amdgpu_winsys_bo *bo;
bo = (struct radv_amdgpu_winsys_bo*)
(i == cs->num_old_ib_buffers ? cs->ib_buffer : cs->old_ib_buffers[i]);
if (addr >= bo->base.va && addr - bo->base.va < bo->size) {
if (amdgpu_bo_cpu_map(bo->bo, &ret) == 0)
return (char *)ret + (addr - bo->base.va);
}
}
if(cs->ws->debug_all_bos) {
pthread_mutex_lock(&cs->ws->global_bo_list_lock);
list_for_each_entry(struct radv_amdgpu_winsys_bo, bo,
&cs->ws->global_bo_list, global_list_item) {
if (addr >= bo->base.va && addr - bo->base.va < bo->size) {
if (amdgpu_bo_cpu_map(bo->bo, &ret) == 0) {
pthread_mutex_unlock(&cs->ws->global_bo_list_lock);
return (char *)ret + (addr - bo->base.va);
}
}
}
pthread_mutex_unlock(&cs->ws->global_bo_list_lock);
}
return ret;
}
static void radv_amdgpu_winsys_cs_dump(struct radeon_cmdbuf *_cs,
FILE* file,
const int *trace_ids, int trace_id_count)
{
struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs *)_cs;
void *ib = cs->base.buf;
int num_dw = cs->base.cdw;
if (cs->ws->use_ib_bos) {
ib = radv_amdgpu_winsys_get_cpu_addr(cs, cs->ib.ib_mc_address);
num_dw = cs->ib.size;
}
assert(ib);
ac_parse_ib(file, ib, num_dw, trace_ids, trace_id_count, "main IB",
cs->ws->info.chip_class, radv_amdgpu_winsys_get_cpu_addr, cs);
}
static uint32_t radv_to_amdgpu_priority(enum radeon_ctx_priority radv_priority)
{
switch (radv_priority) {
case RADEON_CTX_PRIORITY_REALTIME:
return AMDGPU_CTX_PRIORITY_VERY_HIGH;
case RADEON_CTX_PRIORITY_HIGH:
return AMDGPU_CTX_PRIORITY_HIGH;
case RADEON_CTX_PRIORITY_MEDIUM:
return AMDGPU_CTX_PRIORITY_NORMAL;
case RADEON_CTX_PRIORITY_LOW:
return AMDGPU_CTX_PRIORITY_LOW;
default:
unreachable("Invalid context priority");
}
}
static VkResult radv_amdgpu_ctx_create(struct radeon_winsys *_ws,
enum radeon_ctx_priority priority,
struct radeon_winsys_ctx **rctx)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
struct radv_amdgpu_ctx *ctx = CALLOC_STRUCT(radv_amdgpu_ctx);
uint32_t amdgpu_priority = radv_to_amdgpu_priority(priority);
VkResult result;
int r;
if (!ctx)
return VK_ERROR_OUT_OF_HOST_MEMORY;
r = amdgpu_cs_ctx_create2(ws->dev, amdgpu_priority, &ctx->ctx);
if (r && r == -EACCES) {
result = VK_ERROR_NOT_PERMITTED_EXT;
goto error_create;
} else if (r) {
fprintf(stderr, "amdgpu: radv_amdgpu_cs_ctx_create2 failed. (%i)\n", r);
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto error_create;
}
ctx->ws = ws;
assert(AMDGPU_HW_IP_NUM * MAX_RINGS_PER_TYPE * sizeof(uint64_t) <= 4096);
ctx->fence_bo = ws->base.buffer_create(&ws->base, 4096, 8,
RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS |
RADEON_FLAG_NO_INTERPROCESS_SHARING,
RADV_BO_PRIORITY_CS);
if (ctx->fence_bo)
ctx->fence_map = (uint64_t*)ws->base.buffer_map(ctx->fence_bo);
if (ctx->fence_map)
memset(ctx->fence_map, 0, 4096);
*rctx = (struct radeon_winsys_ctx *)ctx;
return VK_SUCCESS;
error_create:
FREE(ctx);
return result;
}
static void radv_amdgpu_ctx_destroy(struct radeon_winsys_ctx *rwctx)
{
struct radv_amdgpu_ctx *ctx = (struct radv_amdgpu_ctx *)rwctx;
ctx->ws->base.buffer_destroy(ctx->fence_bo);
amdgpu_cs_ctx_free(ctx->ctx);
FREE(ctx);
}
static bool radv_amdgpu_ctx_wait_idle(struct radeon_winsys_ctx *rwctx,
enum ring_type ring_type, int ring_index)
{
struct radv_amdgpu_ctx *ctx = (struct radv_amdgpu_ctx *)rwctx;
int ip_type = ring_to_hw_ip(ring_type);
if (ctx->last_submission[ip_type][ring_index].fence.fence) {
uint32_t expired;
int ret = amdgpu_cs_query_fence_status(&ctx->last_submission[ip_type][ring_index].fence,
1000000000ull, 0, &expired);
if (ret || !expired)
return false;
}
return true;
}
static struct radeon_winsys_sem *radv_amdgpu_create_sem(struct radeon_winsys *_ws)
{
struct amdgpu_cs_fence *sem = CALLOC_STRUCT(amdgpu_cs_fence);
if (!sem)
return NULL;
return (struct radeon_winsys_sem *)sem;
}
static void radv_amdgpu_destroy_sem(struct radeon_winsys_sem *_sem)
{
struct amdgpu_cs_fence *sem = (struct amdgpu_cs_fence *)_sem;
FREE(sem);
}
static int radv_amdgpu_signal_sems(struct radv_amdgpu_ctx *ctx,
uint32_t ip_type,
uint32_t ring,
struct radv_winsys_sem_info *sem_info)
{
for (unsigned i = 0; i < sem_info->signal.sem_count; i++) {
struct amdgpu_cs_fence *sem = (struct amdgpu_cs_fence *)(sem_info->signal.sem)[i];
if (sem->context)
return -EINVAL;
*sem = ctx->last_submission[ip_type][ring].fence;
}
return 0;
}
static struct drm_amdgpu_cs_chunk_sem *radv_amdgpu_cs_alloc_syncobj_chunk(struct radv_winsys_sem_counts *counts,
struct drm_amdgpu_cs_chunk *chunk, int chunk_id)
{
struct drm_amdgpu_cs_chunk_sem *syncobj = malloc(sizeof(struct drm_amdgpu_cs_chunk_sem) * counts->syncobj_count);
if (!syncobj)
return NULL;
for (unsigned i = 0; i < counts->syncobj_count; i++) {
struct drm_amdgpu_cs_chunk_sem *sem = &syncobj[i];
sem->handle = counts->syncobj[i];
}
chunk->chunk_id = chunk_id;
chunk->length_dw = sizeof(struct drm_amdgpu_cs_chunk_sem) / 4 * counts->syncobj_count;
chunk->chunk_data = (uint64_t)(uintptr_t)syncobj;
return syncobj;
}
static int radv_amdgpu_cs_submit(struct radv_amdgpu_ctx *ctx,
struct radv_amdgpu_cs_request *request,
struct radv_winsys_sem_info *sem_info)
{
int r;
int num_chunks;
int size;
bool user_fence;
struct drm_amdgpu_cs_chunk *chunks;
struct drm_amdgpu_cs_chunk_data *chunk_data;
struct drm_amdgpu_cs_chunk_dep *sem_dependencies = NULL;
struct drm_amdgpu_cs_chunk_sem *wait_syncobj = NULL, *signal_syncobj = NULL;
int i;
struct amdgpu_cs_fence *sem;
user_fence = (request->fence_info.handle != NULL);
size = request->number_of_ibs + (user_fence ? 2 : 1) + 3;
chunks = malloc(sizeof(chunks[0]) * size);
if (!chunks)
return -ENOMEM;
size = request->number_of_ibs + (user_fence ? 1 : 0);
chunk_data = malloc(sizeof(chunk_data[0]) * size);
if (!chunk_data) {
r = -ENOMEM;
goto error_out;
}
num_chunks = request->number_of_ibs;
for (i = 0; i < request->number_of_ibs; i++) {
struct amdgpu_cs_ib_info *ib;
chunks[i].chunk_id = AMDGPU_CHUNK_ID_IB;
chunks[i].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4;
chunks[i].chunk_data = (uint64_t)(uintptr_t)&chunk_data[i];
ib = &request->ibs[i];
chunk_data[i].ib_data._pad = 0;
chunk_data[i].ib_data.va_start = ib->ib_mc_address;
chunk_data[i].ib_data.ib_bytes = ib->size * 4;
chunk_data[i].ib_data.ip_type = request->ip_type;
chunk_data[i].ib_data.ip_instance = request->ip_instance;
chunk_data[i].ib_data.ring = request->ring;
chunk_data[i].ib_data.flags = ib->flags;
}
if (user_fence) {
i = num_chunks++;
chunks[i].chunk_id = AMDGPU_CHUNK_ID_FENCE;
chunks[i].length_dw = sizeof(struct drm_amdgpu_cs_chunk_fence) / 4;
chunks[i].chunk_data = (uint64_t)(uintptr_t)&chunk_data[i];
amdgpu_cs_chunk_fence_info_to_data(&request->fence_info,
&chunk_data[i]);
}
if (sem_info->wait.syncobj_count && sem_info->cs_emit_wait) {
wait_syncobj = radv_amdgpu_cs_alloc_syncobj_chunk(&sem_info->wait,
&chunks[num_chunks],
AMDGPU_CHUNK_ID_SYNCOBJ_IN);
if (!wait_syncobj) {
r = -ENOMEM;
goto error_out;
}
num_chunks++;
if (sem_info->wait.sem_count == 0)
sem_info->cs_emit_wait = false;
}
if (sem_info->wait.sem_count && sem_info->cs_emit_wait) {
sem_dependencies = malloc(sizeof(sem_dependencies[0]) * sem_info->wait.sem_count);
if (!sem_dependencies) {
r = -ENOMEM;
goto error_out;
}
int sem_count = 0;
for (unsigned j = 0; j < sem_info->wait.sem_count; j++) {
sem = (struct amdgpu_cs_fence *)sem_info->wait.sem[j];
if (!sem->context)
continue;
struct drm_amdgpu_cs_chunk_dep *dep = &sem_dependencies[sem_count++];
amdgpu_cs_chunk_fence_to_dep(sem, dep);
sem->context = NULL;
}
i = num_chunks++;
/* dependencies chunk */
chunks[i].chunk_id = AMDGPU_CHUNK_ID_DEPENDENCIES;
chunks[i].length_dw = sizeof(struct drm_amdgpu_cs_chunk_dep) / 4 * sem_count;
chunks[i].chunk_data = (uint64_t)(uintptr_t)sem_dependencies;
sem_info->cs_emit_wait = false;
}
if (sem_info->signal.syncobj_count && sem_info->cs_emit_signal) {
signal_syncobj = radv_amdgpu_cs_alloc_syncobj_chunk(&sem_info->signal,
&chunks[num_chunks],
AMDGPU_CHUNK_ID_SYNCOBJ_OUT);
if (!signal_syncobj) {
r = -ENOMEM;
goto error_out;
}
num_chunks++;
}
r = amdgpu_cs_submit_raw2(ctx->ws->dev,
ctx->ctx,
request->resources,
num_chunks,
chunks,
&request->seq_no);
error_out:
free(chunks);
free(chunk_data);
free(sem_dependencies);
free(wait_syncobj);
free(signal_syncobj);
return r;
}
static int radv_amdgpu_create_syncobj(struct radeon_winsys *_ws,
uint32_t *handle)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
return amdgpu_cs_create_syncobj(ws->dev, handle);
}
static void radv_amdgpu_destroy_syncobj(struct radeon_winsys *_ws,
uint32_t handle)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
amdgpu_cs_destroy_syncobj(ws->dev, handle);
}
static void radv_amdgpu_reset_syncobj(struct radeon_winsys *_ws,
uint32_t handle)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
amdgpu_cs_syncobj_reset(ws->dev, &handle, 1);
}
static void radv_amdgpu_signal_syncobj(struct radeon_winsys *_ws,
uint32_t handle)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
amdgpu_cs_syncobj_signal(ws->dev, &handle, 1);
}
static bool radv_amdgpu_wait_syncobj(struct radeon_winsys *_ws, const uint32_t *handles,
uint32_t handle_count, bool wait_all, uint64_t timeout)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
uint32_t tmp;
/* The timeouts are signed, while vulkan timeouts are unsigned. */
timeout = MIN2(timeout, INT64_MAX);
int ret = amdgpu_cs_syncobj_wait(ws->dev, (uint32_t*)handles, handle_count, timeout,
DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT |
(wait_all ? DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL : 0),
&tmp);
if (ret == 0) {
return true;
} else if (ret == -ETIME) {
return false;
} else {
fprintf(stderr, "amdgpu: radv_amdgpu_wait_syncobj failed!\nerrno: %d\n", errno);
return false;
}
}
static int radv_amdgpu_export_syncobj(struct radeon_winsys *_ws,
uint32_t syncobj,
int *fd)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
return amdgpu_cs_export_syncobj(ws->dev, syncobj, fd);
}
static int radv_amdgpu_import_syncobj(struct radeon_winsys *_ws,
int fd,
uint32_t *syncobj)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
return amdgpu_cs_import_syncobj(ws->dev, fd, syncobj);
}
static int radv_amdgpu_export_syncobj_to_sync_file(struct radeon_winsys *_ws,
uint32_t syncobj,
int *fd)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
return amdgpu_cs_syncobj_export_sync_file(ws->dev, syncobj, fd);
}
static int radv_amdgpu_import_syncobj_from_sync_file(struct radeon_winsys *_ws,
uint32_t syncobj,
int fd)
{
struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws);
return amdgpu_cs_syncobj_import_sync_file(ws->dev, syncobj, fd);
}
void radv_amdgpu_cs_init_functions(struct radv_amdgpu_winsys *ws)
{
ws->base.ctx_create = radv_amdgpu_ctx_create;
ws->base.ctx_destroy = radv_amdgpu_ctx_destroy;
ws->base.ctx_wait_idle = radv_amdgpu_ctx_wait_idle;
ws->base.cs_create = radv_amdgpu_cs_create;
ws->base.cs_destroy = radv_amdgpu_cs_destroy;
ws->base.cs_grow = radv_amdgpu_cs_grow;
ws->base.cs_finalize = radv_amdgpu_cs_finalize;
ws->base.cs_reset = radv_amdgpu_cs_reset;
ws->base.cs_add_buffer = radv_amdgpu_cs_add_buffer;
ws->base.cs_execute_secondary = radv_amdgpu_cs_execute_secondary;
ws->base.cs_submit = radv_amdgpu_winsys_cs_submit;
ws->base.cs_dump = radv_amdgpu_winsys_cs_dump;
ws->base.create_fence = radv_amdgpu_create_fence;
ws->base.destroy_fence = radv_amdgpu_destroy_fence;
ws->base.reset_fence = radv_amdgpu_reset_fence;
ws->base.signal_fence = radv_amdgpu_signal_fence;
ws->base.is_fence_waitable = radv_amdgpu_is_fence_waitable;
ws->base.create_sem = radv_amdgpu_create_sem;
ws->base.destroy_sem = radv_amdgpu_destroy_sem;
ws->base.create_syncobj = radv_amdgpu_create_syncobj;
ws->base.destroy_syncobj = radv_amdgpu_destroy_syncobj;
ws->base.reset_syncobj = radv_amdgpu_reset_syncobj;
ws->base.signal_syncobj = radv_amdgpu_signal_syncobj;
ws->base.wait_syncobj = radv_amdgpu_wait_syncobj;
ws->base.export_syncobj = radv_amdgpu_export_syncobj;
ws->base.import_syncobj = radv_amdgpu_import_syncobj;
ws->base.export_syncobj_to_sync_file = radv_amdgpu_export_syncobj_to_sync_file;
ws->base.import_syncobj_from_sync_file = radv_amdgpu_import_syncobj_from_sync_file;
ws->base.fence_wait = radv_amdgpu_fence_wait;
ws->base.fences_wait = radv_amdgpu_fences_wait;
}