blob: b453fc7006f8065c11ec833be4104da875bb50d6 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_nir.h"
#include "program/prog_parameter.h"
#include "nir/nir_builder.h"
#include "compiler/brw_nir.h"
#include "util/mesa-sha1.h"
#include "util/set.h"
/* Sampler tables don't actually have a maximum size but we pick one just so
* that we don't end up emitting too much state on-the-fly.
*/
#define MAX_SAMPLER_TABLE_SIZE 128
#define BINDLESS_OFFSET 255
struct apply_pipeline_layout_state {
const struct anv_physical_device *pdevice;
nir_shader *shader;
nir_builder builder;
const struct anv_pipeline_layout *layout;
bool add_bounds_checks;
nir_address_format ssbo_addr_format;
/* Place to flag lowered instructions so we don't lower them twice */
struct set *lowered_instrs;
bool uses_constants;
bool has_dynamic_buffers;
uint8_t constants_offset;
struct {
bool desc_buffer_used;
uint8_t desc_offset;
uint8_t *use_count;
uint8_t *surface_offsets;
uint8_t *sampler_offsets;
} set[MAX_SETS];
};
static void
add_binding(struct apply_pipeline_layout_state *state,
uint32_t set, uint32_t binding)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
if (state->set[set].use_count[binding] < UINT8_MAX)
state->set[set].use_count[binding]++;
/* Only flag the descriptor buffer as used if there's actually data for
* this binding. This lets us be lazy and call this function constantly
* without worrying about unnecessarily enabling the buffer.
*/
if (anv_descriptor_size(bind_layout))
state->set[set].desc_buffer_used = true;
}
static void
add_deref_src_binding(struct apply_pipeline_layout_state *state, nir_src src)
{
nir_deref_instr *deref = nir_src_as_deref(src);
nir_variable *var = nir_deref_instr_get_variable(deref);
add_binding(state, var->data.descriptor_set, var->data.binding);
}
static void
add_tex_src_binding(struct apply_pipeline_layout_state *state,
nir_tex_instr *tex, nir_tex_src_type deref_src_type)
{
int deref_src_idx = nir_tex_instr_src_index(tex, deref_src_type);
if (deref_src_idx < 0)
return;
add_deref_src_binding(state, tex->src[deref_src_idx].src);
}
static void
get_used_bindings_block(nir_block *block,
struct apply_pipeline_layout_state *state)
{
nir_foreach_instr_safe(instr, block) {
switch (instr->type) {
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_vulkan_resource_index:
add_binding(state, nir_intrinsic_desc_set(intrin),
nir_intrinsic_binding(intrin));
break;
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_image_deref_load_param_intel:
case nir_intrinsic_image_deref_load_raw_intel:
case nir_intrinsic_image_deref_store_raw_intel:
add_deref_src_binding(state, intrin->src[0]);
break;
case nir_intrinsic_load_constant:
state->uses_constants = true;
break;
default:
break;
}
break;
}
case nir_instr_type_tex: {
nir_tex_instr *tex = nir_instr_as_tex(instr);
add_tex_src_binding(state, tex, nir_tex_src_texture_deref);
add_tex_src_binding(state, tex, nir_tex_src_sampler_deref);
break;
}
default:
continue;
}
}
}
static bool
find_descriptor_for_index_src(nir_src src,
struct apply_pipeline_layout_state *state)
{
nir_intrinsic_instr *intrin = nir_src_as_intrinsic(src);
while (intrin && intrin->intrinsic == nir_intrinsic_vulkan_resource_reindex)
intrin = nir_src_as_intrinsic(intrin->src[0]);
if (!intrin || intrin->intrinsic != nir_intrinsic_vulkan_resource_index)
return false;
uint32_t set = nir_intrinsic_desc_set(intrin);
uint32_t binding = nir_intrinsic_binding(intrin);
uint32_t surface_index = state->set[set].surface_offsets[binding];
/* Only lower to a BTI message if we have a valid binding table index. */
return surface_index < MAX_BINDING_TABLE_SIZE;
}
static bool
nir_deref_find_descriptor(nir_deref_instr *deref,
struct apply_pipeline_layout_state *state)
{
while (1) {
/* Nothing we will use this on has a variable */
assert(deref->deref_type != nir_deref_type_var);
nir_deref_instr *parent = nir_src_as_deref(deref->parent);
if (!parent)
break;
deref = parent;
}
assert(deref->deref_type == nir_deref_type_cast);
nir_intrinsic_instr *intrin = nir_src_as_intrinsic(deref->parent);
if (!intrin || intrin->intrinsic != nir_intrinsic_load_vulkan_descriptor)
return false;
return find_descriptor_for_index_src(intrin->src[0], state);
}
static nir_ssa_def *
build_index_for_res_reindex(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
if (intrin->intrinsic == nir_intrinsic_vulkan_resource_reindex) {
nir_ssa_def *bti =
build_index_for_res_reindex(nir_src_as_intrinsic(intrin->src[0]), state);
b->cursor = nir_before_instr(&intrin->instr);
return nir_iadd(b, bti, nir_ssa_for_src(b, intrin->src[1], 1));
}
assert(intrin->intrinsic == nir_intrinsic_vulkan_resource_index);
uint32_t set = nir_intrinsic_desc_set(intrin);
uint32_t binding = nir_intrinsic_binding(intrin);
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
uint32_t surface_index = state->set[set].surface_offsets[binding];
uint32_t array_size = bind_layout->array_size;
b->cursor = nir_before_instr(&intrin->instr);
nir_ssa_def *array_index = nir_ssa_for_src(b, intrin->src[0], 1);
if (nir_src_is_const(intrin->src[0]) || state->add_bounds_checks)
array_index = nir_umin(b, array_index, nir_imm_int(b, array_size - 1));
return nir_iadd_imm(b, array_index, surface_index);
}
static nir_ssa_def *
build_index_offset_for_deref(nir_deref_instr *deref,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
nir_deref_instr *parent = nir_deref_instr_parent(deref);
if (parent) {
nir_ssa_def *addr = build_index_offset_for_deref(parent, state);
b->cursor = nir_before_instr(&deref->instr);
return nir_explicit_io_address_from_deref(b, deref, addr,
nir_address_format_32bit_index_offset);
}
nir_intrinsic_instr *load_desc = nir_src_as_intrinsic(deref->parent);
assert(load_desc->intrinsic == nir_intrinsic_load_vulkan_descriptor);
nir_ssa_def *index =
build_index_for_res_reindex(nir_src_as_intrinsic(load_desc->src[0]), state);
/* Return a 0 offset which will get picked up by the recursion */
b->cursor = nir_before_instr(&deref->instr);
return nir_vec2(b, index, nir_imm_int(b, 0));
}
static bool
try_lower_direct_buffer_intrinsic(nir_intrinsic_instr *intrin, bool is_atomic,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (deref->mode != nir_var_mem_ssbo)
return false;
/* 64-bit atomics only support A64 messages so we can't lower them to the
* index+offset model.
*/
if (is_atomic && nir_dest_bit_size(intrin->dest) == 64)
return false;
/* Normal binding table-based messages can't handle non-uniform access so
* we have to fall back to A64.
*/
if (nir_intrinsic_access(intrin) & ACCESS_NON_UNIFORM)
return false;
if (!nir_deref_find_descriptor(deref, state))
return false;
nir_ssa_def *addr = build_index_offset_for_deref(deref, state);
b->cursor = nir_before_instr(&intrin->instr);
nir_lower_explicit_io_instr(b, intrin, addr,
nir_address_format_32bit_index_offset);
return true;
}
static void
lower_direct_buffer_access(nir_function_impl *impl,
struct apply_pipeline_layout_state *state)
{
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
try_lower_direct_buffer_intrinsic(intrin, false, state);
break;
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_deref_atomic_fmin:
case nir_intrinsic_deref_atomic_fmax:
case nir_intrinsic_deref_atomic_fcomp_swap:
try_lower_direct_buffer_intrinsic(intrin, true, state);
break;
case nir_intrinsic_get_ssbo_size: {
/* The get_ssbo_size intrinsic always just takes a
* index/reindex intrinsic.
*/
if (!find_descriptor_for_index_src(intrin->src[0], state))
break;
nir_ssa_def *index =
build_index_for_res_reindex(nir_src_as_intrinsic(intrin->src[0]),
state);
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(index));
_mesa_set_add(state->lowered_instrs, intrin);
}
default:
break;
}
}
}
}
static nir_address_format
desc_addr_format(VkDescriptorType desc_type,
struct apply_pipeline_layout_state *state)
{
return (desc_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
desc_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) ?
state->ssbo_addr_format : nir_address_format_32bit_index_offset;
}
static void
lower_res_index_intrinsic(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
b->cursor = nir_before_instr(&intrin->instr);
uint32_t set = nir_intrinsic_desc_set(intrin);
uint32_t binding = nir_intrinsic_binding(intrin);
const VkDescriptorType desc_type = nir_intrinsic_desc_type(intrin);
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
uint32_t surface_index = state->set[set].surface_offsets[binding];
uint32_t array_size = bind_layout->array_size;
nir_ssa_def *array_index = nir_ssa_for_src(b, intrin->src[0], 1);
if (nir_src_is_const(intrin->src[0]) || state->add_bounds_checks)
array_index = nir_umin(b, array_index, nir_imm_int(b, array_size - 1));
nir_ssa_def *index;
if (state->pdevice->has_a64_buffer_access &&
(desc_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
desc_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC)) {
/* We store the descriptor offset as 16.8.8 where the top 16 bits are
* the offset into the descriptor set, the next 8 are the binding table
* index of the descriptor buffer, and the bottom 8 bits are the offset
* (in bytes) into the dynamic offset table.
*/
assert(bind_layout->dynamic_offset_index < MAX_DYNAMIC_BUFFERS);
uint32_t dynamic_offset_index = 0xff; /* No dynamic offset */
if (bind_layout->dynamic_offset_index >= 0) {
dynamic_offset_index =
state->layout->set[set].dynamic_offset_start +
bind_layout->dynamic_offset_index;
}
const uint32_t desc_offset =
bind_layout->descriptor_offset << 16 |
(uint32_t)state->set[set].desc_offset << 8 |
dynamic_offset_index;
if (state->add_bounds_checks) {
assert(desc_addr_format(desc_type, state) ==
nir_address_format_64bit_bounded_global);
assert(intrin->dest.ssa.num_components == 4);
assert(intrin->dest.ssa.bit_size == 32);
index = nir_vec4(b, nir_imm_int(b, desc_offset),
nir_ssa_for_src(b, intrin->src[0], 1),
nir_imm_int(b, array_size - 1),
nir_ssa_undef(b, 1, 32));
} else {
assert(desc_addr_format(desc_type, state) ==
nir_address_format_64bit_global);
assert(intrin->dest.ssa.num_components == 1);
assert(intrin->dest.ssa.bit_size == 64);
index = nir_pack_64_2x32_split(b, nir_imm_int(b, desc_offset),
nir_ssa_for_src(b, intrin->src[0], 1));
}
} else if (bind_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
/* This is an inline uniform block. Just reference the descriptor set
* and use the descriptor offset as the base.
*/
assert(desc_addr_format(desc_type, state) ==
nir_address_format_32bit_index_offset);
assert(intrin->dest.ssa.num_components == 2);
assert(intrin->dest.ssa.bit_size == 32);
index = nir_imm_ivec2(b, state->set[set].desc_offset,
bind_layout->descriptor_offset);
} else {
assert(desc_addr_format(desc_type, state) ==
nir_address_format_32bit_index_offset);
assert(intrin->dest.ssa.num_components == 2);
assert(intrin->dest.ssa.bit_size == 32);
index = nir_vec2(b, nir_iadd_imm(b, array_index, surface_index),
nir_imm_int(b, 0));
}
assert(intrin->dest.is_ssa);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(index));
nir_instr_remove(&intrin->instr);
}
static void
lower_res_reindex_intrinsic(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
b->cursor = nir_before_instr(&intrin->instr);
const VkDescriptorType desc_type = nir_intrinsic_desc_type(intrin);
/* For us, the resource indices are just indices into the binding table and
* array elements are sequential. A resource_reindex just turns into an
* add of the two indices.
*/
assert(intrin->src[0].is_ssa && intrin->src[1].is_ssa);
nir_ssa_def *old_index = intrin->src[0].ssa;
nir_ssa_def *offset = intrin->src[1].ssa;
nir_ssa_def *new_index;
switch (desc_addr_format(desc_type, state)) {
case nir_address_format_64bit_bounded_global:
/* See also lower_res_index_intrinsic() */
assert(intrin->dest.ssa.num_components == 4);
assert(intrin->dest.ssa.bit_size == 32);
new_index = nir_vec4(b, nir_channel(b, old_index, 0),
nir_iadd(b, nir_channel(b, old_index, 1),
offset),
nir_channel(b, old_index, 2),
nir_ssa_undef(b, 1, 32));
break;
case nir_address_format_64bit_global: {
/* See also lower_res_index_intrinsic() */
assert(intrin->dest.ssa.num_components == 1);
assert(intrin->dest.ssa.bit_size == 64);
nir_ssa_def *base = nir_unpack_64_2x32_split_x(b, old_index);
nir_ssa_def *arr_idx = nir_unpack_64_2x32_split_y(b, old_index);
new_index = nir_pack_64_2x32_split(b, base, nir_iadd(b, arr_idx, offset));
break;
}
case nir_address_format_32bit_index_offset:
assert(intrin->dest.ssa.num_components == 2);
assert(intrin->dest.ssa.bit_size == 32);
new_index = nir_vec2(b, nir_iadd(b, nir_channel(b, old_index, 0), offset),
nir_channel(b, old_index, 1));
break;
default:
unreachable("Uhandled address format");
}
assert(intrin->dest.is_ssa);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(new_index));
nir_instr_remove(&intrin->instr);
}
static nir_ssa_def *
build_ssbo_descriptor_load(const VkDescriptorType desc_type,
nir_ssa_def *index,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
nir_ssa_def *desc_offset, *array_index;
switch (state->ssbo_addr_format) {
case nir_address_format_64bit_bounded_global:
/* See also lower_res_index_intrinsic() */
desc_offset = nir_channel(b, index, 0);
array_index = nir_umin(b, nir_channel(b, index, 1),
nir_channel(b, index, 2));
break;
case nir_address_format_64bit_global:
/* See also lower_res_index_intrinsic() */
desc_offset = nir_unpack_64_2x32_split_x(b, index);
array_index = nir_unpack_64_2x32_split_y(b, index);
break;
default:
unreachable("Unhandled address format for SSBO");
}
/* The desc_offset is actually 16.8.8 */
nir_ssa_def *desc_buffer_index =
nir_extract_u8(b, desc_offset, nir_imm_int(b, 1));
nir_ssa_def *desc_offset_base =
nir_extract_u16(b, desc_offset, nir_imm_int(b, 1));
/* Compute the actual descriptor offset */
const unsigned descriptor_size =
anv_descriptor_type_size(state->pdevice, desc_type);
desc_offset = nir_iadd(b, desc_offset_base,
nir_imul_imm(b, array_index, descriptor_size));
nir_intrinsic_instr *desc_load =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_ubo);
desc_load->src[0] = nir_src_for_ssa(desc_buffer_index);
desc_load->src[1] = nir_src_for_ssa(desc_offset);
nir_intrinsic_set_align(desc_load, 8, 0);
desc_load->num_components = 4;
nir_ssa_dest_init(&desc_load->instr, &desc_load->dest, 4, 32, NULL);
nir_builder_instr_insert(b, &desc_load->instr);
nir_intrinsic_set_range_base(desc_load, 0);
nir_intrinsic_set_range(desc_load, ~0);
return &desc_load->dest.ssa;
}
static void
lower_load_vulkan_descriptor(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
b->cursor = nir_before_instr(&intrin->instr);
const VkDescriptorType desc_type = nir_intrinsic_desc_type(intrin);
assert(intrin->dest.is_ssa);
nir_foreach_use(src, &intrin->dest.ssa) {
if (src->parent_instr->type != nir_instr_type_deref)
continue;
nir_deref_instr *cast = nir_instr_as_deref(src->parent_instr);
assert(cast->deref_type == nir_deref_type_cast);
switch (desc_type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
cast->cast.align_mul = ANV_UBO_ALIGNMENT;
cast->cast.align_offset = 0;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
cast->cast.align_mul = ANV_SSBO_ALIGNMENT;
cast->cast.align_offset = 0;
break;
default:
break;
}
}
assert(intrin->src[0].is_ssa);
nir_ssa_def *index = intrin->src[0].ssa;
nir_ssa_def *desc;
if (state->pdevice->has_a64_buffer_access &&
(desc_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
desc_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC)) {
desc = build_ssbo_descriptor_load(desc_type, index, state);
/* We want nir_address_format_64bit_global */
if (!state->add_bounds_checks)
desc = nir_pack_64_2x32(b, nir_channels(b, desc, 0x3));
if (state->has_dynamic_buffers) {
/* This shader has dynamic offsets and we have no way of knowing
* (save from the dynamic offset base index) if this buffer has a
* dynamic offset.
*/
nir_ssa_def *desc_offset, *array_index;
switch (state->ssbo_addr_format) {
case nir_address_format_64bit_bounded_global:
/* See also lower_res_index_intrinsic() */
desc_offset = nir_channel(b, index, 0);
array_index = nir_umin(b, nir_channel(b, index, 1),
nir_channel(b, index, 2));
break;
case nir_address_format_64bit_global:
/* See also lower_res_index_intrinsic() */
desc_offset = nir_unpack_64_2x32_split_x(b, index);
array_index = nir_unpack_64_2x32_split_y(b, index);
break;
default:
unreachable("Unhandled address format for SSBO");
}
nir_ssa_def *dyn_offset_base =
nir_extract_u8(b, desc_offset, nir_imm_int(b, 0));
nir_ssa_def *dyn_offset_idx =
nir_iadd(b, dyn_offset_base, array_index);
if (state->add_bounds_checks) {
dyn_offset_idx = nir_umin(b, dyn_offset_idx,
nir_imm_int(b, MAX_DYNAMIC_BUFFERS));
}
nir_intrinsic_instr *dyn_load =
nir_intrinsic_instr_create(b->shader,
nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(dyn_load, offsetof(struct anv_push_constants,
dynamic_offsets));
nir_intrinsic_set_range(dyn_load, MAX_DYNAMIC_BUFFERS * 4);
dyn_load->src[0] = nir_src_for_ssa(nir_imul_imm(b, dyn_offset_idx, 4));
dyn_load->num_components = 1;
nir_ssa_dest_init(&dyn_load->instr, &dyn_load->dest, 1, 32, NULL);
nir_builder_instr_insert(b, &dyn_load->instr);
nir_ssa_def *dynamic_offset =
nir_bcsel(b, nir_ieq_imm(b, dyn_offset_base, 0xff),
nir_imm_int(b, 0), &dyn_load->dest.ssa);
switch (state->ssbo_addr_format) {
case nir_address_format_64bit_bounded_global: {
/* The dynamic offset gets added to the base pointer so that we
* have a sliding window range.
*/
nir_ssa_def *base_ptr =
nir_pack_64_2x32(b, nir_channels(b, desc, 0x3));
base_ptr = nir_iadd(b, base_ptr, nir_u2u64(b, dynamic_offset));
desc = nir_vec4(b, nir_unpack_64_2x32_split_x(b, base_ptr),
nir_unpack_64_2x32_split_y(b, base_ptr),
nir_channel(b, desc, 2),
nir_channel(b, desc, 3));
break;
}
case nir_address_format_64bit_global:
desc = nir_iadd(b, desc, nir_u2u64(b, dynamic_offset));
break;
default:
unreachable("Unhandled address format for SSBO");
}
}
} else {
/* We follow the nir_address_format_32bit_index_offset model */
desc = index;
}
assert(intrin->dest.is_ssa);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(desc));
nir_instr_remove(&intrin->instr);
}
static void
lower_get_ssbo_size(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
if (_mesa_set_search(state->lowered_instrs, intrin))
return;
nir_builder *b = &state->builder;
b->cursor = nir_before_instr(&intrin->instr);
const VkDescriptorType desc_type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
assert(intrin->src[0].is_ssa);
nir_ssa_def *index = intrin->src[0].ssa;
if (state->pdevice->has_a64_buffer_access) {
nir_ssa_def *desc = build_ssbo_descriptor_load(desc_type, index, state);
nir_ssa_def *size = nir_channel(b, desc, 2);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(size));
nir_instr_remove(&intrin->instr);
} else {
/* We're following the nir_address_format_32bit_index_offset model so
* the binding table index is the first component of the address. The
* back-end wants a scalar binding table index source.
*/
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(nir_channel(b, index, 0)));
}
}
static nir_ssa_def *
build_descriptor_load(nir_deref_instr *deref, unsigned offset,
unsigned num_components, unsigned bit_size,
struct apply_pipeline_layout_state *state)
{
nir_variable *var = nir_deref_instr_get_variable(deref);
unsigned set = var->data.descriptor_set;
unsigned binding = var->data.binding;
unsigned array_size =
state->layout->set[set].layout->binding[binding].array_size;
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
nir_builder *b = &state->builder;
nir_ssa_def *desc_buffer_index =
nir_imm_int(b, state->set[set].desc_offset);
nir_ssa_def *desc_offset =
nir_imm_int(b, bind_layout->descriptor_offset + offset);
if (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
const unsigned descriptor_size = anv_descriptor_size(bind_layout);
nir_ssa_def *arr_index = nir_ssa_for_src(b, deref->arr.index, 1);
if (state->add_bounds_checks)
arr_index = nir_umin(b, arr_index, nir_imm_int(b, array_size - 1));
desc_offset = nir_iadd(b, desc_offset,
nir_imul_imm(b, arr_index, descriptor_size));
}
nir_intrinsic_instr *desc_load =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_ubo);
desc_load->src[0] = nir_src_for_ssa(desc_buffer_index);
desc_load->src[1] = nir_src_for_ssa(desc_offset);
nir_intrinsic_set_align(desc_load, 8, offset % 8);
desc_load->num_components = num_components;
nir_ssa_dest_init(&desc_load->instr, &desc_load->dest,
num_components, bit_size, NULL);
nir_builder_instr_insert(b, &desc_load->instr);
nir_intrinsic_set_range_base(desc_load, 0);
nir_intrinsic_set_range(desc_load, ~0);
return &desc_load->dest.ssa;
}
static void
lower_image_intrinsic(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
unsigned set = var->data.descriptor_set;
unsigned binding = var->data.binding;
unsigned binding_offset = state->set[set].surface_offsets[binding];
nir_builder *b = &state->builder;
b->cursor = nir_before_instr(&intrin->instr);
ASSERTED const bool use_bindless = state->pdevice->has_bindless_images;
if (intrin->intrinsic == nir_intrinsic_image_deref_load_param_intel) {
b->cursor = nir_instr_remove(&intrin->instr);
assert(!use_bindless); /* Otherwise our offsets would be wrong */
const unsigned param = nir_intrinsic_base(intrin);
nir_ssa_def *desc =
build_descriptor_load(deref, param * 16,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, state);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(desc));
} else if (binding_offset > MAX_BINDING_TABLE_SIZE) {
const bool write_only =
(var->data.access & ACCESS_NON_READABLE) != 0;
nir_ssa_def *desc =
build_descriptor_load(deref, 0, 2, 32, state);
nir_ssa_def *handle = nir_channel(b, desc, write_only ? 1 : 0);
nir_rewrite_image_intrinsic(intrin, handle, true);
} else {
unsigned array_size =
state->layout->set[set].layout->binding[binding].array_size;
nir_ssa_def *index = NULL;
if (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
index = nir_ssa_for_src(b, deref->arr.index, 1);
if (state->add_bounds_checks)
index = nir_umin(b, index, nir_imm_int(b, array_size - 1));
} else {
index = nir_imm_int(b, 0);
}
index = nir_iadd_imm(b, index, binding_offset);
nir_rewrite_image_intrinsic(intrin, index, false);
}
}
static void
lower_load_constant(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_builder *b = &state->builder;
b->cursor = nir_instr_remove(&intrin->instr);
/* Any constant-offset load_constant instructions should have been removed
* by constant folding.
*/
assert(!nir_src_is_const(intrin->src[0]));
nir_ssa_def *offset = nir_iadd_imm(b, nir_ssa_for_src(b, intrin->src[0], 1),
nir_intrinsic_base(intrin));
nir_ssa_def *data;
if (state->pdevice->use_softpin) {
unsigned load_size = intrin->dest.ssa.num_components *
intrin->dest.ssa.bit_size / 8;
unsigned load_align = intrin->dest.ssa.bit_size / 8;
assert(load_size < b->shader->constant_data_size);
unsigned max_offset = b->shader->constant_data_size - load_size;
offset = nir_umin(b, offset, nir_imm_int(b, max_offset));
nir_ssa_def *const_data_base_addr = nir_pack_64_2x32_split(b,
nir_load_reloc_const_intel(b, ANV_SHADER_RELOC_CONST_DATA_ADDR_LOW),
nir_load_reloc_const_intel(b, ANV_SHADER_RELOC_CONST_DATA_ADDR_HIGH));
data = nir_load_global(b, nir_iadd(b, const_data_base_addr,
nir_u2u64(b, offset)),
load_align,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size);
} else {
nir_ssa_def *index = nir_imm_int(b, state->constants_offset);
nir_intrinsic_instr *load_ubo =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_ubo);
load_ubo->num_components = intrin->num_components;
load_ubo->src[0] = nir_src_for_ssa(index);
load_ubo->src[1] = nir_src_for_ssa(offset);
nir_intrinsic_set_align(load_ubo, intrin->dest.ssa.bit_size / 8, 0);
nir_intrinsic_set_range_base(load_ubo, nir_intrinsic_base(intrin));
nir_intrinsic_set_range(load_ubo, nir_intrinsic_range(intrin));
nir_ssa_dest_init(&load_ubo->instr, &load_ubo->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, NULL);
nir_builder_instr_insert(b, &load_ubo->instr);
data = &load_ubo->dest.ssa;
}
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(data));
}
static void
lower_tex_deref(nir_tex_instr *tex, nir_tex_src_type deref_src_type,
unsigned *base_index, unsigned plane,
struct apply_pipeline_layout_state *state)
{
int deref_src_idx = nir_tex_instr_src_index(tex, deref_src_type);
if (deref_src_idx < 0)
return;
nir_deref_instr *deref = nir_src_as_deref(tex->src[deref_src_idx].src);
nir_variable *var = nir_deref_instr_get_variable(deref);
unsigned set = var->data.descriptor_set;
unsigned binding = var->data.binding;
unsigned array_size =
state->layout->set[set].layout->binding[binding].array_size;
unsigned binding_offset;
if (deref_src_type == nir_tex_src_texture_deref) {
binding_offset = state->set[set].surface_offsets[binding];
} else {
assert(deref_src_type == nir_tex_src_sampler_deref);
binding_offset = state->set[set].sampler_offsets[binding];
}
nir_builder *b = &state->builder;
nir_tex_src_type offset_src_type;
nir_ssa_def *index = NULL;
if (binding_offset > MAX_BINDING_TABLE_SIZE) {
const unsigned plane_offset =
plane * sizeof(struct anv_sampled_image_descriptor);
nir_ssa_def *desc =
build_descriptor_load(deref, plane_offset, 2, 32, state);
if (deref_src_type == nir_tex_src_texture_deref) {
offset_src_type = nir_tex_src_texture_handle;
index = nir_channel(b, desc, 0);
} else {
assert(deref_src_type == nir_tex_src_sampler_deref);
offset_src_type = nir_tex_src_sampler_handle;
index = nir_channel(b, desc, 1);
}
} else {
if (deref_src_type == nir_tex_src_texture_deref) {
offset_src_type = nir_tex_src_texture_offset;
} else {
assert(deref_src_type == nir_tex_src_sampler_deref);
offset_src_type = nir_tex_src_sampler_offset;
}
*base_index = binding_offset + plane;
if (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
if (nir_src_is_const(deref->arr.index)) {
unsigned arr_index = MIN2(nir_src_as_uint(deref->arr.index), array_size - 1);
struct anv_sampler **immutable_samplers =
state->layout->set[set].layout->binding[binding].immutable_samplers;
if (immutable_samplers) {
/* Array of YCbCr samplers are tightly packed in the binding
* tables, compute the offset of an element in the array by
* adding the number of planes of all preceding elements.
*/
unsigned desc_arr_index = 0;
for (int i = 0; i < arr_index; i++)
desc_arr_index += immutable_samplers[i]->n_planes;
*base_index += desc_arr_index;
} else {
*base_index += arr_index;
}
} else {
/* From VK_KHR_sampler_ycbcr_conversion:
*
* If sampler Y’CBCR conversion is enabled, the combined image
* sampler must be indexed only by constant integral expressions
* when aggregated into arrays in shader code, irrespective of
* the shaderSampledImageArrayDynamicIndexing feature.
*/
assert(nir_tex_instr_src_index(tex, nir_tex_src_plane) == -1);
index = nir_ssa_for_src(b, deref->arr.index, 1);
if (state->add_bounds_checks)
index = nir_umin(b, index, nir_imm_int(b, array_size - 1));
}
}
}
if (index) {
nir_instr_rewrite_src(&tex->instr, &tex->src[deref_src_idx].src,
nir_src_for_ssa(index));
tex->src[deref_src_idx].src_type = offset_src_type;
} else {
nir_tex_instr_remove_src(tex, deref_src_idx);
}
}
static uint32_t
tex_instr_get_and_remove_plane_src(nir_tex_instr *tex)
{
int plane_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_plane);
if (plane_src_idx < 0)
return 0;
unsigned plane = nir_src_as_uint(tex->src[plane_src_idx].src);
nir_tex_instr_remove_src(tex, plane_src_idx);
return plane;
}
static nir_ssa_def *
build_def_array_select(nir_builder *b, nir_ssa_def **srcs, nir_ssa_def *idx,
unsigned start, unsigned end)
{
if (start == end - 1) {
return srcs[start];
} else {
unsigned mid = start + (end - start) / 2;
return nir_bcsel(b, nir_ilt(b, idx, nir_imm_int(b, mid)),
build_def_array_select(b, srcs, idx, start, mid),
build_def_array_select(b, srcs, idx, mid, end));
}
}
static void
lower_gen7_tex_swizzle(nir_tex_instr *tex, unsigned plane,
struct apply_pipeline_layout_state *state)
{
assert(state->pdevice->info.gen == 7 && !state->pdevice->info.is_haswell);
if (tex->sampler_dim == GLSL_SAMPLER_DIM_BUF ||
nir_tex_instr_is_query(tex) ||
tex->op == nir_texop_tg4 || /* We can't swizzle TG4 */
(tex->is_shadow && tex->is_new_style_shadow))
return;
int deref_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_deref);
assert(deref_src_idx >= 0);
nir_deref_instr *deref = nir_src_as_deref(tex->src[deref_src_idx].src);
nir_variable *var = nir_deref_instr_get_variable(deref);
unsigned set = var->data.descriptor_set;
unsigned binding = var->data.binding;
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
if ((bind_layout->data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE) == 0)
return;
nir_builder *b = &state->builder;
b->cursor = nir_before_instr(&tex->instr);
const unsigned plane_offset =
plane * sizeof(struct anv_texture_swizzle_descriptor);
nir_ssa_def *swiz =
build_descriptor_load(deref, plane_offset, 1, 32, state);
b->cursor = nir_after_instr(&tex->instr);
assert(tex->dest.ssa.bit_size == 32);
assert(tex->dest.ssa.num_components == 4);
/* Initializing to undef is ok; nir_opt_undef will clean it up. */
nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
nir_ssa_def *comps[8];
for (unsigned i = 0; i < ARRAY_SIZE(comps); i++)
comps[i] = undef;
comps[ISL_CHANNEL_SELECT_ZERO] = nir_imm_int(b, 0);
if (nir_alu_type_get_base_type(tex->dest_type) == nir_type_float)
comps[ISL_CHANNEL_SELECT_ONE] = nir_imm_float(b, 1);
else
comps[ISL_CHANNEL_SELECT_ONE] = nir_imm_int(b, 1);
comps[ISL_CHANNEL_SELECT_RED] = nir_channel(b, &tex->dest.ssa, 0);
comps[ISL_CHANNEL_SELECT_GREEN] = nir_channel(b, &tex->dest.ssa, 1);
comps[ISL_CHANNEL_SELECT_BLUE] = nir_channel(b, &tex->dest.ssa, 2);
comps[ISL_CHANNEL_SELECT_ALPHA] = nir_channel(b, &tex->dest.ssa, 3);
nir_ssa_def *swiz_comps[4];
for (unsigned i = 0; i < 4; i++) {
nir_ssa_def *comp_swiz = nir_extract_u8(b, swiz, nir_imm_int(b, i));
swiz_comps[i] = build_def_array_select(b, comps, comp_swiz, 0, 8);
}
nir_ssa_def *swiz_tex_res = nir_vec(b, swiz_comps, 4);
/* Rewrite uses before we insert so we don't rewrite this use */
nir_ssa_def_rewrite_uses_after(&tex->dest.ssa,
nir_src_for_ssa(swiz_tex_res),
swiz_tex_res->parent_instr);
}
static void
lower_tex(nir_tex_instr *tex, struct apply_pipeline_layout_state *state)
{
unsigned plane = tex_instr_get_and_remove_plane_src(tex);
/* On Ivy Bridge and Bay Trail, we have to swizzle in the shader. Do this
* before we lower the derefs away so we can still find the descriptor.
*/
if (state->pdevice->info.gen == 7 && !state->pdevice->info.is_haswell)
lower_gen7_tex_swizzle(tex, plane, state);
state->builder.cursor = nir_before_instr(&tex->instr);
lower_tex_deref(tex, nir_tex_src_texture_deref,
&tex->texture_index, plane, state);
lower_tex_deref(tex, nir_tex_src_sampler_deref,
&tex->sampler_index, plane, state);
}
static void
apply_pipeline_layout_block(nir_block *block,
struct apply_pipeline_layout_state *state)
{
nir_foreach_instr_safe(instr, block) {
switch (instr->type) {
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_vulkan_resource_index:
lower_res_index_intrinsic(intrin, state);
break;
case nir_intrinsic_vulkan_resource_reindex:
lower_res_reindex_intrinsic(intrin, state);
break;
case nir_intrinsic_load_vulkan_descriptor:
lower_load_vulkan_descriptor(intrin, state);
break;
case nir_intrinsic_get_ssbo_size:
lower_get_ssbo_size(intrin, state);
break;
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_image_deref_load_param_intel:
case nir_intrinsic_image_deref_load_raw_intel:
case nir_intrinsic_image_deref_store_raw_intel:
lower_image_intrinsic(intrin, state);
break;
case nir_intrinsic_load_constant:
lower_load_constant(intrin, state);
break;
default:
break;
}
break;
}
case nir_instr_type_tex:
lower_tex(nir_instr_as_tex(instr), state);
break;
default:
continue;
}
}
}
struct binding_info {
uint32_t binding;
uint8_t set;
uint16_t score;
};
static int
compare_binding_infos(const void *_a, const void *_b)
{
const struct binding_info *a = _a, *b = _b;
if (a->score != b->score)
return b->score - a->score;
if (a->set != b->set)
return a->set - b->set;
return a->binding - b->binding;
}
void
anv_nir_apply_pipeline_layout(const struct anv_physical_device *pdevice,
bool robust_buffer_access,
const struct anv_pipeline_layout *layout,
nir_shader *shader,
struct anv_pipeline_bind_map *map)
{
void *mem_ctx = ralloc_context(NULL);
struct apply_pipeline_layout_state state = {
.pdevice = pdevice,
.shader = shader,
.layout = layout,
.add_bounds_checks = robust_buffer_access,
.ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_buffer_access),
.lowered_instrs = _mesa_pointer_set_create(mem_ctx),
};
for (unsigned s = 0; s < layout->num_sets; s++) {
const unsigned count = layout->set[s].layout->binding_count;
state.set[s].use_count = rzalloc_array(mem_ctx, uint8_t, count);
state.set[s].surface_offsets = rzalloc_array(mem_ctx, uint8_t, count);
state.set[s].sampler_offsets = rzalloc_array(mem_ctx, uint8_t, count);
}
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
nir_foreach_block(block, function->impl)
get_used_bindings_block(block, &state);
}
for (unsigned s = 0; s < layout->num_sets; s++) {
if (state.set[s].desc_buffer_used) {
map->surface_to_descriptor[map->surface_count] =
(struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_DESCRIPTORS,
.index = s,
};
state.set[s].desc_offset = map->surface_count;
map->surface_count++;
}
}
if (state.uses_constants && !pdevice->use_softpin) {
state.constants_offset = map->surface_count;
map->surface_to_descriptor[map->surface_count].set =
ANV_DESCRIPTOR_SET_SHADER_CONSTANTS;
map->surface_count++;
}
unsigned used_binding_count = 0;
for (uint32_t set = 0; set < layout->num_sets; set++) {
struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
for (unsigned b = 0; b < set_layout->binding_count; b++) {
if (state.set[set].use_count[b] == 0)
continue;
used_binding_count++;
}
}
struct binding_info *infos =
rzalloc_array(mem_ctx, struct binding_info, used_binding_count);
used_binding_count = 0;
for (uint32_t set = 0; set < layout->num_sets; set++) {
const struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
for (unsigned b = 0; b < set_layout->binding_count; b++) {
if (state.set[set].use_count[b] == 0)
continue;
const struct anv_descriptor_set_binding_layout *binding =
&layout->set[set].layout->binding[b];
/* Do a fixed-point calculation to generate a score based on the
* number of uses and the binding array size. We shift by 7 instead
* of 8 because we're going to use the top bit below to make
* everything which does not support bindless super higher priority
* than things which do.
*/
uint16_t score = ((uint16_t)state.set[set].use_count[b] << 7) /
binding->array_size;
/* If the descriptor type doesn't support bindless then put it at the
* beginning so we guarantee it gets a slot.
*/
if (!anv_descriptor_supports_bindless(pdevice, binding, true) ||
!anv_descriptor_supports_bindless(pdevice, binding, false))
score |= 1 << 15;
infos[used_binding_count++] = (struct binding_info) {
.set = set,
.binding = b,
.score = score,
};
}
}
/* Order the binding infos based on score with highest scores first. If
* scores are equal we then order by set and binding.
*/
qsort(infos, used_binding_count, sizeof(struct binding_info),
compare_binding_infos);
for (unsigned i = 0; i < used_binding_count; i++) {
unsigned set = infos[i].set, b = infos[i].binding;
const struct anv_descriptor_set_binding_layout *binding =
&layout->set[set].layout->binding[b];
const uint32_t array_size = binding->array_size;
if (binding->dynamic_offset_index >= 0)
state.has_dynamic_buffers = true;
if (binding->data & ANV_DESCRIPTOR_SURFACE_STATE) {
if (map->surface_count + array_size > MAX_BINDING_TABLE_SIZE ||
anv_descriptor_requires_bindless(pdevice, binding, false)) {
/* If this descriptor doesn't fit in the binding table or if it
* requires bindless for some reason, flag it as bindless.
*/
assert(anv_descriptor_supports_bindless(pdevice, binding, false));
state.set[set].surface_offsets[b] = BINDLESS_OFFSET;
} else {
state.set[set].surface_offsets[b] = map->surface_count;
if (binding->dynamic_offset_index < 0) {
struct anv_sampler **samplers = binding->immutable_samplers;
for (unsigned i = 0; i < binding->array_size; i++) {
uint8_t planes = samplers ? samplers[i]->n_planes : 1;
for (uint8_t p = 0; p < planes; p++) {
map->surface_to_descriptor[map->surface_count++] =
(struct anv_pipeline_binding) {
.set = set,
.index = binding->descriptor_index + i,
.plane = p,
};
}
}
} else {
for (unsigned i = 0; i < binding->array_size; i++) {
map->surface_to_descriptor[map->surface_count++] =
(struct anv_pipeline_binding) {
.set = set,
.index = binding->descriptor_index + i,
.dynamic_offset_index =
layout->set[set].dynamic_offset_start +
binding->dynamic_offset_index + i,
};
}
}
}
assert(map->surface_count <= MAX_BINDING_TABLE_SIZE);
}
if (binding->data & ANV_DESCRIPTOR_SAMPLER_STATE) {
if (map->sampler_count + array_size > MAX_SAMPLER_TABLE_SIZE ||
anv_descriptor_requires_bindless(pdevice, binding, true)) {
/* If this descriptor doesn't fit in the binding table or if it
* requires bindless for some reason, flag it as bindless.
*
* We also make large sampler arrays bindless because we can avoid
* using indirect sends thanks to bindless samplers being packed
* less tightly than the sampler table.
*/
assert(anv_descriptor_supports_bindless(pdevice, binding, true));
state.set[set].sampler_offsets[b] = BINDLESS_OFFSET;
} else {
state.set[set].sampler_offsets[b] = map->sampler_count;
struct anv_sampler **samplers = binding->immutable_samplers;
for (unsigned i = 0; i < binding->array_size; i++) {
uint8_t planes = samplers ? samplers[i]->n_planes : 1;
for (uint8_t p = 0; p < planes; p++) {
map->sampler_to_descriptor[map->sampler_count++] =
(struct anv_pipeline_binding) {
.set = set,
.index = binding->descriptor_index + i,
.plane = p,
};
}
}
}
}
}
nir_foreach_uniform_variable(var, shader) {
const struct glsl_type *glsl_type = glsl_without_array(var->type);
if (!glsl_type_is_image(glsl_type))
continue;
enum glsl_sampler_dim dim = glsl_get_sampler_dim(glsl_type);
const uint32_t set = var->data.descriptor_set;
const uint32_t binding = var->data.binding;
const struct anv_descriptor_set_binding_layout *bind_layout =
&layout->set[set].layout->binding[binding];
const uint32_t array_size = bind_layout->array_size;
if (state.set[set].use_count[binding] == 0)
continue;
if (state.set[set].surface_offsets[binding] >= MAX_BINDING_TABLE_SIZE)
continue;
struct anv_pipeline_binding *pipe_binding =
&map->surface_to_descriptor[state.set[set].surface_offsets[binding]];
for (unsigned i = 0; i < array_size; i++) {
assert(pipe_binding[i].set == set);
assert(pipe_binding[i].index == bind_layout->descriptor_index + i);
if (dim == GLSL_SAMPLER_DIM_SUBPASS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS)
pipe_binding[i].input_attachment_index = var->data.index + i;
/* NOTE: This is a uint8_t so we really do need to != 0 here */
pipe_binding[i].write_only =
(var->data.access & ACCESS_NON_READABLE) != 0;
}
}
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
nir_builder_init(&state.builder, function->impl);
/* Before we do the normal lowering, we look for any SSBO operations
* that we can lower to the BTI model and lower them up-front. The BTI
* model can perform better than the A64 model for a couple reasons:
*
* 1. 48-bit address calculations are potentially expensive and using
* the BTI model lets us simply compute 32-bit offsets and the
* hardware adds the 64-bit surface base address.
*
* 2. The BTI messages, because they use surface states, do bounds
* checking for us. With the A64 model, we have to do our own
* bounds checking and this means wider pointers and extra
* calculations and branching in the shader.
*
* The solution to both of these is to convert things to the BTI model
* opportunistically. The reason why we need to do this as a pre-pass
* is for two reasons:
*
* 1. The BTI model requires nir_address_format_32bit_index_offset
* pointers which are not the same type as the pointers needed for
* the A64 model. Because all our derefs are set up for the A64
* model (in case we have variable pointers), we have to crawl all
* the way back to the vulkan_resource_index intrinsic and build a
* completely fresh index+offset calculation.
*
* 2. Because the variable-pointers-capable lowering that we do as part
* of apply_pipeline_layout_block is destructive (It really has to
* be to handle variable pointers properly), we've lost the deref
* information by the time we get to the load/store/atomic
* intrinsics in that pass.
*/
lower_direct_buffer_access(function->impl, &state);
nir_foreach_block(block, function->impl)
apply_pipeline_layout_block(block, &state);
nir_metadata_preserve(function->impl, nir_metadata_block_index |
nir_metadata_dominance);
}
ralloc_free(mem_ctx);
/* Now that we're done computing the surface and sampler portions of the
* bind map, hash them. This lets us quickly determine if the actual
* mapping has changed and not just a no-op pipeline change.
*/
_mesa_sha1_compute(map->surface_to_descriptor,
map->surface_count * sizeof(struct anv_pipeline_binding),
map->surface_sha1);
_mesa_sha1_compute(map->sampler_to_descriptor,
map->sampler_count * sizeof(struct anv_pipeline_binding),
map->sampler_sha1);
}