blob: c99b34b6f69c8c68cd24632a2eda4b2d346cbca6 [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_resource.c
*
* Resources are images, buffers, and other objects used by the GPU.
*
* XXX: explain resources
*/
#include <stdio.h>
#include <errno.h>
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/os_memory.h"
#include "util/u_cpu_detect.h"
#include "util/u_inlines.h"
#include "util/format/u_format.h"
#include "util/u_threaded_context.h"
#include "util/u_transfer.h"
#include "util/u_transfer_helper.h"
#include "util/u_upload_mgr.h"
#include "util/ralloc.h"
#include "iris_batch.h"
#include "iris_context.h"
#include "iris_resource.h"
#include "iris_screen.h"
#include "intel/common/gen_aux_map.h"
#include "intel/dev/gen_debug.h"
#include "isl/isl.h"
#include "drm-uapi/drm_fourcc.h"
#include "drm-uapi/i915_drm.h"
enum modifier_priority {
MODIFIER_PRIORITY_INVALID = 0,
MODIFIER_PRIORITY_LINEAR,
MODIFIER_PRIORITY_X,
MODIFIER_PRIORITY_Y,
MODIFIER_PRIORITY_Y_CCS,
MODIFIER_PRIORITY_Y_GEN12_RC_CCS,
};
static const uint64_t priority_to_modifier[] = {
[MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
[MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
[MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
[MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
[MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
[MODIFIER_PRIORITY_Y_GEN12_RC_CCS] = I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS,
};
static bool
modifier_is_supported(const struct gen_device_info *devinfo,
enum pipe_format pfmt, uint64_t modifier)
{
/* Check for basic device support. */
switch (modifier) {
case DRM_FORMAT_MOD_LINEAR:
case I915_FORMAT_MOD_X_TILED:
case I915_FORMAT_MOD_Y_TILED:
break;
case I915_FORMAT_MOD_Y_TILED_CCS:
if (devinfo->gen <= 8 || devinfo->gen >= 12)
return false;
break;
case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
if (devinfo->gen != 12)
return false;
break;
case DRM_FORMAT_MOD_INVALID:
default:
return false;
}
/* Check remaining requirements. */
switch (modifier) {
case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
case I915_FORMAT_MOD_Y_TILED_CCS: {
if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
return false;
enum isl_format rt_format =
iris_format_for_usage(devinfo, pfmt,
ISL_SURF_USAGE_RENDER_TARGET_BIT).fmt;
if (rt_format == ISL_FORMAT_UNSUPPORTED ||
!isl_format_supports_ccs_e(devinfo, rt_format))
return false;
}
default:
break;
}
return true;
}
static uint64_t
select_best_modifier(struct gen_device_info *devinfo, enum pipe_format pfmt,
const uint64_t *modifiers,
int count)
{
enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
for (int i = 0; i < count; i++) {
if (!modifier_is_supported(devinfo, pfmt, modifiers[i]))
continue;
switch (modifiers[i]) {
case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
prio = MAX2(prio, MODIFIER_PRIORITY_Y_GEN12_RC_CCS);
break;
case I915_FORMAT_MOD_Y_TILED_CCS:
prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
break;
case I915_FORMAT_MOD_Y_TILED:
prio = MAX2(prio, MODIFIER_PRIORITY_Y);
break;
case I915_FORMAT_MOD_X_TILED:
prio = MAX2(prio, MODIFIER_PRIORITY_X);
break;
case DRM_FORMAT_MOD_LINEAR:
prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
break;
case DRM_FORMAT_MOD_INVALID:
default:
break;
}
}
return priority_to_modifier[prio];
}
enum isl_surf_dim
target_to_isl_surf_dim(enum pipe_texture_target target)
{
switch (target) {
case PIPE_BUFFER:
case PIPE_TEXTURE_1D:
case PIPE_TEXTURE_1D_ARRAY:
return ISL_SURF_DIM_1D;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_CUBE:
case PIPE_TEXTURE_RECT:
case PIPE_TEXTURE_2D_ARRAY:
case PIPE_TEXTURE_CUBE_ARRAY:
return ISL_SURF_DIM_2D;
case PIPE_TEXTURE_3D:
return ISL_SURF_DIM_3D;
case PIPE_MAX_TEXTURE_TYPES:
break;
}
unreachable("invalid texture type");
}
static void
iris_query_dmabuf_modifiers(struct pipe_screen *pscreen,
enum pipe_format pfmt,
int max,
uint64_t *modifiers,
unsigned int *external_only,
int *count)
{
struct iris_screen *screen = (void *) pscreen;
const struct gen_device_info *devinfo = &screen->devinfo;
uint64_t all_modifiers[] = {
DRM_FORMAT_MOD_LINEAR,
I915_FORMAT_MOD_X_TILED,
I915_FORMAT_MOD_Y_TILED,
I915_FORMAT_MOD_Y_TILED_CCS,
I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS,
};
int supported_mods = 0;
for (int i = 0; i < ARRAY_SIZE(all_modifiers); i++) {
if (!modifier_is_supported(devinfo, pfmt, all_modifiers[i]))
continue;
if (supported_mods < max) {
if (modifiers)
modifiers[supported_mods] = all_modifiers[i];
if (external_only)
external_only[supported_mods] = util_format_is_yuv(pfmt);
}
supported_mods++;
}
*count = supported_mods;
}
static isl_surf_usage_flags_t
pipe_bind_to_isl_usage(unsigned bindings)
{
isl_surf_usage_flags_t usage = 0;
if (bindings & PIPE_BIND_RENDER_TARGET)
usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
if (bindings & PIPE_BIND_SAMPLER_VIEW)
usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (bindings & (PIPE_BIND_SHADER_IMAGE | PIPE_BIND_SHADER_BUFFER))
usage |= ISL_SURF_USAGE_STORAGE_BIT;
if (bindings & PIPE_BIND_SCANOUT)
usage |= ISL_SURF_USAGE_DISPLAY_BIT;
return usage;
}
enum isl_format
iris_image_view_get_format(struct iris_context *ice,
const struct pipe_image_view *img)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct gen_device_info *devinfo = &screen->devinfo;
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
enum isl_format isl_fmt =
iris_format_for_usage(devinfo, img->format, usage).fmt;
if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
/* On Gen8, try to use typed surfaces reads (which support a
* limited number of formats), and if not possible, fall back
* to untyped reads.
*/
if (devinfo->gen == 8 &&
!isl_has_matching_typed_storage_image_format(devinfo, isl_fmt))
return ISL_FORMAT_RAW;
else
return isl_lower_storage_image_format(devinfo, isl_fmt);
}
return isl_fmt;
}
struct pipe_resource *
iris_resource_get_separate_stencil(struct pipe_resource *p_res)
{
/* For packed depth-stencil, we treat depth as the primary resource
* and store S8 as the "second plane" resource.
*/
if (p_res->next && p_res->next->format == PIPE_FORMAT_S8_UINT)
return p_res->next;
return NULL;
}
static void
iris_resource_set_separate_stencil(struct pipe_resource *p_res,
struct pipe_resource *stencil)
{
assert(util_format_has_depth(util_format_description(p_res->format)));
pipe_resource_reference(&p_res->next, stencil);
}
void
iris_get_depth_stencil_resources(struct pipe_resource *res,
struct iris_resource **out_z,
struct iris_resource **out_s)
{
if (!res) {
*out_z = NULL;
*out_s = NULL;
return;
}
if (res->format != PIPE_FORMAT_S8_UINT) {
*out_z = (void *) res;
*out_s = (void *) iris_resource_get_separate_stencil(res);
} else {
*out_z = NULL;
*out_s = (void *) res;
}
}
enum isl_dim_layout
iris_get_isl_dim_layout(const struct gen_device_info *devinfo,
enum isl_tiling tiling,
enum pipe_texture_target target)
{
switch (target) {
case PIPE_TEXTURE_1D:
case PIPE_TEXTURE_1D_ARRAY:
return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_2D_ARRAY:
case PIPE_TEXTURE_RECT:
case PIPE_TEXTURE_CUBE:
case PIPE_TEXTURE_CUBE_ARRAY:
return ISL_DIM_LAYOUT_GEN4_2D;
case PIPE_TEXTURE_3D:
return (devinfo->gen >= 9 ?
ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
case PIPE_MAX_TEXTURE_TYPES:
case PIPE_BUFFER:
break;
}
unreachable("invalid texture type");
}
void
iris_resource_disable_aux(struct iris_resource *res)
{
iris_bo_unreference(res->aux.bo);
iris_bo_unreference(res->aux.clear_color_bo);
free(res->aux.state);
res->aux.usage = ISL_AUX_USAGE_NONE;
res->aux.possible_usages = 1 << ISL_AUX_USAGE_NONE;
res->aux.sampler_usages = 1 << ISL_AUX_USAGE_NONE;
res->aux.has_hiz = 0;
res->aux.surf.size_B = 0;
res->aux.bo = NULL;
res->aux.extra_aux.surf.size_B = 0;
res->aux.clear_color_bo = NULL;
res->aux.state = NULL;
}
static void
iris_resource_destroy(struct pipe_screen *screen,
struct pipe_resource *resource)
{
struct iris_resource *res = (struct iris_resource *)resource;
if (resource->target == PIPE_BUFFER)
util_range_destroy(&res->valid_buffer_range);
iris_resource_disable_aux(res);
iris_bo_unreference(res->bo);
iris_pscreen_unref(res->base.screen);
free(res);
}
static struct iris_resource *
iris_alloc_resource(struct pipe_screen *pscreen,
const struct pipe_resource *templ)
{
struct iris_resource *res = calloc(1, sizeof(struct iris_resource));
if (!res)
return NULL;
res->base = *templ;
res->base.screen = iris_pscreen_ref(pscreen);
pipe_reference_init(&res->base.reference, 1);
res->aux.possible_usages = 1 << ISL_AUX_USAGE_NONE;
res->aux.sampler_usages = 1 << ISL_AUX_USAGE_NONE;
if (templ->target == PIPE_BUFFER)
util_range_init(&res->valid_buffer_range);
return res;
}
unsigned
iris_get_num_logical_layers(const struct iris_resource *res, unsigned level)
{
if (res->surf.dim == ISL_SURF_DIM_3D)
return minify(res->surf.logical_level0_px.depth, level);
else
return res->surf.logical_level0_px.array_len;
}
static enum isl_aux_state **
create_aux_state_map(struct iris_resource *res, enum isl_aux_state initial)
{
assert(res->aux.state == NULL);
uint32_t total_slices = 0;
for (uint32_t level = 0; level < res->surf.levels; level++)
total_slices += iris_get_num_logical_layers(res, level);
const size_t per_level_array_size =
res->surf.levels * sizeof(enum isl_aux_state *);
/* We're going to allocate a single chunk of data for both the per-level
* reference array and the arrays of aux_state. This makes cleanup
* significantly easier.
*/
const size_t total_size =
per_level_array_size + total_slices * sizeof(enum isl_aux_state);
void *data = malloc(total_size);
if (!data)
return NULL;
enum isl_aux_state **per_level_arr = data;
enum isl_aux_state *s = data + per_level_array_size;
for (uint32_t level = 0; level < res->surf.levels; level++) {
per_level_arr[level] = s;
const unsigned level_layers = iris_get_num_logical_layers(res, level);
for (uint32_t a = 0; a < level_layers; a++)
*(s++) = initial;
}
assert((void *)s == data + total_size);
return per_level_arr;
}
static unsigned
iris_get_aux_clear_color_state_size(struct iris_screen *screen)
{
const struct gen_device_info *devinfo = &screen->devinfo;
return devinfo->gen >= 10 ? screen->isl_dev.ss.clear_color_state_size : 0;
}
static void
map_aux_addresses(struct iris_screen *screen, struct iris_resource *res)
{
const struct gen_device_info *devinfo = &screen->devinfo;
if (devinfo->gen >= 12 && isl_aux_usage_has_ccs(res->aux.usage)) {
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
assert(aux_map_ctx);
const unsigned aux_offset = res->aux.extra_aux.surf.size_B > 0 ?
res->aux.extra_aux.offset : res->aux.offset;
gen_aux_map_add_image(aux_map_ctx, &res->surf, res->bo->gtt_offset,
res->aux.bo->gtt_offset + aux_offset);
res->bo->aux_map_address = res->aux.bo->gtt_offset;
}
}
static bool
want_ccs_e_for_format(const struct gen_device_info *devinfo,
enum isl_format format)
{
if (!isl_format_supports_ccs_e(devinfo, format))
return false;
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
/* CCS_E seems to significantly hurt performance with 32-bit floating
* point formats. For example, Paraview's "Wavelet Volume" case uses
* both R32_FLOAT and R32G32B32A32_FLOAT, and enabling CCS_E for those
* formats causes a 62% FPS drop.
*
* However, many benchmarks seem to use 16-bit float with no issues.
*/
if (fmtl->channels.r.bits == 32 && fmtl->channels.r.type == ISL_SFLOAT)
return false;
return true;
}
/**
* Configure aux for the resource, but don't allocate it. For images which
* might be shared with modifiers, we must allocate the image and aux data in
* a single bo.
*
* Returns false on unexpected error (e.g. allocation failed, or invalid
* configuration result).
*/
static bool
iris_resource_configure_aux(struct iris_screen *screen,
struct iris_resource *res, bool imported,
uint64_t *aux_size_B,
uint32_t *alloc_flags)
{
const struct gen_device_info *devinfo = &screen->devinfo;
/* Try to create the auxiliary surfaces allowed by the modifier or by
* the user if no modifier is specified.
*/
assert(!res->mod_info ||
res->mod_info->aux_usage == ISL_AUX_USAGE_NONE ||
res->mod_info->aux_usage == ISL_AUX_USAGE_CCS_E ||
res->mod_info->aux_usage == ISL_AUX_USAGE_GEN12_CCS_E);
const bool has_mcs = !res->mod_info &&
isl_surf_get_mcs_surf(&screen->isl_dev, &res->surf, &res->aux.surf);
const bool has_hiz = !res->mod_info && !(INTEL_DEBUG & DEBUG_NO_HIZ) &&
isl_surf_get_hiz_surf(&screen->isl_dev, &res->surf, &res->aux.surf);
const bool has_ccs =
((!res->mod_info && !(INTEL_DEBUG & DEBUG_NO_RBC)) ||
(res->mod_info && res->mod_info->aux_usage != ISL_AUX_USAGE_NONE)) &&
isl_surf_get_ccs_surf(&screen->isl_dev, &res->surf, &res->aux.surf,
&res->aux.extra_aux.surf, 0);
/* Having both HIZ and MCS is impossible. */
assert(!has_mcs || !has_hiz);
/* Ensure aux surface creation for MCS_CCS and HIZ_CCS is correct. */
if (has_ccs && (has_mcs || has_hiz)) {
assert(res->aux.extra_aux.surf.size_B > 0 &&
res->aux.extra_aux.surf.usage & ISL_SURF_USAGE_CCS_BIT);
assert(res->aux.surf.size_B > 0 &&
res->aux.surf.usage &
(ISL_SURF_USAGE_HIZ_BIT | ISL_SURF_USAGE_MCS_BIT));
}
if (res->mod_info && has_ccs) {
/* Only allow a CCS modifier if the aux was created successfully. */
res->aux.possible_usages |= 1 << res->mod_info->aux_usage;
} else if (has_mcs) {
res->aux.possible_usages |=
1 << (has_ccs ? ISL_AUX_USAGE_MCS_CCS : ISL_AUX_USAGE_MCS);
} else if (has_hiz) {
if (!has_ccs) {
res->aux.possible_usages |= 1 << ISL_AUX_USAGE_HIZ;
} else if (res->surf.samples == 1 &&
(res->surf.usage & ISL_SURF_USAGE_TEXTURE_BIT)) {
/* If this resource is single-sampled and will be used as a texture,
* put the HiZ surface in write-through mode so that we can sample
* from it.
*/
res->aux.possible_usages |= 1 << ISL_AUX_USAGE_HIZ_CCS_WT;
} else {
res->aux.possible_usages |= 1 << ISL_AUX_USAGE_HIZ_CCS;
}
} else if (has_ccs && isl_surf_usage_is_stencil(res->surf.usage)) {
res->aux.possible_usages |= 1 << ISL_AUX_USAGE_STC_CCS;
} else if (has_ccs) {
if (want_ccs_e_for_format(devinfo, res->surf.format)) {
res->aux.possible_usages |= devinfo->gen < 12 ?
1 << ISL_AUX_USAGE_CCS_E : 1 << ISL_AUX_USAGE_GEN12_CCS_E;
} else if (isl_format_supports_ccs_d(devinfo, res->surf.format)) {
res->aux.possible_usages |= 1 << ISL_AUX_USAGE_CCS_D;
}
}
res->aux.usage = util_last_bit(res->aux.possible_usages) - 1;
res->aux.sampler_usages = res->aux.possible_usages;
/* We don't always support sampling with hiz. But when we do, it must be
* single sampled.
*/
if (!devinfo->has_sample_with_hiz || res->surf.samples > 1)
res->aux.sampler_usages &= ~(1 << ISL_AUX_USAGE_HIZ);
/* ISL_AUX_USAGE_HIZ_CCS doesn't support sampling at all */
res->aux.sampler_usages &= ~(1 << ISL_AUX_USAGE_HIZ_CCS);
enum isl_aux_state initial_state;
*aux_size_B = 0;
*alloc_flags = 0;
assert(!res->aux.bo);
switch (res->aux.usage) {
case ISL_AUX_USAGE_NONE:
/* Having no aux buffer is only okay if there's no modifier with aux. */
return !res->mod_info || res->mod_info->aux_usage == ISL_AUX_USAGE_NONE;
case ISL_AUX_USAGE_HIZ:
case ISL_AUX_USAGE_HIZ_CCS:
case ISL_AUX_USAGE_HIZ_CCS_WT:
initial_state = ISL_AUX_STATE_AUX_INVALID;
break;
case ISL_AUX_USAGE_MCS:
case ISL_AUX_USAGE_MCS_CCS:
/* The Ivybridge PRM, Vol 2 Part 1 p326 says:
*
* "When MCS buffer is enabled and bound to MSRT, it is required
* that it is cleared prior to any rendering."
*
* Since we only use the MCS buffer for rendering, we just clear it
* immediately on allocation. The clear value for MCS buffers is all
* 1's, so we simply memset it to 0xff.
*/
initial_state = ISL_AUX_STATE_CLEAR;
break;
case ISL_AUX_USAGE_CCS_D:
case ISL_AUX_USAGE_CCS_E:
case ISL_AUX_USAGE_GEN12_CCS_E:
case ISL_AUX_USAGE_STC_CCS:
/* When CCS_E is used, we need to ensure that the CCS starts off in
* a valid state. From the Sky Lake PRM, "MCS Buffer for Render
* Target(s)":
*
* "If Software wants to enable Color Compression without Fast
* clear, Software needs to initialize MCS with zeros."
*
* A CCS value of 0 indicates that the corresponding block is in the
* pass-through state which is what we want.
*
* For CCS_D, do the same thing. On Gen9+, this avoids having any
* undefined bits in the aux buffer.
*/
if (imported) {
assert(res->aux.usage != ISL_AUX_USAGE_STC_CCS);
initial_state =
isl_drm_modifier_get_default_aux_state(res->mod_info->modifier);
} else {
initial_state = ISL_AUX_STATE_PASS_THROUGH;
}
*alloc_flags |= BO_ALLOC_ZEROED;
break;
case ISL_AUX_USAGE_MC:
unreachable("Unsupported aux mode");
}
/* Create the aux_state for the auxiliary buffer. */
res->aux.state = create_aux_state_map(res, initial_state);
if (!res->aux.state)
return false;
/* Increase the aux offset if the main and aux surfaces will share a BO. */
res->aux.offset =
!res->mod_info || res->mod_info->aux_usage == res->aux.usage ?
ALIGN(res->surf.size_B, res->aux.surf.alignment_B) : 0;
uint64_t size = res->aux.surf.size_B;
/* Allocate space in the buffer for storing the CCS. */
if (res->aux.extra_aux.surf.size_B > 0) {
const uint64_t padded_aux_size =
ALIGN(size, res->aux.extra_aux.surf.alignment_B);
res->aux.extra_aux.offset = res->aux.offset + padded_aux_size;
size = padded_aux_size + res->aux.extra_aux.surf.size_B;
}
/* Allocate space in the buffer for storing the clear color. On modern
* platforms (gen > 9), we can read it directly from such buffer.
*
* On gen <= 9, we are going to store the clear color on the buffer
* anyways, and copy it back to the surface state during state emission.
*
* Also add some padding to make sure the fast clear color state buffer
* starts at a 4K alignment. We believe that 256B might be enough, but due
* to lack of testing we will leave this as 4K for now.
*/
size = ALIGN(size, 4096);
res->aux.clear_color_offset = res->aux.offset + size;
size += iris_get_aux_clear_color_state_size(screen);
*aux_size_B = size;
if (isl_aux_usage_has_hiz(res->aux.usage)) {
for (unsigned level = 0; level < res->surf.levels; ++level) {
uint32_t width = u_minify(res->surf.phys_level0_sa.width, level);
uint32_t height = u_minify(res->surf.phys_level0_sa.height, level);
/* Disable HiZ for LOD > 0 unless the width/height are 8x4 aligned.
* For LOD == 0, we can grow the dimensions to make it work.
*/
if (level == 0 || ((width & 7) == 0 && (height & 3) == 0))
res->aux.has_hiz |= 1 << level;
}
}
return true;
}
/**
* Initialize the aux buffer contents.
*
* Returns false on unexpected error (e.g. mapping a BO failed).
*/
static bool
iris_resource_init_aux_buf(struct iris_resource *res, uint32_t alloc_flags,
unsigned clear_color_state_size)
{
if (!(alloc_flags & BO_ALLOC_ZEROED)) {
void *map = iris_bo_map(NULL, res->aux.bo, MAP_WRITE | MAP_RAW);
if (!map)
return false;
if (iris_resource_get_aux_state(res, 0, 0) != ISL_AUX_STATE_AUX_INVALID) {
uint8_t memset_value = isl_aux_usage_has_mcs(res->aux.usage) ? 0xFF : 0;
memset((char*)map + res->aux.offset, memset_value,
res->aux.surf.size_B);
}
memset((char*)map + res->aux.extra_aux.offset,
0, res->aux.extra_aux.surf.size_B);
/* Zero the indirect clear color to match ::fast_clear_color. */
memset((char *)map + res->aux.clear_color_offset, 0,
clear_color_state_size);
iris_bo_unmap(res->aux.bo);
}
if (clear_color_state_size > 0) {
res->aux.clear_color_bo = res->aux.bo;
iris_bo_reference(res->aux.clear_color_bo);
}
return true;
}
/**
* Allocate the initial aux surface for a resource based on aux.usage
*
* Returns false on unexpected error (e.g. allocation failed, or invalid
* configuration result).
*/
static bool
iris_resource_alloc_separate_aux(struct iris_screen *screen,
struct iris_resource *res)
{
uint32_t alloc_flags;
uint64_t size;
if (!iris_resource_configure_aux(screen, res, false, &size, &alloc_flags))
return false;
if (size == 0)
return true;
/* Allocate the auxiliary buffer. ISL has stricter set of alignment rules
* the drm allocator. Therefore, one can pass the ISL dimensions in terms
* of bytes instead of trying to recalculate based on different format
* block sizes.
*/
res->aux.bo = iris_bo_alloc_tiled(screen->bufmgr, "aux buffer", size, 4096,
IRIS_MEMZONE_OTHER,
isl_tiling_to_i915_tiling(res->aux.surf.tiling),
res->aux.surf.row_pitch_B, alloc_flags);
if (!res->aux.bo) {
return false;
}
if (!iris_resource_init_aux_buf(res, alloc_flags,
iris_get_aux_clear_color_state_size(screen)))
return false;
map_aux_addresses(screen, res);
return true;
}
void
iris_resource_finish_aux_import(struct pipe_screen *pscreen,
struct iris_resource *res)
{
struct iris_screen *screen = (struct iris_screen *)pscreen;
assert(iris_resource_unfinished_aux_import(res));
assert(!res->mod_info->supports_clear_color);
struct iris_resource *aux_res = (void *) res->base.next;
assert(aux_res->aux.surf.row_pitch_B && aux_res->aux.offset &&
aux_res->aux.bo);
assert(res->bo == aux_res->aux.bo);
iris_bo_reference(aux_res->aux.bo);
res->aux.bo = aux_res->aux.bo;
res->aux.offset = aux_res->aux.offset;
assert(res->bo->size >= (res->aux.offset + res->aux.surf.size_B));
assert(res->aux.clear_color_bo == NULL);
res->aux.clear_color_offset = 0;
assert(aux_res->aux.surf.row_pitch_B == res->aux.surf.row_pitch_B);
unsigned clear_color_state_size =
iris_get_aux_clear_color_state_size(screen);
if (clear_color_state_size > 0) {
res->aux.clear_color_bo =
iris_bo_alloc(screen->bufmgr, "clear color buffer",
clear_color_state_size, IRIS_MEMZONE_OTHER);
res->aux.clear_color_offset = 0;
}
iris_resource_destroy(&screen->base, res->base.next);
res->base.next = NULL;
map_aux_addresses(screen, res);
}
static struct pipe_resource *
iris_resource_create_for_buffer(struct pipe_screen *pscreen,
const struct pipe_resource *templ)
{
struct iris_screen *screen = (struct iris_screen *)pscreen;
struct iris_resource *res = iris_alloc_resource(pscreen, templ);
assert(templ->target == PIPE_BUFFER);
assert(templ->height0 <= 1);
assert(templ->depth0 <= 1);
assert(templ->format == PIPE_FORMAT_NONE ||
util_format_get_blocksize(templ->format) == 1);
res->internal_format = templ->format;
res->surf.tiling = ISL_TILING_LINEAR;
enum iris_memory_zone memzone = IRIS_MEMZONE_OTHER;
const char *name = templ->target == PIPE_BUFFER ? "buffer" : "miptree";
if (templ->flags & IRIS_RESOURCE_FLAG_SHADER_MEMZONE) {
memzone = IRIS_MEMZONE_SHADER;
name = "shader kernels";
} else if (templ->flags & IRIS_RESOURCE_FLAG_SURFACE_MEMZONE) {
memzone = IRIS_MEMZONE_SURFACE;
name = "surface state";
} else if (templ->flags & IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE) {
memzone = IRIS_MEMZONE_DYNAMIC;
name = "dynamic state";
}
res->bo = iris_bo_alloc(screen->bufmgr, name, templ->width0, memzone);
if (!res->bo) {
iris_resource_destroy(pscreen, &res->base);
return NULL;
}
if (templ->bind & PIPE_BIND_SHARED)
iris_bo_make_external(res->bo);
return &res->base;
}
static struct pipe_resource *
iris_resource_create_with_modifiers(struct pipe_screen *pscreen,
const struct pipe_resource *templ,
const uint64_t *modifiers,
int modifiers_count)
{
struct iris_screen *screen = (struct iris_screen *)pscreen;
struct gen_device_info *devinfo = &screen->devinfo;
struct iris_resource *res = iris_alloc_resource(pscreen, templ);
if (!res)
return NULL;
const struct util_format_description *format_desc =
util_format_description(templ->format);
const bool has_depth = util_format_has_depth(format_desc);
uint64_t modifier =
select_best_modifier(devinfo, templ->format, modifiers, modifiers_count);
isl_tiling_flags_t tiling_flags = ISL_TILING_ANY_MASK;
if (modifier != DRM_FORMAT_MOD_INVALID) {
res->mod_info = isl_drm_modifier_get_info(modifier);
tiling_flags = 1 << res->mod_info->tiling;
} else {
if (modifiers_count > 0) {
fprintf(stderr, "Unsupported modifier, resource creation failed.\n");
goto fail;
}
/* Use linear for staging buffers */
if (templ->usage == PIPE_USAGE_STAGING ||
templ->bind & (PIPE_BIND_LINEAR | PIPE_BIND_CURSOR) ) {
tiling_flags = ISL_TILING_LINEAR_BIT;
} else if (templ->bind & PIPE_BIND_SCANOUT) {
if (devinfo->has_tiling_uapi)
tiling_flags = ISL_TILING_X_BIT;
else
tiling_flags = ISL_TILING_LINEAR_BIT;
}
}
isl_surf_usage_flags_t usage = pipe_bind_to_isl_usage(templ->bind);
if (templ->target == PIPE_TEXTURE_CUBE ||
templ->target == PIPE_TEXTURE_CUBE_ARRAY)
usage |= ISL_SURF_USAGE_CUBE_BIT;
if (templ->usage != PIPE_USAGE_STAGING) {
if (templ->format == PIPE_FORMAT_S8_UINT)
usage |= ISL_SURF_USAGE_STENCIL_BIT;
else if (has_depth)
usage |= ISL_SURF_USAGE_DEPTH_BIT;
}
enum pipe_format pfmt = templ->format;
res->internal_format = pfmt;
/* Should be handled by u_transfer_helper */
assert(!util_format_is_depth_and_stencil(pfmt));
struct iris_format_info fmt = iris_format_for_usage(devinfo, pfmt, usage);
assert(fmt.fmt != ISL_FORMAT_UNSUPPORTED);
UNUSED const bool isl_surf_created_successfully =
isl_surf_init(&screen->isl_dev, &res->surf,
.dim = target_to_isl_surf_dim(templ->target),
.format = fmt.fmt,
.width = templ->width0,
.height = templ->height0,
.depth = templ->depth0,
.levels = templ->last_level + 1,
.array_len = templ->array_size,
.samples = MAX2(templ->nr_samples, 1),
.min_alignment_B = 0,
.row_pitch_B = 0,
.usage = usage,
.tiling_flags = tiling_flags);
assert(isl_surf_created_successfully);
const char *name = "miptree";
enum iris_memory_zone memzone = IRIS_MEMZONE_OTHER;
unsigned int flags = 0;
if (templ->usage == PIPE_USAGE_STAGING)
flags |= BO_ALLOC_COHERENT;
/* These are for u_upload_mgr buffers only */
assert(!(templ->flags & (IRIS_RESOURCE_FLAG_SHADER_MEMZONE |
IRIS_RESOURCE_FLAG_SURFACE_MEMZONE |
IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE)));
uint32_t aux_preferred_alloc_flags;
uint64_t aux_size = 0;
if (!iris_resource_configure_aux(screen, res, false, &aux_size,
&aux_preferred_alloc_flags)) {
goto fail;
}
/* Modifiers require the aux data to be in the same buffer as the main
* surface, but we combine them even when a modifiers is not being used.
*/
const uint64_t bo_size =
MAX2(res->surf.size_B, res->aux.offset + aux_size);
uint32_t alignment = MAX2(4096, res->surf.alignment_B);
res->bo = iris_bo_alloc_tiled(screen->bufmgr, name, bo_size, alignment,
memzone,
isl_tiling_to_i915_tiling(res->surf.tiling),
res->surf.row_pitch_B, flags);
if (!res->bo)
goto fail;
if (aux_size > 0) {
res->aux.bo = res->bo;
iris_bo_reference(res->aux.bo);
unsigned clear_color_state_size =
iris_get_aux_clear_color_state_size(screen);
if (!iris_resource_init_aux_buf(res, flags, clear_color_state_size))
goto fail;
map_aux_addresses(screen, res);
}
if (templ->bind & PIPE_BIND_SHARED)
iris_bo_make_external(res->bo);
return &res->base;
fail:
fprintf(stderr, "XXX: resource creation failed\n");
iris_resource_destroy(pscreen, &res->base);
return NULL;
}
static struct pipe_resource *
iris_resource_create(struct pipe_screen *pscreen,
const struct pipe_resource *templ)
{
if (templ->target == PIPE_BUFFER)
return iris_resource_create_for_buffer(pscreen, templ);
else
return iris_resource_create_with_modifiers(pscreen, templ, NULL, 0);
}
static uint64_t
tiling_to_modifier(uint32_t tiling)
{
static const uint64_t map[] = {
[I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
[I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
[I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
};
assert(tiling < ARRAY_SIZE(map));
return map[tiling];
}
static struct pipe_resource *
iris_resource_from_user_memory(struct pipe_screen *pscreen,
const struct pipe_resource *templ,
void *user_memory)
{
struct iris_screen *screen = (struct iris_screen *)pscreen;
struct iris_bufmgr *bufmgr = screen->bufmgr;
struct iris_resource *res = iris_alloc_resource(pscreen, templ);
if (!res)
return NULL;
assert(templ->target == PIPE_BUFFER);
res->internal_format = templ->format;
res->bo = iris_bo_create_userptr(bufmgr, "user",
user_memory, templ->width0,
IRIS_MEMZONE_OTHER);
if (!res->bo) {
iris_resource_destroy(pscreen, &res->base);
return NULL;
}
util_range_add(&res->base, &res->valid_buffer_range, 0, templ->width0);
return &res->base;
}
static struct pipe_resource *
iris_resource_from_handle(struct pipe_screen *pscreen,
const struct pipe_resource *templ,
struct winsys_handle *whandle,
unsigned usage)
{
struct iris_screen *screen = (struct iris_screen *)pscreen;
struct gen_device_info *devinfo = &screen->devinfo;
struct iris_bufmgr *bufmgr = screen->bufmgr;
struct iris_resource *res = iris_alloc_resource(pscreen, templ);
const struct isl_drm_modifier_info *mod_inf =
isl_drm_modifier_get_info(whandle->modifier);
int tiling;
if (!res)
return NULL;
switch (whandle->type) {
case WINSYS_HANDLE_TYPE_FD:
if (mod_inf)
tiling = isl_tiling_to_i915_tiling(mod_inf->tiling);
else
tiling = -1;
res->bo = iris_bo_import_dmabuf(bufmgr, whandle->handle,
tiling, whandle->stride);
break;
case WINSYS_HANDLE_TYPE_SHARED:
res->bo = iris_bo_gem_create_from_name(bufmgr, "winsys image",
whandle->handle);
break;
default:
unreachable("invalid winsys handle type");
}
if (!res->bo)
goto fail;
res->offset = whandle->offset;
if (mod_inf == NULL) {
mod_inf =
isl_drm_modifier_get_info(tiling_to_modifier(res->bo->tiling_mode));
}
assert(mod_inf);
res->external_format = whandle->format;
res->mod_info = mod_inf;
isl_surf_usage_flags_t isl_usage = pipe_bind_to_isl_usage(templ->bind);
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, templ->format, isl_usage);
res->internal_format = templ->format;
if (templ->target == PIPE_BUFFER) {
res->surf.tiling = ISL_TILING_LINEAR;
} else {
/* Create a surface for each plane specified by the external format. */
if (whandle->plane < util_format_get_num_planes(whandle->format)) {
UNUSED const bool isl_surf_created_successfully =
isl_surf_init(&screen->isl_dev, &res->surf,
.dim = target_to_isl_surf_dim(templ->target),
.format = fmt.fmt,
.width = templ->width0,
.height = templ->height0,
.depth = templ->depth0,
.levels = templ->last_level + 1,
.array_len = templ->array_size,
.samples = MAX2(templ->nr_samples, 1),
.min_alignment_B = 0,
.row_pitch_B = whandle->stride,
.usage = isl_usage,
.tiling_flags = 1 << res->mod_info->tiling);
assert(isl_surf_created_successfully);
assert(res->bo->tiling_mode ==
isl_tiling_to_i915_tiling(res->surf.tiling));
// XXX: create_ccs_buf_for_image?
if (whandle->modifier == DRM_FORMAT_MOD_INVALID) {
if (!iris_resource_alloc_separate_aux(screen, res))
goto fail;
} else {
if (res->mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
uint32_t alloc_flags;
uint64_t size;
bool ok = iris_resource_configure_aux(screen, res, true, &size,
&alloc_flags);
assert(ok);
/* The gallium dri layer will create a separate plane resource
* for the aux image. iris_resource_finish_aux_import will
* merge the separate aux parameters back into a single
* iris_resource.
*/
}
}
} else {
/* Save modifier import information to reconstruct later. After
* import, this will be available under a second image accessible
* from the main image with res->base.next. See
* iris_resource_finish_aux_import.
*/
res->aux.surf.row_pitch_B = whandle->stride;
res->aux.offset = whandle->offset;
res->aux.bo = res->bo;
res->bo = NULL;
}
}
return &res->base;
fail:
iris_resource_destroy(pscreen, &res->base);
return NULL;
}
static void
iris_flush_resource(struct pipe_context *ctx, struct pipe_resource *resource)
{
struct iris_context *ice = (struct iris_context *)ctx;
struct iris_resource *res = (void *) resource;
const struct isl_drm_modifier_info *mod = res->mod_info;
iris_resource_prepare_access(ice, res,
0, INTEL_REMAINING_LEVELS,
0, INTEL_REMAINING_LAYERS,
mod ? mod->aux_usage : ISL_AUX_USAGE_NONE,
mod ? mod->supports_clear_color : false);
}
static void
iris_resource_disable_aux_on_first_query(struct pipe_resource *resource,
unsigned usage)
{
struct iris_resource *res = (struct iris_resource *)resource;
bool mod_with_aux =
res->mod_info && res->mod_info->aux_usage != ISL_AUX_USAGE_NONE;
/* Disable aux usage if explicit flush not set and this is the first time
* we are dealing with this resource and the resource was not created with
* a modifier with aux.
*/
if (!mod_with_aux &&
(!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) && res->aux.usage != 0) &&
p_atomic_read(&resource->reference.count) == 1) {
iris_resource_disable_aux(res);
}
}
static bool
iris_resource_get_param(struct pipe_screen *pscreen,
struct pipe_context *context,
struct pipe_resource *resource,
unsigned plane,
unsigned layer,
enum pipe_resource_param param,
unsigned handle_usage,
uint64_t *value)
{
struct iris_screen *screen = (struct iris_screen *)pscreen;
struct iris_resource *res = (struct iris_resource *)resource;
bool mod_with_aux =
res->mod_info && res->mod_info->aux_usage != ISL_AUX_USAGE_NONE;
bool wants_aux = mod_with_aux && plane > 0;
bool result;
unsigned handle;
if (iris_resource_unfinished_aux_import(res))
iris_resource_finish_aux_import(pscreen, res);
struct iris_bo *bo = wants_aux ? res->aux.bo : res->bo;
iris_resource_disable_aux_on_first_query(resource, handle_usage);
switch (param) {
case PIPE_RESOURCE_PARAM_NPLANES:
if (mod_with_aux) {
*value = 2;
} else {
unsigned count = 0;
for (struct pipe_resource *cur = resource; cur; cur = cur->next)
count++;
*value = count;
}
return true;
case PIPE_RESOURCE_PARAM_STRIDE:
*value = wants_aux ? res->aux.surf.row_pitch_B : res->surf.row_pitch_B;
return true;
case PIPE_RESOURCE_PARAM_OFFSET:
*value = wants_aux ? res->aux.offset : 0;
return true;
case PIPE_RESOURCE_PARAM_MODIFIER:
*value = res->mod_info ? res->mod_info->modifier :
tiling_to_modifier(res->bo->tiling_mode);
return true;
case PIPE_RESOURCE_PARAM_HANDLE_TYPE_SHARED:
result = iris_bo_flink(bo, &handle) == 0;
if (result)
*value = handle;
return result;
case PIPE_RESOURCE_PARAM_HANDLE_TYPE_KMS: {
/* Because we share the same drm file across multiple iris_screen, when
* we export a GEM handle we must make sure it is valid in the DRM file
* descriptor the caller is using (this is the FD given at screen
* creation).
*/
uint32_t handle;
if (iris_bo_export_gem_handle_for_device(bo, screen->winsys_fd, &handle))
return false;
*value = handle;
return true;
}
case PIPE_RESOURCE_PARAM_HANDLE_TYPE_FD:
result = iris_bo_export_dmabuf(bo, (int *) &handle) == 0;
if (result)
*value = handle;
return result;
default:
return false;
}
}
static bool
iris_resource_get_handle(struct pipe_screen *pscreen,
struct pipe_context *ctx,
struct pipe_resource *resource,
struct winsys_handle *whandle,
unsigned usage)
{
struct iris_screen *screen = (struct iris_screen *) pscreen;
struct iris_resource *res = (struct iris_resource *)resource;
bool mod_with_aux =
res->mod_info && res->mod_info->aux_usage != ISL_AUX_USAGE_NONE;
iris_resource_disable_aux_on_first_query(resource, usage);
struct iris_bo *bo;
if (mod_with_aux && whandle->plane > 0) {
assert(res->aux.bo);
bo = res->aux.bo;
whandle->stride = res->aux.surf.row_pitch_B;
whandle->offset = res->aux.offset;
} else {
/* If this is a buffer, stride should be 0 - no need to special case */
whandle->stride = res->surf.row_pitch_B;
bo = res->bo;
}
whandle->format = res->external_format;
whandle->modifier =
res->mod_info ? res->mod_info->modifier
: tiling_to_modifier(res->bo->tiling_mode);
#ifndef NDEBUG
enum isl_aux_usage allowed_usage =
res->mod_info ? res->mod_info->aux_usage : ISL_AUX_USAGE_NONE;
if (res->aux.usage != allowed_usage) {
enum isl_aux_state aux_state = iris_resource_get_aux_state(res, 0, 0);
assert(aux_state == ISL_AUX_STATE_RESOLVED ||
aux_state == ISL_AUX_STATE_PASS_THROUGH);
}
#endif
switch (whandle->type) {
case WINSYS_HANDLE_TYPE_SHARED:
return iris_bo_flink(bo, &whandle->handle) == 0;
case WINSYS_HANDLE_TYPE_KMS: {
/* Because we share the same drm file across multiple iris_screen, when
* we export a GEM handle we must make sure it is valid in the DRM file
* descriptor the caller is using (this is the FD given at screen
* creation).
*/
uint32_t handle;
if (iris_bo_export_gem_handle_for_device(bo, screen->winsys_fd, &handle))
return false;
whandle->handle = handle;
return true;
}
case WINSYS_HANDLE_TYPE_FD:
return iris_bo_export_dmabuf(bo, (int *) &whandle->handle) == 0;
}
return false;
}
static bool
resource_is_busy(struct iris_context *ice,
struct iris_resource *res)
{
bool busy = iris_bo_busy(res->bo);
for (int i = 0; i < IRIS_BATCH_COUNT; i++)
busy |= iris_batch_references(&ice->batches[i], res->bo);
return busy;
}
static void
iris_invalidate_resource(struct pipe_context *ctx,
struct pipe_resource *resource)
{
struct iris_screen *screen = (void *) ctx->screen;
struct iris_context *ice = (void *) ctx;
struct iris_resource *res = (void *) resource;
if (resource->target != PIPE_BUFFER)
return;
/* If it's already invalidated, don't bother doing anything. */
if (res->valid_buffer_range.start > res->valid_buffer_range.end)
return;
if (!resource_is_busy(ice, res)) {
/* The resource is idle, so just mark that it contains no data and
* keep using the same underlying buffer object.
*/
util_range_set_empty(&res->valid_buffer_range);
return;
}
/* Otherwise, try and replace the backing storage with a new BO. */
/* We can't reallocate memory we didn't allocate in the first place. */
if (res->bo->userptr)
return;
// XXX: We should support this.
if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
return;
struct iris_bo *old_bo = res->bo;
struct iris_bo *new_bo =
iris_bo_alloc(screen->bufmgr, res->bo->name, resource->width0,
iris_memzone_for_address(old_bo->gtt_offset));
if (!new_bo)
return;
/* Swap out the backing storage */
res->bo = new_bo;
/* Rebind the buffer, replacing any state referring to the old BO's
* address, and marking state dirty so it's reemitted.
*/
screen->vtbl.rebind_buffer(ice, res);
util_range_set_empty(&res->valid_buffer_range);
iris_bo_unreference(old_bo);
}
static void
iris_flush_staging_region(struct pipe_transfer *xfer,
const struct pipe_box *flush_box)
{
if (!(xfer->usage & PIPE_TRANSFER_WRITE))
return;
struct iris_transfer *map = (void *) xfer;
struct pipe_box src_box = *flush_box;
/* Account for extra alignment padding in staging buffer */
if (xfer->resource->target == PIPE_BUFFER)
src_box.x += xfer->box.x % IRIS_MAP_BUFFER_ALIGNMENT;
struct pipe_box dst_box = (struct pipe_box) {
.x = xfer->box.x + flush_box->x,
.y = xfer->box.y + flush_box->y,
.z = xfer->box.z + flush_box->z,
.width = flush_box->width,
.height = flush_box->height,
.depth = flush_box->depth,
};
iris_copy_region(map->blorp, map->batch, xfer->resource, xfer->level,
dst_box.x, dst_box.y, dst_box.z, map->staging, 0,
&src_box);
}
static void
iris_unmap_copy_region(struct iris_transfer *map)
{
iris_resource_destroy(map->staging->screen, map->staging);
map->ptr = NULL;
}
static void
iris_map_copy_region(struct iris_transfer *map)
{
struct pipe_screen *pscreen = &map->batch->screen->base;
struct pipe_transfer *xfer = &map->base;
struct pipe_box *box = &xfer->box;
struct iris_resource *res = (void *) xfer->resource;
unsigned extra = xfer->resource->target == PIPE_BUFFER ?
box->x % IRIS_MAP_BUFFER_ALIGNMENT : 0;
struct pipe_resource templ = (struct pipe_resource) {
.usage = PIPE_USAGE_STAGING,
.width0 = box->width + extra,
.height0 = box->height,
.depth0 = 1,
.nr_samples = xfer->resource->nr_samples,
.nr_storage_samples = xfer->resource->nr_storage_samples,
.array_size = box->depth,
.format = res->internal_format,
};
if (xfer->resource->target == PIPE_BUFFER)
templ.target = PIPE_BUFFER;
else if (templ.array_size > 1)
templ.target = PIPE_TEXTURE_2D_ARRAY;
else
templ.target = PIPE_TEXTURE_2D;
map->staging = iris_resource_create(pscreen, &templ);
assert(map->staging);
if (templ.target != PIPE_BUFFER) {
struct isl_surf *surf = &((struct iris_resource *) map->staging)->surf;
xfer->stride = isl_surf_get_row_pitch_B(surf);
xfer->layer_stride = isl_surf_get_array_pitch(surf);
}
if (!(xfer->usage & PIPE_TRANSFER_DISCARD_RANGE)) {
iris_copy_region(map->blorp, map->batch, map->staging, 0, extra, 0, 0,
xfer->resource, xfer->level, box);
/* Ensure writes to the staging BO land before we map it below. */
iris_emit_pipe_control_flush(map->batch,
"transfer read: flush before mapping",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_CS_STALL);
}
struct iris_bo *staging_bo = iris_resource_bo(map->staging);
if (iris_batch_references(map->batch, staging_bo))
iris_batch_flush(map->batch);
map->ptr =
iris_bo_map(map->dbg, staging_bo, xfer->usage & MAP_FLAGS) + extra;
map->unmap = iris_unmap_copy_region;
}
static void
get_image_offset_el(const struct isl_surf *surf, unsigned level, unsigned z,
unsigned *out_x0_el, unsigned *out_y0_el)
{
if (surf->dim == ISL_SURF_DIM_3D) {
isl_surf_get_image_offset_el(surf, level, 0, z, out_x0_el, out_y0_el);
} else {
isl_surf_get_image_offset_el(surf, level, z, 0, out_x0_el, out_y0_el);
}
}
/**
* This function computes the tile_w (in bytes) and tile_h (in rows) of
* different tiling patterns.
*/
static void
iris_resource_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
uint32_t *tile_w, uint32_t *tile_h)
{
switch (tiling) {
case ISL_TILING_X:
*tile_w = 512;
*tile_h = 8;
break;
case ISL_TILING_Y0:
*tile_w = 128;
*tile_h = 32;
break;
case ISL_TILING_LINEAR:
*tile_w = cpp;
*tile_h = 1;
break;
default:
unreachable("not reached");
}
}
/**
* This function computes masks that may be used to select the bits of the X
* and Y coordinates that indicate the offset within a tile. If the BO is
* untiled, the masks are set to 0.
*/
static void
iris_resource_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
uint32_t *mask_x, uint32_t *mask_y)
{
uint32_t tile_w_bytes, tile_h;
iris_resource_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
*mask_x = tile_w_bytes / cpp - 1;
*mask_y = tile_h - 1;
}
/**
* Compute the offset (in bytes) from the start of the BO to the given x
* and y coordinate. For tiled BOs, caller must ensure that x and y are
* multiples of the tile size.
*/
static uint32_t
iris_resource_get_aligned_offset(const struct iris_resource *res,
uint32_t x, uint32_t y)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(res->surf.format);
unsigned cpp = fmtl->bpb / 8;
uint32_t pitch = res->surf.row_pitch_B;
switch (res->surf.tiling) {
default:
unreachable("not reached");
case ISL_TILING_LINEAR:
return y * pitch + x * cpp;
case ISL_TILING_X:
assert((x % (512 / cpp)) == 0);
assert((y % 8) == 0);
return y * pitch + x / (512 / cpp) * 4096;
case ISL_TILING_Y0:
assert((x % (128 / cpp)) == 0);
assert((y % 32) == 0);
return y * pitch + x / (128 / cpp) * 4096;
}
}
/**
* Rendering with tiled buffers requires that the base address of the buffer
* be aligned to a page boundary. For renderbuffers, and sometimes with
* textures, we may want the surface to point at a texture image level that
* isn't at a page boundary.
*
* This function returns an appropriately-aligned base offset
* according to the tiling restrictions, plus any required x/y offset
* from there.
*/
uint32_t
iris_resource_get_tile_offsets(const struct iris_resource *res,
uint32_t level, uint32_t z,
uint32_t *tile_x, uint32_t *tile_y)
{
uint32_t x, y;
uint32_t mask_x, mask_y;
const struct isl_format_layout *fmtl = isl_format_get_layout(res->surf.format);
const unsigned cpp = fmtl->bpb / 8;
iris_resource_get_tile_masks(res->surf.tiling, cpp, &mask_x, &mask_y);
get_image_offset_el(&res->surf, level, z, &x, &y);
*tile_x = x & mask_x;
*tile_y = y & mask_y;
return iris_resource_get_aligned_offset(res, x & ~mask_x, y & ~mask_y);
}
/**
* Get pointer offset into stencil buffer.
*
* The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
* must decode the tile's layout in software.
*
* See
* - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
* Format.
* - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
*
* Even though the returned offset is always positive, the return type is
* signed due to
* commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
* mesa: Fix return type of _mesa_get_format_bytes() (#37351)
*/
static intptr_t
s8_offset(uint32_t stride, uint32_t x, uint32_t y)
{
uint32_t tile_size = 4096;
uint32_t tile_width = 64;
uint32_t tile_height = 64;
uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
uint32_t tile_x = x / tile_width;
uint32_t tile_y = y / tile_height;
/* The byte's address relative to the tile's base addres. */
uint32_t byte_x = x % tile_width;
uint32_t byte_y = y % tile_height;
uintptr_t u = tile_y * row_size
+ tile_x * tile_size
+ 512 * (byte_x / 8)
+ 64 * (byte_y / 8)
+ 32 * ((byte_y / 4) % 2)
+ 16 * ((byte_x / 4) % 2)
+ 8 * ((byte_y / 2) % 2)
+ 4 * ((byte_x / 2) % 2)
+ 2 * (byte_y % 2)
+ 1 * (byte_x % 2);
return u;
}
static void
iris_unmap_s8(struct iris_transfer *map)
{
struct pipe_transfer *xfer = &map->base;
const struct pipe_box *box = &xfer->box;
struct iris_resource *res = (struct iris_resource *) xfer->resource;
struct isl_surf *surf = &res->surf;
if (xfer->usage & PIPE_TRANSFER_WRITE) {
uint8_t *untiled_s8_map = map->ptr;
uint8_t *tiled_s8_map =
iris_bo_map(map->dbg, res->bo, (xfer->usage | MAP_RAW) & MAP_FLAGS);
for (int s = 0; s < box->depth; s++) {
unsigned x0_el, y0_el;
get_image_offset_el(surf, xfer->level, box->z + s, &x0_el, &y0_el);
for (uint32_t y = 0; y < box->height; y++) {
for (uint32_t x = 0; x < box->width; x++) {
ptrdiff_t offset = s8_offset(surf->row_pitch_B,
x0_el + box->x + x,
y0_el + box->y + y);
tiled_s8_map[offset] =
untiled_s8_map[s * xfer->layer_stride + y * xfer->stride + x];
}
}
}
}
free(map->buffer);
}
static void
iris_map_s8(struct iris_transfer *map)
{
struct pipe_transfer *xfer = &map->base;
const struct pipe_box *box = &xfer->box;
struct iris_resource *res = (struct iris_resource *) xfer->resource;
struct isl_surf *surf = &res->surf;
xfer->stride = surf->row_pitch_B;
xfer->layer_stride = xfer->stride * box->height;
/* The tiling and detiling functions require that the linear buffer has
* a 16-byte alignment (that is, its `x0` is 16-byte aligned). Here we
* over-allocate the linear buffer to get the proper alignment.
*/
map->buffer = map->ptr = malloc(xfer->layer_stride * box->depth);
assert(map->buffer);
/* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
* INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
* invalidate is set, since we'll be writing the whole rectangle from our
* temporary buffer back out.
*/
if (!(xfer->usage & PIPE_TRANSFER_DISCARD_RANGE)) {
uint8_t *untiled_s8_map = map->ptr;
uint8_t *tiled_s8_map =
iris_bo_map(map->dbg, res->bo, (xfer->usage | MAP_RAW) & MAP_FLAGS);
for (int s = 0; s < box->depth; s++) {
unsigned x0_el, y0_el;
get_image_offset_el(surf, xfer->level, box->z + s, &x0_el, &y0_el);
for (uint32_t y = 0; y < box->height; y++) {
for (uint32_t x = 0; x < box->width; x++) {
ptrdiff_t offset = s8_offset(surf->row_pitch_B,
x0_el + box->x + x,
y0_el + box->y + y);
untiled_s8_map[s * xfer->layer_stride + y * xfer->stride + x] =
tiled_s8_map[offset];
}
}
}
}
map->unmap = iris_unmap_s8;
}
/* Compute extent parameters for use with tiled_memcpy functions.
* xs are in units of bytes and ys are in units of strides.
*/
static inline void
tile_extents(const struct isl_surf *surf,
const struct pipe_box *box,
unsigned level, int z,
unsigned *x1_B, unsigned *x2_B,
unsigned *y1_el, unsigned *y2_el)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
const unsigned cpp = fmtl->bpb / 8;
assert(box->x % fmtl->bw == 0);
assert(box->y % fmtl->bh == 0);
unsigned x0_el, y0_el;
get_image_offset_el(surf, level, box->z + z, &x0_el, &y0_el);
*x1_B = (box->x / fmtl->bw + x0_el) * cpp;
*y1_el = box->y / fmtl->bh + y0_el;
*x2_B = (DIV_ROUND_UP(box->x + box->width, fmtl->bw) + x0_el) * cpp;
*y2_el = DIV_ROUND_UP(box->y + box->height, fmtl->bh) + y0_el;
}
static void
iris_unmap_tiled_memcpy(struct iris_transfer *map)
{
struct pipe_transfer *xfer = &map->base;
const struct pipe_box *box = &xfer->box;
struct iris_resource *res = (struct iris_resource *) xfer->resource;
struct isl_surf *surf = &res->surf;
const bool has_swizzling = false;
if (xfer->usage & PIPE_TRANSFER_WRITE) {
char *dst =
iris_bo_map(map->dbg, res->bo, (xfer->usage | MAP_RAW) & MAP_FLAGS);
for (int s = 0; s < box->depth; s++) {
unsigned x1, x2, y1, y2;
tile_extents(surf, box, xfer->level, s, &x1, &x2, &y1, &y2);
void *ptr = map->ptr + s * xfer->layer_stride;
isl_memcpy_linear_to_tiled(x1, x2, y1, y2, dst, ptr,
surf->row_pitch_B, xfer->stride,
has_swizzling, surf->tiling, ISL_MEMCPY);
}
}
os_free_aligned(map->buffer);
map->buffer = map->ptr = NULL;
}
static void
iris_map_tiled_memcpy(struct iris_transfer *map)
{
struct pipe_transfer *xfer = &map->base;
const struct pipe_box *box = &xfer->box;
struct iris_resource *res = (struct iris_resource *) xfer->resource;
struct isl_surf *surf = &res->surf;
xfer->stride = ALIGN(surf->row_pitch_B, 16);
xfer->layer_stride = xfer->stride * box->height;
unsigned x1, x2, y1, y2;
tile_extents(surf, box, xfer->level, 0, &x1, &x2, &y1, &y2);
/* The tiling and detiling functions require that the linear buffer has
* a 16-byte alignment (that is, its `x0` is 16-byte aligned). Here we
* over-allocate the linear buffer to get the proper alignment.
*/
map->buffer =
os_malloc_aligned(xfer->layer_stride * box->depth, 16);
assert(map->buffer);
map->ptr = (char *)map->buffer + (x1 & 0xf);
const bool has_swizzling = false;
if (!(xfer->usage & PIPE_TRANSFER_DISCARD_RANGE)) {
char *src =
iris_bo_map(map->dbg, res->bo, (xfer->usage | MAP_RAW) & MAP_FLAGS);
for (int s = 0; s < box->depth; s++) {
unsigned x1, x2, y1, y2;
tile_extents(surf, box, xfer->level, s, &x1, &x2, &y1, &y2);
/* Use 's' rather than 'box->z' to rebase the first slice to 0. */
void *ptr = map->ptr + s * xfer->layer_stride;
isl_memcpy_tiled_to_linear(x1, x2, y1, y2, ptr, src, xfer->stride,
surf->row_pitch_B, has_swizzling,
surf->tiling, ISL_MEMCPY_STREAMING_LOAD);
}
}
map->unmap = iris_unmap_tiled_memcpy;
}
static void
iris_map_direct(struct iris_transfer *map)
{
struct pipe_transfer *xfer = &map->base;
struct pipe_box *box = &xfer->box;
struct iris_resource *res = (struct iris_resource *) xfer->resource;
void *ptr = iris_bo_map(map->dbg, res->bo, xfer->usage & MAP_FLAGS);
if (res->base.target == PIPE_BUFFER) {
xfer->stride = 0;
xfer->layer_stride = 0;
map->ptr = ptr + box->x;
} else {
struct isl_surf *surf = &res->surf;
const struct isl_format_layout *fmtl =
isl_format_get_layout(surf->format);
const unsigned cpp = fmtl->bpb / 8;
unsigned x0_el, y0_el;
get_image_offset_el(surf, xfer->level, box->z, &x0_el, &y0_el);
xfer->stride = isl_surf_get_row_pitch_B(surf);
xfer->layer_stride = isl_surf_get_array_pitch(surf);
map->ptr = ptr + (y0_el + box->y) * xfer->stride + (x0_el + box->x) * cpp;
}
}
static bool
can_promote_to_async(const struct iris_resource *res,
const struct pipe_box *box,
enum pipe_transfer_usage usage)
{
/* If we're writing to a section of the buffer that hasn't even been
* initialized with useful data, then we can safely promote this write
* to be unsynchronized. This helps the common pattern of appending data.
*/
return res->base.target == PIPE_BUFFER && (usage & PIPE_TRANSFER_WRITE) &&
!(usage & TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED) &&
!util_ranges_intersect(&res->valid_buffer_range, box->x,
box->x + box->width);
}
static void *
iris_transfer_map(struct pipe_context *ctx,
struct pipe_resource *resource,
unsigned level,
enum pipe_transfer_usage usage,
const struct pipe_box *box,
struct pipe_transfer **ptransfer)
{
struct iris_context *ice = (struct iris_context *)ctx;
struct iris_resource *res = (struct iris_resource *)resource;
struct isl_surf *surf = &res->surf;
if (iris_resource_unfinished_aux_import(res))
iris_resource_finish_aux_import(ctx->screen, res);
if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE) {
/* Replace the backing storage with a fresh buffer for non-async maps */
if (!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
TC_TRANSFER_MAP_NO_INVALIDATE)))
iris_invalidate_resource(ctx, resource);
/* If we can discard the whole resource, we can discard the range. */
usage |= PIPE_TRANSFER_DISCARD_RANGE;
}
if (!(usage & PIPE_TRANSFER_UNSYNCHRONIZED) &&
can_promote_to_async(res, box, usage)) {
usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
}
bool need_resolve = false;
bool need_color_resolve = false;
if (resource->target != PIPE_BUFFER) {
bool need_hiz_resolve = iris_resource_level_has_hiz(res, level);
bool need_stencil_resolve = res->aux.usage == ISL_AUX_USAGE_STC_CCS;
need_color_resolve =
(res->aux.usage == ISL_AUX_USAGE_CCS_D ||
res->aux.usage == ISL_AUX_USAGE_CCS_E ||
res->aux.usage == ISL_AUX_USAGE_GEN12_CCS_E) &&
iris_has_color_unresolved(res, level, 1, box->z, box->depth);
need_resolve = need_color_resolve ||
need_hiz_resolve ||
need_stencil_resolve;
}
bool map_would_stall = false;
if (!(usage & PIPE_TRANSFER_UNSYNCHRONIZED)) {
map_would_stall = need_resolve || resource_is_busy(ice, res);
if (map_would_stall && (usage & PIPE_TRANSFER_DONTBLOCK) &&
(usage & PIPE_TRANSFER_MAP_DIRECTLY))
return NULL;
}
if (surf->tiling != ISL_TILING_LINEAR &&
(usage & PIPE_TRANSFER_MAP_DIRECTLY))
return NULL;
struct iris_transfer *map = slab_alloc(&ice->transfer_pool);
struct pipe_transfer *xfer = &map->base;
if (!map)
return NULL;
memset(map, 0, sizeof(*map));
map->dbg = &ice->dbg;
pipe_resource_reference(&xfer->resource, resource);
xfer->level = level;
xfer->usage = usage;
xfer->box = *box;
*ptransfer = xfer;
map->dest_had_defined_contents =
util_ranges_intersect(&res->valid_buffer_range, box->x,
box->x + box->width);
if (usage & PIPE_TRANSFER_WRITE)
util_range_add(&res->base, &res->valid_buffer_range, box->x, box->x + box->width);
/* Avoid using GPU copies for persistent/coherent buffers, as the idea
* there is to access them simultaneously on the CPU & GPU. This also
* avoids trying to use GPU copies for our u_upload_mgr buffers which
* contain state we're constructing for a GPU draw call, which would
* kill us with infinite stack recursion.
*/
bool no_gpu = usage & (PIPE_TRANSFER_PERSISTENT |
PIPE_TRANSFER_COHERENT |
PIPE_TRANSFER_MAP_DIRECTLY);
/* GPU copies are not useful for buffer reads. Instead of stalling to
* read from the original buffer, we'd simply copy it to a temporary...
* then stall (a bit longer) to read from that buffer.
*
* Images are less clear-cut. Color resolves are destructive, removing
* the underlying compression, so we'd rather blit the data to a linear
* temporary and map that, to avoid the resolve. (It might be better to
* a tiled temporary and use the tiled_memcpy paths...)
*/
if (!(usage & PIPE_TRANSFER_DISCARD_RANGE) && !need_color_resolve)
no_gpu = true;
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
if (fmtl->txc == ISL_TXC_ASTC)
no_gpu = true;
if ((map_would_stall ||
res->aux.usage == ISL_AUX_USAGE_CCS_E ||
res->aux.usage == ISL_AUX_USAGE_GEN12_CCS_E) && !no_gpu) {
/* If we need a synchronous mapping and the resource is busy, or needs
* resolving, we copy to/from a linear temporary buffer using the GPU.
*/
map->batch = &ice->batches[IRIS_BATCH_RENDER];
map->blorp = &ice->blorp;
iris_map_copy_region(map);
} else {
/* Otherwise we're free to map on the CPU. */
if (need_resolve) {
iris_resource_access_raw(ice, res, level, box->z, box->depth,
usage & PIPE_TRANSFER_WRITE);
}
if (!(usage & PIPE_TRANSFER_UNSYNCHRONIZED)) {
for (int i = 0; i < IRIS_BATCH_COUNT; i++) {
if (iris_batch_references(&ice->batches[i], res->bo))
iris_batch_flush(&ice->batches[i]);
}
}
if (surf->tiling == ISL_TILING_W) {
/* TODO: Teach iris_map_tiled_memcpy about W-tiling... */
iris_map_s8(map);
} else if (surf->tiling != ISL_TILING_LINEAR) {
iris_map_tiled_memcpy(map);
} else {
iris_map_direct(map);
}
}
return map->ptr;
}
static void
iris_transfer_flush_region(struct pipe_context *ctx,
struct pipe_transfer *xfer,
const struct pipe_box *box)
{
struct iris_context *ice = (struct iris_context *)ctx;
struct iris_resource *res = (struct iris_resource *) xfer->resource;
struct iris_transfer *map = (void *) xfer;
if (map->staging)
iris_flush_staging_region(xfer, box);
uint32_t history_flush = 0;
if (res->base.target == PIPE_BUFFER) {
if (map->staging)
history_flush |= PIPE_CONTROL_RENDER_TARGET_FLUSH;
if (map->dest_had_defined_contents)
history_flush |= iris_flush_bits_for_history(res);
util_range_add(&res->base, &res->valid_buffer_range, box->x, box->x + box->width);
}
if (history_flush & ~PIPE_CONTROL_CS_STALL) {
for (int i = 0; i < IRIS_BATCH_COUNT; i++) {
struct iris_batch *batch = &ice->batches[i];
if (batch->contains_draw || batch->cache.render->entries) {
iris_batch_maybe_flush(batch, 24);
iris_emit_pipe_control_flush(batch,
"cache history: transfer flush",
history_flush);
}
}
}
/* Make sure we flag constants dirty even if there's no need to emit
* any PIPE_CONTROLs to a batch.
*/
iris_dirty_for_history(ice, res);
}
static void
iris_transfer_unmap(struct pipe_context *ctx, struct pipe_transfer *xfer)
{
struct iris_context *ice = (struct iris_context *)ctx;
struct iris_transfer *map = (void *) xfer;
if (!(xfer->usage & (PIPE_TRANSFER_FLUSH_EXPLICIT |
PIPE_TRANSFER_COHERENT))) {
struct pipe_box flush_box = {
.x = 0, .y = 0, .z = 0,
.width = xfer->box.width,
.height = xfer->box.height,
.depth = xfer->box.depth,
};
iris_transfer_flush_region(ctx, xfer, &flush_box);
}
if (map->unmap)
map->unmap(map);
pipe_resource_reference(&xfer->resource, NULL);
slab_free(&ice->transfer_pool, map);
}
/**
* The pipe->texture_subdata() driver hook.
*
* Mesa's state tracker takes this path whenever possible, even with
* PIPE_CAP_PREFER_BLIT_BASED_TEXTURE_TRANSFER set.
*/
static void
iris_texture_subdata(struct pipe_context *ctx,
struct pipe_resource *resource,
unsigned level,
unsigned usage,
const struct pipe_box *box,
const void *data,
unsigned stride,
unsigned layer_stride)
{
struct iris_context *ice = (struct iris_context *)ctx;
struct iris_resource *res = (struct iris_resource *)resource;
const struct isl_surf *surf = &res->surf;
assert(resource->target != PIPE_BUFFER);
if (iris_resource_unfinished_aux_import(res))
iris_resource_finish_aux_import(ctx->screen, res);
/* Just use the transfer-based path for linear buffers - it will already
* do a direct mapping, or a simple linear staging buffer.
*
* Linear staging buffers appear to be better than tiled ones, too, so
* take that path if we need the GPU to perform color compression, or
* stall-avoidance blits.
*/
if (surf->tiling == ISL_TILING_LINEAR ||
res->aux.usage == ISL_AUX_USAGE_CCS_E ||
resource_is_busy(ice, res)) {
return u_default_texture_subdata(ctx, resource, level, usage, box,
data, stride, layer_stride);
}
/* No state trackers pass any flags other than PIPE_TRANSFER_WRITE */
iris_resource_access_raw(ice, res, level, box->z, box->depth, true);
for (int i = 0; i < IRIS_BATCH_COUNT; i++) {
if (iris_batch_references(&ice->batches[i], res->bo))
iris_batch_flush(&ice->batches[i]);
}
uint8_t *dst = iris_bo_map(&ice->dbg, res->bo, MAP_WRITE | MAP_RAW);
for (int s = 0; s < box->depth; s++) {
const uint8_t *src = data + s * layer_stride;
if (surf->tiling == ISL_TILING_W) {
unsigned x0_el, y0_el;
get_image_offset_el(surf, level, box->z + s, &x0_el, &y0_el);
for (unsigned y = 0; y < box->height; y++) {
for (unsigned x = 0; x < box->width; x++) {
ptrdiff_t offset = s8_offset(surf->row_pitch_B,
x0_el + box->x + x,
y0_el + box->y + y);
dst[offset] = src[y * stride + x];
}
}
} else {
unsigned x1, x2, y1, y2;
tile_extents(surf, box, level, s, &x1, &x2, &y1, &y2);
isl_memcpy_linear_to_tiled(x1, x2, y1, y2,
(void *)dst, (void *)src,
surf->row_pitch_B, stride,
false, surf->tiling, ISL_MEMCPY);
}
}
}
/**
* Mark state dirty that needs to be re-emitted when a resource is written.
*/
void
iris_dirty_for_history(struct iris_context *ice,
struct iris_resource *res)
{
uint64_t stage_dirty = 0ull;
if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
stage_dirty |= ((uint64_t)res->bind_stages)
<< IRIS_SHIFT_FOR_STAGE_DIRTY_CONSTANTS;
}
ice->state.stage_dirty |= stage_dirty;
}
/**
* Produce a set of PIPE_CONTROL bits which ensure data written to a
* resource becomes visible, and any stale read cache data is invalidated.
*/
uint32_t
iris_flush_bits_for_history(struct iris_resource *res)
{
uint32_t flush = PIPE_CONTROL_CS_STALL;
if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
flush |= PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
}
if (res->bind_history & PIPE_BIND_SAMPLER_VIEW)
flush |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
if (res->bind_history & (PIPE_BIND_VERTEX_BUFFER | PIPE_BIND_INDEX_BUFFER))
flush |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
if (res->bind_history & (PIPE_BIND_SHADER_BUFFER | PIPE_BIND_SHADER_IMAGE))
flush |= PIPE_CONTROL_DATA_CACHE_FLUSH;
return flush;
}
void
iris_flush_and_dirty_for_history(struct iris_context *ice,
struct iris_batch *batch,
struct iris_resource *res,
uint32_t extra_flags,
const char *reason)
{
if (res->base.target != PIPE_BUFFER)
return;
uint32_t flush = iris_flush_bits_for_history(res) | extra_flags;
iris_emit_pipe_control_flush(batch, reason, flush);
iris_dirty_for_history(ice, res);
}
bool
iris_resource_set_clear_color(struct iris_context *ice,
struct iris_resource *res,
union isl_color_value color)
{
if (memcmp(&res->aux.clear_color, &color, sizeof(color)) != 0) {
res->aux.clear_color = color;
return true;
}
return false;
}
union isl_color_value
iris_resource_get_clear_color(const struct iris_resource *res,
struct iris_bo **clear_color_bo,
uint64_t *clear_color_offset)
{
assert(res->aux.bo);
if (clear_color_bo)
*clear_color_bo = res->aux.clear_color_bo;
if (clear_color_offset)
*clear_color_offset = res->aux.clear_color_offset;
return res->aux.clear_color;
}
static enum pipe_format
iris_resource_get_internal_format(struct pipe_resource *p_res)
{
struct iris_resource *res = (void *) p_res;
return res->internal_format;
}
static const struct u_transfer_vtbl transfer_vtbl = {
.resource_create = iris_resource_create,
.resource_destroy = iris_resource_destroy,
.transfer_map = iris_transfer_map,
.transfer_unmap = iris_transfer_unmap,
.transfer_flush_region = iris_transfer_flush_region,
.get_internal_format = iris_resource_get_internal_format,
.set_stencil = iris_resource_set_separate_stencil,
.get_stencil = iris_resource_get_separate_stencil,
};
void
iris_init_screen_resource_functions(struct pipe_screen *pscreen)
{
pscreen->query_dmabuf_modifiers = iris_query_dmabuf_modifiers;
pscreen->resource_create_with_modifiers =
iris_resource_create_with_modifiers;
pscreen->resource_create = u_transfer_helper_resource_create;
pscreen->resource_from_user_memory = iris_resource_from_user_memory;
pscreen->resource_from_handle = iris_resource_from_handle;
pscreen->resource_get_handle = iris_resource_get_handle;
pscreen->resource_get_param = iris_resource_get_param;
pscreen->resource_destroy = u_transfer_helper_resource_destroy;
pscreen->transfer_helper =
u_transfer_helper_create(&transfer_vtbl, true, true, false, true);
}
void
iris_init_resource_functions(struct pipe_context *ctx)
{
ctx->flush_resource = iris_flush_resource;
ctx->invalidate_resource = iris_invalidate_resource;
ctx->transfer_map = u_transfer_helper_transfer_map;
ctx->transfer_flush_region = u_transfer_helper_transfer_flush_region;
ctx->transfer_unmap = u_transfer_helper_transfer_unmap;
ctx->buffer_subdata = u_default_buffer_subdata;
ctx->texture_subdata = iris_texture_subdata;
}