blob: 62ec43cd1953537a4a7098010bdf9a968beeffe2 [file] [log] [blame]
/*
* Copyright 2020 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "util/u_memory.h"
static LLVMValueRef unpack_sint16(struct si_shader_context *ctx, LLVMValueRef i32, unsigned index)
{
assert(index <= 1);
if (index == 1)
return LLVMBuildAShr(ctx->ac.builder, i32, LLVMConstInt(ctx->ac.i32, 16, 0), "");
return LLVMBuildSExt(ctx->ac.builder, LLVMBuildTrunc(ctx->ac.builder, i32, ctx->ac.i16, ""),
ctx->ac.i32, "");
}
static void load_input_vs(struct si_shader_context *ctx, unsigned input_index, LLVMValueRef out[4])
{
const struct si_shader_info *info = &ctx->shader->selector->info;
unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
if (vs_blit_property) {
LLVMValueRef vertex_id = ctx->abi.vertex_id;
LLVMValueRef sel_x1 =
LLVMBuildICmp(ctx->ac.builder, LLVMIntULE, vertex_id, ctx->ac.i32_1, "");
/* Use LLVMIntNE, because we have 3 vertices and only
* the middle one should use y2.
*/
LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, vertex_id, ctx->ac.i32_1, "");
unsigned param_vs_blit_inputs = ctx->vs_blit_inputs.arg_index;
if (input_index == 0) {
/* Position: */
LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs);
LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 1);
LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1, x1, x2, "");
LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1, y1, y2, "");
out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->ac.f32, "");
out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->ac.f32, "");
out[2] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 2);
out[3] = ctx->ac.f32_1;
return;
}
/* Color or texture coordinates: */
assert(input_index == 1);
if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
for (int i = 0; i < 4; i++) {
out[i] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 3 + i);
}
} else {
assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
LLVMValueRef x1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 3);
LLVMValueRef y1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 4);
LLVMValueRef x2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 5);
LLVMValueRef y2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 6);
out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1, x1, x2, "");
out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1, y1, y2, "");
out[2] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 7);
out[3] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 8);
}
return;
}
unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs;
union si_vs_fix_fetch fix_fetch;
LLVMValueRef vb_desc;
LLVMValueRef vertex_index;
LLVMValueRef tmp;
if (input_index < num_vbos_in_user_sgprs) {
vb_desc = ac_get_arg(&ctx->ac, ctx->vb_descriptors[input_index]);
} else {
unsigned index = input_index - num_vbos_in_user_sgprs;
vb_desc = ac_build_load_to_sgpr(&ctx->ac, ac_get_arg(&ctx->ac, ctx->vertex_buffers),
LLVMConstInt(ctx->ac.i32, index, 0));
}
vertex_index = LLVMGetParam(ctx->main_fn, ctx->vertex_index0.arg_index + input_index);
/* Use the open-coded implementation for all loads of doubles and
* of dword-sized data that needs fixups. We need to insert conversion
* code anyway, and the amd/common code does it for us.
*
* Note: On LLVM <= 8, we can only open-code formats with
* channel size >= 4 bytes.
*/
bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
if (opencode || (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
(fix_fetch.u.log_size == 2)) {
tmp = ac_build_opencoded_load_format(&ctx->ac, fix_fetch.u.log_size,
fix_fetch.u.num_channels_m1 + 1, fix_fetch.u.format,
fix_fetch.u.reverse, !opencode, vb_desc, vertex_index,
ctx->ac.i32_0, ctx->ac.i32_0, 0, true);
for (unsigned i = 0; i < 4; ++i)
out[i] =
LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->ac.i32, i, false), "");
return;
}
/* Do multiple loads for special formats. */
unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
LLVMValueRef fetches[4];
unsigned num_fetches;
unsigned fetch_stride;
unsigned channels_per_fetch;
if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
num_fetches = MIN2(required_channels, 3);
fetch_stride = 1 << fix_fetch.u.log_size;
channels_per_fetch = 1;
} else {
num_fetches = 1;
fetch_stride = 0;
channels_per_fetch = required_channels;
}
for (unsigned i = 0; i < num_fetches; ++i) {
LLVMValueRef voffset = LLVMConstInt(ctx->ac.i32, fetch_stride * i, 0);
fetches[i] = ac_build_buffer_load_format(&ctx->ac, vb_desc, vertex_index, voffset,
channels_per_fetch, 0, true, false);
}
if (num_fetches == 1 && channels_per_fetch > 1) {
LLVMValueRef fetch = fetches[0];
for (unsigned i = 0; i < channels_per_fetch; ++i) {
tmp = LLVMConstInt(ctx->ac.i32, i, false);
fetches[i] = LLVMBuildExtractElement(ctx->ac.builder, fetch, tmp, "");
}
num_fetches = channels_per_fetch;
channels_per_fetch = 1;
}
for (unsigned i = num_fetches; i < 4; ++i)
fetches[i] = LLVMGetUndef(ctx->ac.f32);
if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 && required_channels == 4) {
if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
fetches[3] = ctx->ac.i32_1;
else
fetches[3] = ctx->ac.f32_1;
} else if (fix_fetch.u.log_size == 3 &&
(fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
required_channels == 4) {
/* For 2_10_10_10, the hardware returns an unsigned value;
* convert it to a signed one.
*/
LLVMValueRef tmp = fetches[3];
LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
/* First, recover the sign-extended signed integer value. */
if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->ac.i32, "");
else
tmp = ac_to_integer(&ctx->ac, tmp);
/* For the integer-like cases, do a natural sign extension.
*
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
* and happen to contain 0, 1, 2, 3 as the two LSBs of the
* exponent.
*/
tmp = LLVMBuildShl(
ctx->ac.builder, tmp,
fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ? LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
/* Convert back to the right type. */
if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
LLVMValueRef clamp;
LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->ac.f32, "");
clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
} else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->ac.f32, "");
}
fetches[3] = tmp;
}
for (unsigned i = 0; i < 4; ++i)
out[i] = ac_to_float(&ctx->ac, fetches[i]);
}
static void declare_input_vs(struct si_shader_context *ctx, unsigned input_index)
{
LLVMValueRef input[4];
load_input_vs(ctx, input_index / 4, input);
for (unsigned chan = 0; chan < 4; chan++) {
ctx->inputs[input_index + chan] =
LLVMBuildBitCast(ctx->ac.builder, input[chan], ctx->ac.i32, "");
}
}
void si_llvm_load_vs_inputs(struct si_shader_context *ctx, struct nir_shader *nir)
{
uint64_t processed_inputs = 0;
nir_foreach_shader_in_variable (variable, nir) {
unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
unsigned input_idx = variable->data.driver_location;
unsigned loc = variable->data.location;
for (unsigned i = 0; i < attrib_count; i++) {
/* Packed components share the same location so skip
* them if we have already processed the location.
*/
if (processed_inputs & ((uint64_t)1 << (loc + i))) {
input_idx += 4;
continue;
}
declare_input_vs(ctx, input_idx);
if (glsl_type_is_dual_slot(variable->type)) {
input_idx += 4;
declare_input_vs(ctx, input_idx);
}
processed_inputs |= ((uint64_t)1 << (loc + i));
input_idx += 4;
}
}
}
void si_llvm_streamout_store_output(struct si_shader_context *ctx, LLVMValueRef const *so_buffers,
LLVMValueRef const *so_write_offsets,
struct pipe_stream_output *stream_out,
struct si_shader_output_values *shader_out)
{
unsigned buf_idx = stream_out->output_buffer;
unsigned start = stream_out->start_component;
unsigned num_comps = stream_out->num_components;
LLVMValueRef out[4];
assert(num_comps && num_comps <= 4);
if (!num_comps || num_comps > 4)
return;
/* Load the output as int. */
for (int j = 0; j < num_comps; j++) {
assert(stream_out->stream == shader_out->vertex_stream[start + j]);
out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
}
/* Pack the output. */
LLVMValueRef vdata = NULL;
switch (num_comps) {
case 1: /* as i32 */
vdata = out[0];
break;
case 2: /* as v2i32 */
case 3: /* as v3i32 */
if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
break;
}
/* as v4i32 (aligned to 4) */
out[3] = LLVMGetUndef(ctx->ac.i32);
/* fall through */
case 4: /* as v4i32 */
vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
break;
}
ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx], vdata, num_comps,
so_write_offsets[buf_idx], ctx->ac.i32_0, stream_out->dst_offset * 4,
ac_glc | ac_slc);
}
/**
* Write streamout data to buffers for vertex stream @p stream (different
* vertex streams can occur for GS copy shaders).
*/
void si_llvm_emit_streamout(struct si_shader_context *ctx, struct si_shader_output_values *outputs,
unsigned noutput, unsigned stream)
{
struct si_shader_selector *sel = ctx->shader->selector;
struct pipe_stream_output_info *so = &sel->so;
LLVMBuilderRef builder = ctx->ac.builder;
int i;
/* Get bits [22:16], i.e. (so_param >> 16) & 127; */
LLVMValueRef so_vtx_count = si_unpack_param(ctx, ctx->streamout_config, 16, 7);
LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
/* can_emit = tid < so_vtx_count; */
LLVMValueRef can_emit = LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
/* Emit the streamout code conditionally. This actually avoids
* out-of-bounds buffer access. The hw tells us via the SGPR
* (so_vtx_count) which threads are allowed to emit streamout data. */
ac_build_ifcc(&ctx->ac, can_emit, 6501);
{
/* The buffer offset is computed as follows:
* ByteOffset = streamout_offset[buffer_id]*4 +
* (streamout_write_index + thread_id)*stride[buffer_id] +
* attrib_offset
*/
LLVMValueRef so_write_index = ac_get_arg(&ctx->ac, ctx->streamout_write_index);
/* Compute (streamout_write_index + thread_id). */
so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
/* Load the descriptor and compute the write offset for each
* enabled buffer. */
LLVMValueRef so_write_offset[4] = {};
LLVMValueRef so_buffers[4];
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
for (i = 0; i < 4; i++) {
if (!so->stride[i])
continue;
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + i, 0);
so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
LLVMValueRef so_offset = ac_get_arg(&ctx->ac, ctx->streamout_offset[i]);
so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->ac.i32, 4, 0), "");
so_write_offset[i] = ac_build_imad(
&ctx->ac, so_write_index, LLVMConstInt(ctx->ac.i32, so->stride[i] * 4, 0), so_offset);
}
/* Write streamout data. */
for (i = 0; i < so->num_outputs; i++) {
unsigned reg = so->output[i].register_index;
if (reg >= noutput)
continue;
if (stream != so->output[i].stream)
continue;
si_llvm_streamout_store_output(ctx, so_buffers, so_write_offset, &so->output[i],
&outputs[reg]);
}
}
ac_build_endif(&ctx->ac, 6501);
}
static void si_llvm_emit_clipvertex(struct si_shader_context *ctx, struct ac_export_args *pos,
LLVMValueRef *out_elts)
{
unsigned reg_index;
unsigned chan;
unsigned const_chan;
LLVMValueRef base_elt;
LLVMValueRef ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
LLVMValueRef constbuf_index = LLVMConstInt(ctx->ac.i32, SI_VS_CONST_CLIP_PLANES, 0);
LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
for (reg_index = 0; reg_index < 2; reg_index++) {
struct ac_export_args *args = &pos[2 + reg_index];
args->out[0] = args->out[1] = args->out[2] = args->out[3] = LLVMConstReal(ctx->ac.f32, 0.0f);
/* Compute dot products of position and user clip plane vectors */
for (chan = 0; chan < 4; chan++) {
for (const_chan = 0; const_chan < 4; const_chan++) {
LLVMValueRef addr =
LLVMConstInt(ctx->ac.i32, ((reg_index * 4 + chan) * 4 + const_chan) * 4, 0);
base_elt = si_buffer_load_const(ctx, const_resource, addr);
args->out[chan] =
ac_build_fmad(&ctx->ac, base_elt, out_elts[const_chan], args->out[chan]);
}
}
args->enabled_channels = 0xf;
args->valid_mask = 0;
args->done = 0;
args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
args->compr = 0;
}
}
/* Initialize arguments for the shader export intrinsic */
static void si_llvm_init_vs_export_args(struct si_shader_context *ctx, LLVMValueRef *values,
unsigned target, struct ac_export_args *args)
{
args->enabled_channels = 0xf; /* writemask - default is 0xf */
args->valid_mask = 0; /* Specify whether the EXEC mask represents the valid mask */
args->done = 0; /* Specify whether this is the last export */
args->target = target; /* Specify the target we are exporting */
args->compr = false;
memcpy(&args->out[0], values, sizeof(values[0]) * 4);
}
static void si_export_param(struct si_shader_context *ctx, unsigned index, LLVMValueRef *values)
{
struct ac_export_args args;
si_llvm_init_vs_export_args(ctx, values, V_008DFC_SQ_EXP_PARAM + index, &args);
ac_build_export(&ctx->ac, &args);
}
static void si_build_param_exports(struct si_shader_context *ctx,
struct si_shader_output_values *outputs, unsigned noutput)
{
struct si_shader *shader = ctx->shader;
unsigned param_count = 0;
for (unsigned i = 0; i < noutput; i++) {
unsigned semantic_name = outputs[i].semantic_name;
unsigned semantic_index = outputs[i].semantic_index;
if (outputs[i].vertex_stream[0] != 0 && outputs[i].vertex_stream[1] != 0 &&
outputs[i].vertex_stream[2] != 0 && outputs[i].vertex_stream[3] != 0)
continue;
switch (semantic_name) {
case TGSI_SEMANTIC_LAYER:
case TGSI_SEMANTIC_VIEWPORT_INDEX:
case TGSI_SEMANTIC_CLIPDIST:
case TGSI_SEMANTIC_COLOR:
case TGSI_SEMANTIC_BCOLOR:
case TGSI_SEMANTIC_PRIMID:
case TGSI_SEMANTIC_FOG:
case TGSI_SEMANTIC_TEXCOORD:
case TGSI_SEMANTIC_GENERIC:
break;
default:
continue;
}
if ((semantic_name != TGSI_SEMANTIC_GENERIC || semantic_index < SI_MAX_IO_GENERIC) &&
shader->key.opt.kill_outputs &
(1ull << si_shader_io_get_unique_index(semantic_name, semantic_index, true)))
continue;
si_export_param(ctx, param_count, outputs[i].values);
assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
shader->info.vs_output_param_offset[i] = param_count++;
}
shader->info.nr_param_exports = param_count;
}
/**
* Vertex color clamping.
*
* This uses a state constant loaded in a user data SGPR and
* an IF statement is added that clamps all colors if the constant
* is true.
*/
static void si_vertex_color_clamping(struct si_shader_context *ctx,
struct si_shader_output_values *outputs, unsigned noutput)
{
LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
bool has_colors = false;
/* Store original colors to alloca variables. */
for (unsigned i = 0; i < noutput; i++) {
if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
continue;
for (unsigned j = 0; j < 4; j++) {
addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
}
has_colors = true;
}
if (!has_colors)
return;
/* The state is in the first bit of the user SGPR. */
LLVMValueRef cond = ac_get_arg(&ctx->ac, ctx->vs_state_bits);
cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, cond, 6502);
/* Store clamped colors to alloca variables within the conditional block. */
for (unsigned i = 0; i < noutput; i++) {
if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
continue;
for (unsigned j = 0; j < 4; j++) {
LLVMBuildStore(ctx->ac.builder, ac_build_clamp(&ctx->ac, outputs[i].values[j]),
addr[i][j]);
}
}
ac_build_endif(&ctx->ac, 6502);
/* Load clamped colors */
for (unsigned i = 0; i < noutput; i++) {
if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
continue;
for (unsigned j = 0; j < 4; j++) {
outputs[i].values[j] = LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
}
}
}
/* Generate export instructions for hardware VS shader stage or NGG GS stage
* (position and parameter data only).
*/
void si_llvm_build_vs_exports(struct si_shader_context *ctx,
struct si_shader_output_values *outputs, unsigned noutput)
{
struct si_shader *shader = ctx->shader;
struct ac_export_args pos_args[4] = {};
LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL,
viewport_index_value = NULL;
unsigned pos_idx;
int i;
si_vertex_color_clamping(ctx, outputs, noutput);
/* Build position exports. */
for (i = 0; i < noutput; i++) {
switch (outputs[i].semantic_name) {
case TGSI_SEMANTIC_POSITION:
si_llvm_init_vs_export_args(ctx, outputs[i].values, V_008DFC_SQ_EXP_POS, &pos_args[0]);
break;
case TGSI_SEMANTIC_PSIZE:
psize_value = outputs[i].values[0];
break;
case TGSI_SEMANTIC_LAYER:
layer_value = outputs[i].values[0];
break;
case TGSI_SEMANTIC_VIEWPORT_INDEX:
viewport_index_value = outputs[i].values[0];
break;
case TGSI_SEMANTIC_EDGEFLAG:
edgeflag_value = outputs[i].values[0];
break;
case TGSI_SEMANTIC_CLIPDIST:
if (!shader->key.opt.clip_disable) {
unsigned index = 2 + outputs[i].semantic_index;
si_llvm_init_vs_export_args(ctx, outputs[i].values, V_008DFC_SQ_EXP_POS + index,
&pos_args[index]);
}
break;
case TGSI_SEMANTIC_CLIPVERTEX:
if (!shader->key.opt.clip_disable) {
si_llvm_emit_clipvertex(ctx, pos_args, outputs[i].values);
}
break;
}
}
/* We need to add the position output manually if it's missing. */
if (!pos_args[0].out[0]) {
pos_args[0].enabled_channels = 0xf; /* writemask */
pos_args[0].valid_mask = 0; /* EXEC mask */
pos_args[0].done = 0; /* last export? */
pos_args[0].target = V_008DFC_SQ_EXP_POS;
pos_args[0].compr = 0; /* COMPR flag */
pos_args[0].out[0] = ctx->ac.f32_0; /* X */
pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
pos_args[0].out[3] = ctx->ac.f32_1; /* W */
}
bool pos_writes_edgeflag = shader->selector->info.writes_edgeflag && !shader->key.as_ngg;
/* Write the misc vector (point size, edgeflag, layer, viewport). */
if (shader->selector->info.writes_psize || pos_writes_edgeflag ||
shader->selector->info.writes_viewport_index || shader->selector->info.writes_layer) {
pos_args[1].enabled_channels = shader->selector->info.writes_psize |
(pos_writes_edgeflag << 1) |
(shader->selector->info.writes_layer << 2);
pos_args[1].valid_mask = 0; /* EXEC mask */
pos_args[1].done = 0; /* last export? */
pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
pos_args[1].compr = 0; /* COMPR flag */
pos_args[1].out[0] = ctx->ac.f32_0; /* X */
pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
pos_args[1].out[3] = ctx->ac.f32_0; /* W */
if (shader->selector->info.writes_psize)
pos_args[1].out[0] = psize_value;
if (pos_writes_edgeflag) {
/* The output is a float, but the hw expects an integer
* with the first bit containing the edge flag. */
edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder, edgeflag_value, ctx->ac.i32, "");
edgeflag_value = ac_build_umin(&ctx->ac, edgeflag_value, ctx->ac.i32_1);
/* The LLVM intrinsic expects a float. */
pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
}
if (ctx->screen->info.chip_class >= GFX9) {
/* GFX9 has the layer in out.z[10:0] and the viewport
* index in out.z[19:16].
*/
if (shader->selector->info.writes_layer)
pos_args[1].out[2] = layer_value;
if (shader->selector->info.writes_viewport_index) {
LLVMValueRef v = viewport_index_value;
v = ac_to_integer(&ctx->ac, v);
v = LLVMBuildShl(ctx->ac.builder, v, LLVMConstInt(ctx->ac.i32, 16, 0), "");
v = LLVMBuildOr(ctx->ac.builder, v, ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
pos_args[1].enabled_channels |= 1 << 2;
}
} else {
if (shader->selector->info.writes_layer)
pos_args[1].out[2] = layer_value;
if (shader->selector->info.writes_viewport_index) {
pos_args[1].out[3] = viewport_index_value;
pos_args[1].enabled_channels |= 1 << 3;
}
}
}
for (i = 0; i < 4; i++)
if (pos_args[i].out[0])
shader->info.nr_pos_exports++;
/* GFX10 (Navi1x) skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
* Setting valid_mask=1 prevents it and has no other effect.
*/
if (ctx->screen->info.chip_class == GFX10)
pos_args[0].valid_mask = 1;
pos_idx = 0;
for (i = 0; i < 4; i++) {
if (!pos_args[i].out[0])
continue;
/* Specify the target we are exporting */
pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
if (pos_idx == shader->info.nr_pos_exports)
/* Specify that this is the last export */
pos_args[i].done = 1;
ac_build_export(&ctx->ac, &pos_args[i]);
}
/* Build parameter exports. */
si_build_param_exports(ctx, outputs, noutput);
}
void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
struct si_shader_info *info = &ctx->shader->selector->info;
struct si_shader_output_values *outputs = NULL;
int i, j;
assert(!ctx->shader->is_gs_copy_shader);
assert(info->num_outputs <= max_outputs);
outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
for (i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
for (j = 0; j < 4; j++) {
outputs[i].values[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
}
}
if (!ctx->screen->use_ngg_streamout && ctx->shader->selector->so.num_outputs)
si_llvm_emit_streamout(ctx, outputs, i, 0);
/* Export PrimitiveID. */
if (ctx->shader->key.mono.u.vs_export_prim_id) {
outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
outputs[i].semantic_index = 0;
outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
for (j = 1; j < 4; j++)
outputs[i].values[j] = LLVMConstReal(ctx->ac.f32, 0);
memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream));
i++;
}
si_llvm_build_vs_exports(ctx, outputs, i);
FREE(outputs);
}
static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs,
LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
struct si_shader_info *info = &ctx->shader->selector->info;
LLVMValueRef pos[4] = {};
assert(info->num_outputs <= max_outputs);
for (unsigned i = 0; i < info->num_outputs; i++) {
if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION)
continue;
for (unsigned chan = 0; chan < 4; chan++)
pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
break;
}
assert(pos[0] != NULL);
/* Return the position output. */
LLVMValueRef ret = ctx->return_value;
for (unsigned chan = 0; chan < 4; chan++)
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
ctx->return_value = ret;
}
/**
* Build the vertex shader prolog function.
*
* The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
* All inputs are returned unmodified. The vertex load indices are
* stored after them, which will be used by the API VS for fetching inputs.
*
* For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
* input_v0,
* input_v1,
* input_v2,
* input_v3,
* (VertexID + BaseVertex),
* (InstanceID + StartInstance),
* (InstanceID / 2 + StartInstance)
*/
void si_llvm_build_vs_prolog(struct si_shader_context *ctx, union si_shader_part_key *key)
{
LLVMTypeRef *returns;
LLVMValueRef ret, func;
int num_returns, i;
unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
unsigned num_input_vgprs =
key->vs_prolog.num_merged_next_stage_vgprs + 4 + (key->vs_prolog.has_ngg_cull_inputs ? 1 : 0);
struct ac_arg input_sgpr_param[key->vs_prolog.num_input_sgprs];
struct ac_arg input_vgpr_param[10];
LLVMValueRef input_vgprs[10];
unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs + num_input_vgprs;
unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
memset(&ctx->args, 0, sizeof(ctx->args));
/* 4 preloaded VGPRs + vertex load indices as prolog outputs */
returns = alloca((num_all_input_regs + key->vs_prolog.num_inputs) * sizeof(LLVMTypeRef));
num_returns = 0;
/* Declare input and output SGPRs. */
for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &input_sgpr_param[i]);
returns[num_returns++] = ctx->ac.i32;
}
struct ac_arg merged_wave_info = input_sgpr_param[3];
/* Preloaded VGPRs (outputs must be floats) */
for (i = 0; i < num_input_vgprs; i++) {
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &input_vgpr_param[i]);
returns[num_returns++] = ctx->ac.f32;
}
/* Vertex load indices. */
for (i = 0; i < key->vs_prolog.num_inputs; i++)
returns[num_returns++] = ctx->ac.f32;
/* Create the function. */
si_llvm_create_func(ctx, "vs_prolog", returns, num_returns, 0);
func = ctx->main_fn;
for (i = 0; i < num_input_vgprs; i++) {
input_vgprs[i] = ac_get_arg(&ctx->ac, input_vgpr_param[i]);
}
if (key->vs_prolog.num_merged_next_stage_vgprs) {
if (!key->vs_prolog.is_monolithic)
si_init_exec_from_input(ctx, merged_wave_info, 0);
if (key->vs_prolog.as_ls && ctx->screen->info.has_ls_vgpr_init_bug) {
/* If there are no HS threads, SPI loads the LS VGPRs
* starting at VGPR 0. Shift them back to where they
* belong.
*/
LLVMValueRef has_hs_threads =
LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
si_unpack_param(ctx, input_sgpr_param[3], 8, 8), ctx->ac.i32_0, "");
for (i = 4; i > 0; --i) {
input_vgprs[i + 1] = LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
input_vgprs[i + 1], input_vgprs[i - 1], "");
}
}
}
if (key->vs_prolog.gs_fast_launch_tri_list || key->vs_prolog.gs_fast_launch_tri_strip) {
LLVMValueRef wave_id, thread_id_in_tg;
wave_id = si_unpack_param(ctx, input_sgpr_param[3], 24, 4);
thread_id_in_tg =
ac_build_imad(&ctx->ac, wave_id, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false),
ac_get_thread_id(&ctx->ac));
/* The GS fast launch initializes all VGPRs to the value of
* the first thread, so we have to add the thread ID.
*
* Only these are initialized by the hw:
* VGPR2: Base Primitive ID
* VGPR5: Base Vertex ID
* VGPR6: Instance ID
*/
/* Put the vertex thread IDs into VGPRs as-is instead of packing them.
* The NGG cull shader will read them from there.
*/
if (key->vs_prolog.gs_fast_launch_tri_list) {
input_vgprs[0] = ac_build_imad(&ctx->ac, thread_id_in_tg, /* gs_vtx01_offset */
LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 0 */
LLVMConstInt(ctx->ac.i32, 0, 0));
input_vgprs[1] = ac_build_imad(&ctx->ac, thread_id_in_tg, /* gs_vtx23_offset */
LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 1 */
LLVMConstInt(ctx->ac.i32, 1, 0));
input_vgprs[4] = ac_build_imad(&ctx->ac, thread_id_in_tg, /* gs_vtx45_offset */
LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 2 */
LLVMConstInt(ctx->ac.i32, 2, 0));
} else {
assert(key->vs_prolog.gs_fast_launch_tri_strip);
LLVMBuilderRef builder = ctx->ac.builder;
/* Triangle indices: */
LLVMValueRef index[3] = {
thread_id_in_tg,
LLVMBuildAdd(builder, thread_id_in_tg, LLVMConstInt(ctx->ac.i32, 1, 0), ""),
LLVMBuildAdd(builder, thread_id_in_tg, LLVMConstInt(ctx->ac.i32, 2, 0), ""),
};
LLVMValueRef is_odd = LLVMBuildTrunc(ctx->ac.builder, thread_id_in_tg, ctx->ac.i1, "");
LLVMValueRef flatshade_first = LLVMBuildICmp(
builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, "");
ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, index);
input_vgprs[0] = index[0];
input_vgprs[1] = index[1];
input_vgprs[4] = index[2];
}
/* Triangles always have all edge flags set initially. */
input_vgprs[3] = LLVMConstInt(ctx->ac.i32, 0x7 << 8, 0);
input_vgprs[2] =
LLVMBuildAdd(ctx->ac.builder, input_vgprs[2], thread_id_in_tg, ""); /* PrimID */
input_vgprs[5] =
LLVMBuildAdd(ctx->ac.builder, input_vgprs[5], thread_id_in_tg, ""); /* VertexID */
input_vgprs[8] = input_vgprs[6]; /* InstanceID */
}
unsigned vertex_id_vgpr = first_vs_vgpr;
unsigned instance_id_vgpr = ctx->screen->info.chip_class >= GFX10
? first_vs_vgpr + 3
: first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);
ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
ctx->abi.instance_id = input_vgprs[instance_id_vgpr];
/* InstanceID = VertexID >> 16;
* VertexID = VertexID & 0xffff;
*/
if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
ctx->abi.instance_id =
LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id, LLVMConstInt(ctx->ac.i32, 16, 0), "");
ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
LLVMConstInt(ctx->ac.i32, 0xffff, 0), "");
}
/* Copy inputs to outputs. This should be no-op, as the registers match,
* but it will prevent the compiler from overwriting them unintentionally.
*/
ret = ctx->return_value;
for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
LLVMValueRef p = LLVMGetParam(func, i);
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
}
for (i = 0; i < num_input_vgprs; i++) {
LLVMValueRef p = input_vgprs[i];
if (i == vertex_id_vgpr)
p = ctx->abi.vertex_id;
else if (i == instance_id_vgpr)
p = ctx->abi.instance_id;
p = ac_to_float(&ctx->ac, p);
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, key->vs_prolog.num_input_sgprs + i, "");
}
/* Compute vertex load indices from instance divisors. */
LLVMValueRef instance_divisor_constbuf = NULL;
if (key->vs_prolog.states.instance_divisor_is_fetched) {
LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
LLVMValueRef buf_index = LLVMConstInt(ctx->ac.i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
instance_divisor_constbuf = ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
}
for (i = 0; i < key->vs_prolog.num_inputs; i++) {
bool divisor_is_one = key->vs_prolog.states.instance_divisor_is_one & (1u << i);
bool divisor_is_fetched = key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
LLVMValueRef index = NULL;
if (divisor_is_one) {
index = ctx->abi.instance_id;
} else if (divisor_is_fetched) {
LLVMValueRef udiv_factors[4];
for (unsigned j = 0; j < 4; j++) {
udiv_factors[j] = si_buffer_load_const(ctx, instance_divisor_constbuf,
LLVMConstInt(ctx->ac.i32, i * 16 + j * 4, 0));
udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
}
/* The faster NUW version doesn't work when InstanceID == UINT_MAX.
* Such InstanceID might not be achievable in a reasonable time though.
*/
index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id, udiv_factors[0],
udiv_factors[1], udiv_factors[2], udiv_factors[3]);
}
if (divisor_is_one || divisor_is_fetched) {
/* Add StartInstance. */
index =
LLVMBuildAdd(ctx->ac.builder, index,
LLVMGetParam(ctx->main_fn, user_sgpr_base + SI_SGPR_START_INSTANCE), "");
} else {
/* VertexID + BaseVertex */
index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
LLVMGetParam(func, user_sgpr_base + SI_SGPR_BASE_VERTEX), "");
}
index = ac_to_float(&ctx->ac, index);
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index, ctx->args.arg_count + i, "");
}
si_llvm_build_ret(ctx, ret);
}
static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
/* For non-indexed draws, the base vertex set by the driver
* (for direct draws) or the CP (for indirect draws) is the
* first vertex ID, but GLSL expects 0 to be returned.
*/
LLVMValueRef vs_state = ac_get_arg(&ctx->ac, ctx->vs_state_bits);
LLVMValueRef indexed;
indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->ac.i32_1, "");
indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->ac.i1, "");
return LLVMBuildSelect(ctx->ac.builder, indexed, ac_get_arg(&ctx->ac, ctx->args.base_vertex),
ctx->ac.i32_0, "");
}
void si_llvm_init_vs_callbacks(struct si_shader_context *ctx, bool ngg_cull_shader)
{
struct si_shader *shader = ctx->shader;
if (shader->key.as_ls)
ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
else if (shader->key.as_es)
ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
else if (shader->key.opt.vs_as_prim_discard_cs)
ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
else if (ngg_cull_shader)
ctx->abi.emit_outputs = gfx10_emit_ngg_culling_epilogue;
else if (shader->key.as_ngg)
ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
else
ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
ctx->abi.load_base_vertex = get_base_vertex;
}