blob: 8f37c2bfb67577988c4c144e25e85918fd914fea [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_helper.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include <llvm-c/Support.h>
#include "sid.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "ac_rtld.h"
#include "vk_format.h"
#include "util/debug.h"
#include "ac_exp_param.h"
#include "util/string_buffer.h"
static const struct nir_shader_compiler_options nir_options = {
.vertex_id_zero_based = true,
.lower_scmp = true,
.lower_flrp16 = true,
.lower_flrp32 = true,
.lower_flrp64 = true,
.lower_device_index_to_zero = true,
.lower_fsat = true,
.lower_fdiv = true,
.lower_bitfield_insert_to_bitfield_select = true,
.lower_bitfield_extract = true,
.lower_sub = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_snorm_4x8 = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_unpack_snorm_2x16 = true,
.lower_unpack_snorm_4x8 = true,
.lower_unpack_unorm_2x16 = true,
.lower_unpack_unorm_4x8 = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_ffma = true,
.lower_fpow = true,
.lower_mul_2x32_64 = true,
.lower_rotate = true,
.max_unroll_iterations = 32,
.use_interpolated_input_intrinsics = true,
};
VkResult radv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = radv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void radv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
void
radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
bool allow_copies)
{
bool progress;
unsigned lower_flrp =
(shader->options->lower_flrp16 ? 16 : 0) |
(shader->options->lower_flrp32 ? 32 : 0) |
(shader->options->lower_flrp64 ? 64 : 0);
do {
progress = false;
NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
NIR_PASS_V(shader, nir_lower_vars_to_ssa);
NIR_PASS_V(shader, nir_lower_pack);
if (allow_copies) {
/* Only run this pass in the first call to
* radv_optimize_nir. Later calls assume that we've
* lowered away any copy_deref instructions and we
* don't want to introduce any more.
*/
NIR_PASS(progress, shader, nir_opt_find_array_copies);
}
NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
NIR_PASS(progress, shader, nir_opt_dead_write_vars);
NIR_PASS_V(shader, nir_lower_alu_to_scalar, NULL);
NIR_PASS_V(shader, nir_lower_phis_to_scalar);
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
if (nir_opt_trivial_continues(shader)) {
progress = true;
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
}
NIR_PASS(progress, shader, nir_opt_if, true);
NIR_PASS(progress, shader, nir_opt_dead_cf);
NIR_PASS(progress, shader, nir_opt_cse);
NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
NIR_PASS(progress, shader, nir_opt_constant_folding);
NIR_PASS(progress, shader, nir_opt_algebraic);
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress,
shader,
nir_lower_flrp,
lower_flrp,
false /* always_precise */,
shader->options->lower_ffma);
if (lower_flrp_progress) {
NIR_PASS(progress, shader,
nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, shader, nir_opt_undef);
NIR_PASS(progress, shader, nir_opt_conditional_discard);
if (shader->options->max_unroll_iterations) {
NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
}
} while (progress && !optimize_conservatively);
NIR_PASS(progress, shader, nir_opt_shrink_load);
NIR_PASS(progress, shader, nir_opt_move_load_ubo);
}
nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
struct radv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
const VkPipelineCreateFlags flags,
const struct radv_pipeline_layout *layout)
{
nir_shader *nir;
if (module->nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader */
nir = module->nir;
nir->options = &nir_options;
nir_validate_shader(nir, "in internal shader");
assert(exec_list_length(&nir->functions) == 1);
} else {
uint32_t *spirv = (uint32_t *) module->data;
assert(module->size % 4 == 0);
if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
radv_print_spirv(spirv, module->size, stderr);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
const struct spirv_to_nir_options spirv_options = {
.lower_ubo_ssbo_access_to_offsets = true,
.caps = {
.amd_gcn_shader = true,
.amd_shader_ballot = device->instance->perftest_flags & RADV_PERFTEST_SHADER_BALLOT,
.amd_trinary_minmax = true,
.derivative_group = true,
.descriptor_array_dynamic_indexing = true,
.descriptor_array_non_uniform_indexing = true,
.descriptor_indexing = true,
.device_group = true,
.draw_parameters = true,
.float16 = true,
.float64 = true,
.geometry_streams = true,
.image_read_without_format = true,
.image_write_without_format = true,
.int8 = true,
.int16 = true,
.int64 = true,
.int64_atomics = true,
.multiview = true,
.physical_storage_buffer_address = true,
.runtime_descriptor_array = true,
.shader_viewport_index_layer = true,
.stencil_export = true,
.storage_8bit = true,
.storage_16bit = true,
.storage_image_ms = true,
.subgroup_arithmetic = true,
.subgroup_ballot = true,
.subgroup_basic = true,
.subgroup_quad = true,
.subgroup_shuffle = true,
.subgroup_vote = true,
.tessellation = true,
.transform_feedback = true,
.variable_pointers = true,
},
.ubo_addr_format = nir_address_format_32bit_index_offset,
.ssbo_addr_format = nir_address_format_32bit_index_offset,
.phys_ssbo_addr_format = nir_address_format_64bit_global,
.push_const_addr_format = nir_address_format_logical,
.shared_addr_format = nir_address_format_32bit_offset,
.frag_coord_is_sysval = true,
};
nir = spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name,
&spirv_options, &nir_options);
assert(nir->info.stage == stage);
nir_validate_shader(nir, "after spirv_to_nir");
free(spec_entries);
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
NIR_PASS_V(nir, nir_opt_deref);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func->is_entrypoint)
func->name = ralloc_strdup(func, "main");
else
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
/* Make sure we lower constant initializers on output variables so that
* nir_remove_dead_variables below sees the corresponding stores
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
/* Split member structs. We do this before lower_io_to_temporaries so that
* it doesn't lower system values to temporaries by accident.
*/
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_split_per_member_structs);
if (nir->info.stage == MESA_SHADER_FRAGMENT)
NIR_PASS_V(nir, nir_lower_input_attachments, true);
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
NIR_PASS_V(nir, nir_lower_system_values);
NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout);
}
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
static const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
.lower_tg4_offsets = true,
};
nir_lower_tex(nir, &tex_options);
nir_lower_vars_to_ssa(nir);
if (nir->info.stage == MESA_SHADER_VERTEX ||
nir->info.stage == MESA_SHADER_GEOMETRY ||
nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
nir_shader_get_entrypoint(nir), true, true);
} else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
nir_shader_get_entrypoint(nir), true, false);
}
nir_split_var_copies(nir);
nir_lower_global_vars_to_local(nir);
nir_remove_dead_variables(nir, nir_var_function_temp);
nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
.subgroup_size = 64,
.ballot_bit_size = 64,
.lower_to_scalar = 1,
.lower_subgroup_masks = 1,
.lower_shuffle = 1,
.lower_shuffle_to_32bit = 1,
.lower_vote_eq_to_ballot = 1,
});
nir_lower_load_const_to_scalar(nir);
if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
radv_optimize_nir(nir, false, true);
/* We call nir_lower_var_copies() after the first radv_optimize_nir()
* to remove any copies introduced by nir_opt_find_array_copies().
*/
nir_lower_var_copies(nir);
/* Indirect lowering must be called after the radv_optimize_nir() loop
* has been called at least once. Otherwise indirect lowering can
* bloat the instruction count of the loop and cause it to be
* considered too large for unrolling.
*/
ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);
return nir;
}
static void mark_16bit_fs_input(struct radv_shader_variant_info *shader_info,
const struct glsl_type *type,
int location)
{
if (glsl_type_is_scalar(type) || glsl_type_is_vector(type) || glsl_type_is_matrix(type)) {
unsigned attrib_count = glsl_count_attribute_slots(type, false);
if (glsl_type_is_16bit(type)) {
shader_info->fs.float16_shaded_mask |= ((1ull << attrib_count) - 1) << location;
}
} else if (glsl_type_is_array(type)) {
unsigned stride = glsl_count_attribute_slots(glsl_get_array_element(type), false);
for (unsigned i = 0; i < glsl_get_length(type); ++i) {
mark_16bit_fs_input(shader_info, glsl_get_array_element(type), location + i * stride);
}
} else {
assert(glsl_type_is_struct_or_ifc(type));
for (unsigned i = 0; i < glsl_get_length(type); i++) {
mark_16bit_fs_input(shader_info, glsl_get_struct_field(type, i), location);
location += glsl_count_attribute_slots(glsl_get_struct_field(type, i), false);
}
}
}
static void
handle_fs_input_decl(struct radv_shader_variant_info *shader_info,
struct nir_variable *variable)
{
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
if (variable->data.compact) {
unsigned component_count = variable->data.location_frac +
glsl_get_length(variable->type);
attrib_count = (component_count + 3) / 4;
} else {
mark_16bit_fs_input(shader_info, variable->type,
variable->data.driver_location);
}
uint64_t mask = ((1ull << attrib_count) - 1);
if (variable->data.interpolation == INTERP_MODE_FLAT)
shader_info->fs.flat_shaded_mask |= mask << variable->data.driver_location;
if (variable->data.location >= VARYING_SLOT_VAR0)
shader_info->fs.input_mask |= mask << (variable->data.location - VARYING_SLOT_VAR0);
}
static int
type_size_vec4(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static nir_variable *
find_layer_in_var(nir_shader *nir)
{
nir_foreach_variable(var, &nir->inputs) {
if (var->data.location == VARYING_SLOT_LAYER) {
return var;
}
}
nir_variable *var =
nir_variable_create(nir, nir_var_shader_in, glsl_int_type(), "layer id");
var->data.location = VARYING_SLOT_LAYER;
var->data.interpolation = INTERP_MODE_FLAT;
return var;
}
/* We use layered rendering to implement multiview, which means we need to map
* view_index to gl_Layer. The attachment lowering also uses needs to know the
* layer so that it can sample from the correct layer. The code generates a
* load from the layer_id sysval, but since we don't have a way to get at this
* information from the fragment shader, we also need to lower this to the
* gl_Layer varying. This pass lowers both to a varying load from the LAYER
* slot, before lowering io, so that nir_assign_var_locations() will give the
* LAYER varying the correct driver_location.
*/
static bool
lower_view_index(nir_shader *nir)
{
bool progress = false;
nir_function_impl *entry = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, entry);
nir_variable *layer = NULL;
nir_foreach_block(block, entry) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
if (load->intrinsic != nir_intrinsic_load_view_index &&
load->intrinsic != nir_intrinsic_load_layer_id)
continue;
if (!layer)
layer = find_layer_in_var(nir);
b.cursor = nir_before_instr(instr);
nir_ssa_def *def = nir_load_var(&b, layer);
nir_ssa_def_rewrite_uses(&load->dest.ssa,
nir_src_for_ssa(def));
nir_instr_remove(instr);
progress = true;
}
}
return progress;
}
/* Gather information needed to setup the vs<->ps linking registers in
* radv_pipeline_generate_ps_inputs().
*/
static void
handle_fs_inputs(nir_shader *nir, struct radv_shader_variant_info *shader_info)
{
shader_info->fs.num_interp = nir->num_inputs;
nir_foreach_variable(variable, &nir->inputs)
handle_fs_input_decl(shader_info, variable);
}
static void
lower_fs_io(nir_shader *nir, struct radv_shader_variant_info *shader_info)
{
NIR_PASS_V(nir, lower_view_index);
nir_assign_io_var_locations(&nir->inputs, &nir->num_inputs,
MESA_SHADER_FRAGMENT);
handle_fs_inputs(nir, shader_info);
NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in, type_size_vec4, 0);
/* This pass needs actual constants */
nir_opt_constant_folding(nir);
NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
}
void *
radv_alloc_shader_memory(struct radv_device *device,
struct radv_shader_variant *shader)
{
mtx_lock(&device->shader_slab_mutex);
list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
uint64_t offset = 0;
list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
if (s->bo_offset - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &s->slab_list);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
offset = align_u64(s->bo_offset + s->code_size, 256);
}
if (slab->size - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
}
mtx_unlock(&device->shader_slab_mutex);
struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
slab->size = 256 * 1024;
slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_INTERPROCESS_SHARING |
(device->physical_device->cpdma_prefetch_writes_memory ?
0 : RADEON_FLAG_READ_ONLY),
RADV_BO_PRIORITY_SHADER);
slab->ptr = (char*)device->ws->buffer_map(slab->bo);
list_inithead(&slab->shaders);
mtx_lock(&device->shader_slab_mutex);
list_add(&slab->slabs, &device->shader_slabs);
shader->bo = slab->bo;
shader->bo_offset = 0;
list_add(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr;
}
void
radv_destroy_shader_slabs(struct radv_device *device)
{
list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
device->ws->buffer_destroy(slab->bo);
free(slab);
}
mtx_destroy(&device->shader_slab_mutex);
}
/* For the UMR disassembler. */
#define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
#define DEBUGGER_NUM_MARKERS 5
static unsigned
radv_get_shader_binary_size(size_t code_size)
{
return code_size + DEBUGGER_NUM_MARKERS * 4;
}
static void radv_postprocess_config(const struct radv_physical_device *pdevice,
const struct ac_shader_config *config_in,
const struct radv_shader_variant_info *info,
gl_shader_stage stage,
struct ac_shader_config *config_out)
{
bool scratch_enabled = config_in->scratch_bytes_per_wave > 0;
unsigned vgpr_comp_cnt = 0;
unsigned num_input_vgprs = info->num_input_vgprs;
if (stage == MESA_SHADER_FRAGMENT) {
num_input_vgprs = 0;
if (G_0286CC_PERSP_SAMPLE_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTER_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTROID_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_PERSP_PULL_MODEL_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 3;
if (G_0286CC_LINEAR_SAMPLE_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTER_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTROID_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 2;
if (G_0286CC_LINE_STIPPLE_TEX_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_X_FLOAT_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_Y_FLOAT_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_Z_FLOAT_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_W_FLOAT_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_FRONT_FACE_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_ANCILLARY_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_SAMPLE_COVERAGE_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
if (G_0286CC_POS_FIXED_PT_ENA(config_in->spi_ps_input_addr))
num_input_vgprs += 1;
}
unsigned num_vgprs = MAX2(config_in->num_vgprs, num_input_vgprs);
/* +3 for scratch wave offset and VCC */
unsigned num_sgprs = MAX2(config_in->num_sgprs, info->num_input_sgprs + 3);
*config_out = *config_in;
config_out->num_vgprs = num_vgprs;
config_out->num_sgprs = num_sgprs;
/* Enable 64-bit and 16-bit denormals, because there is no performance
* cost.
*
* If denormals are enabled, all floating-point output modifiers are
* ignored.
*
* Don't enable denormals for 32-bit floats, because:
* - Floating-point output modifiers would be ignored by the hw.
* - Some opcodes don't support denormals, such as v_mad_f32. We would
* have to stop using those.
* - GFX6 & GFX7 would be very slow.
*/
config_out->float_mode |= V_00B028_FP_64_DENORMS;
config_out->rsrc2 = S_00B12C_USER_SGPR(info->num_user_sgprs) |
S_00B12C_SCRATCH_EN(scratch_enabled);
config_out->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / 4) |
S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(config_out->float_mode);
if (pdevice->rad_info.chip_class >= GFX10) {
config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(info->num_user_sgprs >> 5);
} else {
config_out->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8);
config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(info->num_user_sgprs >> 5) |
S_00B12C_SO_BASE0_EN(!!info->info.so.strides[0]) |
S_00B12C_SO_BASE1_EN(!!info->info.so.strides[1]) |
S_00B12C_SO_BASE2_EN(!!info->info.so.strides[2]) |
S_00B12C_SO_BASE3_EN(!!info->info.so.strides[3]) |
S_00B12C_SO_EN(!!info->info.so.num_outputs);
}
switch (stage) {
case MESA_SHADER_TESS_EVAL:
if (info->is_ngg) {
config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
config_out->rsrc2 |= S_00B22C_OC_LDS_EN(1);
} else if (info->tes.as_es) {
assert(pdevice->rad_info.chip_class <= GFX8);
vgpr_comp_cnt = info->info.uses_prim_id ? 3 : 2;
config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
} else {
bool enable_prim_id = info->tes.export_prim_id || info->info.uses_prim_id;
vgpr_comp_cnt = enable_prim_id ? 3 : 2;
config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
}
break;
case MESA_SHADER_TESS_CTRL:
if (pdevice->rad_info.chip_class >= GFX9) {
/* We need at least 2 components for LS.
* VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
* StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
*/
if (pdevice->rad_info.chip_class >= GFX10) {
vgpr_comp_cnt = info->info.vs.needs_instance_id ? 3 : 1;
} else {
vgpr_comp_cnt = info->info.vs.needs_instance_id ? 2 : 1;
}
} else {
config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
}
config_out->rsrc1 |= S_00B428_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
break;
case MESA_SHADER_VERTEX:
if (info->is_ngg) {
config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
} else if (info->vs.as_ls) {
assert(pdevice->rad_info.chip_class <= GFX8);
/* We need at least 2 components for LS.
* VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
* StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
*/
vgpr_comp_cnt = info->info.vs.needs_instance_id ? 2 : 1;
} else if (info->vs.as_es) {
assert(pdevice->rad_info.chip_class <= GFX8);
/* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
vgpr_comp_cnt = info->info.vs.needs_instance_id ? 1 : 0;
} else {
/* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
* If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
* StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
*/
if (info->vs.export_prim_id) {
vgpr_comp_cnt = 2;
} else if (info->info.vs.needs_instance_id) {
vgpr_comp_cnt = 1;
} else {
vgpr_comp_cnt = 0;
}
config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
}
break;
case MESA_SHADER_FRAGMENT:
config_out->rsrc1 |= S_00B028_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
break;
case MESA_SHADER_GEOMETRY:
config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
break;
case MESA_SHADER_COMPUTE:
config_out->rsrc1 |= S_00B848_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
config_out->rsrc2 |=
S_00B84C_TGID_X_EN(info->info.cs.uses_block_id[0]) |
S_00B84C_TGID_Y_EN(info->info.cs.uses_block_id[1]) |
S_00B84C_TGID_Z_EN(info->info.cs.uses_block_id[2]) |
S_00B84C_TIDIG_COMP_CNT(info->info.cs.uses_thread_id[2] ? 2 :
info->info.cs.uses_thread_id[1] ? 1 : 0) |
S_00B84C_TG_SIZE_EN(info->info.cs.uses_local_invocation_idx) |
S_00B84C_LDS_SIZE(config_in->lds_size);
break;
default:
unreachable("unsupported shader type");
break;
}
if (pdevice->rad_info.chip_class >= GFX10 &&
(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY)) {
unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
gl_shader_stage es_stage = stage;
if (stage == MESA_SHADER_GEOMETRY)
es_stage = info->gs.es_type;
/* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */
if (es_stage == MESA_SHADER_VERTEX) {
es_vgpr_comp_cnt = info->info.vs.needs_instance_id ? 3 : 0;
} else if (es_stage == MESA_SHADER_TESS_EVAL) {
bool enable_prim_id = info->tes.export_prim_id || info->info.uses_prim_id;
es_vgpr_comp_cnt = enable_prim_id ? 3 : 2;
}
bool tes_triangles = stage == MESA_SHADER_TESS_EVAL &&
info->tes.primitive_mode >= 4; /* GL_TRIANGLES */
if (info->info.uses_invocation_id || stage == MESA_SHADER_VERTEX) {
gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
} else if (info->info.uses_prim_id) {
gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
} else if (info->gs.vertices_in >= 3 || tes_triangles) {
gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
} else {
gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
}
config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
S_00B22C_LDS_SIZE(config_in->lds_size);
} else if (pdevice->rad_info.chip_class >= GFX9 &&
stage == MESA_SHADER_GEOMETRY) {
unsigned es_type = info->gs.es_type;
unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
if (es_type == MESA_SHADER_VERTEX) {
/* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
es_vgpr_comp_cnt = info->info.vs.needs_instance_id ? 1 : 0;
} else if (es_type == MESA_SHADER_TESS_EVAL) {
es_vgpr_comp_cnt = info->info.uses_prim_id ? 3 : 2;
} else {
unreachable("invalid shader ES type");
}
/* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
* VGPR[0:4] are always loaded.
*/
if (info->info.uses_invocation_id) {
gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
} else if (info->info.uses_prim_id) {
gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
} else if (info->gs.vertices_in >= 3) {
gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
} else {
gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
}
config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
} else if (pdevice->rad_info.chip_class >= GFX9 &&
stage == MESA_SHADER_TESS_CTRL) {
config_out->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
} else {
config_out->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
}
}
static void radv_init_llvm_target()
{
LLVMInitializeAMDGPUTargetInfo();
LLVMInitializeAMDGPUTarget();
LLVMInitializeAMDGPUTargetMC();
LLVMInitializeAMDGPUAsmPrinter();
/* For inline assembly. */
LLVMInitializeAMDGPUAsmParser();
/* Workaround for bug in llvm 4.0 that causes image intrinsics
* to disappear.
* https://reviews.llvm.org/D26348
*
* Workaround for bug in llvm that causes the GPU to hang in presence
* of nested loops because there is an exec mask issue. The proper
* solution is to fix LLVM but this might require a bunch of work.
* https://bugs.llvm.org/show_bug.cgi?id=37744
*
* "mesa" is the prefix for error messages.
*/
if (HAVE_LLVM >= 0x0800) {
const char *argv[2] = { "mesa", "-simplifycfg-sink-common=false" };
LLVMParseCommandLineOptions(2, argv, NULL);
} else {
const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
"-amdgpu-skip-threshold=1" };
LLVMParseCommandLineOptions(3, argv, NULL);
}
}
static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
static void radv_init_llvm_once(void)
{
call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
}
struct radv_shader_variant *
radv_shader_variant_create(struct radv_device *device,
const struct radv_shader_binary *binary)
{
struct ac_shader_config config = {0};
struct ac_rtld_binary rtld_binary = {0};
struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
if (!variant)
return NULL;
variant->ref_count = 1;
if (binary->type == RADV_BINARY_TYPE_RTLD) {
struct ac_rtld_symbol lds_symbols[1];
unsigned num_lds_symbols = 0;
const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data;
size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size;
if (device->physical_device->rad_info.chip_class >= GFX9 &&
binary->stage == MESA_SHADER_GEOMETRY && !binary->is_gs_copy_shader) {
/* We add this symbol even on LLVM <= 8 to ensure that
* shader->config.lds_size is set correctly below.
*/
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
sym->name = "esgs_ring";
sym->size = 32 * 1024;
sym->align = 64 * 1024;
/* Make sure to have LDS space for NGG scratch. */
/* TODO: Compute this correctly somehow? */
if (binary->variant_info.is_ngg)
sym->size -= 32;
}
struct ac_rtld_open_info open_info = {
.info = &device->physical_device->rad_info,
.shader_type = binary->stage,
.num_parts = 1,
.elf_ptrs = &elf_data,
.elf_sizes = &elf_size,
.num_shared_lds_symbols = num_lds_symbols,
.shared_lds_symbols = lds_symbols,
};
if (!ac_rtld_open(&rtld_binary, open_info)) {
free(variant);
return NULL;
}
if (!ac_rtld_read_config(&rtld_binary, &config)) {
ac_rtld_close(&rtld_binary);
free(variant);
return NULL;
}
if (rtld_binary.lds_size > 0) {
unsigned alloc_granularity = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256;
config.lds_size = align(rtld_binary.lds_size, alloc_granularity) / alloc_granularity;
}
variant->code_size = rtld_binary.rx_size;
} else {
assert(binary->type == RADV_BINARY_TYPE_LEGACY);
config = ((struct radv_shader_binary_legacy *)binary)->config;
variant->code_size = radv_get_shader_binary_size(((struct radv_shader_binary_legacy *)binary)->code_size);
}
variant->info = binary->variant_info;
radv_postprocess_config(device->physical_device, &config, &binary->variant_info,
binary->stage, &variant->config);
void *dest_ptr = radv_alloc_shader_memory(device, variant);
if (binary->type == RADV_BINARY_TYPE_RTLD) {
struct radv_shader_binary_rtld* bin = (struct radv_shader_binary_rtld *)binary;
struct ac_rtld_upload_info info = {
.binary = &rtld_binary,
.rx_va = radv_buffer_get_va(variant->bo) + variant->bo_offset,
.rx_ptr = dest_ptr,
};
if (!ac_rtld_upload(&info)) {
radv_shader_variant_destroy(device, variant);
ac_rtld_close(&rtld_binary);
return NULL;
}
const char *disasm_data;
size_t disasm_size;
if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, &disasm_size)) {
radv_shader_variant_destroy(device, variant);
ac_rtld_close(&rtld_binary);
return NULL;
}
variant->llvm_ir_string = bin->llvm_ir_size ? strdup((const char*)(bin->data + bin->elf_size)) : NULL;
variant->disasm_string = malloc(disasm_size + 1);
memcpy(variant->disasm_string, disasm_data, disasm_size);
variant->disasm_string[disasm_size] = 0;
ac_rtld_close(&rtld_binary);
} else {
struct radv_shader_binary_legacy* bin = (struct radv_shader_binary_legacy *)binary;
memcpy(dest_ptr, bin->data, bin->code_size);
/* Add end-of-code markers for the UMR disassembler. */
uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4;
for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
variant->llvm_ir_string = bin->llvm_ir_size ? strdup((const char*)(bin->data + bin->code_size)) : NULL;
variant->disasm_string = bin->disasm_size ? strdup((const char*)(bin->data + bin->code_size + bin->llvm_ir_size)) : NULL;
}
return variant;
}
static struct radv_shader_variant *
shader_variant_compile(struct radv_device *device,
struct radv_shader_module *module,
struct nir_shader * const *shaders,
int shader_count,
gl_shader_stage stage,
struct radv_nir_compiler_options *options,
bool gs_copy_shader,
struct radv_shader_binary **binary_out)
{
enum radeon_family chip_family = device->physical_device->rad_info.family;
enum ac_target_machine_options tm_options = 0;
struct ac_llvm_compiler ac_llvm;
struct radv_shader_binary *binary = NULL;
struct radv_shader_variant_info variant_info = {0};
bool thread_compiler;
if (shaders[0]->info.stage == MESA_SHADER_FRAGMENT)
lower_fs_io(shaders[0], &variant_info);
options->family = chip_family;
options->chip_class = device->physical_device->rad_info.chip_class;
options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
options->dump_preoptir = options->dump_shader &&
device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
options->record_llvm_ir = device->keep_shader_info;
options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
options->address32_hi = device->physical_device->rad_info.address32_hi;
if (options->supports_spill)
tm_options |= AC_TM_SUPPORTS_SPILL;
if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
tm_options |= AC_TM_SISCHED;
if (options->check_ir)
tm_options |= AC_TM_CHECK_IR;
if (device->instance->debug_flags & RADV_DEBUG_NO_LOAD_STORE_OPT)
tm_options |= AC_TM_NO_LOAD_STORE_OPT;
thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
radv_init_llvm_once();
radv_init_llvm_compiler(&ac_llvm,
thread_compiler,
chip_family, tm_options);
if (gs_copy_shader) {
assert(shader_count == 1);
radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
&variant_info, options);
} else {
radv_compile_nir_shader(&ac_llvm, &binary, &variant_info,
shaders, shader_count, options);
}
binary->variant_info = variant_info;
radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
struct radv_shader_variant *variant = radv_shader_variant_create(device, binary);
if (!variant) {
free(binary);
return NULL;
}
if (options->dump_shader) {
fprintf(stderr, "disasm:\n%s\n", variant->disasm_string);
}
if (device->keep_shader_info) {
if (!gs_copy_shader && !module->nir) {
variant->nir = *shaders;
variant->spirv = (uint32_t *)module->data;
variant->spirv_size = module->size;
}
}
if (binary_out)
*binary_out = binary;
else
free(binary);
return variant;
}
struct radv_shader_variant *
radv_shader_variant_compile(struct radv_device *device,
struct radv_shader_module *module,
struct nir_shader *const *shaders,
int shader_count,
struct radv_pipeline_layout *layout,
const struct radv_shader_variant_key *key,
struct radv_shader_binary **binary_out)
{
struct radv_nir_compiler_options options = {0};
options.layout = layout;
if (key)
options.key = *key;
options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
options.supports_spill = true;
return shader_variant_compile(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
&options, false, binary_out);
}
struct radv_shader_variant *
radv_create_gs_copy_shader(struct radv_device *device,
struct nir_shader *shader,
struct radv_shader_binary **binary_out,
bool multiview)
{
struct radv_nir_compiler_options options = {0};
options.key.has_multiview_view_index = multiview;
return shader_variant_compile(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
&options, true, binary_out);
}
void
radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant)
{
if (!p_atomic_dec_zero(&variant->ref_count))
return;
mtx_lock(&device->shader_slab_mutex);
list_del(&variant->slab_list);
mtx_unlock(&device->shader_slab_mutex);
ralloc_free(variant->nir);
free(variant->disasm_string);
free(variant->llvm_ir_string);
free(variant);
}
const char *
radv_get_shader_name(struct radv_shader_variant_info *info,
gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX:
if (info->vs.as_ls)
return "Vertex Shader as LS";
else if (info->vs.as_es)
return "Vertex Shader as ES";
else if (info->is_ngg)
return "Vertex Shader as ESGS";
else
return "Vertex Shader as VS";
case MESA_SHADER_TESS_CTRL:
return "Tessellation Control Shader";
case MESA_SHADER_TESS_EVAL:
if (info->tes.as_es)
return "Tessellation Evaluation Shader as ES";
else if (info->is_ngg)
return "Tessellation Evaluation Shader as ESGS";
else
return "Tessellation Evaluation Shader as VS";
case MESA_SHADER_GEOMETRY:
return "Geometry Shader";
case MESA_SHADER_FRAGMENT:
return "Pixel Shader";
case MESA_SHADER_COMPUTE:
return "Compute Shader";
default:
return "Unknown shader";
};
}
static void
generate_shader_stats(struct radv_device *device,
struct radv_shader_variant *variant,
gl_shader_stage stage,
struct _mesa_string_buffer *buf)
{
enum chip_class chip_class = device->physical_device->rad_info.chip_class;
unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
struct ac_shader_config *conf;
unsigned max_simd_waves;
unsigned lds_per_wave = 0;
max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
conf = &variant->config;
if (stage == MESA_SHADER_FRAGMENT) {
lds_per_wave = conf->lds_size * lds_increment +
align(variant->info.fs.num_interp * 48,
lds_increment);
} else if (stage == MESA_SHADER_COMPUTE) {
unsigned max_workgroup_size =
radv_nir_get_max_workgroup_size(chip_class, variant->nir);
lds_per_wave = (conf->lds_size * lds_increment) /
DIV_ROUND_UP(max_workgroup_size, 64);
}
if (conf->num_sgprs)
max_simd_waves =
MIN2(max_simd_waves,
ac_get_num_physical_sgprs(chip_class) / conf->num_sgprs);
if (conf->num_vgprs)
max_simd_waves =
MIN2(max_simd_waves,
RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
/* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
* that PS can use.
*/
if (lds_per_wave)
max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
if (stage == MESA_SHADER_FRAGMENT) {
_mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
"SPI_PS_INPUT_ADDR = 0x%04x\n"
"SPI_PS_INPUT_ENA = 0x%04x\n",
conf->spi_ps_input_addr, conf->spi_ps_input_ena);
}
_mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
"SGPRS: %d\n"
"VGPRS: %d\n"
"Spilled SGPRs: %d\n"
"Spilled VGPRs: %d\n"
"PrivMem VGPRS: %d\n"
"Code Size: %d bytes\n"
"LDS: %d blocks\n"
"Scratch: %d bytes per wave\n"
"Max Waves: %d\n"
"********************\n\n\n",
conf->num_sgprs, conf->num_vgprs,
conf->spilled_sgprs, conf->spilled_vgprs,
variant->info.private_mem_vgprs, variant->code_size,
conf->lds_size, conf->scratch_bytes_per_wave,
max_simd_waves);
}
void
radv_shader_dump_stats(struct radv_device *device,
struct radv_shader_variant *variant,
gl_shader_stage stage,
FILE *file)
{
struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
generate_shader_stats(device, variant, stage, buf);
fprintf(file, "\n%s:\n", radv_get_shader_name(&variant->info, stage));
fprintf(file, "%s", buf->buf);
_mesa_string_buffer_destroy(buf);
}
VkResult
radv_GetShaderInfoAMD(VkDevice _device,
VkPipeline _pipeline,
VkShaderStageFlagBits shaderStage,
VkShaderInfoTypeAMD infoType,
size_t* pInfoSize,
void* pInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
struct radv_shader_variant *variant = pipeline->shaders[stage];
struct _mesa_string_buffer *buf;
VkResult result = VK_SUCCESS;
/* Spec doesn't indicate what to do if the stage is invalid, so just
* return no info for this. */
if (!variant)
return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
switch (infoType) {
case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
if (!pInfo) {
*pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
} else {
unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256;
struct ac_shader_config *conf = &variant->config;
VkShaderStatisticsInfoAMD statistics = {};
statistics.shaderStageMask = shaderStage;
statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
statistics.numPhysicalSgprs = ac_get_num_physical_sgprs(device->physical_device->rad_info.chip_class);
statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
if (stage == MESA_SHADER_COMPUTE) {
unsigned *local_size = variant->nir->info.cs.local_size;
unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
ceil((double)workgroup_size / statistics.numPhysicalVgprs);
statistics.computeWorkGroupSize[0] = local_size[0];
statistics.computeWorkGroupSize[1] = local_size[1];
statistics.computeWorkGroupSize[2] = local_size[2];
} else {
statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
}
statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
size_t size = *pInfoSize;
*pInfoSize = sizeof(statistics);
memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
if (size < *pInfoSize)
result = VK_INCOMPLETE;
}
break;
case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
buf = _mesa_string_buffer_create(NULL, 1024);
_mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(&variant->info, stage));
_mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string);
_mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
generate_shader_stats(device, variant, stage, buf);
/* Need to include the null terminator. */
size_t length = buf->length + 1;
if (!pInfo) {
*pInfoSize = length;
} else {
size_t size = *pInfoSize;
*pInfoSize = length;
memcpy(pInfo, buf->buf, MIN2(size, length));
if (size < length)
result = VK_INCOMPLETE;
}
_mesa_string_buffer_destroy(buf);
break;
default:
/* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
result = VK_ERROR_FEATURE_NOT_PRESENT;
break;
}
return result;
}