blob: f101cfcd1ef74cd3348608699ef662d2bdbd5c5d [file] [log] [blame]
/*
* Copyright (c) 2017 Lima Project
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*/
#include <string.h>
#include "util/hash_table.h"
#include "util/ralloc.h"
#include "util/bitscan.h"
#include "compiler/nir/nir.h"
#include "pipe/p_state.h"
#include "ppir.h"
static void *ppir_node_create_ssa(ppir_block *block, ppir_op op, nir_ssa_def *ssa)
{
ppir_node *node = ppir_node_create(block, op, ssa->index, 0);
if (!node)
return NULL;
ppir_dest *dest = ppir_node_get_dest(node);
dest->type = ppir_target_ssa;
dest->ssa.num_components = ssa->num_components;
dest->write_mask = u_bit_consecutive(0, ssa->num_components);
if (node->type == ppir_node_type_load ||
node->type == ppir_node_type_store)
dest->ssa.is_head = true;
return node;
}
static void *ppir_node_create_reg(ppir_block *block, ppir_op op,
nir_register *reg, unsigned mask)
{
ppir_node *node = ppir_node_create(block, op, reg->index, mask);
if (!node)
return NULL;
ppir_dest *dest = ppir_node_get_dest(node);
list_for_each_entry(ppir_reg, r, &block->comp->reg_list, list) {
if (r->index == reg->index) {
dest->reg = r;
break;
}
}
dest->type = ppir_target_register;
dest->write_mask = mask;
if (node->type == ppir_node_type_load ||
node->type == ppir_node_type_store)
dest->reg->is_head = true;
return node;
}
static void *ppir_node_create_dest(ppir_block *block, ppir_op op,
nir_dest *dest, unsigned mask)
{
unsigned index = -1;
if (dest) {
if (dest->is_ssa)
return ppir_node_create_ssa(block, op, &dest->ssa);
else
return ppir_node_create_reg(block, op, dest->reg.reg, mask);
}
return ppir_node_create(block, op, index, 0);
}
static void ppir_node_add_src(ppir_compiler *comp, ppir_node *node,
ppir_src *ps, nir_src *ns, unsigned mask)
{
ppir_node *child = NULL;
if (ns->is_ssa) {
child = comp->var_nodes[ns->ssa->index];
if (child->op != ppir_op_undef)
ppir_node_add_dep(node, child, ppir_dep_src);
}
else {
nir_register *reg = ns->reg.reg;
while (mask) {
int swizzle = ps->swizzle[u_bit_scan(&mask)];
child = comp->var_nodes[(reg->index << 2) + comp->reg_base + swizzle];
/* Reg is read before it was written, create a dummy node for it */
if (!child) {
child = ppir_node_create_reg(node->block, ppir_op_dummy, reg,
u_bit_consecutive(0, 4));
comp->var_nodes[(reg->index << 2) + comp->reg_base + swizzle] = child;
}
/* Don't add dummies or recursive deps for ops like r1 = r1 + ssa1 */
if (child && node != child && child->op != ppir_op_dummy)
ppir_node_add_dep(node, child, ppir_dep_src);
}
}
ppir_node_target_assign(ps, child);
}
static int nir_to_ppir_opcodes[nir_num_opcodes] = {
/* not supported */
[0 ... nir_last_opcode] = -1,
[nir_op_mov] = ppir_op_mov,
[nir_op_fmul] = ppir_op_mul,
[nir_op_fabs] = ppir_op_abs,
[nir_op_fneg] = ppir_op_neg,
[nir_op_fadd] = ppir_op_add,
[nir_op_fsum3] = ppir_op_sum3,
[nir_op_fsum4] = ppir_op_sum4,
[nir_op_frsq] = ppir_op_rsqrt,
[nir_op_flog2] = ppir_op_log2,
[nir_op_fexp2] = ppir_op_exp2,
[nir_op_fsqrt] = ppir_op_sqrt,
[nir_op_fsin] = ppir_op_sin,
[nir_op_fcos] = ppir_op_cos,
[nir_op_fmax] = ppir_op_max,
[nir_op_fmin] = ppir_op_min,
[nir_op_frcp] = ppir_op_rcp,
[nir_op_ffloor] = ppir_op_floor,
[nir_op_fceil] = ppir_op_ceil,
[nir_op_ffract] = ppir_op_fract,
[nir_op_sge] = ppir_op_ge,
[nir_op_slt] = ppir_op_lt,
[nir_op_seq] = ppir_op_eq,
[nir_op_sne] = ppir_op_ne,
[nir_op_fcsel] = ppir_op_select,
[nir_op_inot] = ppir_op_not,
[nir_op_ftrunc] = ppir_op_trunc,
[nir_op_fsat] = ppir_op_sat,
[nir_op_fddx] = ppir_op_ddx,
[nir_op_fddy] = ppir_op_ddy,
};
static bool ppir_emit_alu(ppir_block *block, nir_instr *ni)
{
nir_alu_instr *instr = nir_instr_as_alu(ni);
int op = nir_to_ppir_opcodes[instr->op];
if (op < 0) {
ppir_error("unsupported nir_op: %s\n", nir_op_infos[instr->op].name);
return false;
}
ppir_alu_node *node = ppir_node_create_dest(block, op, &instr->dest.dest,
instr->dest.write_mask);
if (!node)
return false;
ppir_dest *pd = &node->dest;
nir_alu_dest *nd = &instr->dest;
if (nd->saturate)
pd->modifier = ppir_outmod_clamp_fraction;
unsigned src_mask;
switch (op) {
case ppir_op_sum3:
src_mask = 0b0111;
break;
case ppir_op_sum4:
src_mask = 0b1111;
break;
default:
src_mask = pd->write_mask;
break;
}
unsigned num_child = nir_op_infos[instr->op].num_inputs;
node->num_src = num_child;
for (int i = 0; i < num_child; i++) {
nir_alu_src *ns = instr->src + i;
ppir_src *ps = node->src + i;
memcpy(ps->swizzle, ns->swizzle, sizeof(ps->swizzle));
ppir_node_add_src(block->comp, &node->node, ps, &ns->src, src_mask);
ps->absolute = ns->abs;
ps->negate = ns->negate;
}
list_addtail(&node->node.list, &block->node_list);
return true;
}
static ppir_block *ppir_block_create(ppir_compiler *comp);
static bool ppir_emit_discard_block(ppir_compiler *comp)
{
ppir_block *block = ppir_block_create(comp);
ppir_discard_node *discard;
if (!block)
return false;
comp->discard_block = block;
block->comp = comp;
discard = ppir_node_create(block, ppir_op_discard, -1, 0);
if (discard)
list_addtail(&discard->node.list, &block->node_list);
else
return false;
return true;
}
static ppir_node *ppir_emit_discard_if(ppir_block *block, nir_instr *ni)
{
nir_intrinsic_instr *instr = nir_instr_as_intrinsic(ni);
ppir_node *node;
ppir_compiler *comp = block->comp;
ppir_branch_node *branch;
if (!comp->discard_block && !ppir_emit_discard_block(comp))
return NULL;
node = ppir_node_create(block, ppir_op_branch, -1, 0);
if (!node)
return NULL;
branch = ppir_node_to_branch(node);
/* second src and condition will be updated during lowering */
ppir_node_add_src(block->comp, node, &branch->src[0],
&instr->src[0], u_bit_consecutive(0, instr->num_components));
branch->num_src = 1;
branch->target = comp->discard_block;
return node;
}
static ppir_node *ppir_emit_discard(ppir_block *block, nir_instr *ni)
{
ppir_node *node = ppir_node_create(block, ppir_op_discard, -1, 0);
return node;
}
static bool ppir_emit_intrinsic(ppir_block *block, nir_instr *ni)
{
ppir_node *node;
nir_intrinsic_instr *instr = nir_instr_as_intrinsic(ni);
unsigned mask = 0;
ppir_load_node *lnode;
ppir_alu_node *alu_node;
switch (instr->intrinsic) {
case nir_intrinsic_load_input:
if (!instr->dest.is_ssa)
mask = u_bit_consecutive(0, instr->num_components);
lnode = ppir_node_create_dest(block, ppir_op_load_varying, &instr->dest, mask);
if (!lnode)
return false;
lnode->num_components = instr->num_components;
lnode->index = nir_intrinsic_base(instr) * 4 + nir_intrinsic_component(instr);
if (nir_src_is_const(instr->src[0]))
lnode->index += (uint32_t)(nir_src_as_float(instr->src[0]) * 4);
else {
lnode->num_src = 1;
ppir_node_add_src(block->comp, &lnode->node, &lnode->src, instr->src, 1);
}
list_addtail(&lnode->node.list, &block->node_list);
return true;
case nir_intrinsic_load_frag_coord:
case nir_intrinsic_load_point_coord:
case nir_intrinsic_load_front_face:
if (!instr->dest.is_ssa)
mask = u_bit_consecutive(0, instr->num_components);
ppir_op op;
switch (instr->intrinsic) {
case nir_intrinsic_load_frag_coord:
op = ppir_op_load_fragcoord;
break;
case nir_intrinsic_load_point_coord:
op = ppir_op_load_pointcoord;
break;
case nir_intrinsic_load_front_face:
op = ppir_op_load_frontface;
break;
default:
assert(0);
break;
}
lnode = ppir_node_create_dest(block, op, &instr->dest, mask);
if (!lnode)
return false;
lnode->num_components = instr->num_components;
list_addtail(&lnode->node.list, &block->node_list);
return true;
case nir_intrinsic_load_uniform:
if (!instr->dest.is_ssa)
mask = u_bit_consecutive(0, instr->num_components);
lnode = ppir_node_create_dest(block, ppir_op_load_uniform, &instr->dest, mask);
if (!lnode)
return false;
lnode->num_components = instr->num_components;
lnode->index = nir_intrinsic_base(instr);
if (nir_src_is_const(instr->src[0]))
lnode->index += (uint32_t)nir_src_as_float(instr->src[0]);
else {
lnode->num_src = 1;
ppir_node_add_src(block->comp, &lnode->node, &lnode->src, instr->src, 1);
}
list_addtail(&lnode->node.list, &block->node_list);
return true;
case nir_intrinsic_store_output: {
/* In simple cases where the store_output is ssa, that register
* can be directly marked as the output.
* If discard is used or the source is not ssa, things can get a
* lot more complicated, so don't try to optimize those and fall
* back to inserting a mov at the end.
* If the source node will only be able to output to pipeline
* registers, fall back to the mov as well. */
if (!block->comp->uses_discard && instr->src->is_ssa) {
node = block->comp->var_nodes[instr->src->ssa->index];
switch (node->op) {
case ppir_op_load_uniform:
case ppir_op_load_texture:
case ppir_op_const:
break;
default:
node->is_end = 1;
return true;
}
}
alu_node = ppir_node_create_dest(block, ppir_op_mov, NULL, 0);
if (!alu_node)
return false;
ppir_dest *dest = ppir_node_get_dest(&alu_node->node);
dest->type = ppir_target_ssa;
dest->ssa.num_components = instr->num_components;
dest->ssa.index = 0;
dest->write_mask = u_bit_consecutive(0, instr->num_components);
alu_node->num_src = 1;
for (int i = 0; i < instr->num_components; i++)
alu_node->src[0].swizzle[i] = i;
ppir_node_add_src(block->comp, &alu_node->node, alu_node->src, instr->src,
u_bit_consecutive(0, instr->num_components));
alu_node->node.is_end = 1;
list_addtail(&alu_node->node.list, &block->node_list);
return true;
}
case nir_intrinsic_discard:
node = ppir_emit_discard(block, ni);
list_addtail(&node->list, &block->node_list);
return true;
case nir_intrinsic_discard_if:
node = ppir_emit_discard_if(block, ni);
list_addtail(&node->list, &block->node_list);
return true;
default:
ppir_error("unsupported nir_intrinsic_instr %s\n",
nir_intrinsic_infos[instr->intrinsic].name);
return false;
}
}
static bool ppir_emit_load_const(ppir_block *block, nir_instr *ni)
{
nir_load_const_instr *instr = nir_instr_as_load_const(ni);
ppir_const_node *node = ppir_node_create_ssa(block, ppir_op_const, &instr->def);
if (!node)
return false;
assert(instr->def.bit_size == 32);
for (int i = 0; i < instr->def.num_components; i++)
node->constant.value[i].i = instr->value[i].i32;
node->constant.num = instr->def.num_components;
list_addtail(&node->node.list, &block->node_list);
return true;
}
static bool ppir_emit_ssa_undef(ppir_block *block, nir_instr *ni)
{
nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(ni);
ppir_node *node = ppir_node_create_ssa(block, ppir_op_undef, &undef->def);
if (!node)
return false;
ppir_alu_node *alu = ppir_node_to_alu(node);
ppir_dest *dest = &alu->dest;
dest->ssa.undef = true;
list_addtail(&node->list, &block->node_list);
return true;
}
static bool ppir_emit_tex(ppir_block *block, nir_instr *ni)
{
nir_tex_instr *instr = nir_instr_as_tex(ni);
ppir_load_texture_node *node;
switch (instr->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_txl:
break;
default:
ppir_error("unsupported texop %d\n", instr->op);
return false;
}
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_CUBE:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_EXTERNAL:
break;
default:
ppir_error("unsupported sampler dim: %d\n", instr->sampler_dim);
return false;
}
/* emit ld_tex node */
unsigned mask = 0;
if (!instr->dest.is_ssa)
mask = u_bit_consecutive(0, nir_tex_instr_dest_size(instr));
node = ppir_node_create_dest(block, ppir_op_load_texture, &instr->dest, mask);
if (!node)
return false;
node->sampler = instr->texture_index;
node->sampler_dim = instr->sampler_dim;
for (int i = 0; i < instr->coord_components; i++)
node->src[0].swizzle[i] = i;
for (int i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord: {
nir_src *ns = &instr->src[i].src;
if (ns->is_ssa) {
ppir_node *child = block->comp->var_nodes[ns->ssa->index];
if (child->op == ppir_op_load_varying) {
/* If the successor is load_texture, promote it to load_coords */
nir_tex_src *nts = (nir_tex_src *)ns;
if (nts->src_type == nir_tex_src_coord)
child->op = ppir_op_load_coords;
}
}
/* src[0] is not used by the ld_tex instruction but ensures
* correct scheduling due to the pipeline dependency */
ppir_node_add_src(block->comp, &node->node, &node->src[0], &instr->src[i].src,
u_bit_consecutive(0, instr->coord_components));
node->num_src++;
break;
}
case nir_tex_src_bias:
case nir_tex_src_lod:
node->lod_bias_en = true;
node->explicit_lod = (instr->src[i].src_type == nir_tex_src_lod);
ppir_node_add_src(block->comp, &node->node, &node->src[1], &instr->src[i].src, 1);
node->num_src++;
break;
default:
ppir_error("unsupported texture source type\n");
return false;
}
}
list_addtail(&node->node.list, &block->node_list);
/* validate load coords node */
ppir_node *src_coords = ppir_node_get_src(&node->node, 0)->node;
ppir_load_node *load = NULL;
if (src_coords && ppir_node_has_single_src_succ(src_coords) &&
(src_coords->op == ppir_op_load_coords))
load = ppir_node_to_load(src_coords);
else {
/* Create load_coords node */
load = ppir_node_create(block, ppir_op_load_coords_reg, -1, 0);
if (!load)
return false;
list_addtail(&load->node.list, &block->node_list);
load->src = node->src[0];
load->num_src = 1;
if (node->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
load->num_components = 3;
else
load->num_components = 2;
ppir_debug("%s create load_coords node %d for %d\n",
__FUNCTION__, load->index, node->node.index);
ppir_node_foreach_pred_safe((&node->node), dep) {
ppir_node *pred = dep->pred;
ppir_node_remove_dep(dep);
ppir_node_add_dep(&load->node, pred, ppir_dep_src);
}
ppir_node_add_dep(&node->node, &load->node, ppir_dep_src);
}
assert(load);
node->src[0].type = load->dest.type = ppir_target_pipeline;
node->src[0].pipeline = load->dest.pipeline = ppir_pipeline_reg_discard;
return true;
}
static ppir_block *ppir_get_block(ppir_compiler *comp, nir_block *nblock)
{
ppir_block *block = _mesa_hash_table_u64_search(comp->blocks, (uint64_t)nblock);
return block;
}
static bool ppir_emit_jump(ppir_block *block, nir_instr *ni)
{
ppir_node *node;
ppir_compiler *comp = block->comp;
ppir_branch_node *branch;
ppir_block *jump_block;
nir_jump_instr *jump = nir_instr_as_jump(ni);
switch (jump->type) {
case nir_jump_break: {
assert(comp->current_block->successors[0]);
assert(!comp->current_block->successors[1]);
jump_block = comp->current_block->successors[0];
}
break;
case nir_jump_continue:
jump_block = comp->loop_cont_block;
break;
default:
ppir_error("nir_jump_instr not support\n");
return false;
}
assert(jump_block != NULL);
node = ppir_node_create(block, ppir_op_branch, -1, 0);
if (!node)
return false;
branch = ppir_node_to_branch(node);
/* Unconditional */
branch->num_src = 0;
branch->target = jump_block;
list_addtail(&node->list, &block->node_list);
return true;
}
static bool (*ppir_emit_instr[nir_instr_type_phi])(ppir_block *, nir_instr *) = {
[nir_instr_type_alu] = ppir_emit_alu,
[nir_instr_type_intrinsic] = ppir_emit_intrinsic,
[nir_instr_type_load_const] = ppir_emit_load_const,
[nir_instr_type_ssa_undef] = ppir_emit_ssa_undef,
[nir_instr_type_tex] = ppir_emit_tex,
[nir_instr_type_jump] = ppir_emit_jump,
};
static ppir_block *ppir_block_create(ppir_compiler *comp)
{
ppir_block *block = rzalloc(comp, ppir_block);
if (!block)
return NULL;
list_inithead(&block->node_list);
list_inithead(&block->instr_list);
block->comp = comp;
return block;
}
static bool ppir_emit_block(ppir_compiler *comp, nir_block *nblock)
{
ppir_block *block = ppir_get_block(comp, nblock);
comp->current_block = block;
list_addtail(&block->list, &comp->block_list);
nir_foreach_instr(instr, nblock) {
assert(instr->type < nir_instr_type_phi);
if (!ppir_emit_instr[instr->type](block, instr))
return false;
}
return true;
}
static bool ppir_emit_cf_list(ppir_compiler *comp, struct exec_list *list);
static bool ppir_emit_if(ppir_compiler *comp, nir_if *if_stmt)
{
ppir_node *node;
ppir_branch_node *else_branch, *after_branch;
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
ppir_block *block = comp->current_block;
node = ppir_node_create(block, ppir_op_branch, -1, 0);
if (!node)
return false;
else_branch = ppir_node_to_branch(node);
ppir_node_add_src(block->comp, node, &else_branch->src[0],
&if_stmt->condition, 1);
else_branch->num_src = 1;
/* Negate condition to minimize branching. We're generating following:
* current_block: { ...; if (!statement) branch else_block; }
* then_block: { ...; branch after_block; }
* else_block: { ... }
* after_block: { ... }
*
* or if else list is empty:
* block: { if (!statement) branch else_block; }
* then_block: { ... }
* else_block: after_block: { ... }
*/
else_branch->negate = true;
list_addtail(&else_branch->node.list, &block->node_list);
if (!ppir_emit_cf_list(comp, &if_stmt->then_list))
return false;
if (empty_else_block) {
nir_block *nblock = nir_if_last_else_block(if_stmt);
assert(nblock->successors[0]);
assert(!nblock->successors[1]);
else_branch->target = ppir_get_block(comp, nblock->successors[0]);
/* Add empty else block to the list */
list_addtail(&block->successors[1]->list, &comp->block_list);
return true;
}
else_branch->target = ppir_get_block(comp, nir_if_first_else_block(if_stmt));
nir_block *last_then_block = nir_if_last_then_block(if_stmt);
assert(last_then_block->successors[0]);
assert(!last_then_block->successors[1]);
block = ppir_get_block(comp, last_then_block);
node = ppir_node_create(block, ppir_op_branch, -1, 0);
if (!node)
return false;
after_branch = ppir_node_to_branch(node);
/* Unconditional */
after_branch->num_src = 0;
after_branch->target = ppir_get_block(comp, last_then_block->successors[0]);
/* Target should be after_block, will fixup later */
list_addtail(&after_branch->node.list, &block->node_list);
if (!ppir_emit_cf_list(comp, &if_stmt->else_list))
return false;
return true;
}
static bool ppir_emit_loop(ppir_compiler *comp, nir_loop *nloop)
{
ppir_block *save_loop_cont_block = comp->loop_cont_block;
ppir_block *block;
ppir_branch_node *loop_branch;
nir_block *loop_last_block;
ppir_node *node;
comp->loop_cont_block = ppir_get_block(comp, nir_loop_first_block(nloop));
if (!ppir_emit_cf_list(comp, &nloop->body))
return false;
loop_last_block = nir_loop_last_block(nloop);
block = ppir_get_block(comp, loop_last_block);
node = ppir_node_create(block, ppir_op_branch, -1, 0);
if (!node)
return false;
loop_branch = ppir_node_to_branch(node);
/* Unconditional */
loop_branch->num_src = 0;
loop_branch->target = comp->loop_cont_block;
list_addtail(&loop_branch->node.list, &block->node_list);
comp->loop_cont_block = save_loop_cont_block;
comp->num_loops++;
return true;
}
static bool ppir_emit_function(ppir_compiler *comp, nir_function_impl *nfunc)
{
ppir_error("function nir_cf_node not support\n");
return false;
}
static bool ppir_emit_cf_list(ppir_compiler *comp, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
bool ret;
switch (node->type) {
case nir_cf_node_block:
ret = ppir_emit_block(comp, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
ret = ppir_emit_if(comp, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
ret = ppir_emit_loop(comp, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
ret = ppir_emit_function(comp, nir_cf_node_as_function(node));
break;
default:
ppir_error("unknown NIR node type %d\n", node->type);
return false;
}
if (!ret)
return false;
}
return true;
}
static ppir_compiler *ppir_compiler_create(void *prog, unsigned num_reg, unsigned num_ssa)
{
ppir_compiler *comp = rzalloc_size(
prog, sizeof(*comp) + ((num_reg << 2) + num_ssa) * sizeof(ppir_node *));
if (!comp)
return NULL;
list_inithead(&comp->block_list);
list_inithead(&comp->reg_list);
comp->blocks = _mesa_hash_table_u64_create(prog);
comp->var_nodes = (ppir_node **)(comp + 1);
comp->reg_base = num_ssa;
comp->prog = prog;
return comp;
}
static void ppir_add_ordering_deps(ppir_compiler *comp)
{
/* Some intrinsics do not have explicit dependencies and thus depend
* on instructions order. Consider discard_if and the is_end node as
* example. If we don't add fake dependency of discard_if to is_end,
* scheduler may put the is_end first and since is_end terminates
* shader on Utgard PP, rest of it will never be executed.
* Add fake dependencies for discard/branch/store to preserve
* instruction order.
*
* TODO: scheduler should schedule discard_if as early as possible otherwise
* we may end up with suboptimal code for cases like this:
*
* s3 = s1 < s2
* discard_if s3
* s4 = s1 + s2
* store s4
*
* In this case store depends on discard_if and s4, but since dependencies can
* be scheduled in any order it can result in code like this:
*
* instr1: s3 = s1 < s3
* instr2: s4 = s1 + s2
* instr3: discard_if s3
* instr4: store s4
*/
list_for_each_entry(ppir_block, block, &comp->block_list, list) {
ppir_node *prev_node = NULL;
list_for_each_entry_rev(ppir_node, node, &block->node_list, list) {
if (prev_node && ppir_node_is_root(node) && node->op != ppir_op_const) {
ppir_node_add_dep(prev_node, node, ppir_dep_sequence);
}
if (node->is_end ||
node->op == ppir_op_discard ||
node->op == ppir_op_store_temp ||
node->op == ppir_op_branch) {
prev_node = node;
}
}
}
}
static void ppir_print_shader_db(struct nir_shader *nir, ppir_compiler *comp,
struct pipe_debug_callback *debug)
{
const struct shader_info *info = &nir->info;
char *shaderdb;
int ret = asprintf(&shaderdb,
"%s shader: %d inst, %d loops, %d:%d spills:fills\n",
gl_shader_stage_name(info->stage),
comp->cur_instr_index,
comp->num_loops,
comp->num_spills,
comp->num_fills);
assert(ret >= 0);
if (lima_debug & LIMA_DEBUG_SHADERDB)
fprintf(stderr, "SHADER-DB: %s\n", shaderdb);
pipe_debug_message(debug, SHADER_INFO, "%s", shaderdb);
free(shaderdb);
}
static void ppir_add_write_after_read_deps(ppir_compiler *comp)
{
list_for_each_entry(ppir_block, block, &comp->block_list, list) {
list_for_each_entry(ppir_reg, reg, &comp->reg_list, list) {
ppir_node *write = NULL;
list_for_each_entry_rev(ppir_node, node, &block->node_list, list) {
for (int i = 0; i < ppir_node_get_src_num(node); i++) {
ppir_src *src = ppir_node_get_src(node, i);
if (src && src->type == ppir_target_register &&
src->reg == reg &&
write) {
ppir_debug("Adding dep %d for write %d\n", node->index, write->index);
ppir_node_add_dep(write, node, ppir_dep_write_after_read);
}
}
ppir_dest *dest = ppir_node_get_dest(node);
if (dest && dest->type == ppir_target_register &&
dest->reg == reg)
write = node;
}
}
}
}
bool ppir_compile_nir(struct lima_fs_shader_state *prog, struct nir_shader *nir,
struct ra_regs *ra,
struct pipe_debug_callback *debug)
{
nir_function_impl *func = nir_shader_get_entrypoint(nir);
ppir_compiler *comp = ppir_compiler_create(prog, func->reg_alloc, func->ssa_alloc);
if (!comp)
return false;
comp->ra = ra;
comp->uses_discard = nir->info.fs.uses_discard;
/* 1st pass: create ppir blocks */
nir_foreach_function(function, nir) {
if (!function->impl)
continue;
nir_foreach_block(nblock, function->impl) {
ppir_block *block = ppir_block_create(comp);
if (!block)
return false;
block->index = nblock->index;
_mesa_hash_table_u64_insert(comp->blocks, (uint64_t)nblock, block);
}
}
/* 2nd pass: populate successors */
nir_foreach_function(function, nir) {
if (!function->impl)
continue;
nir_foreach_block(nblock, function->impl) {
ppir_block *block = ppir_get_block(comp, nblock);
assert(block);
for (int i = 0; i < 2; i++) {
if (nblock->successors[i])
block->successors[i] = ppir_get_block(comp, nblock->successors[i]);
}
}
}
/* Validate outputs, we support only gl_FragColor */
nir_foreach_shader_out_variable(var, nir) {
switch (var->data.location) {
case FRAG_RESULT_COLOR:
case FRAG_RESULT_DATA0:
break;
default:
ppir_error("unsupported output type\n");
goto err_out0;
break;
}
}
foreach_list_typed(nir_register, reg, node, &func->registers) {
ppir_reg *r = rzalloc(comp, ppir_reg);
if (!r)
return false;
r->index = reg->index;
r->num_components = reg->num_components;
r->is_head = false;
list_addtail(&r->list, &comp->reg_list);
}
if (!ppir_emit_cf_list(comp, &func->body))
goto err_out0;
/* If we have discard block add it to the very end */
if (comp->discard_block)
list_addtail(&comp->discard_block->list, &comp->block_list);
ppir_node_print_prog(comp);
if (!ppir_lower_prog(comp))
goto err_out0;
ppir_add_ordering_deps(comp);
ppir_add_write_after_read_deps(comp);
ppir_node_print_prog(comp);
if (!ppir_node_to_instr(comp))
goto err_out0;
if (!ppir_schedule_prog(comp))
goto err_out0;
if (!ppir_regalloc_prog(comp))
goto err_out0;
if (!ppir_codegen_prog(comp))
goto err_out0;
ppir_print_shader_db(nir, comp, debug);
_mesa_hash_table_u64_destroy(comp->blocks, NULL);
ralloc_free(comp);
return true;
err_out0:
_mesa_hash_table_u64_destroy(comp->blocks, NULL);
ralloc_free(comp);
return false;
}