blob: 3daa60b71c14574b6e3130cb4961aa4b8161e17a [file] [log] [blame]
#include "aco_ir.h"
#include "aco_builder.h"
#include "sid.h"
#include "ac_shader_util.h"
namespace aco {
static const char *reduce_ops[] = {
[iadd8] = "iadd8",
[iadd16] = "iadd16",
[iadd32] = "iadd32",
[iadd64] = "iadd64",
[imul8] = "imul8",
[imul16] = "imul16",
[imul32] = "imul32",
[imul64] = "imul64",
[fadd16] = "fadd16",
[fadd32] = "fadd32",
[fadd64] = "fadd64",
[fmul16] = "fmul16",
[fmul32] = "fmul32",
[fmul64] = "fmul64",
[imin8] = "imin8",
[imin16] = "imin16",
[imin32] = "imin32",
[imin64] = "imin64",
[imax8] = "imax8",
[imax16] = "imax16",
[imax32] = "imax32",
[imax64] = "imax64",
[umin8] = "umin8",
[umin16] = "umin16",
[umin32] = "umin32",
[umin64] = "umin64",
[umax8] = "umax8",
[umax16] = "umax16",
[umax32] = "umax32",
[umax64] = "umax64",
[fmin16] = "fmin16",
[fmin32] = "fmin32",
[fmin64] = "fmin64",
[fmax16] = "fmax16",
[fmax32] = "fmax32",
[fmax64] = "fmax64",
[iand8] = "iand8",
[iand16] = "iand16",
[iand32] = "iand32",
[iand64] = "iand64",
[ior8] = "ior8",
[ior16] = "ior16",
[ior32] = "ior32",
[ior64] = "ior64",
[ixor8] = "ixor8",
[ixor16] = "ixor16",
[ixor32] = "ixor32",
[ixor64] = "ixor64",
};
static void print_reg_class(const RegClass rc, FILE *output)
{
switch (rc) {
case RegClass::s1: fprintf(output, " s1: "); return;
case RegClass::s2: fprintf(output, " s2: "); return;
case RegClass::s3: fprintf(output, " s3: "); return;
case RegClass::s4: fprintf(output, " s4: "); return;
case RegClass::s6: fprintf(output, " s6: "); return;
case RegClass::s8: fprintf(output, " s8: "); return;
case RegClass::s16: fprintf(output, "s16: "); return;
case RegClass::v1: fprintf(output, " v1: "); return;
case RegClass::v2: fprintf(output, " v2: "); return;
case RegClass::v3: fprintf(output, " v3: "); return;
case RegClass::v4: fprintf(output, " v4: "); return;
case RegClass::v5: fprintf(output, " v5: "); return;
case RegClass::v6: fprintf(output, " v6: "); return;
case RegClass::v7: fprintf(output, " v7: "); return;
case RegClass::v8: fprintf(output, " v8: "); return;
case RegClass::v1b: fprintf(output, " v1b: "); return;
case RegClass::v2b: fprintf(output, " v2b: "); return;
case RegClass::v3b: fprintf(output, " v3b: "); return;
case RegClass::v4b: fprintf(output, " v4b: "); return;
case RegClass::v6b: fprintf(output, " v6b: "); return;
case RegClass::v8b: fprintf(output, " v8b: "); return;
case RegClass::v1_linear: fprintf(output, " v1: "); return;
case RegClass::v2_linear: fprintf(output, " v2: "); return;
}
}
void print_physReg(PhysReg reg, unsigned bytes, FILE *output)
{
if (reg == 124) {
fprintf(output, ":m0");
} else if (reg == 106) {
fprintf(output, ":vcc");
} else if (reg == 253) {
fprintf(output, ":scc");
} else if (reg == 126) {
fprintf(output, ":exec");
} else {
bool is_vgpr = reg / 256;
unsigned r = reg % 256;
unsigned size = DIV_ROUND_UP(bytes, 4);
fprintf(output, ":%c[%d", is_vgpr ? 'v' : 's', r);
if (size > 1)
fprintf(output, "-%d]", r + size -1);
else
fprintf(output, "]");
if (reg.byte() || bytes % 4)
fprintf(output, "[%d:%d]", reg.byte()*8, (reg.byte()+bytes) * 8);
}
}
static void print_constant(uint8_t reg, FILE *output)
{
if (reg >= 128 && reg <= 192) {
fprintf(output, "%d", reg - 128);
return;
} else if (reg >= 192 && reg <= 208) {
fprintf(output, "%d", 192 - reg);
return;
}
switch (reg) {
case 240:
fprintf(output, "0.5");
break;
case 241:
fprintf(output, "-0.5");
break;
case 242:
fprintf(output, "1.0");
break;
case 243:
fprintf(output, "-1.0");
break;
case 244:
fprintf(output, "2.0");
break;
case 245:
fprintf(output, "-2.0");
break;
case 246:
fprintf(output, "4.0");
break;
case 247:
fprintf(output, "-4.0");
break;
case 248:
fprintf(output, "1/(2*PI)");
break;
}
}
static void print_operand(const Operand *operand, FILE *output)
{
if (operand->isLiteral() || (operand->isConstant() && operand->bytes() == 1)) {
if (operand->bytes() == 1)
fprintf(output, "0x%.2x", operand->constantValue());
else if (operand->bytes() == 2)
fprintf(output, "0x%.4x", operand->constantValue());
else
fprintf(output, "0x%x", operand->constantValue());
} else if (operand->isConstant()) {
print_constant(operand->physReg().reg(), output);
} else if (operand->isUndefined()) {
print_reg_class(operand->regClass(), output);
fprintf(output, "undef");
} else {
if (operand->isLateKill())
fprintf(output, "(latekill)");
fprintf(output, "%%%d", operand->tempId());
if (operand->isFixed())
print_physReg(operand->physReg(), operand->bytes(), output);
}
}
static void print_definition(const Definition *definition, FILE *output)
{
print_reg_class(definition->regClass(), output);
if (definition->isPrecise())
fprintf(output, "(precise)");
fprintf(output, "%%%d", definition->tempId());
if (definition->isFixed())
print_physReg(definition->physReg(), definition->bytes(), output);
}
static void print_barrier_reorder(bool can_reorder, barrier_interaction barrier, FILE *output)
{
if (can_reorder)
fprintf(output, " reorder");
if (barrier & barrier_buffer)
fprintf(output, " buffer");
if (barrier & barrier_image)
fprintf(output, " image");
if (barrier & barrier_atomic)
fprintf(output, " atomic");
if (barrier & barrier_shared)
fprintf(output, " shared");
if (barrier & barrier_gs_data)
fprintf(output, " gs_data");
if (barrier & barrier_gs_sendmsg)
fprintf(output, " gs_sendmsg");
}
static void print_instr_format_specific(const Instruction *instr, FILE *output)
{
switch (instr->format) {
case Format::SOPK: {
const SOPK_instruction* sopk = static_cast<const SOPK_instruction*>(instr);
fprintf(output, " imm:%d", sopk->imm & 0x8000 ? (sopk->imm - 65536) : sopk->imm);
break;
}
case Format::SOPP: {
const SOPP_instruction* sopp = static_cast<const SOPP_instruction*>(instr);
uint16_t imm = sopp->imm;
switch (instr->opcode) {
case aco_opcode::s_waitcnt: {
/* we usually should check the chip class for vmcnt/lgkm, but
* insert_waitcnt() should fill it in regardless. */
unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
if (vmcnt != 63) fprintf(output, " vmcnt(%d)", vmcnt);
if (((imm >> 4) & 0x7) < 0x7) fprintf(output, " expcnt(%d)", (imm >> 4) & 0x7);
if (((imm >> 8) & 0x3F) < 0x3F) fprintf(output, " lgkmcnt(%d)", (imm >> 8) & 0x3F);
break;
}
case aco_opcode::s_endpgm:
case aco_opcode::s_endpgm_saved:
case aco_opcode::s_endpgm_ordered_ps_done:
case aco_opcode::s_wakeup:
case aco_opcode::s_barrier:
case aco_opcode::s_icache_inv:
case aco_opcode::s_ttracedata:
case aco_opcode::s_set_gpr_idx_off: {
break;
}
case aco_opcode::s_sendmsg: {
unsigned id = imm & sendmsg_id_mask;
switch (id) {
case sendmsg_none:
fprintf(output, " sendmsg(MSG_NONE)");
break;
case _sendmsg_gs:
fprintf(output, " sendmsg(gs%s%s, %u)",
imm & 0x10 ? ", cut" : "", imm & 0x20 ? ", emit" : "", imm >> 8);
break;
case _sendmsg_gs_done:
fprintf(output, " sendmsg(gs_done%s%s, %u)",
imm & 0x10 ? ", cut" : "", imm & 0x20 ? ", emit" : "", imm >> 8);
break;
case sendmsg_save_wave:
fprintf(output, " sendmsg(save_wave)");
break;
case sendmsg_stall_wave_gen:
fprintf(output, " sendmsg(stall_wave_gen)");
break;
case sendmsg_halt_waves:
fprintf(output, " sendmsg(halt_waves)");
break;
case sendmsg_ordered_ps_done:
fprintf(output, " sendmsg(ordered_ps_done)");
break;
case sendmsg_early_prim_dealloc:
fprintf(output, " sendmsg(early_prim_dealloc)");
break;
case sendmsg_gs_alloc_req:
fprintf(output, " sendmsg(gs_alloc_req)");
break;
}
break;
}
default: {
if (imm)
fprintf(output, " imm:%u", imm);
break;
}
}
if (sopp->block != -1)
fprintf(output, " block:BB%d", sopp->block);
break;
}
case Format::SMEM: {
const SMEM_instruction* smem = static_cast<const SMEM_instruction*>(instr);
if (smem->glc)
fprintf(output, " glc");
if (smem->dlc)
fprintf(output, " dlc");
if (smem->nv)
fprintf(output, " nv");
print_barrier_reorder(smem->can_reorder, smem->barrier, output);
break;
}
case Format::VINTRP: {
const Interp_instruction* vintrp = static_cast<const Interp_instruction*>(instr);
fprintf(output, " attr%d.%c", vintrp->attribute, "xyzw"[vintrp->component]);
break;
}
case Format::DS: {
const DS_instruction* ds = static_cast<const DS_instruction*>(instr);
if (ds->offset0)
fprintf(output, " offset0:%u", ds->offset0);
if (ds->offset1)
fprintf(output, " offset1:%u", ds->offset1);
if (ds->gds)
fprintf(output, " gds");
break;
}
case Format::MUBUF: {
const MUBUF_instruction* mubuf = static_cast<const MUBUF_instruction*>(instr);
if (mubuf->offset)
fprintf(output, " offset:%u", mubuf->offset);
if (mubuf->offen)
fprintf(output, " offen");
if (mubuf->idxen)
fprintf(output, " idxen");
if (mubuf->addr64)
fprintf(output, " addr64");
if (mubuf->glc)
fprintf(output, " glc");
if (mubuf->dlc)
fprintf(output, " dlc");
if (mubuf->slc)
fprintf(output, " slc");
if (mubuf->tfe)
fprintf(output, " tfe");
if (mubuf->lds)
fprintf(output, " lds");
if (mubuf->disable_wqm)
fprintf(output, " disable_wqm");
print_barrier_reorder(mubuf->can_reorder, mubuf->barrier, output);
break;
}
case Format::MIMG: {
const MIMG_instruction* mimg = static_cast<const MIMG_instruction*>(instr);
unsigned identity_dmask = !instr->definitions.empty() ?
(1 << instr->definitions[0].size()) - 1 :
0xf;
if ((mimg->dmask & identity_dmask) != identity_dmask)
fprintf(output, " dmask:%s%s%s%s",
mimg->dmask & 0x1 ? "x" : "",
mimg->dmask & 0x2 ? "y" : "",
mimg->dmask & 0x4 ? "z" : "",
mimg->dmask & 0x8 ? "w" : "");
switch (mimg->dim) {
case ac_image_1d:
fprintf(output, " 1d");
break;
case ac_image_2d:
fprintf(output, " 2d");
break;
case ac_image_3d:
fprintf(output, " 3d");
break;
case ac_image_cube:
fprintf(output, " cube");
break;
case ac_image_1darray:
fprintf(output, " 1darray");
break;
case ac_image_2darray:
fprintf(output, " 2darray");
break;
case ac_image_2dmsaa:
fprintf(output, " 2dmsaa");
break;
case ac_image_2darraymsaa:
fprintf(output, " 2darraymsaa");
break;
}
if (mimg->unrm)
fprintf(output, " unrm");
if (mimg->glc)
fprintf(output, " glc");
if (mimg->dlc)
fprintf(output, " dlc");
if (mimg->slc)
fprintf(output, " slc");
if (mimg->tfe)
fprintf(output, " tfe");
if (mimg->da)
fprintf(output, " da");
if (mimg->lwe)
fprintf(output, " lwe");
if (mimg->r128 || mimg->a16)
fprintf(output, " r128/a16");
if (mimg->d16)
fprintf(output, " d16");
if (mimg->disable_wqm)
fprintf(output, " disable_wqm");
print_barrier_reorder(mimg->can_reorder, mimg->barrier, output);
break;
}
case Format::EXP: {
const Export_instruction* exp = static_cast<const Export_instruction*>(instr);
unsigned identity_mask = exp->compressed ? 0x5 : 0xf;
if ((exp->enabled_mask & identity_mask) != identity_mask)
fprintf(output, " en:%c%c%c%c",
exp->enabled_mask & 0x1 ? 'r' : '*',
exp->enabled_mask & 0x2 ? 'g' : '*',
exp->enabled_mask & 0x4 ? 'b' : '*',
exp->enabled_mask & 0x8 ? 'a' : '*');
if (exp->compressed)
fprintf(output, " compr");
if (exp->done)
fprintf(output, " done");
if (exp->valid_mask)
fprintf(output, " vm");
if (exp->dest <= V_008DFC_SQ_EXP_MRT + 7)
fprintf(output, " mrt%d", exp->dest - V_008DFC_SQ_EXP_MRT);
else if (exp->dest == V_008DFC_SQ_EXP_MRTZ)
fprintf(output, " mrtz");
else if (exp->dest == V_008DFC_SQ_EXP_NULL)
fprintf(output, " null");
else if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= V_008DFC_SQ_EXP_POS + 3)
fprintf(output, " pos%d", exp->dest - V_008DFC_SQ_EXP_POS);
else if (exp->dest >= V_008DFC_SQ_EXP_PARAM && exp->dest <= V_008DFC_SQ_EXP_PARAM + 31)
fprintf(output, " param%d", exp->dest - V_008DFC_SQ_EXP_PARAM);
break;
}
case Format::PSEUDO_BRANCH: {
const Pseudo_branch_instruction* branch = static_cast<const Pseudo_branch_instruction*>(instr);
/* Note: BB0 cannot be a branch target */
if (branch->target[0] != 0)
fprintf(output, " BB%d", branch->target[0]);
if (branch->target[1] != 0)
fprintf(output, ", BB%d", branch->target[1]);
break;
}
case Format::PSEUDO_REDUCTION: {
const Pseudo_reduction_instruction* reduce = static_cast<const Pseudo_reduction_instruction*>(instr);
fprintf(output, " op:%s", reduce_ops[reduce->reduce_op]);
if (reduce->cluster_size)
fprintf(output, " cluster_size:%u", reduce->cluster_size);
break;
}
case Format::FLAT:
case Format::GLOBAL:
case Format::SCRATCH: {
const FLAT_instruction* flat = static_cast<const FLAT_instruction*>(instr);
if (flat->offset)
fprintf(output, " offset:%u", flat->offset);
if (flat->glc)
fprintf(output, " glc");
if (flat->dlc)
fprintf(output, " dlc");
if (flat->slc)
fprintf(output, " slc");
if (flat->lds)
fprintf(output, " lds");
if (flat->nv)
fprintf(output, " nv");
if (flat->disable_wqm)
fprintf(output, " disable_wqm");
print_barrier_reorder(flat->can_reorder, flat->barrier, output);
break;
}
case Format::MTBUF: {
const MTBUF_instruction* mtbuf = static_cast<const MTBUF_instruction*>(instr);
fprintf(output, " dfmt:");
switch (mtbuf->dfmt) {
case V_008F0C_BUF_DATA_FORMAT_8: fprintf(output, "8"); break;
case V_008F0C_BUF_DATA_FORMAT_16: fprintf(output, "16"); break;
case V_008F0C_BUF_DATA_FORMAT_8_8: fprintf(output, "8_8"); break;
case V_008F0C_BUF_DATA_FORMAT_32: fprintf(output, "32"); break;
case V_008F0C_BUF_DATA_FORMAT_16_16: fprintf(output, "16_16"); break;
case V_008F0C_BUF_DATA_FORMAT_10_11_11: fprintf(output, "10_11_11"); break;
case V_008F0C_BUF_DATA_FORMAT_11_11_10: fprintf(output, "11_11_10"); break;
case V_008F0C_BUF_DATA_FORMAT_10_10_10_2: fprintf(output, "10_10_10_2"); break;
case V_008F0C_BUF_DATA_FORMAT_2_10_10_10: fprintf(output, "2_10_10_10"); break;
case V_008F0C_BUF_DATA_FORMAT_8_8_8_8: fprintf(output, "8_8_8_8"); break;
case V_008F0C_BUF_DATA_FORMAT_32_32: fprintf(output, "32_32"); break;
case V_008F0C_BUF_DATA_FORMAT_16_16_16_16: fprintf(output, "16_16_16_16"); break;
case V_008F0C_BUF_DATA_FORMAT_32_32_32: fprintf(output, "32_32_32"); break;
case V_008F0C_BUF_DATA_FORMAT_32_32_32_32: fprintf(output, "32_32_32_32"); break;
case V_008F0C_BUF_DATA_FORMAT_RESERVED_15: fprintf(output, "reserved15"); break;
}
fprintf(output, " nfmt:");
switch (mtbuf->nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM: fprintf(output, "unorm"); break;
case V_008F0C_BUF_NUM_FORMAT_SNORM: fprintf(output, "snorm"); break;
case V_008F0C_BUF_NUM_FORMAT_USCALED: fprintf(output, "uscaled"); break;
case V_008F0C_BUF_NUM_FORMAT_SSCALED: fprintf(output, "sscaled"); break;
case V_008F0C_BUF_NUM_FORMAT_UINT: fprintf(output, "uint"); break;
case V_008F0C_BUF_NUM_FORMAT_SINT: fprintf(output, "sint"); break;
case V_008F0C_BUF_NUM_FORMAT_SNORM_OGL: fprintf(output, "snorm"); break;
case V_008F0C_BUF_NUM_FORMAT_FLOAT: fprintf(output, "float"); break;
}
if (mtbuf->offset)
fprintf(output, " offset:%u", mtbuf->offset);
if (mtbuf->offen)
fprintf(output, " offen");
if (mtbuf->idxen)
fprintf(output, " idxen");
if (mtbuf->glc)
fprintf(output, " glc");
if (mtbuf->dlc)
fprintf(output, " dlc");
if (mtbuf->slc)
fprintf(output, " slc");
if (mtbuf->tfe)
fprintf(output, " tfe");
if (mtbuf->disable_wqm)
fprintf(output, " disable_wqm");
print_barrier_reorder(mtbuf->can_reorder, mtbuf->barrier, output);
break;
}
case Format::VOP3P: {
if (static_cast<const VOP3P_instruction*>(instr)->clamp)
fprintf(output, " clamp");
break;
}
default: {
break;
}
}
if (instr->isVOP3()) {
const VOP3A_instruction* vop3 = static_cast<const VOP3A_instruction*>(instr);
switch (vop3->omod) {
case 1:
fprintf(output, " *2");
break;
case 2:
fprintf(output, " *4");
break;
case 3:
fprintf(output, " *0.5");
break;
}
if (vop3->clamp)
fprintf(output, " clamp");
if (vop3->opsel & (1 << 3))
fprintf(output, " opsel_hi");
} else if (instr->isDPP()) {
const DPP_instruction* dpp = static_cast<const DPP_instruction*>(instr);
if (dpp->dpp_ctrl <= 0xff) {
fprintf(output, " quad_perm:[%d,%d,%d,%d]",
dpp->dpp_ctrl & 0x3, (dpp->dpp_ctrl >> 2) & 0x3,
(dpp->dpp_ctrl >> 4) & 0x3, (dpp->dpp_ctrl >> 6) & 0x3);
} else if (dpp->dpp_ctrl >= 0x101 && dpp->dpp_ctrl <= 0x10f) {
fprintf(output, " row_shl:%d", dpp->dpp_ctrl & 0xf);
} else if (dpp->dpp_ctrl >= 0x111 && dpp->dpp_ctrl <= 0x11f) {
fprintf(output, " row_shr:%d", dpp->dpp_ctrl & 0xf);
} else if (dpp->dpp_ctrl >= 0x121 && dpp->dpp_ctrl <= 0x12f) {
fprintf(output, " row_ror:%d", dpp->dpp_ctrl & 0xf);
} else if (dpp->dpp_ctrl == dpp_wf_sl1) {
fprintf(output, " wave_shl:1");
} else if (dpp->dpp_ctrl == dpp_wf_rl1) {
fprintf(output, " wave_rol:1");
} else if (dpp->dpp_ctrl == dpp_wf_sr1) {
fprintf(output, " wave_shr:1");
} else if (dpp->dpp_ctrl == dpp_wf_rr1) {
fprintf(output, " wave_ror:1");
} else if (dpp->dpp_ctrl == dpp_row_mirror) {
fprintf(output, " row_mirror");
} else if (dpp->dpp_ctrl == dpp_row_half_mirror) {
fprintf(output, " row_half_mirror");
} else if (dpp->dpp_ctrl == dpp_row_bcast15) {
fprintf(output, " row_bcast:15");
} else if (dpp->dpp_ctrl == dpp_row_bcast31) {
fprintf(output, " row_bcast:31");
} else {
fprintf(output, " dpp_ctrl:0x%.3x", dpp->dpp_ctrl);
}
if (dpp->row_mask != 0xf)
fprintf(output, " row_mask:0x%.1x", dpp->row_mask);
if (dpp->bank_mask != 0xf)
fprintf(output, " bank_mask:0x%.1x", dpp->bank_mask);
if (dpp->bound_ctrl)
fprintf(output, " bound_ctrl:1");
} else if ((int)instr->format & (int)Format::SDWA) {
const SDWA_instruction* sdwa = static_cast<const SDWA_instruction*>(instr);
switch (sdwa->omod) {
case 1:
fprintf(output, " *2");
break;
case 2:
fprintf(output, " *4");
break;
case 3:
fprintf(output, " *0.5");
break;
}
if (sdwa->clamp)
fprintf(output, " clamp");
switch (sdwa->dst_sel & sdwa_asuint) {
case sdwa_udword:
break;
case sdwa_ubyte0:
case sdwa_ubyte1:
case sdwa_ubyte2:
case sdwa_ubyte3:
fprintf(output, " dst_sel:%sbyte%u", sdwa->dst_sel & sdwa_sext ? "s" : "u",
sdwa->dst_sel & sdwa_bytenum);
break;
case sdwa_uword0:
case sdwa_uword1:
fprintf(output, " dst_sel:%sword%u", sdwa->dst_sel & sdwa_sext ? "s" : "u",
sdwa->dst_sel & sdwa_wordnum);
break;
}
if (sdwa->dst_preserve)
fprintf(output, " dst_preserve");
}
}
void aco_print_instr(const Instruction *instr, FILE *output)
{
if (!instr->definitions.empty()) {
for (unsigned i = 0; i < instr->definitions.size(); ++i) {
print_definition(&instr->definitions[i], output);
if (i + 1 != instr->definitions.size())
fprintf(output, ", ");
}
fprintf(output, " = ");
}
fprintf(output, "%s", instr_info.name[(int)instr->opcode]);
if (instr->operands.size()) {
bool abs[instr->operands.size()];
bool neg[instr->operands.size()];
bool opsel[instr->operands.size()];
uint8_t sel[instr->operands.size()];
if ((int)instr->format & (int)Format::VOP3A) {
const VOP3A_instruction* vop3 = static_cast<const VOP3A_instruction*>(instr);
for (unsigned i = 0; i < instr->operands.size(); ++i) {
abs[i] = vop3->abs[i];
neg[i] = vop3->neg[i];
opsel[i] = vop3->opsel & (1 << i);
sel[i] = sdwa_udword;
}
} else if (instr->isDPP()) {
const DPP_instruction* dpp = static_cast<const DPP_instruction*>(instr);
for (unsigned i = 0; i < instr->operands.size(); ++i) {
abs[i] = i < 2 ? dpp->abs[i] : false;
neg[i] = i < 2 ? dpp->neg[i] : false;
opsel[i] = false;
sel[i] = sdwa_udword;
}
} else if (instr->isSDWA()) {
const SDWA_instruction* sdwa = static_cast<const SDWA_instruction*>(instr);
for (unsigned i = 0; i < instr->operands.size(); ++i) {
abs[i] = i < 2 ? sdwa->abs[i] : false;
neg[i] = i < 2 ? sdwa->neg[i] : false;
opsel[i] = false;
sel[i] = i < 2 ? sdwa->sel[i] : sdwa_udword;
}
} else {
for (unsigned i = 0; i < instr->operands.size(); ++i) {
abs[i] = false;
neg[i] = false;
opsel[i] = false;
sel[i] = sdwa_udword;
}
}
for (unsigned i = 0; i < instr->operands.size(); ++i) {
if (i)
fprintf(output, ", ");
else
fprintf(output, " ");
if (neg[i])
fprintf(output, "-");
if (abs[i])
fprintf(output, "|");
if (opsel[i])
fprintf(output, "hi(");
else if (sel[i] & sdwa_sext)
fprintf(output, "sext(");
print_operand(&instr->operands[i], output);
if (opsel[i] || (sel[i] & sdwa_sext))
fprintf(output, ")");
if (!(sel[i] & sdwa_isra)) {
if (sel[i] & sdwa_udword) {
/* print nothing */
} else if (sel[i] & sdwa_isword) {
unsigned index = sel[i] & sdwa_wordnum;
fprintf(output, "[%u:%u]", index * 16, index * 16 + 15);
} else {
unsigned index = sel[i] & sdwa_bytenum;
fprintf(output, "[%u:%u]", index * 8, index * 8 + 7);
}
}
if (abs[i])
fprintf(output, "|");
if (instr->format == Format::VOP3P) {
const VOP3P_instruction* vop3 = static_cast<const VOP3P_instruction*>(instr);
if ((vop3->opsel_lo & (1 << i)) || !(vop3->opsel_hi & (1 << i))) {
fprintf(output, ".%c%c",
vop3->opsel_lo & (1 << i) ? 'y' : 'x',
vop3->opsel_hi & (1 << i) ? 'y' : 'x');
}
if (vop3->neg_lo[i] && vop3->neg_hi[i])
fprintf(output, "*[-1,-1]");
else if (vop3->neg_lo[i])
fprintf(output, "*[-1,1]");
else if (vop3->neg_hi[i])
fprintf(output, "*[1,-1]");
}
}
}
print_instr_format_specific(instr, output);
}
static void print_block_kind(uint16_t kind, FILE *output)
{
if (kind & block_kind_uniform)
fprintf(output, "uniform, ");
if (kind & block_kind_top_level)
fprintf(output, "top-level, ");
if (kind & block_kind_loop_preheader)
fprintf(output, "loop-preheader, ");
if (kind & block_kind_loop_header)
fprintf(output, "loop-header, ");
if (kind & block_kind_loop_exit)
fprintf(output, "loop-exit, ");
if (kind & block_kind_continue)
fprintf(output, "continue, ");
if (kind & block_kind_break)
fprintf(output, "break, ");
if (kind & block_kind_continue_or_break)
fprintf(output, "continue_or_break, ");
if (kind & block_kind_discard)
fprintf(output, "discard, ");
if (kind & block_kind_branch)
fprintf(output, "branch, ");
if (kind & block_kind_merge)
fprintf(output, "merge, ");
if (kind & block_kind_invert)
fprintf(output, "invert, ");
if (kind & block_kind_uses_discard_if)
fprintf(output, "discard_if, ");
if (kind & block_kind_needs_lowering)
fprintf(output, "needs_lowering, ");
if (kind & block_kind_uses_demote)
fprintf(output, "uses_demote, ");
if (kind & block_kind_export_end)
fprintf(output, "export_end, ");
}
static void print_stage(Stage stage, FILE *output)
{
fprintf(output, "ACO shader stage: ");
if (stage == compute_cs)
fprintf(output, "compute_cs");
else if (stage == fragment_fs)
fprintf(output, "fragment_fs");
else if (stage == gs_copy_vs)
fprintf(output, "gs_copy_vs");
else if (stage == vertex_ls)
fprintf(output, "vertex_ls");
else if (stage == vertex_es)
fprintf(output, "vertex_es");
else if (stage == vertex_vs)
fprintf(output, "vertex_vs");
else if (stage == tess_control_hs)
fprintf(output, "tess_control_hs");
else if (stage == vertex_tess_control_hs)
fprintf(output, "vertex_tess_control_hs");
else if (stage == tess_eval_es)
fprintf(output, "tess_eval_es");
else if (stage == tess_eval_vs)
fprintf(output, "tess_eval_vs");
else if (stage == geometry_gs)
fprintf(output, "geometry_gs");
else if (stage == vertex_geometry_gs)
fprintf(output, "vertex_geometry_gs");
else if (stage == tess_eval_geometry_gs)
fprintf(output, "tess_eval_geometry_gs");
else if (stage == ngg_vertex_gs)
fprintf(output, "ngg_vertex_gs");
else if (stage == ngg_tess_eval_gs)
fprintf(output, "ngg_tess_eval_gs");
else if (stage == ngg_vertex_geometry_gs)
fprintf(output, "ngg_vertex_geometry_gs");
else if (stage == ngg_tess_eval_geometry_gs)
fprintf(output, "ngg_tess_eval_geometry_gs");
else
fprintf(output, "unknown");
fprintf(output, "\n");
}
void aco_print_block(const Block* block, FILE *output)
{
fprintf(output, "BB%d\n", block->index);
fprintf(output, "/* logical preds: ");
for (unsigned pred : block->logical_preds)
fprintf(output, "BB%d, ", pred);
fprintf(output, "/ linear preds: ");
for (unsigned pred : block->linear_preds)
fprintf(output, "BB%d, ", pred);
fprintf(output, "/ kind: ");
print_block_kind(block->kind, output);
fprintf(output, "*/\n");
for (auto const& instr : block->instructions) {
fprintf(output, "\t");
aco_print_instr(instr.get(), output);
fprintf(output, "\n");
}
}
void aco_print_program(const Program *program, FILE *output)
{
print_stage(program->stage, output);
for (Block const& block : program->blocks)
aco_print_block(&block, output);
if (program->constant_data.size()) {
fprintf(output, "\n/* constant data */\n");
for (unsigned i = 0; i < program->constant_data.size(); i += 32) {
fprintf(output, "[%06d] ", i);
unsigned line_size = std::min<size_t>(program->constant_data.size() - i, 32);
for (unsigned j = 0; j < line_size; j += 4) {
unsigned size = std::min<size_t>(program->constant_data.size() - (i + j), 4);
uint32_t v = 0;
memcpy(&v, &program->constant_data[i + j], size);
fprintf(output, " %08x", v);
}
fprintf(output, "\n");
}
}
fprintf(output, "\n");
}
}