blob: 0640828ca2c003e6267e7efa74a1bb7b11fce4bf [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_program.c
*
* This file contains the driver interface for compiling shaders.
*
* See iris_program_cache.c for the in-memory program cache where the
* compiled shaders are stored.
*/
#include <stdio.h>
#include <errno.h>
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_atomic.h"
#include "util/u_upload_mgr.h"
#include "util/debug.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir/nir_serialize.h"
#include "intel/compiler/brw_compiler.h"
#include "intel/compiler/brw_nir.h"
#include "iris_context.h"
#include "nir/tgsi_to_nir.h"
#define KEY_ID(prefix) .prefix.program_string_id = ish->program_id
#define BRW_KEY_INIT(gen, prog_id) \
.base.program_string_id = prog_id, \
.base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM, \
.base.tex.swizzles[0 ... MAX_SAMPLERS - 1] = 0x688, \
.base.tex.compressed_multisample_layout_mask = ~0, \
.base.tex.msaa_16 = (gen >= 9 ? ~0 : 0)
static unsigned
get_new_program_id(struct iris_screen *screen)
{
return p_atomic_inc_return(&screen->program_id);
}
static struct brw_vs_prog_key
iris_to_brw_vs_key(const struct gen_device_info *devinfo,
const struct iris_vs_prog_key *key)
{
return (struct brw_vs_prog_key) {
BRW_KEY_INIT(devinfo->gen, key->vue.base.program_string_id),
/* Don't tell the backend about our clip plane constants, we've
* already lowered them in NIR and don't want it doing it again.
*/
.nr_userclip_plane_consts = 0,
};
}
static struct brw_tcs_prog_key
iris_to_brw_tcs_key(const struct gen_device_info *devinfo,
const struct iris_tcs_prog_key *key)
{
return (struct brw_tcs_prog_key) {
BRW_KEY_INIT(devinfo->gen, key->vue.base.program_string_id),
.tes_primitive_mode = key->tes_primitive_mode,
.input_vertices = key->input_vertices,
.patch_outputs_written = key->patch_outputs_written,
.outputs_written = key->outputs_written,
.quads_workaround = key->quads_workaround,
};
}
static struct brw_tes_prog_key
iris_to_brw_tes_key(const struct gen_device_info *devinfo,
const struct iris_tes_prog_key *key)
{
return (struct brw_tes_prog_key) {
BRW_KEY_INIT(devinfo->gen, key->vue.base.program_string_id),
.patch_inputs_read = key->patch_inputs_read,
.inputs_read = key->inputs_read,
};
}
static struct brw_gs_prog_key
iris_to_brw_gs_key(const struct gen_device_info *devinfo,
const struct iris_gs_prog_key *key)
{
return (struct brw_gs_prog_key) {
BRW_KEY_INIT(devinfo->gen, key->vue.base.program_string_id),
};
}
static struct brw_wm_prog_key
iris_to_brw_fs_key(const struct gen_device_info *devinfo,
const struct iris_fs_prog_key *key)
{
return (struct brw_wm_prog_key) {
BRW_KEY_INIT(devinfo->gen, key->base.program_string_id),
.nr_color_regions = key->nr_color_regions,
.flat_shade = key->flat_shade,
.alpha_test_replicate_alpha = key->alpha_test_replicate_alpha,
.alpha_to_coverage = key->alpha_to_coverage,
.clamp_fragment_color = key->clamp_fragment_color,
.persample_interp = key->persample_interp,
.multisample_fbo = key->multisample_fbo,
.force_dual_color_blend = key->force_dual_color_blend,
.coherent_fb_fetch = key->coherent_fb_fetch,
.color_outputs_valid = key->color_outputs_valid,
.input_slots_valid = key->input_slots_valid,
.ignore_sample_mask_out = !key->multisample_fbo,
};
}
static struct brw_cs_prog_key
iris_to_brw_cs_key(const struct gen_device_info *devinfo,
const struct iris_cs_prog_key *key)
{
return (struct brw_cs_prog_key) {
BRW_KEY_INIT(devinfo->gen, key->base.program_string_id),
};
}
static void *
upload_state(struct u_upload_mgr *uploader,
struct iris_state_ref *ref,
unsigned size,
unsigned alignment)
{
void *p = NULL;
u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
return p;
}
void
iris_upload_ubo_ssbo_surf_state(struct iris_context *ice,
struct pipe_shader_buffer *buf,
struct iris_state_ref *surf_state,
bool ssbo)
{
struct pipe_context *ctx = &ice->ctx;
struct iris_screen *screen = (struct iris_screen *) ctx->screen;
void *map =
upload_state(ice->state.surface_uploader, surf_state,
screen->isl_dev.ss.size, 64);
if (!unlikely(map)) {
surf_state->res = NULL;
return;
}
struct iris_resource *res = (void *) buf->buffer;
struct iris_bo *surf_bo = iris_resource_bo(surf_state->res);
surf_state->offset += iris_bo_offset_from_base_address(surf_bo);
isl_buffer_fill_state(&screen->isl_dev, map,
.address = res->bo->gtt_offset + res->offset +
buf->buffer_offset,
.size_B = buf->buffer_size - res->offset,
.format = ssbo ? ISL_FORMAT_RAW
: ISL_FORMAT_R32G32B32A32_FLOAT,
.swizzle = ISL_SWIZZLE_IDENTITY,
.stride_B = 1,
.mocs = iris_mocs(res->bo, &screen->isl_dev));
}
static nir_ssa_def *
get_aoa_deref_offset(nir_builder *b,
nir_deref_instr *deref,
unsigned elem_size)
{
unsigned array_size = elem_size;
nir_ssa_def *offset = nir_imm_int(b, 0);
while (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
/* This level's element size is the previous level's array size */
nir_ssa_def *index = nir_ssa_for_src(b, deref->arr.index, 1);
assert(deref->arr.index.ssa);
offset = nir_iadd(b, offset,
nir_imul(b, index, nir_imm_int(b, array_size)));
deref = nir_deref_instr_parent(deref);
assert(glsl_type_is_array(deref->type));
array_size *= glsl_get_length(deref->type);
}
/* Accessing an invalid surface index with the dataport can result in a
* hang. According to the spec "if the index used to select an individual
* element is negative or greater than or equal to the size of the array,
* the results of the operation are undefined but may not lead to
* termination" -- which is one of the possible outcomes of the hang.
* Clamp the index to prevent access outside of the array bounds.
*/
return nir_umin(b, offset, nir_imm_int(b, array_size - elem_size));
}
static void
iris_lower_storage_image_derefs(nir_shader *nir)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_image_deref_load_raw_intel:
case nir_intrinsic_image_deref_store_raw_intel: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
b.cursor = nir_before_instr(&intrin->instr);
nir_ssa_def *index =
nir_iadd(&b, nir_imm_int(&b, var->data.driver_location),
get_aoa_deref_offset(&b, deref, 1));
nir_rewrite_image_intrinsic(intrin, index, false);
break;
}
default:
break;
}
}
}
}
/**
* Undo nir_lower_passthrough_edgeflags but keep the inputs_read flag.
*/
static bool
iris_fix_edge_flags(nir_shader *nir)
{
if (nir->info.stage != MESA_SHADER_VERTEX) {
nir_shader_preserve_all_metadata(nir);
return false;
}
nir_variable *var = NULL;
nir_foreach_shader_out_variable(v, nir) {
if (v->data.location == VARYING_SLOT_EDGE) {
var = v;
break;
}
}
if (!var) {
nir_shader_preserve_all_metadata(nir);
return false;
}
exec_node_remove(&var->node);
var->data.mode = nir_var_shader_temp;
exec_list_push_tail(&nir->globals, &var->node);
nir->info.outputs_written &= ~VARYING_BIT_EDGE;
nir->info.inputs_read &= ~VERT_BIT_EDGEFLAG;
nir_fixup_deref_modes(nir);
nir_foreach_function(f, nir) {
if (f->impl) {
nir_metadata_preserve(f->impl, nir_metadata_block_index |
nir_metadata_dominance |
nir_metadata_live_ssa_defs |
nir_metadata_loop_analysis);
} else {
nir_metadata_preserve(f->impl, nir_metadata_all);
}
}
return true;
}
/**
* Fix an uncompiled shader's stream output info.
*
* Core Gallium stores output->register_index as a "slot" number, where
* slots are assigned consecutively to all outputs in info->outputs_written.
* This naive packing of outputs doesn't work for us - we too have slots,
* but the layout is defined by the VUE map, which we won't have until we
* compile a specific shader variant. So, we remap these and simply store
* VARYING_SLOT_* in our copy's output->register_index fields.
*
* We also fix up VARYING_SLOT_{LAYER,VIEWPORT,PSIZ} to select the Y/Z/W
* components of our VUE header. See brw_vue_map.c for the layout.
*/
static void
update_so_info(struct pipe_stream_output_info *so_info,
uint64_t outputs_written)
{
uint8_t reverse_map[64] = {};
unsigned slot = 0;
while (outputs_written) {
reverse_map[slot++] = u_bit_scan64(&outputs_written);
}
for (unsigned i = 0; i < so_info->num_outputs; i++) {
struct pipe_stream_output *output = &so_info->output[i];
/* Map Gallium's condensed "slots" back to real VARYING_SLOT_* enums */
output->register_index = reverse_map[output->register_index];
/* The VUE header contains three scalar fields packed together:
* - gl_PointSize is stored in VARYING_SLOT_PSIZ.w
* - gl_Layer is stored in VARYING_SLOT_PSIZ.y
* - gl_ViewportIndex is stored in VARYING_SLOT_PSIZ.z
*/
switch (output->register_index) {
case VARYING_SLOT_LAYER:
assert(output->num_components == 1);
output->register_index = VARYING_SLOT_PSIZ;
output->start_component = 1;
break;
case VARYING_SLOT_VIEWPORT:
assert(output->num_components == 1);
output->register_index = VARYING_SLOT_PSIZ;
output->start_component = 2;
break;
case VARYING_SLOT_PSIZ:
assert(output->num_components == 1);
output->start_component = 3;
break;
}
//info->outputs_written |= 1ull << output->register_index;
}
}
static void
setup_vec4_image_sysval(uint32_t *sysvals, uint32_t idx,
unsigned offset, unsigned n)
{
assert(offset % sizeof(uint32_t) == 0);
for (unsigned i = 0; i < n; ++i)
sysvals[i] = BRW_PARAM_IMAGE(idx, offset / sizeof(uint32_t) + i);
for (unsigned i = n; i < 4; ++i)
sysvals[i] = BRW_PARAM_BUILTIN_ZERO;
}
/**
* Associate NIR uniform variables with the prog_data->param[] mechanism
* used by the backend. Also, decide which UBOs we'd like to push in an
* ideal situation (though the backend can reduce this).
*/
static void
iris_setup_uniforms(const struct brw_compiler *compiler,
void *mem_ctx,
nir_shader *nir,
struct brw_stage_prog_data *prog_data,
enum brw_param_builtin **out_system_values,
unsigned *out_num_system_values,
unsigned *out_num_cbufs)
{
UNUSED const struct gen_device_info *devinfo = compiler->devinfo;
const unsigned IRIS_MAX_SYSTEM_VALUES =
PIPE_MAX_SHADER_IMAGES * BRW_IMAGE_PARAM_SIZE;
enum brw_param_builtin *system_values =
rzalloc_array(mem_ctx, enum brw_param_builtin, IRIS_MAX_SYSTEM_VALUES);
unsigned num_system_values = 0;
unsigned patch_vert_idx = -1;
unsigned ucp_idx[IRIS_MAX_CLIP_PLANES];
unsigned img_idx[PIPE_MAX_SHADER_IMAGES];
unsigned variable_group_size_idx = -1;
memset(ucp_idx, -1, sizeof(ucp_idx));
memset(img_idx, -1, sizeof(img_idx));
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, impl);
b.cursor = nir_before_block(nir_start_block(impl));
nir_ssa_def *temp_ubo_name = nir_ssa_undef(&b, 1, 32);
nir_ssa_def *temp_const_ubo_name = NULL;
/* Turn system value intrinsics into uniforms */
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
nir_ssa_def *offset;
switch (intrin->intrinsic) {
case nir_intrinsic_load_constant: {
/* This one is special because it reads from the shader constant
* data and not cbuf0 which gallium uploads for us.
*/
b.cursor = nir_before_instr(instr);
nir_ssa_def *offset =
nir_iadd_imm(&b, nir_ssa_for_src(&b, intrin->src[0], 1),
nir_intrinsic_base(intrin));
if (temp_const_ubo_name == NULL)
temp_const_ubo_name = nir_imm_int(&b, 0);
nir_intrinsic_instr *load_ubo =
nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ubo);
load_ubo->num_components = intrin->num_components;
load_ubo->src[0] = nir_src_for_ssa(temp_const_ubo_name);
load_ubo->src[1] = nir_src_for_ssa(offset);
nir_intrinsic_set_align(load_ubo,
nir_intrinsic_align_mul(intrin),
nir_intrinsic_align_offset(intrin));
nir_ssa_dest_init(&load_ubo->instr, &load_ubo->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size,
intrin->dest.ssa.name);
nir_builder_instr_insert(&b, &load_ubo->instr);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(&load_ubo->dest.ssa));
nir_instr_remove(&intrin->instr);
continue;
}
case nir_intrinsic_load_user_clip_plane: {
unsigned ucp = nir_intrinsic_ucp_id(intrin);
if (ucp_idx[ucp] == -1) {
ucp_idx[ucp] = num_system_values;
num_system_values += 4;
}
for (int i = 0; i < 4; i++) {
system_values[ucp_idx[ucp] + i] =
BRW_PARAM_BUILTIN_CLIP_PLANE(ucp, i);
}
b.cursor = nir_before_instr(instr);
offset = nir_imm_int(&b, ucp_idx[ucp] * sizeof(uint32_t));
break;
}
case nir_intrinsic_load_patch_vertices_in:
if (patch_vert_idx == -1)
patch_vert_idx = num_system_values++;
system_values[patch_vert_idx] =
BRW_PARAM_BUILTIN_PATCH_VERTICES_IN;
b.cursor = nir_before_instr(instr);
offset = nir_imm_int(&b, patch_vert_idx * sizeof(uint32_t));
break;
case nir_intrinsic_image_deref_load_param_intel: {
assert(devinfo->gen < 9);
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
if (img_idx[var->data.binding] == -1) {
/* GL only allows arrays of arrays of images. */
assert(glsl_type_is_image(glsl_without_array(var->type)));
unsigned num_images = MAX2(1, glsl_get_aoa_size(var->type));
for (int i = 0; i < num_images; i++) {
const unsigned img = var->data.binding + i;
img_idx[img] = num_system_values;
num_system_values += BRW_IMAGE_PARAM_SIZE;
uint32_t *img_sv = &system_values[img_idx[img]];
setup_vec4_image_sysval(
img_sv + BRW_IMAGE_PARAM_OFFSET_OFFSET, img,
offsetof(struct brw_image_param, offset), 2);
setup_vec4_image_sysval(
img_sv + BRW_IMAGE_PARAM_SIZE_OFFSET, img,
offsetof(struct brw_image_param, size), 3);
setup_vec4_image_sysval(
img_sv + BRW_IMAGE_PARAM_STRIDE_OFFSET, img,
offsetof(struct brw_image_param, stride), 4);
setup_vec4_image_sysval(
img_sv + BRW_IMAGE_PARAM_TILING_OFFSET, img,
offsetof(struct brw_image_param, tiling), 3);
setup_vec4_image_sysval(
img_sv + BRW_IMAGE_PARAM_SWIZZLING_OFFSET, img,
offsetof(struct brw_image_param, swizzling), 2);
}
}
b.cursor = nir_before_instr(instr);
offset = nir_iadd(&b,
get_aoa_deref_offset(&b, deref, BRW_IMAGE_PARAM_SIZE * 4),
nir_imm_int(&b, img_idx[var->data.binding] * 4 +
nir_intrinsic_base(intrin) * 16));
break;
}
case nir_intrinsic_load_local_group_size: {
assert(nir->info.cs.local_size_variable);
if (variable_group_size_idx == -1) {
variable_group_size_idx = num_system_values;
num_system_values += 3;
for (int i = 0; i < 3; i++) {
system_values[variable_group_size_idx + i] =
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X + i;
}
}
b.cursor = nir_before_instr(instr);
offset = nir_imm_int(&b, variable_group_size_idx * sizeof(uint32_t));
break;
}
default:
continue;
}
unsigned comps = nir_intrinsic_dest_components(intrin);
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(nir, nir_intrinsic_load_ubo);
load->num_components = comps;
load->src[0] = nir_src_for_ssa(temp_ubo_name);
load->src[1] = nir_src_for_ssa(offset);
nir_intrinsic_set_align(load, 4, 0);
nir_ssa_dest_init(&load->instr, &load->dest, comps, 32, NULL);
nir_builder_instr_insert(&b, &load->instr);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(&load->dest.ssa));
nir_instr_remove(instr);
}
}
nir_validate_shader(nir, "before remapping");
/* Uniforms are stored in constant buffer 0, the
* user-facing UBOs are indexed by one. So if any constant buffer is
* needed, the constant buffer 0 will be needed, so account for it.
*/
unsigned num_cbufs = nir->info.num_ubos;
if (num_cbufs || nir->num_uniforms)
num_cbufs++;
/* Place the new params in a new cbuf. */
if (num_system_values > 0) {
unsigned sysval_cbuf_index = num_cbufs;
num_cbufs++;
system_values = reralloc(mem_ctx, system_values, enum brw_param_builtin,
num_system_values);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
if (load->intrinsic != nir_intrinsic_load_ubo)
continue;
b.cursor = nir_before_instr(instr);
assert(load->src[0].is_ssa);
if (load->src[0].ssa == temp_ubo_name) {
nir_ssa_def *imm = nir_imm_int(&b, sysval_cbuf_index);
nir_instr_rewrite_src(instr, &load->src[0],
nir_src_for_ssa(imm));
}
}
}
/* We need to fold the new iadds for brw_nir_analyze_ubo_ranges */
nir_opt_constant_folding(nir);
} else {
ralloc_free(system_values);
system_values = NULL;
}
assert(num_cbufs < PIPE_MAX_CONSTANT_BUFFERS);
nir_validate_shader(nir, "after remap");
/* We don't use params[] but gallium leaves num_uniforms set. We use this
* to detect when cbuf0 exists but we don't need it anymore when we get
* here. Instead, zero it out so that the back-end doesn't get confused
* when nr_params * 4 != num_uniforms != nr_params * 4.
*/
nir->num_uniforms = 0;
/* Constant loads (if any) need to go at the end of the constant buffers so
* we need to know num_cbufs before we can lower to them.
*/
if (temp_const_ubo_name != NULL) {
nir_load_const_instr *const_ubo_index =
nir_instr_as_load_const(temp_const_ubo_name->parent_instr);
assert(const_ubo_index->def.bit_size == 32);
const_ubo_index->value[0].u32 = num_cbufs;
}
*out_system_values = system_values;
*out_num_system_values = num_system_values;
*out_num_cbufs = num_cbufs;
}
static const char *surface_group_names[] = {
[IRIS_SURFACE_GROUP_RENDER_TARGET] = "render target",
[IRIS_SURFACE_GROUP_RENDER_TARGET_READ] = "non-coherent render target read",
[IRIS_SURFACE_GROUP_CS_WORK_GROUPS] = "CS work groups",
[IRIS_SURFACE_GROUP_TEXTURE] = "texture",
[IRIS_SURFACE_GROUP_UBO] = "ubo",
[IRIS_SURFACE_GROUP_SSBO] = "ssbo",
[IRIS_SURFACE_GROUP_IMAGE] = "image",
};
static void
iris_print_binding_table(FILE *fp, const char *name,
const struct iris_binding_table *bt)
{
STATIC_ASSERT(ARRAY_SIZE(surface_group_names) == IRIS_SURFACE_GROUP_COUNT);
uint32_t total = 0;
uint32_t compacted = 0;
for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++) {
uint32_t size = bt->sizes[i];
total += size;
if (size)
compacted += util_bitcount64(bt->used_mask[i]);
}
if (total == 0) {
fprintf(fp, "Binding table for %s is empty\n\n", name);
return;
}
if (total != compacted) {
fprintf(fp, "Binding table for %s "
"(compacted to %u entries from %u entries)\n",
name, compacted, total);
} else {
fprintf(fp, "Binding table for %s (%u entries)\n", name, total);
}
uint32_t entry = 0;
for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++) {
uint64_t mask = bt->used_mask[i];
while (mask) {
int index = u_bit_scan64(&mask);
fprintf(fp, " [%u] %s #%d\n", entry++, surface_group_names[i], index);
}
}
fprintf(fp, "\n");
}
enum {
/* Max elements in a surface group. */
SURFACE_GROUP_MAX_ELEMENTS = 64,
};
/**
* Map a <group, index> pair to a binding table index.
*
* For example: <UBO, 5> => binding table index 12
*/
uint32_t
iris_group_index_to_bti(const struct iris_binding_table *bt,
enum iris_surface_group group, uint32_t index)
{
assert(index < bt->sizes[group]);
uint64_t mask = bt->used_mask[group];
uint64_t bit = 1ull << index;
if (bit & mask) {
return bt->offsets[group] + util_bitcount64((bit - 1) & mask);
} else {
return IRIS_SURFACE_NOT_USED;
}
}
/**
* Map a binding table index back to a <group, index> pair.
*
* For example: binding table index 12 => <UBO, 5>
*/
uint32_t
iris_bti_to_group_index(const struct iris_binding_table *bt,
enum iris_surface_group group, uint32_t bti)
{
uint64_t used_mask = bt->used_mask[group];
assert(bti >= bt->offsets[group]);
uint32_t c = bti - bt->offsets[group];
while (used_mask) {
int i = u_bit_scan64(&used_mask);
if (c == 0)
return i;
c--;
}
return IRIS_SURFACE_NOT_USED;
}
static void
rewrite_src_with_bti(nir_builder *b, struct iris_binding_table *bt,
nir_instr *instr, nir_src *src,
enum iris_surface_group group)
{
assert(bt->sizes[group] > 0);
b->cursor = nir_before_instr(instr);
nir_ssa_def *bti;
if (nir_src_is_const(*src)) {
uint32_t index = nir_src_as_uint(*src);
bti = nir_imm_intN_t(b, iris_group_index_to_bti(bt, group, index),
src->ssa->bit_size);
} else {
/* Indirect usage makes all the surfaces of the group to be available,
* so we can just add the base.
*/
assert(bt->used_mask[group] == BITFIELD64_MASK(bt->sizes[group]));
bti = nir_iadd_imm(b, src->ssa, bt->offsets[group]);
}
nir_instr_rewrite_src(instr, src, nir_src_for_ssa(bti));
}
static void
mark_used_with_src(struct iris_binding_table *bt, nir_src *src,
enum iris_surface_group group)
{
assert(bt->sizes[group] > 0);
if (nir_src_is_const(*src)) {
uint64_t index = nir_src_as_uint(*src);
assert(index < bt->sizes[group]);
bt->used_mask[group] |= 1ull << index;
} else {
/* There's an indirect usage, we need all the surfaces. */
bt->used_mask[group] = BITFIELD64_MASK(bt->sizes[group]);
}
}
static bool
skip_compacting_binding_tables(void)
{
static int skip = -1;
if (skip < 0)
skip = env_var_as_boolean("INTEL_DISABLE_COMPACT_BINDING_TABLE", false);
return skip;
}
/**
* Set up the binding table indices and apply to the shader.
*/
static void
iris_setup_binding_table(const struct gen_device_info *devinfo,
struct nir_shader *nir,
struct iris_binding_table *bt,
unsigned num_render_targets,
unsigned num_system_values,
unsigned num_cbufs)
{
const struct shader_info *info = &nir->info;
memset(bt, 0, sizeof(*bt));
/* Set the sizes for each surface group. For some groups, we already know
* upfront how many will be used, so mark them.
*/
if (info->stage == MESA_SHADER_FRAGMENT) {
bt->sizes[IRIS_SURFACE_GROUP_RENDER_TARGET] = num_render_targets;
/* All render targets used. */
bt->used_mask[IRIS_SURFACE_GROUP_RENDER_TARGET] =
BITFIELD64_MASK(num_render_targets);
/* Setup render target read surface group inorder to support non-coherent
* framebuffer fetch on Gen8
*/
if (devinfo->gen == 8 && info->outputs_read) {
bt->sizes[IRIS_SURFACE_GROUP_RENDER_TARGET_READ] = num_render_targets;
bt->used_mask[IRIS_SURFACE_GROUP_RENDER_TARGET_READ] =
BITFIELD64_MASK(num_render_targets);
}
} else if (info->stage == MESA_SHADER_COMPUTE) {
bt->sizes[IRIS_SURFACE_GROUP_CS_WORK_GROUPS] = 1;
}
bt->sizes[IRIS_SURFACE_GROUP_TEXTURE] = util_last_bit(info->textures_used);
bt->used_mask[IRIS_SURFACE_GROUP_TEXTURE] = info->textures_used;
bt->sizes[IRIS_SURFACE_GROUP_IMAGE] = info->num_images;
/* Allocate an extra slot in the UBO section for NIR constants.
* Binding table compaction will remove it if unnecessary.
*
* We don't include them in iris_compiled_shader::num_cbufs because
* they are uploaded separately from shs->constbuf[], but from a shader
* point of view, they're another UBO (at the end of the section).
*/
bt->sizes[IRIS_SURFACE_GROUP_UBO] = num_cbufs + 1;
bt->sizes[IRIS_SURFACE_GROUP_SSBO] = info->num_ssbos;
for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++)
assert(bt->sizes[i] <= SURFACE_GROUP_MAX_ELEMENTS);
/* Mark surfaces used for the cases we don't have the information available
* upfront.
*/
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_foreach_block (block, impl) {
nir_foreach_instr (instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_num_work_groups:
bt->used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS] = 1;
break;
case nir_intrinsic_load_output:
if (devinfo->gen == 8) {
mark_used_with_src(bt, &intrin->src[0],
IRIS_SURFACE_GROUP_RENDER_TARGET_READ);
}
break;
case nir_intrinsic_image_size:
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_imin:
case nir_intrinsic_image_atomic_umin:
case nir_intrinsic_image_atomic_imax:
case nir_intrinsic_image_atomic_umax:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
case nir_intrinsic_image_load_raw_intel:
case nir_intrinsic_image_store_raw_intel:
mark_used_with_src(bt, &intrin->src[0], IRIS_SURFACE_GROUP_IMAGE);
break;
case nir_intrinsic_load_ubo:
mark_used_with_src(bt, &intrin->src[0], IRIS_SURFACE_GROUP_UBO);
break;
case nir_intrinsic_store_ssbo:
mark_used_with_src(bt, &intrin->src[1], IRIS_SURFACE_GROUP_SSBO);
break;
case nir_intrinsic_get_buffer_size:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_ssbo_atomic_fmin:
case nir_intrinsic_ssbo_atomic_fmax:
case nir_intrinsic_ssbo_atomic_fcomp_swap:
case nir_intrinsic_load_ssbo:
mark_used_with_src(bt, &intrin->src[0], IRIS_SURFACE_GROUP_SSBO);
break;
default:
break;
}
}
}
/* When disable we just mark everything as used. */
if (unlikely(skip_compacting_binding_tables())) {
for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++)
bt->used_mask[i] = BITFIELD64_MASK(bt->sizes[i]);
}
/* Calculate the offsets and the binding table size based on the used
* surfaces. After this point, the functions to go between "group indices"
* and binding table indices can be used.
*/
uint32_t next = 0;
for (int i = 0; i < IRIS_SURFACE_GROUP_COUNT; i++) {
if (bt->used_mask[i] != 0) {
bt->offsets[i] = next;
next += util_bitcount64(bt->used_mask[i]);
}
}
bt->size_bytes = next * 4;
if (unlikely(INTEL_DEBUG & DEBUG_BT)) {
iris_print_binding_table(stderr, gl_shader_stage_name(info->stage), bt);
}
/* Apply the binding table indices. The backend compiler is not expected
* to change those, as we haven't set any of the *_start entries in brw
* binding_table.
*/
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block (block, impl) {
nir_foreach_instr (instr, block) {
if (instr->type == nir_instr_type_tex) {
nir_tex_instr *tex = nir_instr_as_tex(instr);
tex->texture_index =
iris_group_index_to_bti(bt, IRIS_SURFACE_GROUP_TEXTURE,
tex->texture_index);
continue;
}
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_image_size:
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_imin:
case nir_intrinsic_image_atomic_umin:
case nir_intrinsic_image_atomic_imax:
case nir_intrinsic_image_atomic_umax:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
case nir_intrinsic_image_load_raw_intel:
case nir_intrinsic_image_store_raw_intel:
rewrite_src_with_bti(&b, bt, instr, &intrin->src[0],
IRIS_SURFACE_GROUP_IMAGE);
break;
case nir_intrinsic_load_ubo:
rewrite_src_with_bti(&b, bt, instr, &intrin->src[0],
IRIS_SURFACE_GROUP_UBO);
break;
case nir_intrinsic_store_ssbo:
rewrite_src_with_bti(&b, bt, instr, &intrin->src[1],
IRIS_SURFACE_GROUP_SSBO);
break;
case nir_intrinsic_load_output:
if (devinfo->gen == 8) {
rewrite_src_with_bti(&b, bt, instr, &intrin->src[0],
IRIS_SURFACE_GROUP_RENDER_TARGET_READ);
}
break;
case nir_intrinsic_get_buffer_size:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_ssbo_atomic_fmin:
case nir_intrinsic_ssbo_atomic_fmax:
case nir_intrinsic_ssbo_atomic_fcomp_swap:
case nir_intrinsic_load_ssbo:
rewrite_src_with_bti(&b, bt, instr, &intrin->src[0],
IRIS_SURFACE_GROUP_SSBO);
break;
default:
break;
}
}
}
}
static void
iris_debug_recompile(struct iris_context *ice,
struct shader_info *info,
const struct brw_base_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *) ice->ctx.screen;
const struct gen_device_info *devinfo = &screen->devinfo;
const struct brw_compiler *c = screen->compiler;
if (!info)
return;
c->shader_perf_log(&ice->dbg, "Recompiling %s shader for program %s: %s\n",
_mesa_shader_stage_to_string(info->stage),
info->name ? info->name : "(no identifier)",
info->label ? info->label : "");
const void *old_iris_key =
iris_find_previous_compile(ice, info->stage, key->program_string_id);
union brw_any_prog_key old_key;
switch (info->stage) {
case MESA_SHADER_VERTEX:
old_key.vs = iris_to_brw_vs_key(devinfo, old_iris_key);
break;
case MESA_SHADER_TESS_CTRL:
old_key.tcs = iris_to_brw_tcs_key(devinfo, old_iris_key);
break;
case MESA_SHADER_TESS_EVAL:
old_key.tes = iris_to_brw_tes_key(devinfo, old_iris_key);
break;
case MESA_SHADER_GEOMETRY:
old_key.gs = iris_to_brw_gs_key(devinfo, old_iris_key);
break;
case MESA_SHADER_FRAGMENT:
old_key.wm = iris_to_brw_fs_key(devinfo, old_iris_key);
break;
case MESA_SHADER_COMPUTE:
old_key.cs = iris_to_brw_cs_key(devinfo, old_iris_key);
break;
default:
unreachable("invalid shader stage");
}
brw_debug_key_recompile(c, &ice->dbg, info->stage, &old_key.base, key);
}
/**
* Get the shader for the last enabled geometry stage.
*
* This stage is the one which will feed stream output and the rasterizer.
*/
static gl_shader_stage
last_vue_stage(struct iris_context *ice)
{
if (ice->shaders.uncompiled[MESA_SHADER_GEOMETRY])
return MESA_SHADER_GEOMETRY;
if (ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL])
return MESA_SHADER_TESS_EVAL;
return MESA_SHADER_VERTEX;
}
/**
* Compile a vertex shader, and upload the assembly.
*/
static struct iris_compiled_shader *
iris_compile_vs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct iris_vs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_vs_prog_data *vs_prog_data =
rzalloc(mem_ctx, struct brw_vs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &vs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
enum brw_param_builtin *system_values;
unsigned num_system_values;
unsigned num_cbufs;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
if (key->vue.nr_userclip_plane_consts) {
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_lower_clip_vs(nir, (1 << key->vue.nr_userclip_plane_consts) - 1,
true, false, NULL);
nir_lower_io_to_temporaries(nir, impl, true, false);
nir_lower_global_vars_to_local(nir);
nir_lower_vars_to_ssa(nir);
nir_shader_gather_info(nir, impl);
}
prog_data->use_alt_mode = ish->use_alt_mode;
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values, &num_cbufs);
struct iris_binding_table bt;
iris_setup_binding_table(devinfo, nir, &bt, /* num_render_targets */ 0,
num_system_values, num_cbufs);
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
brw_compute_vue_map(devinfo,
&vue_prog_data->vue_map, nir->info.outputs_written,
nir->info.separate_shader, /* pos_slots */ 1);
struct brw_vs_prog_key brw_key = iris_to_brw_vs_key(devinfo, key);
char *error_str = NULL;
const unsigned *program =
brw_compile_vs(compiler, &ice->dbg, mem_ctx, &brw_key, vs_prog_data,
nir, -1, NULL, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile vertex shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
if (ish->compiled_once) {
iris_debug_recompile(ice, &nir->info, &brw_key.base);
} else {
ish->compiled_once = true;
}
uint32_t *so_decls =
screen->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
struct iris_compiled_shader *shader =
iris_upload_shader(ice, IRIS_CACHE_VS, sizeof(*key), key, program,
prog_data, so_decls, system_values, num_system_values,
num_cbufs, &bt);
iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key));
ralloc_free(mem_ctx);
return shader;
}
/**
* Update the current vertex shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_vs(struct iris_context *ice)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_VERTEX];
struct iris_vs_prog_key key = { KEY_ID(vue.base) };
screen->vtbl.populate_vs_key(ice, &ish->nir->info, last_vue_stage(ice), &key);
struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_VS];
struct iris_compiled_shader *shader =
iris_find_cached_shader(ice, IRIS_CACHE_VS, sizeof(key), &key);
if (!shader)
shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key));
if (!shader)
shader = iris_compile_vs(ice, ish, &key);
if (old != shader) {
ice->shaders.prog[IRIS_CACHE_VS] = shader;
ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_VS |
IRIS_STAGE_DIRTY_BINDINGS_VS |
IRIS_STAGE_DIRTY_CONSTANTS_VS;
shs->sysvals_need_upload = true;
const struct brw_vs_prog_data *vs_prog_data =
(void *) shader->prog_data;
const bool uses_draw_params = vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance;
const bool uses_derived_draw_params = vs_prog_data->uses_drawid ||
vs_prog_data->uses_is_indexed_draw;
const bool needs_sgvs_element = uses_draw_params ||
vs_prog_data->uses_instanceid ||
vs_prog_data->uses_vertexid;
if (ice->state.vs_uses_draw_params != uses_draw_params ||
ice->state.vs_uses_derived_draw_params != uses_derived_draw_params ||
ice->state.vs_needs_edge_flag != ish->needs_edge_flag) {
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS |
IRIS_DIRTY_VERTEX_ELEMENTS;
}
ice->state.vs_uses_draw_params = uses_draw_params;
ice->state.vs_uses_derived_draw_params = uses_derived_draw_params;
ice->state.vs_needs_sgvs_element = needs_sgvs_element;
ice->state.vs_needs_edge_flag = ish->needs_edge_flag;
}
}
/**
* Get the shader_info for a given stage, or NULL if the stage is disabled.
*/
const struct shader_info *
iris_get_shader_info(const struct iris_context *ice, gl_shader_stage stage)
{
const struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
if (!ish)
return NULL;
const nir_shader *nir = ish->nir;
return &nir->info;
}
/**
* Get the union of TCS output and TES input slots.
*
* TCS and TES need to agree on a common URB entry layout. In particular,
* the data for all patch vertices is stored in a single URB entry (unlike
* GS which has one entry per input vertex). This means that per-vertex
* array indexing needs a stride.
*
* SSO requires locations to match, but doesn't require the number of
* outputs/inputs to match (in fact, the TCS often has extra outputs).
* So, we need to take the extra step of unifying these on the fly.
*/
static void
get_unified_tess_slots(const struct iris_context *ice,
uint64_t *per_vertex_slots,
uint32_t *per_patch_slots)
{
const struct shader_info *tcs =
iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
const struct shader_info *tes =
iris_get_shader_info(ice, MESA_SHADER_TESS_EVAL);
*per_vertex_slots = tes->inputs_read;
*per_patch_slots = tes->patch_inputs_read;
if (tcs) {
*per_vertex_slots |= tcs->outputs_written;
*per_patch_slots |= tcs->patch_outputs_written;
}
}
/**
* Compile a tessellation control shader, and upload the assembly.
*/
static struct iris_compiled_shader *
iris_compile_tcs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct iris_tcs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct nir_shader_compiler_options *options =
compiler->glsl_compiler_options[MESA_SHADER_TESS_CTRL].NirOptions;
void *mem_ctx = ralloc_context(NULL);
struct brw_tcs_prog_data *tcs_prog_data =
rzalloc(mem_ctx, struct brw_tcs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
const struct gen_device_info *devinfo = &screen->devinfo;
enum brw_param_builtin *system_values = NULL;
unsigned num_system_values = 0;
unsigned num_cbufs = 0;
nir_shader *nir;
struct iris_binding_table bt;
struct brw_tcs_prog_key brw_key = iris_to_brw_tcs_key(devinfo, key);
if (ish) {
nir = nir_shader_clone(mem_ctx, ish->nir);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values, &num_cbufs);
iris_setup_binding_table(devinfo, nir, &bt, /* num_render_targets */ 0,
num_system_values, num_cbufs);
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
} else {
nir =
brw_nir_create_passthrough_tcs(mem_ctx, compiler, options, &brw_key);
/* Reserve space for passing the default tess levels as constants. */
num_cbufs = 1;
num_system_values = 8;
system_values =
rzalloc_array(mem_ctx, enum brw_param_builtin, num_system_values);
prog_data->param = rzalloc_array(mem_ctx, uint32_t, num_system_values);
prog_data->nr_params = num_system_values;
if (key->tes_primitive_mode == GL_QUADS) {
for (int i = 0; i < 4; i++)
system_values[7 - i] = BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X + i;
system_values[3] = BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X;
system_values[2] = BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y;
} else if (key->tes_primitive_mode == GL_TRIANGLES) {
for (int i = 0; i < 3; i++)
system_values[7 - i] = BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X + i;
system_values[4] = BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X;
} else {
assert(key->tes_primitive_mode == GL_ISOLINES);
system_values[7] = BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y;
system_values[6] = BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
}
/* Manually setup the TCS binding table. */
memset(&bt, 0, sizeof(bt));
bt.sizes[IRIS_SURFACE_GROUP_UBO] = 1;
bt.used_mask[IRIS_SURFACE_GROUP_UBO] = 1;
bt.size_bytes = 4;
prog_data->ubo_ranges[0].length = 1;
}
char *error_str = NULL;
const unsigned *program =
brw_compile_tcs(compiler, &ice->dbg, mem_ctx, &brw_key, tcs_prog_data,
nir, -1, NULL, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile control shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
if (ish) {
if (ish->compiled_once) {
iris_debug_recompile(ice, &nir->info, &brw_key.base);
} else {
ish->compiled_once = true;
}
}
struct iris_compiled_shader *shader =
iris_upload_shader(ice, IRIS_CACHE_TCS, sizeof(*key), key, program,
prog_data, NULL, system_values, num_system_values,
num_cbufs, &bt);
if (ish)
iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key));
ralloc_free(mem_ctx);
return shader;
}
/**
* Update the current tessellation control shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_tcs(struct iris_context *ice)
{
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
struct iris_uncompiled_shader *tcs =
ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL];
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
const struct shader_info *tes_info =
iris_get_shader_info(ice, MESA_SHADER_TESS_EVAL);
struct iris_tcs_prog_key key = {
.vue.base.program_string_id = tcs ? tcs->program_id : 0,
.tes_primitive_mode = tes_info->tess.primitive_mode,
.input_vertices =
!tcs || compiler->use_tcs_8_patch ? ice->state.vertices_per_patch : 0,
.quads_workaround = devinfo->gen < 9 &&
tes_info->tess.primitive_mode == GL_QUADS &&
tes_info->tess.spacing == TESS_SPACING_EQUAL,
};
get_unified_tess_slots(ice, &key.outputs_written,
&key.patch_outputs_written);
screen->vtbl.populate_tcs_key(ice, &key);
struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_TCS];
struct iris_compiled_shader *shader =
iris_find_cached_shader(ice, IRIS_CACHE_TCS, sizeof(key), &key);
if (tcs && !shader)
shader = iris_disk_cache_retrieve(ice, tcs, &key, sizeof(key));
if (!shader)
shader = iris_compile_tcs(ice, tcs, &key);
if (old != shader) {
ice->shaders.prog[IRIS_CACHE_TCS] = shader;
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS |
IRIS_STAGE_DIRTY_BINDINGS_TCS |
IRIS_STAGE_DIRTY_CONSTANTS_TCS;
shs->sysvals_need_upload = true;
}
}
/**
* Compile a tessellation evaluation shader, and upload the assembly.
*/
static struct iris_compiled_shader *
iris_compile_tes(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct iris_tes_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
void *mem_ctx = ralloc_context(NULL);
struct brw_tes_prog_data *tes_prog_data =
rzalloc(mem_ctx, struct brw_tes_prog_data);
struct brw_vue_prog_data *vue_prog_data = &tes_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
enum brw_param_builtin *system_values;
const struct gen_device_info *devinfo = &screen->devinfo;
unsigned num_system_values;
unsigned num_cbufs;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
if (key->vue.nr_userclip_plane_consts) {
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_lower_clip_vs(nir, (1 << key->vue.nr_userclip_plane_consts) - 1,
true, false, NULL);
nir_lower_io_to_temporaries(nir, impl, true, false);
nir_lower_global_vars_to_local(nir);
nir_lower_vars_to_ssa(nir);
nir_shader_gather_info(nir, impl);
}
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values, &num_cbufs);
struct iris_binding_table bt;
iris_setup_binding_table(devinfo, nir, &bt, /* num_render_targets */ 0,
num_system_values, num_cbufs);
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
struct brw_vue_map input_vue_map;
brw_compute_tess_vue_map(&input_vue_map, key->inputs_read,
key->patch_inputs_read);
struct brw_tes_prog_key brw_key = iris_to_brw_tes_key(devinfo, key);
char *error_str = NULL;
const unsigned *program =
brw_compile_tes(compiler, &ice->dbg, mem_ctx, &brw_key, &input_vue_map,
tes_prog_data, nir, -1, NULL, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile evaluation shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
if (ish->compiled_once) {
iris_debug_recompile(ice, &nir->info, &brw_key.base);
} else {
ish->compiled_once = true;
}
uint32_t *so_decls =
screen->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
struct iris_compiled_shader *shader =
iris_upload_shader(ice, IRIS_CACHE_TES, sizeof(*key), key, program,
prog_data, so_decls, system_values, num_system_values,
num_cbufs, &bt);
iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key));
ralloc_free(mem_ctx);
return shader;
}
/**
* Update the current tessellation evaluation shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_tes(struct iris_context *ice)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL];
struct iris_tes_prog_key key = { KEY_ID(vue.base) };
get_unified_tess_slots(ice, &key.inputs_read, &key.patch_inputs_read);
screen->vtbl.populate_tes_key(ice, &ish->nir->info, last_vue_stage(ice), &key);
struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_TES];
struct iris_compiled_shader *shader =
iris_find_cached_shader(ice, IRIS_CACHE_TES, sizeof(key), &key);
if (!shader)
shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key));
if (!shader)
shader = iris_compile_tes(ice, ish, &key);
if (old != shader) {
ice->shaders.prog[IRIS_CACHE_TES] = shader;
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TES |
IRIS_STAGE_DIRTY_BINDINGS_TES |
IRIS_STAGE_DIRTY_CONSTANTS_TES;
shs->sysvals_need_upload = true;
}
/* TODO: Could compare and avoid flagging this. */
const struct shader_info *tes_info = &ish->nir->info;
if (tes_info->system_values_read & (1ull << SYSTEM_VALUE_VERTICES_IN)) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TES;
ice->state.shaders[MESA_SHADER_TESS_EVAL].sysvals_need_upload = true;
}
}
/**
* Compile a geometry shader, and upload the assembly.
*/
static struct iris_compiled_shader *
iris_compile_gs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct iris_gs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_gs_prog_data *gs_prog_data =
rzalloc(mem_ctx, struct brw_gs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &gs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
enum brw_param_builtin *system_values;
unsigned num_system_values;
unsigned num_cbufs;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
if (key->vue.nr_userclip_plane_consts) {
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_lower_clip_gs(nir, (1 << key->vue.nr_userclip_plane_consts) - 1,
false, NULL);
nir_lower_io_to_temporaries(nir, impl, true, false);
nir_lower_global_vars_to_local(nir);
nir_lower_vars_to_ssa(nir);
nir_shader_gather_info(nir, impl);
}
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values, &num_cbufs);
struct iris_binding_table bt;
iris_setup_binding_table(devinfo, nir, &bt, /* num_render_targets */ 0,
num_system_values, num_cbufs);
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
brw_compute_vue_map(devinfo,
&vue_prog_data->vue_map, nir->info.outputs_written,
nir->info.separate_shader, /* pos_slots */ 1);
struct brw_gs_prog_key brw_key = iris_to_brw_gs_key(devinfo, key);
char *error_str = NULL;
const unsigned *program =
brw_compile_gs(compiler, &ice->dbg, mem_ctx, &brw_key, gs_prog_data,
nir, NULL, -1, NULL, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile geometry shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
if (ish->compiled_once) {
iris_debug_recompile(ice, &nir->info, &brw_key.base);
} else {
ish->compiled_once = true;
}
uint32_t *so_decls =
screen->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
struct iris_compiled_shader *shader =
iris_upload_shader(ice, IRIS_CACHE_GS, sizeof(*key), key, program,
prog_data, so_decls, system_values, num_system_values,
num_cbufs, &bt);
iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key));
ralloc_free(mem_ctx);
return shader;
}
/**
* Update the current geometry shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_gs(struct iris_context *ice)
{
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_GEOMETRY];
struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_GS];
struct iris_compiled_shader *shader = NULL;
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
if (ish) {
struct iris_gs_prog_key key = { KEY_ID(vue.base) };
screen->vtbl.populate_gs_key(ice, &ish->nir->info, last_vue_stage(ice), &key);
shader =
iris_find_cached_shader(ice, IRIS_CACHE_GS, sizeof(key), &key);
if (!shader)
shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key));
if (!shader)
shader = iris_compile_gs(ice, ish, &key);
}
if (old != shader) {
ice->shaders.prog[IRIS_CACHE_GS] = shader;
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_GS |
IRIS_STAGE_DIRTY_BINDINGS_GS |
IRIS_STAGE_DIRTY_CONSTANTS_GS;
shs->sysvals_need_upload = true;
}
}
/**
* Compile a fragment (pixel) shader, and upload the assembly.
*/
static struct iris_compiled_shader *
iris_compile_fs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct iris_fs_prog_key *key,
struct brw_vue_map *vue_map)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
void *mem_ctx = ralloc_context(NULL);
struct brw_wm_prog_data *fs_prog_data =
rzalloc(mem_ctx, struct brw_wm_prog_data);
struct brw_stage_prog_data *prog_data = &fs_prog_data->base;
enum brw_param_builtin *system_values;
const struct gen_device_info *devinfo = &screen->devinfo;
unsigned num_system_values;
unsigned num_cbufs;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
prog_data->use_alt_mode = ish->use_alt_mode;
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values, &num_cbufs);
/* Lower output variables to load_output intrinsics before setting up
* binding tables, so iris_setup_binding_table can map any load_output
* intrinsics to IRIS_SURFACE_GROUP_RENDER_TARGET_READ on Gen8 for
* non-coherent framebuffer fetches.
*/
brw_nir_lower_fs_outputs(nir);
/* On Gen11+, shader RT write messages have a "Null Render Target" bit
* and do not need a binding table entry with a null surface. Earlier
* generations need an entry for a null surface.
*/
int null_rts = devinfo->gen < 11 ? 1 : 0;
struct iris_binding_table bt;
iris_setup_binding_table(devinfo, nir, &bt,
MAX2(key->nr_color_regions, null_rts),
num_system_values, num_cbufs);
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
struct brw_wm_prog_key brw_key = iris_to_brw_fs_key(devinfo, key);
char *error_str = NULL;
const unsigned *program =
brw_compile_fs(compiler, &ice->dbg, mem_ctx, &brw_key, fs_prog_data,
nir, -1, -1, -1, true, false, vue_map,
NULL, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile fragment shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
if (ish->compiled_once) {
iris_debug_recompile(ice, &nir->info, &brw_key.base);
} else {
ish->compiled_once = true;
}
struct iris_compiled_shader *shader =
iris_upload_shader(ice, IRIS_CACHE_FS, sizeof(*key), key, program,
prog_data, NULL, system_values, num_system_values,
num_cbufs, &bt);
iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key));
ralloc_free(mem_ctx);
return shader;
}
/**
* Update the current fragment shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_fs(struct iris_context *ice)
{
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_FRAGMENT];
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
struct iris_fs_prog_key key = { KEY_ID(base) };
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
screen->vtbl.populate_fs_key(ice, &ish->nir->info, &key);
if (ish->nos & (1ull << IRIS_NOS_LAST_VUE_MAP))
key.input_slots_valid = ice->shaders.last_vue_map->slots_valid;
struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_FS];
struct iris_compiled_shader *shader =
iris_find_cached_shader(ice, IRIS_CACHE_FS, sizeof(key), &key);
if (!shader)
shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key));
if (!shader)
shader = iris_compile_fs(ice, ish, &key, ice->shaders.last_vue_map);
if (old != shader) {
// XXX: only need to flag CLIP if barycentric has NONPERSPECTIVE
// toggles. might be able to avoid flagging SBE too.
ice->shaders.prog[IRIS_CACHE_FS] = shader;
ice->state.dirty |= IRIS_DIRTY_WM |
IRIS_DIRTY_CLIP |
IRIS_DIRTY_SBE;
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS |
IRIS_STAGE_DIRTY_BINDINGS_FS |
IRIS_STAGE_DIRTY_CONSTANTS_FS;
shs->sysvals_need_upload = true;
}
}
/**
* Update the last enabled stage's VUE map.
*
* When the shader feeding the rasterizer's output interface changes, we
* need to re-emit various packets.
*/
static void
update_last_vue_map(struct iris_context *ice,
struct brw_stage_prog_data *prog_data)
{
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
struct brw_vue_map *old_map = ice->shaders.last_vue_map;
const uint64_t changed_slots =
(old_map ? old_map->slots_valid : 0ull) ^ vue_map->slots_valid;
if (changed_slots & VARYING_BIT_VIEWPORT) {
ice->state.num_viewports =
(vue_map->slots_valid & VARYING_BIT_VIEWPORT) ? IRIS_MAX_VIEWPORTS : 1;
ice->state.dirty |= IRIS_DIRTY_CLIP |
IRIS_DIRTY_SF_CL_VIEWPORT |
IRIS_DIRTY_CC_VIEWPORT |
IRIS_DIRTY_SCISSOR_RECT;
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_UNCOMPILED_FS |
ice->state.stage_dirty_for_nos[IRIS_NOS_LAST_VUE_MAP];
}
if (changed_slots || (old_map && old_map->separate != vue_map->separate)) {
ice->state.dirty |= IRIS_DIRTY_SBE;
}
ice->shaders.last_vue_map = &vue_prog_data->vue_map;
}
static void
iris_update_pull_constant_descriptors(struct iris_context *ice,
gl_shader_stage stage)
{
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader || !shader->prog_data->has_ubo_pull)
return;
struct iris_shader_state *shs = &ice->state.shaders[stage];
bool any_new_descriptors =
shader->num_system_values > 0 && shs->sysvals_need_upload;
unsigned bound_cbufs = shs->bound_cbufs;
while (bound_cbufs) {
const int i = u_bit_scan(&bound_cbufs);
struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
if (!surf_state->res && cbuf->buffer) {
iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
any_new_descriptors = true;
}
}
if (any_new_descriptors)
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
}
/**
* Get the prog_data for a given stage, or NULL if the stage is disabled.
*/
static struct brw_vue_prog_data *
get_vue_prog_data(struct iris_context *ice, gl_shader_stage stage)
{
if (!ice->shaders.prog[stage])
return NULL;
return (void *) ice->shaders.prog[stage]->prog_data;
}
// XXX: iris_compiled_shaders are space-leaking :(
// XXX: do remember to unbind them if deleting them.
/**
* Update the current shader variants for the given state.
*
* This should be called on every draw call to ensure that the correct
* shaders are bound. It will also flag any dirty state triggered by
* swapping out those shaders.
*/
void
iris_update_compiled_shaders(struct iris_context *ice)
{
const uint64_t dirty = ice->state.dirty;
const uint64_t stage_dirty = ice->state.stage_dirty;
struct brw_vue_prog_data *old_prog_datas[4];
if (!(dirty & IRIS_DIRTY_URB)) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++)
old_prog_datas[i] = get_vue_prog_data(ice, i);
}
if (stage_dirty & (IRIS_STAGE_DIRTY_UNCOMPILED_TCS |
IRIS_STAGE_DIRTY_UNCOMPILED_TES)) {
struct iris_uncompiled_shader *tes =
ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL];
if (tes) {
iris_update_compiled_tcs(ice);
iris_update_compiled_tes(ice);
} else {
ice->shaders.prog[IRIS_CACHE_TCS] = NULL;
ice->shaders.prog[IRIS_CACHE_TES] = NULL;
ice->state.stage_dirty |=
IRIS_STAGE_DIRTY_TCS | IRIS_STAGE_DIRTY_TES |
IRIS_STAGE_DIRTY_BINDINGS_TCS | IRIS_STAGE_DIRTY_BINDINGS_TES |
IRIS_STAGE_DIRTY_CONSTANTS_TCS | IRIS_STAGE_DIRTY_CONSTANTS_TES;
}
}
if (stage_dirty & IRIS_STAGE_DIRTY_UNCOMPILED_VS)
iris_update_compiled_vs(ice);
if (stage_dirty & IRIS_STAGE_DIRTY_UNCOMPILED_GS)
iris_update_compiled_gs(ice);
if (stage_dirty & (IRIS_STAGE_DIRTY_UNCOMPILED_GS |
IRIS_STAGE_DIRTY_UNCOMPILED_TES)) {
const struct iris_compiled_shader *gs =
ice->shaders.prog[MESA_SHADER_GEOMETRY];
const struct iris_compiled_shader *tes =
ice->shaders.prog[MESA_SHADER_TESS_EVAL];
bool points_or_lines = false;
if (gs) {
const struct brw_gs_prog_data *gs_prog_data = (void *) gs->prog_data;
points_or_lines =
gs_prog_data->output_topology == _3DPRIM_POINTLIST ||
gs_prog_data->output_topology == _3DPRIM_LINESTRIP;
} else if (tes) {
const struct brw_tes_prog_data *tes_data = (void *) tes->prog_data;
points_or_lines =
tes_data->output_topology == BRW_TESS_OUTPUT_TOPOLOGY_LINE ||
tes_data->output_topology == BRW_TESS_OUTPUT_TOPOLOGY_POINT;
}
if (ice->shaders.output_topology_is_points_or_lines != points_or_lines) {
/* Outbound to XY Clip enables */
ice->shaders.output_topology_is_points_or_lines = points_or_lines;
ice->state.dirty |= IRIS_DIRTY_CLIP;
}
}
gl_shader_stage last_stage = last_vue_stage(ice);
struct iris_compiled_shader *shader = ice->shaders.prog[last_stage];
struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[last_stage];
update_last_vue_map(ice, shader->prog_data);
if (ice->state.streamout != shader->streamout) {
ice->state.streamout = shader->streamout;
ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST | IRIS_DIRTY_STREAMOUT;
}
if (ice->state.streamout_active) {
for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
struct iris_stream_output_target *so =
(void *) ice->state.so_target[i];
if (so)
so->stride = ish->stream_output.stride[i] * sizeof(uint32_t);
}
}
if (stage_dirty & IRIS_STAGE_DIRTY_UNCOMPILED_FS)
iris_update_compiled_fs(ice);
/* Changing shader interfaces may require a URB configuration. */
if (!(dirty & IRIS_DIRTY_URB)) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
struct brw_vue_prog_data *old = old_prog_datas[i];
struct brw_vue_prog_data *new = get_vue_prog_data(ice, i);
if (!!old != !!new ||
(new && new->urb_entry_size != old->urb_entry_size)) {
ice->state.dirty |= IRIS_DIRTY_URB;
break;
}
}
}
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
if (ice->state.stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << i))
iris_update_pull_constant_descriptors(ice, i);
}
}
static struct iris_compiled_shader *
iris_compile_cs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct iris_cs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
void *mem_ctx = ralloc_context(NULL);
struct brw_cs_prog_data *cs_prog_data =
rzalloc(mem_ctx, struct brw_cs_prog_data);
struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
enum brw_param_builtin *system_values;
const struct gen_device_info *devinfo = &screen->devinfo;
unsigned num_system_values;
unsigned num_cbufs;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
NIR_PASS_V(nir, brw_nir_lower_cs_intrinsics);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values, &num_cbufs);
struct iris_binding_table bt;
iris_setup_binding_table(devinfo, nir, &bt, /* num_render_targets */ 0,
num_system_values, num_cbufs);
struct brw_cs_prog_key brw_key = iris_to_brw_cs_key(devinfo, key);
char *error_str = NULL;
const unsigned *program =
brw_compile_cs(compiler, &ice->dbg, mem_ctx, &brw_key, cs_prog_data,
nir, -1, NULL, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile compute shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
if (ish->compiled_once) {
iris_debug_recompile(ice, &nir->info, &brw_key.base);
} else {
ish->compiled_once = true;
}
struct iris_compiled_shader *shader =
iris_upload_shader(ice, IRIS_CACHE_CS, sizeof(*key), key, program,
prog_data, NULL, system_values, num_system_values,
num_cbufs, &bt);
iris_disk_cache_store(screen->disk_cache, ish, shader, key, sizeof(*key));
ralloc_free(mem_ctx);
return shader;
}
static void
iris_update_compiled_cs(struct iris_context *ice)
{
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
struct iris_cs_prog_key key = { KEY_ID(base) };
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
screen->vtbl.populate_cs_key(ice, &key);
struct iris_compiled_shader *old = ice->shaders.prog[IRIS_CACHE_CS];
struct iris_compiled_shader *shader =
iris_find_cached_shader(ice, IRIS_CACHE_CS, sizeof(key), &key);
if (!shader)
shader = iris_disk_cache_retrieve(ice, ish, &key, sizeof(key));
if (!shader)
shader = iris_compile_cs(ice, ish, &key);
if (old != shader) {
ice->shaders.prog[IRIS_CACHE_CS] = shader;
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CS |
IRIS_STAGE_DIRTY_BINDINGS_CS |
IRIS_STAGE_DIRTY_CONSTANTS_CS;
shs->sysvals_need_upload = true;
}
}
void
iris_update_compiled_compute_shader(struct iris_context *ice)
{
if (ice->state.stage_dirty & IRIS_STAGE_DIRTY_UNCOMPILED_CS)
iris_update_compiled_cs(ice);
if (ice->state.stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS)
iris_update_pull_constant_descriptors(ice, MESA_SHADER_COMPUTE);
}
void
iris_fill_cs_push_const_buffer(struct brw_cs_prog_data *cs_prog_data,
unsigned threads,
uint32_t *dst)
{
assert(brw_cs_push_const_total_size(cs_prog_data, threads) > 0);
assert(cs_prog_data->push.cross_thread.size == 0);
assert(cs_prog_data->push.per_thread.dwords == 1);
assert(cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
for (unsigned t = 0; t < threads; t++)
dst[8 * t] = t;
}
/**
* Allocate scratch BOs as needed for the given per-thread size and stage.
*/
struct iris_bo *
iris_get_scratch_space(struct iris_context *ice,
unsigned per_thread_scratch,
gl_shader_stage stage)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
struct iris_bufmgr *bufmgr = screen->bufmgr;
const struct gen_device_info *devinfo = &screen->devinfo;
unsigned encoded_size = ffs(per_thread_scratch) - 11;
assert(encoded_size < (1 << 16));
struct iris_bo **bop = &ice->shaders.scratch_bos[encoded_size][stage];
/* The documentation for 3DSTATE_PS "Scratch Space Base Pointer" says:
*
* "Scratch Space per slice is computed based on 4 sub-slices. SW
* must allocate scratch space enough so that each slice has 4
* slices allowed."
*
* According to the other driver team, this applies to compute shaders
* as well. This is not currently documented at all.
*
* This hack is no longer necessary on Gen11+.
*
* For, Gen11+, scratch space allocation is based on the number of threads
* in the base configuration.
*/
unsigned subslice_total = screen->subslice_total;
if (devinfo->gen >= 12)
subslice_total = devinfo->num_subslices[0];
else if (devinfo->gen == 11)
subslice_total = 8;
else if (devinfo->gen < 11)
subslice_total = 4 * devinfo->num_slices;
assert(subslice_total >= screen->subslice_total);
if (!*bop) {
unsigned scratch_ids_per_subslice = devinfo->max_cs_threads;
if (devinfo->gen >= 12) {
/* Same as ICL below, but with 16 EUs. */
scratch_ids_per_subslice = 16 * 8;
} else if (devinfo->gen == 11) {
/* The MEDIA_VFE_STATE docs say:
*
* "Starting with this configuration, the Maximum Number of
* Threads must be set to (#EU * 8) for GPGPU dispatches.
*
* Although there are only 7 threads per EU in the configuration,
* the FFTID is calculated as if there are 8 threads per EU,
* which in turn requires a larger amount of Scratch Space to be
* allocated by the driver."
*/
scratch_ids_per_subslice = 8 * 8;
}
uint32_t max_threads[] = {
[MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
[MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
[MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
[MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
[MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
[MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslice_total,
};
uint32_t size = per_thread_scratch * max_threads[stage];
*bop = iris_bo_alloc(bufmgr, "scratch", size, IRIS_MEMZONE_SHADER);
}
return *bop;
}
/* ------------------------------------------------------------------- */
/**
* The pipe->create_[stage]_state() driver hooks.
*
* Performs basic NIR preprocessing, records any state dependencies, and
* returns an iris_uncompiled_shader as the Gallium CSO.
*
* Actual shader compilation to assembly happens later, at first use.
*/
static void *
iris_create_uncompiled_shader(struct pipe_context *ctx,
nir_shader *nir,
const struct pipe_stream_output_info *so_info)
{
struct iris_context *ice = (void *)ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_uncompiled_shader *ish =
calloc(1, sizeof(struct iris_uncompiled_shader));
if (!ish)
return NULL;
NIR_PASS(ish->needs_edge_flag, nir, iris_fix_edge_flags);
brw_preprocess_nir(screen->compiler, nir, NULL);
NIR_PASS_V(nir, brw_nir_lower_image_load_store, devinfo,
&ish->uses_atomic_load_store);
NIR_PASS_V(nir, iris_lower_storage_image_derefs);
nir_sweep(nir);
if (nir->constant_data_size > 0) {
unsigned data_offset;
u_upload_data(ice->shaders.uploader, 0, nir->constant_data_size,
32, nir->constant_data, &data_offset, &ish->const_data);
struct pipe_shader_buffer psb = {
.buffer = ish->const_data,
.buffer_offset = data_offset,
.buffer_size = nir->constant_data_size,
};
iris_upload_ubo_ssbo_surf_state(ice, &psb, &ish->const_data_state, false);
}
ish->program_id = get_new_program_id(screen);
ish->nir = nir;
if (so_info) {
memcpy(&ish->stream_output, so_info, sizeof(*so_info));
update_so_info(&ish->stream_output, nir->info.outputs_written);
}
/* Save this now before potentially dropping nir->info.name */
if (nir->info.name && strncmp(nir->info.name, "ARB", 3) == 0)
ish->use_alt_mode = true;
if (screen->disk_cache) {
/* Serialize the NIR to a binary blob that we can hash for the disk
* cache. Drop unnecessary information (like variable names)
* so the serialized NIR is smaller, and also to let us detect more
* isomorphic shaders when hashing, increasing cache hits.
*/
struct blob blob;
blob_init(&blob);
nir_serialize(&blob, nir, true);
_mesa_sha1_compute(blob.data, blob.size, ish->nir_sha1);
blob_finish(&blob);
}
return ish;
}
static struct iris_uncompiled_shader *
iris_create_shader_state(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
struct nir_shader *nir;
if (state->type == PIPE_SHADER_IR_TGSI)
nir = tgsi_to_nir(state->tokens, ctx->screen, false);
else
nir = state->ir.nir;
return iris_create_uncompiled_shader(ctx, nir, &state->stream_output);
}
static void *
iris_create_vs_state(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
struct iris_context *ice = (void *) ctx;
struct iris_screen *screen = (void *) ctx->screen;
struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state);
/* User clip planes */
if (ish->nir->info.clip_distance_array_size == 0)
ish->nos |= (1ull << IRIS_NOS_RASTERIZER);
if (screen->precompile) {
struct iris_vs_prog_key key = { KEY_ID(vue.base) };
if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)))
iris_compile_vs(ice, ish, &key);
}
return ish;
}
static void *
iris_create_tcs_state(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
struct iris_context *ice = (void *) ctx;
struct iris_screen *screen = (void *) ctx->screen;
const struct brw_compiler *compiler = screen->compiler;
struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state);
struct shader_info *info = &ish->nir->info;
if (screen->precompile) {
const unsigned _GL_TRIANGLES = 0x0004;
struct iris_tcs_prog_key key = {
KEY_ID(vue.base),
// XXX: make sure the linker fills this out from the TES...
.tes_primitive_mode =
info->tess.primitive_mode ? info->tess.primitive_mode
: _GL_TRIANGLES,
.outputs_written = info->outputs_written,
.patch_outputs_written = info->patch_outputs_written,
};
/* 8_PATCH mode needs the key to contain the input patch dimensionality.
* We don't have that information, so we randomly guess that the input
* and output patches are the same size. This is a bad guess, but we
* can't do much better.
*/
if (compiler->use_tcs_8_patch)
key.input_vertices = info->tess.tcs_vertices_out;
if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)))
iris_compile_tcs(ice, ish, &key);
}
return ish;
}
static void *
iris_create_tes_state(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
struct iris_context *ice = (void *) ctx;
struct iris_screen *screen = (void *) ctx->screen;
struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state);
struct shader_info *info = &ish->nir->info;
/* User clip planes */
if (ish->nir->info.clip_distance_array_size == 0)
ish->nos |= (1ull << IRIS_NOS_RASTERIZER);
if (screen->precompile) {
struct iris_tes_prog_key key = {
KEY_ID(vue.base),
// XXX: not ideal, need TCS output/TES input unification
.inputs_read = info->inputs_read,
.patch_inputs_read = info->patch_inputs_read,
};
if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)))
iris_compile_tes(ice, ish, &key);
}
return ish;
}
static void *
iris_create_gs_state(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
struct iris_context *ice = (void *) ctx;
struct iris_screen *screen = (void *) ctx->screen;
struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state);
/* User clip planes */
if (ish->nir->info.clip_distance_array_size == 0)
ish->nos |= (1ull << IRIS_NOS_RASTERIZER);
if (screen->precompile) {
struct iris_gs_prog_key key = { KEY_ID(vue.base) };
if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)))
iris_compile_gs(ice, ish, &key);
}
return ish;
}
static void *
iris_create_fs_state(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
struct iris_context *ice = (void *) ctx;
struct iris_screen *screen = (void *) ctx->screen;
struct iris_uncompiled_shader *ish = iris_create_shader_state(ctx, state);
struct shader_info *info = &ish->nir->info;
ish->nos |= (1ull << IRIS_NOS_FRAMEBUFFER) |
(1ull << IRIS_NOS_DEPTH_STENCIL_ALPHA) |
(1ull << IRIS_NOS_RASTERIZER) |
(1ull << IRIS_NOS_BLEND);
/* The program key needs the VUE map if there are > 16 inputs */
if (util_bitcount64(ish->nir->info.inputs_read &
BRW_FS_VARYING_INPUT_MASK) > 16) {
ish->nos |= (1ull << IRIS_NOS_LAST_VUE_MAP);
}
if (screen->precompile) {
const uint64_t color_outputs = info->outputs_written &
~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
BITFIELD64_BIT(FRAG_RESULT_STENCIL) |
BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
bool can_rearrange_varyings =
util_bitcount64(info->inputs_read & BRW_FS_VARYING_INPUT_MASK) <= 16;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_fs_prog_key key = {
KEY_ID(base),
.nr_color_regions = util_bitcount(color_outputs),
.coherent_fb_fetch = devinfo->gen >= 9,
.input_slots_valid =
can_rearrange_varyings ? 0 : info->inputs_read | VARYING_BIT_POS,
};
if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)))
iris_compile_fs(ice, ish, &key, NULL);
}
return ish;
}
static void *
iris_create_compute_state(struct pipe_context *ctx,
const struct pipe_compute_state *state)
{
assert(state->ir_type == PIPE_SHADER_IR_NIR);
struct iris_context *ice = (void *) ctx;
struct iris_screen *screen = (void *) ctx->screen;
struct iris_uncompiled_shader *ish =
iris_create_uncompiled_shader(ctx, (void *) state->prog, NULL);
// XXX: disallow more than 64KB of shared variables
if (screen->precompile) {
struct iris_cs_prog_key key = { KEY_ID(base) };
if (!iris_disk_cache_retrieve(ice, ish, &key, sizeof(key)))
iris_compile_cs(ice, ish, &key);
}
return ish;
}
/**
* The pipe->delete_[stage]_state() driver hooks.
*
* Frees the iris_uncompiled_shader.
*/
static void
iris_delete_shader_state(struct pipe_context *ctx, void *state, gl_shader_stage stage)
{
struct iris_uncompiled_shader *ish = state;
struct iris_context *ice = (void *) ctx;
if (ice->shaders.uncompiled[stage] == ish) {
ice->shaders.uncompiled[stage] = NULL;
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_UNCOMPILED_VS << stage;
}
if (ish->const_data) {
pipe_resource_reference(&ish->const_data, NULL);
pipe_resource_reference(&ish->const_data_state.res, NULL);
}
ralloc_free(ish->nir);
free(ish);
}
static void
iris_delete_vs_state(struct pipe_context *ctx, void *state)
{
iris_delete_shader_state(ctx, state, MESA_SHADER_VERTEX);
}
static void
iris_delete_tcs_state(struct pipe_context *ctx, void *state)
{
iris_delete_shader_state(ctx, state, MESA_SHADER_TESS_CTRL);
}
static void
iris_delete_tes_state(struct pipe_context *ctx, void *state)
{
iris_delete_shader_state(ctx, state, MESA_SHADER_TESS_EVAL);
}
static void
iris_delete_gs_state(struct pipe_context *ctx, void *state)
{
iris_delete_shader_state(ctx, state, MESA_SHADER_GEOMETRY);
}
static void
iris_delete_fs_state(struct pipe_context *ctx, void *state)
{
iris_delete_shader_state(ctx, state, MESA_SHADER_FRAGMENT);
}
static void
iris_delete_cs_state(struct pipe_context *ctx, void *state)
{
iris_delete_shader_state(ctx, state, MESA_SHADER_COMPUTE);
}
/**
* The pipe->bind_[stage]_state() driver hook.
*
* Binds an uncompiled shader as the current one for a particular stage.
* Updates dirty tracking to account for the shader's NOS.
*/
static void
bind_shader_state(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
gl_shader_stage stage)
{
uint64_t stage_dirty_bit = IRIS_STAGE_DIRTY_UNCOMPILED_VS << stage;
const uint64_t nos = ish ? ish->nos : 0;
const struct shader_info *old_info = iris_get_shader_info(ice, stage);
const struct shader_info *new_info = ish ? &ish->nir->info : NULL;
if ((old_info ? util_last_bit(old_info->textures_used) : 0) !=
(new_info ? util_last_bit(new_info->textures_used) : 0)) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
}
ice->shaders.uncompiled[stage] = ish;
ice->state.stage_dirty |= stage_dirty_bit;
/* Record that CSOs need to mark IRIS_DIRTY_UNCOMPILED_XS when they change
* (or that they no longer need to do so).
*/
for (int i = 0; i < IRIS_NOS_COUNT; i++) {
if (nos & (1 << i))
ice->state.stage_dirty_for_nos[i] |= stage_dirty_bit;
else
ice->state.stage_dirty_for_nos[i] &= ~stage_dirty_bit;
}
}
static void
iris_bind_vs_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *)ctx;
struct iris_uncompiled_shader *new_ish = state;
if (new_ish &&
ice->state.window_space_position !=
new_ish->nir->info.vs.window_space_position) {
ice->state.window_space_position =
new_ish->nir->info.vs.window_space_position;
ice->state.dirty |= IRIS_DIRTY_CLIP |
IRIS_DIRTY_RASTER |
IRIS_DIRTY_CC_VIEWPORT;
}
bind_shader_state((void *) ctx, state, MESA_SHADER_VERTEX);
}
static void
iris_bind_tcs_state(struct pipe_context *ctx, void *state)
{
bind_shader_state((void *) ctx, state, MESA_SHADER_TESS_CTRL);
}
static void
iris_bind_tes_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *)ctx;
/* Enabling/disabling optional stages requires a URB reconfiguration. */
if (!!state != !!ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL])
ice->state.dirty |= IRIS_DIRTY_URB;
bind_shader_state((void *) ctx, state, MESA_SHADER_TESS_EVAL);
}
static void
iris_bind_gs_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *)ctx;
/* Enabling/disabling optional stages requires a URB reconfiguration. */
if (!!state != !!ice->shaders.uncompiled[MESA_SHADER_GEOMETRY])
ice->state.dirty |= IRIS_DIRTY_URB;
bind_shader_state((void *) ctx, state, MESA_SHADER_GEOMETRY);
}
static void
iris_bind_fs_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *) ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_uncompiled_shader *old_ish =
ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
struct iris_uncompiled_shader *new_ish = state;
const unsigned color_bits =
BITFIELD64_BIT(FRAG_RESULT_COLOR) |
BITFIELD64_RANGE(FRAG_RESULT_DATA0, BRW_MAX_DRAW_BUFFERS);
/* Fragment shader outputs influence HasWriteableRT */
if (!old_ish || !new_ish ||
(old_ish->nir->info.outputs_written & color_bits) !=
(new_ish->nir->info.outputs_written & color_bits))
ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
if (devinfo->gen == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
bind_shader_state((void *) ctx, state, MESA_SHADER_FRAGMENT);
}
static void
iris_bind_cs_state(struct pipe_context *ctx, void *state)
{
bind_shader_state((void *) ctx, state, MESA_SHADER_COMPUTE);
}
void
iris_init_program_functions(struct pipe_context *ctx)
{
ctx->create_vs_state = iris_create_vs_state;
ctx->create_tcs_state = iris_create_tcs_state;
ctx->create_tes_state = iris_create_tes_state;
ctx->create_gs_state = iris_create_gs_state;
ctx->create_fs_state = iris_create_fs_state;
ctx->create_compute_state = iris_create_compute_state;
ctx->delete_vs_state = iris_delete_vs_state;
ctx->delete_tcs_state = iris_delete_tcs_state;
ctx->delete_tes_state = iris_delete_tes_state;
ctx->delete_gs_state = iris_delete_gs_state;
ctx->delete_fs_state = iris_delete_fs_state;
ctx->delete_compute_state = iris_delete_cs_state;
ctx->bind_vs_state = iris_bind_vs_state;
ctx->bind_tcs_state = iris_bind_tcs_state;
ctx->bind_tes_state = iris_bind_tes_state;
ctx->bind_gs_state = iris_bind_gs_state;
ctx->bind_fs_state = iris_bind_fs_state;
ctx->bind_compute_state = iris_bind_cs_state;
}