blob: 022f9e2f7a23ad2651738e7e3a601df2ea71124f [file] [log] [blame]
/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
/** @file nir_lower_io_to_vector.c
*
* Merges compatible input/output variables residing in different components
* of the same location. It's expected that further passes such as
* nir_lower_io_to_temporaries will combine loads and stores of the merged
* variables, producing vector nir_load_input/nir_store_output instructions
* when all is said and done.
*/
/* FRAG_RESULT_MAX+1 instead of just FRAG_RESULT_MAX because of how this pass
* handles dual source blending */
#define MAX_SLOTS MAX2(VARYING_SLOT_TESS_MAX, FRAG_RESULT_MAX+1)
static unsigned
get_slot(const nir_variable *var)
{
/* This handling of dual-source blending might not be correct when more than
* one render target is supported, but it seems no driver supports more than
* one. */
return var->data.location + var->data.index;
}
static const struct glsl_type *
get_per_vertex_type(const nir_shader *shader, const nir_variable *var,
unsigned *num_vertices)
{
if (nir_is_per_vertex_io(var, shader->info.stage)) {
assert(glsl_type_is_array(var->type));
if (num_vertices)
*num_vertices = glsl_get_length(var->type);
return glsl_get_array_element(var->type);
} else {
if (num_vertices)
*num_vertices = 0;
return var->type;
}
}
static const struct glsl_type *
resize_array_vec_type(const struct glsl_type *type, unsigned num_components)
{
if (glsl_type_is_array(type)) {
const struct glsl_type *arr_elem =
resize_array_vec_type(glsl_get_array_element(type), num_components);
return glsl_array_type(arr_elem, glsl_get_length(type), 0);
} else {
assert(glsl_type_is_vector_or_scalar(type));
return glsl_vector_type(glsl_get_base_type(type), num_components);
}
}
static bool
variables_can_merge(const nir_shader *shader,
const nir_variable *a, const nir_variable *b,
bool same_array_structure)
{
if (a->data.compact || b->data.compact)
return false;
if (a->data.per_view || b->data.per_view)
return false;
const struct glsl_type *a_type_tail = a->type;
const struct glsl_type *b_type_tail = b->type;
if (nir_is_per_vertex_io(a, shader->info.stage) !=
nir_is_per_vertex_io(b, shader->info.stage))
return false;
/* They must have the same array structure */
if (same_array_structure) {
while (glsl_type_is_array(a_type_tail)) {
if (!glsl_type_is_array(b_type_tail))
return false;
if (glsl_get_length(a_type_tail) != glsl_get_length(b_type_tail))
return false;
a_type_tail = glsl_get_array_element(a_type_tail);
b_type_tail = glsl_get_array_element(b_type_tail);
}
if (glsl_type_is_array(b_type_tail))
return false;
} else {
a_type_tail = glsl_without_array(a_type_tail);
b_type_tail = glsl_without_array(b_type_tail);
}
if (!glsl_type_is_vector_or_scalar(a_type_tail) ||
!glsl_type_is_vector_or_scalar(b_type_tail))
return false;
if (glsl_get_base_type(a_type_tail) != glsl_get_base_type(b_type_tail))
return false;
/* TODO: add 64/16bit support ? */
if (glsl_get_bit_size(a_type_tail) != 32)
return false;
assert(a->data.mode == b->data.mode);
if (shader->info.stage == MESA_SHADER_FRAGMENT &&
a->data.mode == nir_var_shader_in &&
a->data.interpolation != b->data.interpolation)
return false;
if (shader->info.stage == MESA_SHADER_FRAGMENT &&
a->data.mode == nir_var_shader_out &&
a->data.index != b->data.index)
return false;
/* It's tricky to merge XFB-outputs correctly, because we need there
* to not be any overlaps when we get to
* nir_gather_xfb_info_with_varyings later on. We'll end up
* triggering an assert there if we merge here.
*/
if ((shader->info.stage == MESA_SHADER_VERTEX ||
shader->info.stage == MESA_SHADER_TESS_EVAL ||
shader->info.stage == MESA_SHADER_GEOMETRY) &&
a->data.mode == nir_var_shader_out &&
(a->data.explicit_xfb_buffer || b->data.explicit_xfb_buffer))
return false;
return true;
}
static const struct glsl_type *
get_flat_type(const nir_shader *shader, nir_variable *old_vars[MAX_SLOTS][4],
unsigned *loc, nir_variable **first_var, unsigned *num_vertices)
{
unsigned todo = 1;
unsigned slots = 0;
unsigned num_vars = 0;
enum glsl_base_type base;
*num_vertices = 0;
*first_var = NULL;
while (todo) {
assert(*loc < MAX_SLOTS);
for (unsigned frac = 0; frac < 4; frac++) {
nir_variable *var = old_vars[*loc][frac];
if (!var)
continue;
if ((*first_var &&
!variables_can_merge(shader, var, *first_var, false)) ||
var->data.compact) {
(*loc)++;
return NULL;
}
if (!*first_var) {
if (!glsl_type_is_vector_or_scalar(glsl_without_array(var->type))) {
(*loc)++;
return NULL;
}
*first_var = var;
base = glsl_get_base_type(
glsl_without_array(get_per_vertex_type(shader, var, NULL)));
}
bool vs_in = shader->info.stage == MESA_SHADER_VERTEX &&
var->data.mode == nir_var_shader_in;
unsigned var_slots = glsl_count_attribute_slots(
get_per_vertex_type(shader, var, num_vertices), vs_in);
todo = MAX2(todo, var_slots);
num_vars++;
}
todo--;
slots++;
(*loc)++;
}
if (num_vars <= 1)
return NULL;
if (slots == 1)
return glsl_vector_type(base, 4);
else
return glsl_array_type(glsl_vector_type(base, 4), slots, 0);
}
static bool
create_new_io_vars(nir_shader *shader, nir_variable_mode mode,
nir_variable *new_vars[MAX_SLOTS][4],
bool flat_vars[MAX_SLOTS])
{
nir_variable *old_vars[MAX_SLOTS][4] = {{0}};
bool has_io_var = false;
nir_foreach_variable_with_modes(var, shader, mode) {
unsigned frac = var->data.location_frac;
old_vars[get_slot(var)][frac] = var;
has_io_var = true;
}
if (!has_io_var)
return false;
bool merged_any_vars = false;
for (unsigned loc = 0; loc < MAX_SLOTS; loc++) {
unsigned frac = 0;
while (frac < 4) {
nir_variable *first_var = old_vars[loc][frac];
if (!first_var) {
frac++;
continue;
}
int first = frac;
bool found_merge = false;
while (frac < 4) {
nir_variable *var = old_vars[loc][frac];
if (!var)
break;
if (var != first_var) {
if (!variables_can_merge(shader, first_var, var, true))
break;
found_merge = true;
}
const unsigned num_components =
glsl_get_components(glsl_without_array(var->type));
if (!num_components) {
assert(frac == 0);
frac++;
break; /* The type was a struct. */
}
/* We had better not have any overlapping vars */
for (unsigned i = 1; i < num_components; i++)
assert(old_vars[loc][frac + i] == NULL);
frac += num_components;
}
if (!found_merge)
continue;
merged_any_vars = true;
nir_variable *var = nir_variable_clone(old_vars[loc][first], shader);
var->data.location_frac = first;
var->type = resize_array_vec_type(var->type, frac - first);
nir_shader_add_variable(shader, var);
for (unsigned i = first; i < frac; i++) {
new_vars[loc][i] = var;
old_vars[loc][i] = NULL;
}
old_vars[loc][first] = var;
}
}
/* "flat" mode: tries to ensure there is at most one variable per slot by
* merging variables into vec4s
*/
for (unsigned loc = 0; loc < MAX_SLOTS;) {
nir_variable *first_var;
unsigned num_vertices;
unsigned new_loc = loc;
const struct glsl_type *flat_type =
get_flat_type(shader, old_vars, &new_loc, &first_var, &num_vertices);
if (flat_type) {
merged_any_vars = true;
nir_variable *var = nir_variable_clone(first_var, shader);
var->data.location_frac = 0;
if (num_vertices)
var->type = glsl_array_type(flat_type, num_vertices, 0);
else
var->type = flat_type;
nir_shader_add_variable(shader, var);
for (unsigned i = 0; i < glsl_get_length(flat_type); i++) {
for (unsigned j = 0; j < 4; j++)
new_vars[loc + i][j] = var;
flat_vars[loc + i] = true;
}
}
loc = new_loc;
}
return merged_any_vars;
}
static nir_deref_instr *
build_array_deref_of_new_var(nir_builder *b, nir_variable *new_var,
nir_deref_instr *leader)
{
if (leader->deref_type == nir_deref_type_var)
return nir_build_deref_var(b, new_var);
nir_deref_instr *parent =
build_array_deref_of_new_var(b, new_var, nir_deref_instr_parent(leader));
return nir_build_deref_follower(b, parent, leader);
}
static nir_ssa_def *
build_array_index(nir_builder *b, nir_deref_instr *deref, nir_ssa_def *base,
bool vs_in)
{
switch (deref->deref_type) {
case nir_deref_type_var:
return base;
case nir_deref_type_array: {
nir_ssa_def *index = nir_i2i(b, deref->arr.index.ssa,
deref->dest.ssa.bit_size);
return nir_iadd(
b, build_array_index(b, nir_deref_instr_parent(deref), base, vs_in),
nir_amul_imm(b, index, glsl_count_attribute_slots(deref->type, vs_in)));
}
default:
unreachable("Invalid deref instruction type");
}
}
static nir_deref_instr *
build_array_deref_of_new_var_flat(nir_shader *shader,
nir_builder *b, nir_variable *new_var,
nir_deref_instr *leader, unsigned base)
{
nir_deref_instr *deref = nir_build_deref_var(b, new_var);
if (nir_is_per_vertex_io(new_var, shader->info.stage)) {
assert(leader->deref_type == nir_deref_type_array);
nir_ssa_def *index = leader->arr.index.ssa;
leader = nir_deref_instr_parent(leader);
deref = nir_build_deref_array(b, deref, index);
}
if (!glsl_type_is_array(deref->type))
return deref;
bool vs_in = shader->info.stage == MESA_SHADER_VERTEX &&
new_var->data.mode == nir_var_shader_in;
return nir_build_deref_array(
b, deref, build_array_index(b, leader, nir_imm_int(b, base), vs_in));
}
static bool
nir_lower_io_to_vector_impl(nir_function_impl *impl, nir_variable_mode modes)
{
assert(!(modes & ~(nir_var_shader_in | nir_var_shader_out)));
nir_builder b;
nir_builder_init(&b, impl);
nir_metadata_require(impl, nir_metadata_dominance);
nir_shader *shader = impl->function->shader;
nir_variable *new_inputs[MAX_SLOTS][4] = {{0}};
nir_variable *new_outputs[MAX_SLOTS][4] = {{0}};
bool flat_inputs[MAX_SLOTS] = {0};
bool flat_outputs[MAX_SLOTS] = {0};
if (modes & nir_var_shader_in) {
/* Vertex shaders support overlapping inputs. We don't do those */
assert(b.shader->info.stage != MESA_SHADER_VERTEX);
/* If we don't actually merge any variables, remove that bit from modes
* so we don't bother doing extra non-work.
*/
if (!create_new_io_vars(shader, nir_var_shader_in,
new_inputs, flat_inputs))
modes &= ~nir_var_shader_in;
}
if (modes & nir_var_shader_out) {
/* If we don't actually merge any variables, remove that bit from modes
* so we don't bother doing extra non-work.
*/
if (!create_new_io_vars(shader, nir_var_shader_out,
new_outputs, flat_outputs))
modes &= ~nir_var_shader_out;
}
if (!modes)
return false;
bool progress = false;
/* Actually lower all the IO load/store intrinsics. Load instructions are
* lowered to a vector load and an ALU instruction to grab the channels we
* want. Outputs are lowered to a write-masked store of the vector output.
* For non-TCS outputs, we then run nir_lower_io_to_temporaries at the end
* to clean up the partial writes.
*/
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_interp_deref_at_centroid:
case nir_intrinsic_interp_deref_at_sample:
case nir_intrinsic_interp_deref_at_offset:
case nir_intrinsic_interp_deref_at_vertex: {
nir_deref_instr *old_deref = nir_src_as_deref(intrin->src[0]);
if (!(old_deref->mode & modes))
break;
if (old_deref->mode == nir_var_shader_out)
assert(b.shader->info.stage == MESA_SHADER_TESS_CTRL ||
b.shader->info.stage == MESA_SHADER_FRAGMENT);
nir_variable *old_var = nir_deref_instr_get_variable(old_deref);
const unsigned loc = get_slot(old_var);
const unsigned old_frac = old_var->data.location_frac;
nir_variable *new_var = old_deref->mode == nir_var_shader_in ?
new_inputs[loc][old_frac] :
new_outputs[loc][old_frac];
bool flat = old_deref->mode == nir_var_shader_in ?
flat_inputs[loc] : flat_outputs[loc];
if (!new_var)
break;
const unsigned new_frac = new_var->data.location_frac;
nir_component_mask_t vec4_comp_mask =
((1 << intrin->num_components) - 1) << old_frac;
b.cursor = nir_before_instr(&intrin->instr);
/* Rewrite the load to use the new variable and only select a
* portion of the result.
*/
nir_deref_instr *new_deref;
if (flat) {
new_deref = build_array_deref_of_new_var_flat(
shader, &b, new_var, old_deref, loc - get_slot(new_var));
} else {
assert(get_slot(new_var) == loc);
new_deref = build_array_deref_of_new_var(&b, new_var, old_deref);
assert(glsl_type_is_vector(new_deref->type));
}
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(&new_deref->dest.ssa));
intrin->num_components =
glsl_get_components(new_deref->type);
intrin->dest.ssa.num_components = intrin->num_components;
b.cursor = nir_after_instr(&intrin->instr);
nir_ssa_def *new_vec = nir_channels(&b, &intrin->dest.ssa,
vec4_comp_mask >> new_frac);
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
nir_src_for_ssa(new_vec),
new_vec->parent_instr);
progress = true;
break;
}
case nir_intrinsic_store_deref: {
nir_deref_instr *old_deref = nir_src_as_deref(intrin->src[0]);
if (old_deref->mode != nir_var_shader_out)
break;
nir_variable *old_var = nir_deref_instr_get_variable(old_deref);
const unsigned loc = get_slot(old_var);
const unsigned old_frac = old_var->data.location_frac;
nir_variable *new_var = new_outputs[loc][old_frac];
bool flat = flat_outputs[loc];
if (!new_var)
break;
const unsigned new_frac = new_var->data.location_frac;
b.cursor = nir_before_instr(&intrin->instr);
/* Rewrite the store to be a masked store to the new variable */
nir_deref_instr *new_deref;
if (flat) {
new_deref = build_array_deref_of_new_var_flat(
shader, &b, new_var, old_deref, loc - get_slot(new_var));
} else {
assert(get_slot(new_var) == loc);
new_deref = build_array_deref_of_new_var(&b, new_var, old_deref);
assert(glsl_type_is_vector(new_deref->type));
}
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(&new_deref->dest.ssa));
intrin->num_components =
glsl_get_components(new_deref->type);
nir_component_mask_t old_wrmask = nir_intrinsic_write_mask(intrin);
assert(intrin->src[1].is_ssa);
nir_ssa_def *old_value = intrin->src[1].ssa;
nir_ssa_def *comps[4];
for (unsigned c = 0; c < intrin->num_components; c++) {
if (new_frac + c >= old_frac &&
(old_wrmask & 1 << (new_frac + c - old_frac))) {
comps[c] = nir_channel(&b, old_value,
new_frac + c - old_frac);
} else {
comps[c] = nir_ssa_undef(&b, old_value->num_components,
old_value->bit_size);
}
}
nir_ssa_def *new_value = nir_vec(&b, comps, intrin->num_components);
nir_instr_rewrite_src(&intrin->instr, &intrin->src[1],
nir_src_for_ssa(new_value));
nir_intrinsic_set_write_mask(intrin,
old_wrmask << (old_frac - new_frac));
progress = true;
break;
}
default:
break;
}
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
return progress;
}
bool
nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode modes)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl)
progress |= nir_lower_io_to_vector_impl(function->impl, modes);
}
return progress;
}