blob: 69d4c2b20c694f1b5c48b246f87af567169cf012 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#include "glsl_to_nir.h"
#include "ir_visitor.h"
#include "ir_hierarchical_visitor.h"
#include "ir.h"
#include "compiler/nir/nir_control_flow.h"
#include "compiler/nir/nir_builder.h"
#include "main/imports.h"
/*
* pass to lower GLSL IR to NIR
*
* This will lower variable dereferences to loads/stores of corresponding
* variables in NIR - the variables will be converted to registers in a later
* pass.
*/
namespace {
class nir_visitor : public ir_visitor
{
public:
nir_visitor(nir_shader *shader);
~nir_visitor();
virtual void visit(ir_variable *);
virtual void visit(ir_function *);
virtual void visit(ir_function_signature *);
virtual void visit(ir_loop *);
virtual void visit(ir_if *);
virtual void visit(ir_discard *);
virtual void visit(ir_loop_jump *);
virtual void visit(ir_return *);
virtual void visit(ir_call *);
virtual void visit(ir_assignment *);
virtual void visit(ir_emit_vertex *);
virtual void visit(ir_end_primitive *);
virtual void visit(ir_expression *);
virtual void visit(ir_swizzle *);
virtual void visit(ir_texture *);
virtual void visit(ir_constant *);
virtual void visit(ir_dereference_variable *);
virtual void visit(ir_dereference_record *);
virtual void visit(ir_dereference_array *);
virtual void visit(ir_barrier *);
void create_function(ir_function_signature *ir);
private:
void add_instr(nir_instr *instr, unsigned num_components, unsigned bit_size);
nir_ssa_def *evaluate_rvalue(ir_rvalue *ir);
nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def **srcs);
nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1);
nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1,
nir_ssa_def *src2);
nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1,
nir_ssa_def *src2, nir_ssa_def *src3);
bool supports_ints;
nir_shader *shader;
nir_function_impl *impl;
nir_builder b;
nir_ssa_def *result; /* result of the expression tree last visited */
nir_deref_var *evaluate_deref(nir_instr *mem_ctx, ir_instruction *ir);
/* the head of the dereference chain we're creating */
nir_deref_var *deref_head;
/* the tail of the dereference chain we're creating */
nir_deref *deref_tail;
nir_variable *var; /* variable created by ir_variable visitor */
/* whether the IR we're operating on is per-function or global */
bool is_global;
/* map of ir_variable -> nir_variable */
struct hash_table *var_table;
/* map of ir_function_signature -> nir_function_overload */
struct hash_table *overload_table;
};
/*
* This visitor runs before the main visitor, calling create_function() for
* each function so that the main visitor can resolve forward references in
* calls.
*/
class nir_function_visitor : public ir_hierarchical_visitor
{
public:
nir_function_visitor(nir_visitor *v) : visitor(v)
{
}
virtual ir_visitor_status visit_enter(ir_function *);
private:
nir_visitor *visitor;
};
} /* end of anonymous namespace */
nir_shader *
glsl_to_nir(const struct gl_shader_program *shader_prog,
gl_shader_stage stage,
const nir_shader_compiler_options *options)
{
struct gl_linked_shader *sh = shader_prog->_LinkedShaders[stage];
nir_shader *shader = nir_shader_create(NULL, stage, options,
&sh->Program->info);
nir_visitor v1(shader);
nir_function_visitor v2(&v1);
v2.run(sh->ir);
visit_exec_list(sh->ir, &v1);
nir_lower_constant_initializers(shader, (nir_variable_mode)~0);
shader->info->name = ralloc_asprintf(shader, "GLSL%d", shader_prog->Name);
if (shader_prog->Label)
shader->info->label = ralloc_strdup(shader, shader_prog->Label);
shader->info->clip_distance_array_size = sh->Program->ClipDistanceArraySize;
shader->info->cull_distance_array_size = sh->Program->CullDistanceArraySize;
shader->info->has_transform_feedback_varyings =
shader_prog->TransformFeedback.NumVarying > 0;
return shader;
}
nir_visitor::nir_visitor(nir_shader *shader)
{
this->supports_ints = shader->options->native_integers;
this->shader = shader;
this->is_global = true;
this->var_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
this->overload_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
this->result = NULL;
this->impl = NULL;
this->var = NULL;
this->deref_head = NULL;
this->deref_tail = NULL;
memset(&this->b, 0, sizeof(this->b));
}
nir_visitor::~nir_visitor()
{
_mesa_hash_table_destroy(this->var_table, NULL);
_mesa_hash_table_destroy(this->overload_table, NULL);
}
nir_deref_var *
nir_visitor::evaluate_deref(nir_instr *mem_ctx, ir_instruction *ir)
{
ir->accept(this);
ralloc_steal(mem_ctx, this->deref_head);
return this->deref_head;
}
static nir_constant *
constant_copy(ir_constant *ir, void *mem_ctx)
{
if (ir == NULL)
return NULL;
nir_constant *ret = ralloc(mem_ctx, nir_constant);
const unsigned rows = ir->type->vector_elements;
const unsigned cols = ir->type->matrix_columns;
unsigned i;
ret->num_elements = 0;
switch (ir->type->base_type) {
case GLSL_TYPE_UINT:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[0].u32[r] = ir->value.u[r];
break;
case GLSL_TYPE_INT:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[0].i32[r] = ir->value.i[r];
break;
case GLSL_TYPE_FLOAT:
for (unsigned c = 0; c < cols; c++) {
for (unsigned r = 0; r < rows; r++)
ret->values[c].f32[r] = ir->value.f[c * rows + r];
}
break;
case GLSL_TYPE_DOUBLE:
for (unsigned c = 0; c < cols; c++) {
for (unsigned r = 0; r < rows; r++)
ret->values[c].f64[r] = ir->value.d[c * rows + r];
}
break;
case GLSL_TYPE_BOOL:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[0].u32[r] = ir->value.b[r] ? NIR_TRUE : NIR_FALSE;
break;
case GLSL_TYPE_STRUCT:
ret->elements = ralloc_array(mem_ctx, nir_constant *,
ir->type->length);
ret->num_elements = ir->type->length;
i = 0;
foreach_in_list(ir_constant, field, &ir->components) {
ret->elements[i] = constant_copy(field, mem_ctx);
i++;
}
break;
case GLSL_TYPE_ARRAY:
ret->elements = ralloc_array(mem_ctx, nir_constant *,
ir->type->length);
ret->num_elements = ir->type->length;
for (i = 0; i < ir->type->length; i++)
ret->elements[i] = constant_copy(ir->array_elements[i], mem_ctx);
break;
default:
unreachable("not reached");
}
return ret;
}
void
nir_visitor::visit(ir_variable *ir)
{
nir_variable *var = ralloc(shader, nir_variable);
var->type = ir->type;
var->name = ralloc_strdup(var, ir->name);
var->data.read_only = ir->data.read_only;
var->data.centroid = ir->data.centroid;
var->data.sample = ir->data.sample;
var->data.patch = ir->data.patch;
var->data.invariant = ir->data.invariant;
var->data.location = ir->data.location;
var->data.compact = false;
switch(ir->data.mode) {
case ir_var_auto:
case ir_var_temporary:
if (is_global)
var->data.mode = nir_var_global;
else
var->data.mode = nir_var_local;
break;
case ir_var_function_in:
case ir_var_function_out:
case ir_var_function_inout:
case ir_var_const_in:
var->data.mode = nir_var_local;
break;
case ir_var_shader_in:
if (shader->stage == MESA_SHADER_FRAGMENT &&
ir->data.location == VARYING_SLOT_FACE) {
/* For whatever reason, GLSL IR makes gl_FrontFacing an input */
var->data.location = SYSTEM_VALUE_FRONT_FACE;
var->data.mode = nir_var_system_value;
} else if (shader->stage == MESA_SHADER_GEOMETRY &&
ir->data.location == VARYING_SLOT_PRIMITIVE_ID) {
/* For whatever reason, GLSL IR makes gl_PrimitiveIDIn an input */
var->data.location = SYSTEM_VALUE_PRIMITIVE_ID;
var->data.mode = nir_var_system_value;
} else {
var->data.mode = nir_var_shader_in;
if (shader->stage == MESA_SHADER_TESS_EVAL &&
(ir->data.location == VARYING_SLOT_TESS_LEVEL_INNER ||
ir->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)) {
var->data.compact = ir->type->without_array()->is_scalar();
}
}
break;
case ir_var_shader_out:
var->data.mode = nir_var_shader_out;
if (shader->stage == MESA_SHADER_TESS_CTRL &&
(ir->data.location == VARYING_SLOT_TESS_LEVEL_INNER ||
ir->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)) {
var->data.compact = ir->type->without_array()->is_scalar();
}
break;
case ir_var_uniform:
var->data.mode = nir_var_uniform;
break;
case ir_var_shader_storage:
var->data.mode = nir_var_shader_storage;
break;
case ir_var_system_value:
var->data.mode = nir_var_system_value;
break;
default:
unreachable("not reached");
}
var->data.interpolation = ir->data.interpolation;
var->data.origin_upper_left = ir->data.origin_upper_left;
var->data.pixel_center_integer = ir->data.pixel_center_integer;
var->data.location_frac = ir->data.location_frac;
switch (ir->data.depth_layout) {
case ir_depth_layout_none:
var->data.depth_layout = nir_depth_layout_none;
break;
case ir_depth_layout_any:
var->data.depth_layout = nir_depth_layout_any;
break;
case ir_depth_layout_greater:
var->data.depth_layout = nir_depth_layout_greater;
break;
case ir_depth_layout_less:
var->data.depth_layout = nir_depth_layout_less;
break;
case ir_depth_layout_unchanged:
var->data.depth_layout = nir_depth_layout_unchanged;
break;
default:
unreachable("not reached");
}
var->data.index = ir->data.index;
var->data.binding = ir->data.binding;
var->data.offset = ir->data.offset;
var->data.image.read_only = ir->data.image_read_only;
var->data.image.write_only = ir->data.image_write_only;
var->data.image.coherent = ir->data.image_coherent;
var->data.image._volatile = ir->data.image_volatile;
var->data.image.restrict_flag = ir->data.image_restrict;
var->data.image.format = ir->data.image_format;
var->data.fb_fetch_output = ir->data.fb_fetch_output;
var->num_state_slots = ir->get_num_state_slots();
if (var->num_state_slots > 0) {
var->state_slots = ralloc_array(var, nir_state_slot,
var->num_state_slots);
ir_state_slot *state_slots = ir->get_state_slots();
for (unsigned i = 0; i < var->num_state_slots; i++) {
for (unsigned j = 0; j < 5; j++)
var->state_slots[i].tokens[j] = state_slots[i].tokens[j];
var->state_slots[i].swizzle = state_slots[i].swizzle;
}
} else {
var->state_slots = NULL;
}
var->constant_initializer = constant_copy(ir->constant_initializer, var);
var->interface_type = ir->get_interface_type();
if (var->data.mode == nir_var_local)
nir_function_impl_add_variable(impl, var);
else
nir_shader_add_variable(shader, var);
_mesa_hash_table_insert(var_table, ir, var);
this->var = var;
}
ir_visitor_status
nir_function_visitor::visit_enter(ir_function *ir)
{
foreach_in_list(ir_function_signature, sig, &ir->signatures) {
visitor->create_function(sig);
}
return visit_continue_with_parent;
}
void
nir_visitor::create_function(ir_function_signature *ir)
{
if (ir->is_intrinsic())
return;
nir_function *func = nir_function_create(shader, ir->function_name());
assert(ir->parameters.is_empty());
assert(ir->return_type == glsl_type::void_type);
_mesa_hash_table_insert(this->overload_table, ir, func);
}
void
nir_visitor::visit(ir_function *ir)
{
foreach_in_list(ir_function_signature, sig, &ir->signatures)
sig->accept(this);
}
void
nir_visitor::visit(ir_function_signature *ir)
{
if (ir->is_intrinsic())
return;
struct hash_entry *entry =
_mesa_hash_table_search(this->overload_table, ir);
assert(entry);
nir_function *func = (nir_function *) entry->data;
if (ir->is_defined) {
nir_function_impl *impl = nir_function_impl_create(func);
this->impl = impl;
assert(strcmp(func->name, "main") == 0);
assert(ir->parameters.is_empty());
assert(func->return_type == glsl_type::void_type);
this->is_global = false;
nir_builder_init(&b, impl);
b.cursor = nir_after_cf_list(&impl->body);
visit_exec_list(&ir->body, this);
this->is_global = true;
} else {
func->impl = NULL;
}
}
void
nir_visitor::visit(ir_loop *ir)
{
nir_loop *loop = nir_loop_create(this->shader);
nir_builder_cf_insert(&b, &loop->cf_node);
b.cursor = nir_after_cf_list(&loop->body);
visit_exec_list(&ir->body_instructions, this);
b.cursor = nir_after_cf_node(&loop->cf_node);
}
void
nir_visitor::visit(ir_if *ir)
{
nir_src condition =
nir_src_for_ssa(evaluate_rvalue(ir->condition));
nir_if *if_stmt = nir_if_create(this->shader);
if_stmt->condition = condition;
nir_builder_cf_insert(&b, &if_stmt->cf_node);
b.cursor = nir_after_cf_list(&if_stmt->then_list);
visit_exec_list(&ir->then_instructions, this);
b.cursor = nir_after_cf_list(&if_stmt->else_list);
visit_exec_list(&ir->else_instructions, this);
b.cursor = nir_after_cf_node(&if_stmt->cf_node);
}
void
nir_visitor::visit(ir_discard *ir)
{
/*
* discards aren't treated as control flow, because before we lower them
* they can appear anywhere in the shader and the stuff after them may still
* be executed (yay, crazy GLSL rules!). However, after lowering, all the
* discards will be immediately followed by a return.
*/
nir_intrinsic_instr *discard;
if (ir->condition) {
discard = nir_intrinsic_instr_create(this->shader,
nir_intrinsic_discard_if);
discard->src[0] =
nir_src_for_ssa(evaluate_rvalue(ir->condition));
} else {
discard = nir_intrinsic_instr_create(this->shader, nir_intrinsic_discard);
}
nir_builder_instr_insert(&b, &discard->instr);
}
void
nir_visitor::visit(ir_emit_vertex *ir)
{
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(this->shader, nir_intrinsic_emit_vertex);
nir_intrinsic_set_stream_id(instr, ir->stream_id());
nir_builder_instr_insert(&b, &instr->instr);
}
void
nir_visitor::visit(ir_end_primitive *ir)
{
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(this->shader, nir_intrinsic_end_primitive);
nir_intrinsic_set_stream_id(instr, ir->stream_id());
nir_builder_instr_insert(&b, &instr->instr);
}
void
nir_visitor::visit(ir_loop_jump *ir)
{
nir_jump_type type;
switch (ir->mode) {
case ir_loop_jump::jump_break:
type = nir_jump_break;
break;
case ir_loop_jump::jump_continue:
type = nir_jump_continue;
break;
default:
unreachable("not reached");
}
nir_jump_instr *instr = nir_jump_instr_create(this->shader, type);
nir_builder_instr_insert(&b, &instr->instr);
}
void
nir_visitor::visit(ir_return *ir)
{
if (ir->value != NULL) {
nir_intrinsic_instr *copy =
nir_intrinsic_instr_create(this->shader, nir_intrinsic_copy_var);
copy->variables[0] = nir_deref_var_create(copy, this->impl->return_var);
copy->variables[1] = evaluate_deref(&copy->instr, ir->value);
}
nir_jump_instr *instr = nir_jump_instr_create(this->shader, nir_jump_return);
nir_builder_instr_insert(&b, &instr->instr);
}
void
nir_visitor::visit(ir_call *ir)
{
if (ir->callee->is_intrinsic()) {
nir_intrinsic_op op;
switch (ir->callee->intrinsic_id) {
case ir_intrinsic_atomic_counter_read:
op = nir_intrinsic_atomic_counter_read_var;
break;
case ir_intrinsic_atomic_counter_increment:
op = nir_intrinsic_atomic_counter_inc_var;
break;
case ir_intrinsic_atomic_counter_predecrement:
op = nir_intrinsic_atomic_counter_dec_var;
break;
case ir_intrinsic_atomic_counter_add:
op = nir_intrinsic_atomic_counter_add_var;
break;
case ir_intrinsic_atomic_counter_and:
op = nir_intrinsic_atomic_counter_and_var;
break;
case ir_intrinsic_atomic_counter_or:
op = nir_intrinsic_atomic_counter_or_var;
break;
case ir_intrinsic_atomic_counter_xor:
op = nir_intrinsic_atomic_counter_xor_var;
break;
case ir_intrinsic_atomic_counter_min:
op = nir_intrinsic_atomic_counter_min_var;
break;
case ir_intrinsic_atomic_counter_max:
op = nir_intrinsic_atomic_counter_max_var;
break;
case ir_intrinsic_atomic_counter_exchange:
op = nir_intrinsic_atomic_counter_exchange_var;
break;
case ir_intrinsic_atomic_counter_comp_swap:
op = nir_intrinsic_atomic_counter_comp_swap_var;
break;
case ir_intrinsic_image_load:
op = nir_intrinsic_image_load;
break;
case ir_intrinsic_image_store:
op = nir_intrinsic_image_store;
break;
case ir_intrinsic_image_atomic_add:
op = nir_intrinsic_image_atomic_add;
break;
case ir_intrinsic_image_atomic_min:
op = nir_intrinsic_image_atomic_min;
break;
case ir_intrinsic_image_atomic_max:
op = nir_intrinsic_image_atomic_max;
break;
case ir_intrinsic_image_atomic_and:
op = nir_intrinsic_image_atomic_and;
break;
case ir_intrinsic_image_atomic_or:
op = nir_intrinsic_image_atomic_or;
break;
case ir_intrinsic_image_atomic_xor:
op = nir_intrinsic_image_atomic_xor;
break;
case ir_intrinsic_image_atomic_exchange:
op = nir_intrinsic_image_atomic_exchange;
break;
case ir_intrinsic_image_atomic_comp_swap:
op = nir_intrinsic_image_atomic_comp_swap;
break;
case ir_intrinsic_memory_barrier:
op = nir_intrinsic_memory_barrier;
break;
case ir_intrinsic_image_size:
op = nir_intrinsic_image_size;
break;
case ir_intrinsic_image_samples:
op = nir_intrinsic_image_samples;
break;
case ir_intrinsic_ssbo_store:
op = nir_intrinsic_store_ssbo;
break;
case ir_intrinsic_ssbo_load:
op = nir_intrinsic_load_ssbo;
break;
case ir_intrinsic_ssbo_atomic_add:
op = nir_intrinsic_ssbo_atomic_add;
break;
case ir_intrinsic_ssbo_atomic_and:
op = nir_intrinsic_ssbo_atomic_and;
break;
case ir_intrinsic_ssbo_atomic_or:
op = nir_intrinsic_ssbo_atomic_or;
break;
case ir_intrinsic_ssbo_atomic_xor:
op = nir_intrinsic_ssbo_atomic_xor;
break;
case ir_intrinsic_ssbo_atomic_min:
assert(ir->return_deref);
if (ir->return_deref->type == glsl_type::int_type)
op = nir_intrinsic_ssbo_atomic_imin;
else if (ir->return_deref->type == glsl_type::uint_type)
op = nir_intrinsic_ssbo_atomic_umin;
else
unreachable("Invalid type");
break;
case ir_intrinsic_ssbo_atomic_max:
assert(ir->return_deref);
if (ir->return_deref->type == glsl_type::int_type)
op = nir_intrinsic_ssbo_atomic_imax;
else if (ir->return_deref->type == glsl_type::uint_type)
op = nir_intrinsic_ssbo_atomic_umax;
else
unreachable("Invalid type");
break;
case ir_intrinsic_ssbo_atomic_exchange:
op = nir_intrinsic_ssbo_atomic_exchange;
break;
case ir_intrinsic_ssbo_atomic_comp_swap:
op = nir_intrinsic_ssbo_atomic_comp_swap;
break;
case ir_intrinsic_shader_clock:
op = nir_intrinsic_shader_clock;
break;
case ir_intrinsic_group_memory_barrier:
op = nir_intrinsic_group_memory_barrier;
break;
case ir_intrinsic_memory_barrier_atomic_counter:
op = nir_intrinsic_memory_barrier_atomic_counter;
break;
case ir_intrinsic_memory_barrier_buffer:
op = nir_intrinsic_memory_barrier_buffer;
break;
case ir_intrinsic_memory_barrier_image:
op = nir_intrinsic_memory_barrier_image;
break;
case ir_intrinsic_memory_barrier_shared:
op = nir_intrinsic_memory_barrier_shared;
break;
case ir_intrinsic_shared_load:
op = nir_intrinsic_load_shared;
break;
case ir_intrinsic_shared_store:
op = nir_intrinsic_store_shared;
break;
case ir_intrinsic_shared_atomic_add:
op = nir_intrinsic_shared_atomic_add;
break;
case ir_intrinsic_shared_atomic_and:
op = nir_intrinsic_shared_atomic_and;
break;
case ir_intrinsic_shared_atomic_or:
op = nir_intrinsic_shared_atomic_or;
break;
case ir_intrinsic_shared_atomic_xor:
op = nir_intrinsic_shared_atomic_xor;
break;
case ir_intrinsic_shared_atomic_min:
assert(ir->return_deref);
if (ir->return_deref->type == glsl_type::int_type)
op = nir_intrinsic_shared_atomic_imin;
else if (ir->return_deref->type == glsl_type::uint_type)
op = nir_intrinsic_shared_atomic_umin;
else
unreachable("Invalid type");
break;
case ir_intrinsic_shared_atomic_max:
assert(ir->return_deref);
if (ir->return_deref->type == glsl_type::int_type)
op = nir_intrinsic_shared_atomic_imax;
else if (ir->return_deref->type == glsl_type::uint_type)
op = nir_intrinsic_shared_atomic_umax;
else
unreachable("Invalid type");
break;
case ir_intrinsic_shared_atomic_exchange:
op = nir_intrinsic_shared_atomic_exchange;
break;
case ir_intrinsic_shared_atomic_comp_swap:
op = nir_intrinsic_shared_atomic_comp_swap;
break;
default:
unreachable("not reached");
}
nir_intrinsic_instr *instr = nir_intrinsic_instr_create(shader, op);
nir_dest *dest = &instr->dest;
switch (op) {
case nir_intrinsic_atomic_counter_read_var:
case nir_intrinsic_atomic_counter_inc_var:
case nir_intrinsic_atomic_counter_dec_var:
case nir_intrinsic_atomic_counter_add_var:
case nir_intrinsic_atomic_counter_min_var:
case nir_intrinsic_atomic_counter_max_var:
case nir_intrinsic_atomic_counter_and_var:
case nir_intrinsic_atomic_counter_or_var:
case nir_intrinsic_atomic_counter_xor_var:
case nir_intrinsic_atomic_counter_exchange_var:
case nir_intrinsic_atomic_counter_comp_swap_var: {
/* Set the counter variable dereference. */
exec_node *param = ir->actual_parameters.get_head();
ir_dereference *counter = (ir_dereference *)param;
instr->variables[0] = evaluate_deref(&instr->instr, counter);
param = param->get_next();
/* Set the intrinsic destination. */
if (ir->return_deref) {
nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
}
/* Set the intrinsic parameters. */
if (!param->is_tail_sentinel()) {
instr->src[0] =
nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param));
param = param->get_next();
}
if (!param->is_tail_sentinel()) {
instr->src[1] =
nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param));
param = param->get_next();
}
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_min:
case nir_intrinsic_image_atomic_max:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
case nir_intrinsic_image_samples:
case nir_intrinsic_image_size: {
nir_ssa_undef_instr *instr_undef =
nir_ssa_undef_instr_create(shader, 1, 32);
nir_builder_instr_insert(&b, &instr_undef->instr);
/* Set the image variable dereference. */
exec_node *param = ir->actual_parameters.get_head();
ir_dereference *image = (ir_dereference *)param;
const glsl_type *type =
image->variable_referenced()->type->without_array();
instr->variables[0] = evaluate_deref(&instr->instr, image);
param = param->get_next();
/* Set the intrinsic destination. */
if (ir->return_deref) {
const nir_intrinsic_info *info =
&nir_intrinsic_infos[instr->intrinsic];
nir_ssa_dest_init(&instr->instr, &instr->dest,
info->dest_components, 32, NULL);
}
if (op == nir_intrinsic_image_size ||
op == nir_intrinsic_image_samples) {
nir_builder_instr_insert(&b, &instr->instr);
break;
}
/* Set the address argument, extending the coordinate vector to four
* components.
*/
nir_ssa_def *src_addr =
evaluate_rvalue((ir_dereference *)param);
nir_ssa_def *srcs[4];
for (int i = 0; i < 4; i++) {
if (i < type->coordinate_components())
srcs[i] = nir_channel(&b, src_addr, i);
else
srcs[i] = &instr_undef->def;
}
instr->src[0] = nir_src_for_ssa(nir_vec(&b, srcs, 4));
param = param->get_next();
/* Set the sample argument, which is undefined for single-sample
* images.
*/
if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
instr->src[1] =
nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param));
param = param->get_next();
} else {
instr->src[1] = nir_src_for_ssa(&instr_undef->def);
}
/* Set the intrinsic parameters. */
if (!param->is_tail_sentinel()) {
instr->src[2] =
nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param));
param = param->get_next();
}
if (!param->is_tail_sentinel()) {
instr->src[3] =
nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param));
param = param->get_next();
}
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_memory_barrier:
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier_atomic_counter:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
nir_builder_instr_insert(&b, &instr->instr);
break;
case nir_intrinsic_shader_clock:
nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
nir_builder_instr_insert(&b, &instr->instr);
break;
case nir_intrinsic_store_ssbo: {
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
assert(write_mask);
instr->src[0] = nir_src_for_ssa(evaluate_rvalue(val));
instr->src[1] = nir_src_for_ssa(evaluate_rvalue(block));
instr->src[2] = nir_src_for_ssa(evaluate_rvalue(offset));
nir_intrinsic_set_write_mask(instr, write_mask->value.u[0]);
instr->num_components = val->type->vector_elements;
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_load_ssbo: {
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
instr->src[0] = nir_src_for_ssa(evaluate_rvalue(block));
instr->src[1] = nir_src_for_ssa(evaluate_rvalue(offset));
const glsl_type *type = ir->return_deref->var->type;
instr->num_components = type->vector_elements;
/* Setup destination register */
unsigned bit_size = glsl_get_bit_size(type);
nir_ssa_dest_init(&instr->instr, &instr->dest,
type->vector_elements, bit_size, NULL);
/* Insert the created nir instruction now since in the case of boolean
* result we will need to emit another instruction after it
*/
nir_builder_instr_insert(&b, &instr->instr);
/*
* In SSBO/UBO's, a true boolean value is any non-zero value, but we
* consider a true boolean to be ~0. Fix this up with a != 0
* comparison.
*/
if (type->base_type == GLSL_TYPE_BOOL) {
nir_alu_instr *load_ssbo_compare =
nir_alu_instr_create(shader, nir_op_ine);
load_ssbo_compare->src[0].src.is_ssa = true;
load_ssbo_compare->src[0].src.ssa = &instr->dest.ssa;
load_ssbo_compare->src[1].src =
nir_src_for_ssa(nir_imm_int(&b, 0));
for (unsigned i = 0; i < type->vector_elements; i++)
load_ssbo_compare->src[1].swizzle[i] = 0;
nir_ssa_dest_init(&load_ssbo_compare->instr,
&load_ssbo_compare->dest.dest,
type->vector_elements, bit_size, NULL);
load_ssbo_compare->dest.write_mask = (1 << type->vector_elements) - 1;
nir_builder_instr_insert(&b, &load_ssbo_compare->instr);
dest = &load_ssbo_compare->dest.dest;
}
break;
}
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap: {
int param_count = ir->actual_parameters.length();
assert(param_count == 3 || param_count == 4);
/* Block index */
exec_node *param = ir->actual_parameters.get_head();
ir_instruction *inst = (ir_instruction *) param;
instr->src[0] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
/* Offset */
param = param->get_next();
inst = (ir_instruction *) param;
instr->src[1] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
/* data1 parameter (this is always present) */
param = param->get_next();
inst = (ir_instruction *) param;
instr->src[2] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
/* data2 parameter (only with atomic_comp_swap) */
if (param_count == 4) {
assert(op == nir_intrinsic_ssbo_atomic_comp_swap);
param = param->get_next();
inst = (ir_instruction *) param;
instr->src[3] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
}
/* Atomic result */
assert(ir->return_deref);
nir_ssa_dest_init(&instr->instr, &instr->dest,
ir->return_deref->type->vector_elements, 32, NULL);
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_load_shared: {
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
nir_intrinsic_set_base(instr, 0);
instr->src[0] = nir_src_for_ssa(evaluate_rvalue(offset));
const glsl_type *type = ir->return_deref->var->type;
instr->num_components = type->vector_elements;
/* Setup destination register */
unsigned bit_size = glsl_get_bit_size(type);
nir_ssa_dest_init(&instr->instr, &instr->dest,
type->vector_elements, bit_size, NULL);
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_store_shared: {
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
assert(write_mask);
nir_intrinsic_set_base(instr, 0);
instr->src[1] = nir_src_for_ssa(evaluate_rvalue(offset));
nir_intrinsic_set_write_mask(instr, write_mask->value.u[0]);
instr->src[0] = nir_src_for_ssa(evaluate_rvalue(val));
instr->num_components = val->type->vector_elements;
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap: {
int param_count = ir->actual_parameters.length();
assert(param_count == 2 || param_count == 3);
/* Offset */
exec_node *param = ir->actual_parameters.get_head();
ir_instruction *inst = (ir_instruction *) param;
instr->src[0] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
/* data1 parameter (this is always present) */
param = param->get_next();
inst = (ir_instruction *) param;
instr->src[1] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
/* data2 parameter (only with atomic_comp_swap) */
if (param_count == 3) {
assert(op == nir_intrinsic_shared_atomic_comp_swap);
param = param->get_next();
inst = (ir_instruction *) param;
instr->src[2] =
nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
}
/* Atomic result */
assert(ir->return_deref);
unsigned bit_size = glsl_get_bit_size(ir->return_deref->type);
nir_ssa_dest_init(&instr->instr, &instr->dest,
ir->return_deref->type->vector_elements,
bit_size, NULL);
nir_builder_instr_insert(&b, &instr->instr);
break;
}
default:
unreachable("not reached");
}
if (ir->return_deref) {
nir_intrinsic_instr *store_instr =
nir_intrinsic_instr_create(shader, nir_intrinsic_store_var);
store_instr->num_components = ir->return_deref->type->vector_elements;
nir_intrinsic_set_write_mask(store_instr,
(1 << store_instr->num_components) - 1);
store_instr->variables[0] =
evaluate_deref(&store_instr->instr, ir->return_deref);
store_instr->src[0] = nir_src_for_ssa(&dest->ssa);
nir_builder_instr_insert(&b, &store_instr->instr);
}
return;
}
struct hash_entry *entry =
_mesa_hash_table_search(this->overload_table, ir->callee);
assert(entry);
nir_function *callee = (nir_function *) entry->data;
nir_call_instr *instr = nir_call_instr_create(this->shader, callee);
unsigned i = 0;
foreach_in_list(ir_dereference, param, &ir->actual_parameters) {
instr->params[i] = evaluate_deref(&instr->instr, param);
i++;
}
instr->return_deref = evaluate_deref(&instr->instr, ir->return_deref);
nir_builder_instr_insert(&b, &instr->instr);
}
void
nir_visitor::visit(ir_assignment *ir)
{
unsigned num_components = ir->lhs->type->vector_elements;
b.exact = ir->lhs->variable_referenced()->data.invariant ||
ir->lhs->variable_referenced()->data.precise;
if ((ir->rhs->as_dereference() || ir->rhs->as_constant()) &&
(ir->write_mask == (1 << num_components) - 1 || ir->write_mask == 0)) {
/* We're doing a plain-as-can-be copy, so emit a copy_var */
nir_intrinsic_instr *copy =
nir_intrinsic_instr_create(this->shader, nir_intrinsic_copy_var);
copy->variables[0] = evaluate_deref(&copy->instr, ir->lhs);
copy->variables[1] = evaluate_deref(&copy->instr, ir->rhs);
if (ir->condition) {
nir_if *if_stmt = nir_if_create(this->shader);
if_stmt->condition = nir_src_for_ssa(evaluate_rvalue(ir->condition));
nir_builder_cf_insert(&b, &if_stmt->cf_node);
nir_instr_insert_after_cf_list(&if_stmt->then_list, &copy->instr);
b.cursor = nir_after_cf_node(&if_stmt->cf_node);
} else {
nir_builder_instr_insert(&b, &copy->instr);
}
return;
}
assert(ir->rhs->type->is_scalar() || ir->rhs->type->is_vector());
ir->lhs->accept(this);
nir_deref_var *lhs_deref = this->deref_head;
nir_ssa_def *src = evaluate_rvalue(ir->rhs);
if (ir->write_mask != (1 << num_components) - 1 && ir->write_mask != 0) {
/* GLSL IR will give us the input to the write-masked assignment in a
* single packed vector. So, for example, if the writemask is xzw, then
* we have to swizzle x -> x, y -> z, and z -> w and get the y component
* from the load.
*/
unsigned swiz[4];
unsigned component = 0;
for (unsigned i = 0; i < 4; i++) {
swiz[i] = ir->write_mask & (1 << i) ? component++ : 0;
}
src = nir_swizzle(&b, src, swiz, num_components, !supports_ints);
}
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(this->shader, nir_intrinsic_store_var);
store->num_components = ir->lhs->type->vector_elements;
nir_intrinsic_set_write_mask(store, ir->write_mask);
store->variables[0] = nir_deref_var_clone(lhs_deref, store);
store->src[0] = nir_src_for_ssa(src);
if (ir->condition) {
nir_if *if_stmt = nir_if_create(this->shader);
if_stmt->condition = nir_src_for_ssa(evaluate_rvalue(ir->condition));
nir_builder_cf_insert(&b, &if_stmt->cf_node);
nir_instr_insert_after_cf_list(&if_stmt->then_list, &store->instr);
b.cursor = nir_after_cf_node(&if_stmt->cf_node);
} else {
nir_builder_instr_insert(&b, &store->instr);
}
}
/*
* Given an instruction, returns a pointer to its destination or NULL if there
* is no destination.
*
* Note that this only handles instructions we generate at this level.
*/
static nir_dest *
get_instr_dest(nir_instr *instr)
{
nir_alu_instr *alu_instr;
nir_intrinsic_instr *intrinsic_instr;
nir_tex_instr *tex_instr;
switch (instr->type) {
case nir_instr_type_alu:
alu_instr = nir_instr_as_alu(instr);
return &alu_instr->dest.dest;
case nir_instr_type_intrinsic:
intrinsic_instr = nir_instr_as_intrinsic(instr);
if (nir_intrinsic_infos[intrinsic_instr->intrinsic].has_dest)
return &intrinsic_instr->dest;
else
return NULL;
case nir_instr_type_tex:
tex_instr = nir_instr_as_tex(instr);
return &tex_instr->dest;
default:
unreachable("not reached");
}
return NULL;
}
void
nir_visitor::add_instr(nir_instr *instr, unsigned num_components,
unsigned bit_size)
{
nir_dest *dest = get_instr_dest(instr);
if (dest)
nir_ssa_dest_init(instr, dest, num_components, bit_size, NULL);
nir_builder_instr_insert(&b, instr);
if (dest) {
assert(dest->is_ssa);
this->result = &dest->ssa;
}
}
nir_ssa_def *
nir_visitor::evaluate_rvalue(ir_rvalue* ir)
{
ir->accept(this);
if (ir->as_dereference() || ir->as_constant()) {
/*
* A dereference is being used on the right hand side, which means we
* must emit a variable load.
*/
nir_intrinsic_instr *load_instr =
nir_intrinsic_instr_create(this->shader, nir_intrinsic_load_var);
load_instr->num_components = ir->type->vector_elements;
load_instr->variables[0] = this->deref_head;
ralloc_steal(load_instr, load_instr->variables[0]);
unsigned bit_size = glsl_get_bit_size(ir->type);
add_instr(&load_instr->instr, ir->type->vector_elements, bit_size);
}
return this->result;
}
static bool
type_is_float(glsl_base_type type)
{
return type == GLSL_TYPE_FLOAT || type == GLSL_TYPE_DOUBLE;
}
void
nir_visitor::visit(ir_expression *ir)
{
/* Some special cases */
switch (ir->operation) {
case ir_binop_ubo_load: {
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(this->shader, nir_intrinsic_load_ubo);
unsigned bit_size = glsl_get_bit_size(ir->type);
load->num_components = ir->type->vector_elements;
load->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[0]));
load->src[1] = nir_src_for_ssa(evaluate_rvalue(ir->operands[1]));
add_instr(&load->instr, ir->type->vector_elements, bit_size);
/*
* In UBO's, a true boolean value is any non-zero value, but we consider
* a true boolean to be ~0. Fix this up with a != 0 comparison.
*/
if (ir->type->base_type == GLSL_TYPE_BOOL)
this->result = nir_ine(&b, &load->dest.ssa, nir_imm_int(&b, 0));
return;
}
case ir_unop_interpolate_at_centroid:
case ir_binop_interpolate_at_offset:
case ir_binop_interpolate_at_sample: {
ir_dereference *deref = ir->operands[0]->as_dereference();
ir_swizzle *swizzle = NULL;
if (!deref) {
/* the api does not allow a swizzle here, but the varying packing code
* may have pushed one into here.
*/
swizzle = ir->operands[0]->as_swizzle();
assert(swizzle);
deref = swizzle->val->as_dereference();
assert(deref);
}
deref->accept(this);
nir_intrinsic_op op;
if (this->deref_head->var->data.mode == nir_var_shader_in) {
switch (ir->operation) {
case ir_unop_interpolate_at_centroid:
op = nir_intrinsic_interp_var_at_centroid;
break;
case ir_binop_interpolate_at_offset:
op = nir_intrinsic_interp_var_at_offset;
break;
case ir_binop_interpolate_at_sample:
op = nir_intrinsic_interp_var_at_sample;
break;
default:
unreachable("Invalid interpolation intrinsic");
}
} else {
/* This case can happen if the vertex shader does not write the
* given varying. In this case, the linker will lower it to a
* global variable. Since interpolating a variable makes no
* sense, we'll just turn it into a load which will probably
* eventually end up as an SSA definition.
*/
assert(this->deref_head->var->data.mode == nir_var_global);
op = nir_intrinsic_load_var;
}
nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(shader, op);
intrin->num_components = deref->type->vector_elements;
intrin->variables[0] = this->deref_head;
ralloc_steal(intrin, intrin->variables[0]);
if (intrin->intrinsic == nir_intrinsic_interp_var_at_offset ||
intrin->intrinsic == nir_intrinsic_interp_var_at_sample)
intrin->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[1]));
unsigned bit_size = glsl_get_bit_size(deref->type);
add_instr(&intrin->instr, deref->type->vector_elements, bit_size);
if (swizzle) {
unsigned swiz[4] = {
swizzle->mask.x, swizzle->mask.y, swizzle->mask.z, swizzle->mask.w
};
result = nir_swizzle(&b, result, swiz,
swizzle->type->vector_elements, false);
}
return;
}
default:
break;
}
nir_ssa_def *srcs[4];
for (unsigned i = 0; i < ir->get_num_operands(); i++)
srcs[i] = evaluate_rvalue(ir->operands[i]);
glsl_base_type types[4];
for (unsigned i = 0; i < ir->get_num_operands(); i++)
if (supports_ints)
types[i] = ir->operands[i]->type->base_type;
else
types[i] = GLSL_TYPE_FLOAT;
glsl_base_type out_type;
if (supports_ints)
out_type = ir->type->base_type;
else
out_type = GLSL_TYPE_FLOAT;
switch (ir->operation) {
case ir_unop_bit_not: result = nir_inot(&b, srcs[0]); break;
case ir_unop_logic_not:
result = supports_ints ? nir_inot(&b, srcs[0]) : nir_fnot(&b, srcs[0]);
break;
case ir_unop_neg:
result = type_is_float(types[0]) ? nir_fneg(&b, srcs[0])
: nir_ineg(&b, srcs[0]);
break;
case ir_unop_abs:
result = type_is_float(types[0]) ? nir_fabs(&b, srcs[0])
: nir_iabs(&b, srcs[0]);
break;
case ir_unop_saturate:
assert(type_is_float(types[0]));
result = nir_fsat(&b, srcs[0]);
break;
case ir_unop_sign:
result = type_is_float(types[0]) ? nir_fsign(&b, srcs[0])
: nir_isign(&b, srcs[0]);
break;
case ir_unop_rcp: result = nir_frcp(&b, srcs[0]); break;
case ir_unop_rsq: result = nir_frsq(&b, srcs[0]); break;
case ir_unop_sqrt: result = nir_fsqrt(&b, srcs[0]); break;
case ir_unop_exp: unreachable("ir_unop_exp should have been lowered");
case ir_unop_log: unreachable("ir_unop_log should have been lowered");
case ir_unop_exp2: result = nir_fexp2(&b, srcs[0]); break;
case ir_unop_log2: result = nir_flog2(&b, srcs[0]); break;
case ir_unop_i2f:
result = supports_ints ? nir_i2f(&b, srcs[0]) : nir_fmov(&b, srcs[0]);
break;
case ir_unop_u2f:
result = supports_ints ? nir_u2f(&b, srcs[0]) : nir_fmov(&b, srcs[0]);
break;
case ir_unop_b2f:
result = supports_ints ? nir_b2f(&b, srcs[0]) : nir_fmov(&b, srcs[0]);
break;
case ir_unop_f2i: result = nir_f2i(&b, srcs[0]); break;
case ir_unop_f2u: result = nir_f2u(&b, srcs[0]); break;
case ir_unop_f2b: result = nir_f2b(&b, srcs[0]); break;
case ir_unop_i2b: result = nir_i2b(&b, srcs[0]); break;
case ir_unop_b2i: result = nir_b2i(&b, srcs[0]); break;
case ir_unop_d2f: result = nir_d2f(&b, srcs[0]); break;
case ir_unop_f2d: result = nir_f2d(&b, srcs[0]); break;
case ir_unop_d2i: result = nir_d2i(&b, srcs[0]); break;
case ir_unop_d2u: result = nir_d2u(&b, srcs[0]); break;
case ir_unop_d2b: result = nir_d2b(&b, srcs[0]); break;
case ir_unop_i2d:
assert(supports_ints);
result = nir_i2d(&b, srcs[0]);
break;
case ir_unop_u2d:
assert(supports_ints);
result = nir_u2d(&b, srcs[0]);
break;
case ir_unop_i2u:
case ir_unop_u2i:
case ir_unop_bitcast_i2f:
case ir_unop_bitcast_f2i:
case ir_unop_bitcast_u2f:
case ir_unop_bitcast_f2u:
case ir_unop_subroutine_to_int:
/* no-op */
result = nir_imov(&b, srcs[0]);
break;
case ir_unop_trunc: result = nir_ftrunc(&b, srcs[0]); break;
case ir_unop_ceil: result = nir_fceil(&b, srcs[0]); break;
case ir_unop_floor: result = nir_ffloor(&b, srcs[0]); break;
case ir_unop_fract: result = nir_ffract(&b, srcs[0]); break;
case ir_unop_round_even: result = nir_fround_even(&b, srcs[0]); break;
case ir_unop_sin: result = nir_fsin(&b, srcs[0]); break;
case ir_unop_cos: result = nir_fcos(&b, srcs[0]); break;
case ir_unop_dFdx: result = nir_fddx(&b, srcs[0]); break;
case ir_unop_dFdy: result = nir_fddy(&b, srcs[0]); break;
case ir_unop_dFdx_fine: result = nir_fddx_fine(&b, srcs[0]); break;
case ir_unop_dFdy_fine: result = nir_fddy_fine(&b, srcs[0]); break;
case ir_unop_dFdx_coarse: result = nir_fddx_coarse(&b, srcs[0]); break;
case ir_unop_dFdy_coarse: result = nir_fddy_coarse(&b, srcs[0]); break;
case ir_unop_pack_snorm_2x16:
result = nir_pack_snorm_2x16(&b, srcs[0]);
break;
case ir_unop_pack_snorm_4x8:
result = nir_pack_snorm_4x8(&b, srcs[0]);
break;
case ir_unop_pack_unorm_2x16:
result = nir_pack_unorm_2x16(&b, srcs[0]);
break;
case ir_unop_pack_unorm_4x8:
result = nir_pack_unorm_4x8(&b, srcs[0]);
break;
case ir_unop_pack_half_2x16:
result = nir_pack_half_2x16(&b, srcs[0]);
break;
case ir_unop_unpack_snorm_2x16:
result = nir_unpack_snorm_2x16(&b, srcs[0]);
break;
case ir_unop_unpack_snorm_4x8:
result = nir_unpack_snorm_4x8(&b, srcs[0]);
break;
case ir_unop_unpack_unorm_2x16:
result = nir_unpack_unorm_2x16(&b, srcs[0]);
break;
case ir_unop_unpack_unorm_4x8:
result = nir_unpack_unorm_4x8(&b, srcs[0]);
break;
case ir_unop_unpack_half_2x16:
result = nir_unpack_half_2x16(&b, srcs[0]);
break;
case ir_unop_pack_double_2x32:
result = nir_pack_double_2x32(&b, srcs[0]);
break;
case ir_unop_unpack_double_2x32:
result = nir_unpack_double_2x32(&b, srcs[0]);
break;
case ir_unop_bitfield_reverse:
result = nir_bitfield_reverse(&b, srcs[0]);
break;
case ir_unop_bit_count:
result = nir_bit_count(&b, srcs[0]);
break;
case ir_unop_find_msb:
switch (types[0]) {
case GLSL_TYPE_UINT:
result = nir_ufind_msb(&b, srcs[0]);
break;
case GLSL_TYPE_INT:
result = nir_ifind_msb(&b, srcs[0]);
break;
default:
unreachable("Invalid type for findMSB()");
}
break;
case ir_unop_find_lsb:
result = nir_find_lsb(&b, srcs[0]);
break;
case ir_unop_noise:
switch (ir->type->vector_elements) {
case 1:
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_fnoise1_1(&b, srcs[0]); break;
case 2: result = nir_fnoise1_2(&b, srcs[0]); break;
case 3: result = nir_fnoise1_3(&b, srcs[0]); break;
case 4: result = nir_fnoise1_4(&b, srcs[0]); break;
default: unreachable("not reached");
}
break;
case 2:
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_fnoise2_1(&b, srcs[0]); break;
case 2: result = nir_fnoise2_2(&b, srcs[0]); break;
case 3: result = nir_fnoise2_3(&b, srcs[0]); break;
case 4: result = nir_fnoise2_4(&b, srcs[0]); break;
default: unreachable("not reached");
}
break;
case 3:
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_fnoise3_1(&b, srcs[0]); break;
case 2: result = nir_fnoise3_2(&b, srcs[0]); break;
case 3: result = nir_fnoise3_3(&b, srcs[0]); break;
case 4: result = nir_fnoise3_4(&b, srcs[0]); break;
default: unreachable("not reached");
}
break;
case 4:
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_fnoise4_1(&b, srcs[0]); break;
case 2: result = nir_fnoise4_2(&b, srcs[0]); break;
case 3: result = nir_fnoise4_3(&b, srcs[0]); break;
case 4: result = nir_fnoise4_4(&b, srcs[0]); break;
default: unreachable("not reached");
}
break;
default:
unreachable("not reached");
}
break;
case ir_unop_get_buffer_size: {
nir_intrinsic_instr *load = nir_intrinsic_instr_create(
this->shader,
nir_intrinsic_get_buffer_size);
load->num_components = ir->type->vector_elements;
load->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[0]));
unsigned bit_size = glsl_get_bit_size(ir->type);
add_instr(&load->instr, ir->type->vector_elements, bit_size);
return;
}
case ir_binop_add:
result = type_is_float(out_type) ? nir_fadd(&b, srcs[0], srcs[1])
: nir_iadd(&b, srcs[0], srcs[1]);
break;
case ir_binop_sub:
result = type_is_float(out_type) ? nir_fsub(&b, srcs[0], srcs[1])
: nir_isub(&b, srcs[0], srcs[1]);
break;
case ir_binop_mul:
result = type_is_float(out_type) ? nir_fmul(&b, srcs[0], srcs[1])
: nir_imul(&b, srcs[0], srcs[1]);
break;
case ir_binop_div:
if (type_is_float(out_type))
result = nir_fdiv(&b, srcs[0], srcs[1]);
else if (out_type == GLSL_TYPE_INT)
result = nir_idiv(&b, srcs[0], srcs[1]);
else
result = nir_udiv(&b, srcs[0], srcs[1]);
break;
case ir_binop_mod:
result = type_is_float(out_type) ? nir_fmod(&b, srcs[0], srcs[1])
: nir_umod(&b, srcs[0], srcs[1]);
break;
case ir_binop_min:
if (type_is_float(out_type))
result = nir_fmin(&b, srcs[0], srcs[1]);
else if (out_type == GLSL_TYPE_INT)
result = nir_imin(&b, srcs[0], srcs[1]);
else
result = nir_umin(&b, srcs[0], srcs[1]);
break;
case ir_binop_max:
if (type_is_float(out_type))
result = nir_fmax(&b, srcs[0], srcs[1]);
else if (out_type == GLSL_TYPE_INT)
result = nir_imax(&b, srcs[0], srcs[1]);
else
result = nir_umax(&b, srcs[0], srcs[1]);
break;
case ir_binop_pow: result = nir_fpow(&b, srcs[0], srcs[1]); break;
case ir_binop_bit_and: result = nir_iand(&b, srcs[0], srcs[1]); break;
case ir_binop_bit_or: result = nir_ior(&b, srcs[0], srcs[1]); break;
case ir_binop_bit_xor: result = nir_ixor(&b, srcs[0], srcs[1]); break;
case ir_binop_logic_and:
result = supports_ints ? nir_iand(&b, srcs[0], srcs[1])
: nir_fand(&b, srcs[0], srcs[1]);
break;
case ir_binop_logic_or:
result = supports_ints ? nir_ior(&b, srcs[0], srcs[1])
: nir_for(&b, srcs[0], srcs[1]);
break;
case ir_binop_logic_xor:
result = supports_ints ? nir_ixor(&b, srcs[0], srcs[1])
: nir_fxor(&b, srcs[0], srcs[1]);
break;
case ir_binop_lshift: result = nir_ishl(&b, srcs[0], srcs[1]); break;
case ir_binop_rshift:
result = (out_type == GLSL_TYPE_INT) ? nir_ishr(&b, srcs[0], srcs[1])
: nir_ushr(&b, srcs[0], srcs[1]);
break;
case ir_binop_imul_high:
result = (out_type == GLSL_TYPE_INT) ? nir_imul_high(&b, srcs[0], srcs[1])
: nir_umul_high(&b, srcs[0], srcs[1]);
break;
case ir_binop_carry: result = nir_uadd_carry(&b, srcs[0], srcs[1]); break;
case ir_binop_borrow: result = nir_usub_borrow(&b, srcs[0], srcs[1]); break;
case ir_binop_less:
if (supports_ints) {
if (type_is_float(types[0]))
result = nir_flt(&b, srcs[0], srcs[1]);
else if (types[0] == GLSL_TYPE_INT)
result = nir_ilt(&b, srcs[0], srcs[1]);
else
result = nir_ult(&b, srcs[0], srcs[1]);
} else {
result = nir_slt(&b, srcs[0], srcs[1]);
}
break;
case ir_binop_greater:
if (supports_ints) {
if (type_is_float(types[0]))
result = nir_flt(&b, srcs[1], srcs[0]);
else if (types[0] == GLSL_TYPE_INT)
result = nir_ilt(&b, srcs[1], srcs[0]);
else
result = nir_ult(&b, srcs[1], srcs[0]);
} else {
result = nir_slt(&b, srcs[1], srcs[0]);
}
break;
case ir_binop_lequal:
if (supports_ints) {
if (type_is_float(types[0]))
result = nir_fge(&b, srcs[1], srcs[0]);
else if (types[0] == GLSL_TYPE_INT)
result = nir_ige(&b, srcs[1], srcs[0]);
else
result = nir_uge(&b, srcs[1], srcs[0]);
} else {
result = nir_slt(&b, srcs[1], srcs[0]);
}
break;
case ir_binop_gequal:
if (supports_ints) {
if (type_is_float(types[0]))
result = nir_fge(&b, srcs[0], srcs[1]);
else if (types[0] == GLSL_TYPE_INT)
result = nir_ige(&b, srcs[0], srcs[1]);
else
result = nir_uge(&b, srcs[0], srcs[1]);
} else {
result = nir_slt(&b, srcs[0], srcs[1]);
}
break;
case ir_binop_equal:
if (supports_ints) {
if (type_is_float(types[0]))
result = nir_feq(&b, srcs[0], srcs[1]);
else
result = nir_ieq(&b, srcs[0], srcs[1]);
} else {
result = nir_seq(&b, srcs[0], srcs[1]);
}
break;
case ir_binop_nequal:
if (supports_ints) {
if (type_is_float(types[0]))
result = nir_fne(&b, srcs[0], srcs[1]);
else
result = nir_ine(&b, srcs[0], srcs[1]);
} else {
result = nir_sne(&b, srcs[0], srcs[1]);
}
break;
case ir_binop_all_equal:
if (supports_ints) {
if (type_is_float(types[0])) {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_feq(&b, srcs[0], srcs[1]); break;
case 2: result = nir_ball_fequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_ball_fequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_ball_fequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
} else {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_ieq(&b, srcs[0], srcs[1]); break;
case 2: result = nir_ball_iequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_ball_iequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_ball_iequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
}
} else {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_seq(&b, srcs[0], srcs[1]); break;
case 2: result = nir_fall_equal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_fall_equal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_fall_equal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
}
break;
case ir_binop_any_nequal:
if (supports_ints) {
if (type_is_float(types[0])) {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_fne(&b, srcs[0], srcs[1]); break;
case 2: result = nir_bany_fnequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_bany_fnequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_bany_fnequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
} else {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_ine(&b, srcs[0], srcs[1]); break;
case 2: result = nir_bany_inequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_bany_inequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_bany_inequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
}
} else {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_sne(&b, srcs[0], srcs[1]); break;
case 2: result = nir_fany_nequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_fany_nequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_fany_nequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
}
break;
case ir_binop_dot:
switch (ir->operands[0]->type->vector_elements) {
case 2: result = nir_fdot2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_fdot3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_fdot4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
break;
case ir_binop_ldexp: result = nir_ldexp(&b, srcs[0], srcs[1]); break;
case ir_triop_fma:
result = nir_ffma(&b, srcs[0], srcs[1], srcs[2]);
break;
case ir_triop_lrp:
result = nir_flrp(&b, srcs[0], srcs[1], srcs[2]);
break;
case ir_triop_csel:
if (supports_ints)
result = nir_bcsel(&b, srcs[0], srcs[1], srcs[2]);
else
result = nir_fcsel(&b, srcs[0], srcs[1], srcs[2]);
break;
case ir_triop_bitfield_extract:
result = (out_type == GLSL_TYPE_INT) ?
nir_ibitfield_extract(&b, srcs[0], srcs[1], srcs[2]) :
nir_ubitfield_extract(&b, srcs[0], srcs[1], srcs[2]);
break;
case ir_quadop_bitfield_insert:
result = nir_bitfield_insert(&b, srcs[0], srcs[1], srcs[2], srcs[3]);
break;
case ir_quadop_vector:
result = nir_vec(&b, srcs, ir->type->vector_elements);
break;
default:
unreachable("not reached");
}
}
void
nir_visitor::visit(ir_swizzle *ir)
{
unsigned swizzle[4] = { ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w };
result = nir_swizzle(&b, evaluate_rvalue(ir->val), swizzle,
ir->type->vector_elements, !supports_ints);
}
void
nir_visitor::visit(ir_texture *ir)
{
unsigned num_srcs;
nir_texop op;
switch (ir->op) {
case ir_tex:
op = nir_texop_tex;
num_srcs = 1; /* coordinate */
break;
case ir_txb:
case ir_txl:
op = (ir->op == ir_txb) ? nir_texop_txb : nir_texop_txl;
num_srcs = 2; /* coordinate, bias/lod */
break;
case ir_txd:
op = nir_texop_txd; /* coordinate, dPdx, dPdy */
num_srcs = 3;
break;
case ir_txf:
op = nir_texop_txf;
if (ir->lod_info.lod != NULL)
num_srcs = 2; /* coordinate, lod */
else
num_srcs = 1; /* coordinate */
break;
case ir_txf_ms:
op = nir_texop_txf_ms;
num_srcs = 2; /* coordinate, sample_index */
break;
case ir_txs:
op = nir_texop_txs;
if (ir->lod_info.lod != NULL)
num_srcs = 1; /* lod */
else
num_srcs = 0;
break;
case ir_lod:
op = nir_texop_lod;
num_srcs = 1; /* coordinate */
break;
case ir_tg4:
op = nir_texop_tg4;
num_srcs = 1; /* coordinate */
break;
case ir_query_levels:
op = nir_texop_query_levels;
num_srcs = 0;
break;
case ir_texture_samples:
op = nir_texop_texture_samples;
num_srcs = 0;
break;
case ir_samples_identical:
op = nir_texop_samples_identical;
num_srcs = 1; /* coordinate */
break;
default:
unreachable("not reached");
}
if (ir->projector != NULL)
num_srcs++;
if (ir->shadow_comparator != NULL)
num_srcs++;
if (ir->offset != NULL)
num_srcs++;
nir_tex_instr *instr = nir_tex_instr_create(this->shader, num_srcs);
instr->op = op;
instr->sampler_dim =
(glsl_sampler_dim) ir->sampler->type->sampler_dimensionality;
instr->is_array = ir->sampler->type->sampler_array;
instr->is_shadow = ir->sampler->type->sampler_shadow;
if (instr->is_shadow)
instr->is_new_style_shadow = (ir->type->vector_elements == 1);
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
instr->dest_type = nir_type_float;
break;
case GLSL_TYPE_INT:
instr->dest_type = nir_type_int;
break;
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT:
instr->dest_type = nir_type_uint;
break;
default:
unreachable("not reached");
}
instr->texture = evaluate_deref(&instr->instr, ir->sampler);
unsigned src_number = 0;
if (ir->coordinate != NULL) {
instr->coord_components = ir->coordinate->type->vector_elements;
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->coordinate));
instr->src[src_number].src_type = nir_tex_src_coord;
src_number++;
}
if (ir->projector != NULL) {
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->projector));
instr->src[src_number].src_type = nir_tex_src_projector;
src_number++;
}
if (ir->shadow_comparator != NULL) {
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->shadow_comparator));
instr->src[src_number].src_type = nir_tex_src_comparator;
src_number++;
}
if (ir->offset != NULL) {
/* we don't support multiple offsets yet */
assert(ir->offset->type->is_vector() || ir->offset->type->is_scalar());
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->offset));
instr->src[src_number].src_type = nir_tex_src_offset;
src_number++;
}
switch (ir->op) {
case ir_txb:
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->lod_info.bias));
instr->src[src_number].src_type = nir_tex_src_bias;
src_number++;
break;
case ir_txl:
case ir_txf:
case ir_txs:
if (ir->lod_info.lod != NULL) {
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->lod_info.lod));
instr->src[src_number].src_type = nir_tex_src_lod;
src_number++;
}
break;
case ir_txd:
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->lod_info.grad.dPdx));
instr->src[src_number].src_type = nir_tex_src_ddx;
src_number++;
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->lod_info.grad.dPdy));
instr->src[src_number].src_type = nir_tex_src_ddy;
src_number++;
break;
case ir_txf_ms:
instr->src[src_number].src =
nir_src_for_ssa(evaluate_rvalue(ir->lod_info.sample_index));
instr->src[src_number].src_type = nir_tex_src_ms_index;
src_number++;
break;
case ir_tg4:
instr->component = ir->lod_info.component->as_constant()->value.u[0];
break;
default:
break;
}
assert(src_number == num_srcs);
unsigned bit_size = glsl_get_bit_size(ir->type);
add_instr(&instr->instr, nir_tex_instr_dest_size(instr), bit_size);
}
void
nir_visitor::visit(ir_constant *ir)
{
/*
* We don't know if this variable is an array or struct that gets
* dereferenced, so do the safe thing an make it a variable with a
* constant initializer and return a dereference.
*/
nir_variable *var =
nir_local_variable_create(this->impl, ir->type, "const_temp");
var->data.read_only = true;
var->constant_initializer = constant_copy(ir, var);
this->deref_head = nir_deref_var_create(this->shader, var);
this->deref_tail = &this->deref_head->deref;
}
void
nir_visitor::visit(ir_dereference_variable *ir)
{
struct hash_entry *entry =
_mesa_hash_table_search(this->var_table, ir->var);
assert(entry);
nir_variable *var = (nir_variable *) entry->data;
nir_deref_var *deref = nir_deref_var_create(this->shader, var);
this->deref_head = deref;
this->deref_tail = &deref->deref;
}
void
nir_visitor::visit(ir_dereference_record *ir)
{
ir->record->accept(this);
int field_index = this->deref_tail->type->field_index(ir->field);
assert(field_index >= 0);
nir_deref_struct *deref = nir_deref_struct_create(this->deref_tail, field_index);
deref->deref.type = ir->type;
this->deref_tail->child = &deref->deref;
this->deref_tail = &deref->deref;
}
void
nir_visitor::visit(ir_dereference_array *ir)
{
nir_deref_array *deref = nir_deref_array_create(this->shader);
deref->deref.type = ir->type;
ir_constant *const_index = ir->array_index->as_constant();
if (const_index != NULL) {
deref->deref_array_type = nir_deref_array_type_direct;
deref->base_offset = const_index->value.u[0];
} else {
deref->deref_array_type = nir_deref_array_type_indirect;
deref->indirect =
nir_src_for_ssa(evaluate_rvalue(ir->array_index));
}
ir->array->accept(this);
this->deref_tail->child = &deref->deref;
ralloc_steal(this->deref_tail, deref);
this->deref_tail = &deref->deref;
}
void
nir_visitor::visit(ir_barrier *)
{
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(this->shader, nir_intrinsic_barrier);
nir_builder_instr_insert(&b, &instr->instr);
}