blob: 3352510ac05fdc6473e4a26dd6be186bd5e89f01 [file] [log] [blame]
/*
* Copyright (c) 2012-2019 Etnaviv Project
* Copyright (c) 2019 Zodiac Inflight Innovations
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Jonathan Marek <jonathan@marek.ca>
* Wladimir J. van der Laan <laanwj@gmail.com>
*/
#include "etnaviv_compiler.h"
#include "etnaviv_compiler_nir.h"
#include "etnaviv_asm.h"
#include "etnaviv_context.h"
#include "etnaviv_debug.h"
#include "etnaviv_disasm.h"
#include "etnaviv_nir.h"
#include "etnaviv_uniforms.h"
#include "etnaviv_util.h"
#include <math.h>
#include "util/u_memory.h"
#include "util/register_allocate.h"
#include "compiler/nir/nir_builder.h"
#include "tgsi/tgsi_strings.h"
#include "util/u_half.h"
static bool
etna_alu_to_scalar_filter_cb(const nir_instr *instr, const void *data)
{
const struct etna_specs *specs = data;
if (instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_frsq:
case nir_op_frcp:
case nir_op_flog2:
case nir_op_fexp2:
case nir_op_fsqrt:
case nir_op_fcos:
case nir_op_fsin:
case nir_op_fdiv:
case nir_op_imul:
return true;
/* TODO: can do better than alu_to_scalar for vector compares */
case nir_op_b32all_fequal2:
case nir_op_b32all_fequal3:
case nir_op_b32all_fequal4:
case nir_op_b32any_fnequal2:
case nir_op_b32any_fnequal3:
case nir_op_b32any_fnequal4:
case nir_op_b32all_iequal2:
case nir_op_b32all_iequal3:
case nir_op_b32all_iequal4:
case nir_op_b32any_inequal2:
case nir_op_b32any_inequal3:
case nir_op_b32any_inequal4:
return true;
case nir_op_fdot2:
if (!specs->has_halti2_instructions)
return true;
break;
default:
break;
}
return false;
}
static void
etna_emit_block_start(struct etna_compile *c, unsigned block)
{
c->block_ptr[block] = c->inst_ptr;
}
static void
etna_emit_output(struct etna_compile *c, nir_variable *var, struct etna_inst_src src)
{
struct etna_shader_io_file *sf = &c->variant->outfile;
if (is_fs(c)) {
switch (var->data.location) {
case FRAG_RESULT_COLOR:
case FRAG_RESULT_DATA0: /* DATA0 is used by gallium shaders for color */
c->variant->ps_color_out_reg = src.reg;
break;
case FRAG_RESULT_DEPTH:
c->variant->ps_depth_out_reg = src.reg;
break;
default:
unreachable("Unsupported fs output");
}
return;
}
switch (var->data.location) {
case VARYING_SLOT_POS:
c->variant->vs_pos_out_reg = src.reg;
break;
case VARYING_SLOT_PSIZ:
c->variant->vs_pointsize_out_reg = src.reg;
break;
default:
sf->reg[sf->num_reg].reg = src.reg;
sf->reg[sf->num_reg].slot = var->data.location;
sf->reg[sf->num_reg].num_components = glsl_get_components(var->type);
sf->num_reg++;
break;
}
}
#define OPT(nir, pass, ...) ({ \
bool this_progress = false; \
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
this_progress; \
})
static void
etna_optimize_loop(nir_shader *s)
{
bool progress;
do {
progress = false;
NIR_PASS_V(s, nir_lower_vars_to_ssa);
progress |= OPT(s, nir_opt_copy_prop_vars);
progress |= OPT(s, nir_copy_prop);
progress |= OPT(s, nir_opt_dce);
progress |= OPT(s, nir_opt_cse);
progress |= OPT(s, nir_opt_peephole_select, 16, true, true);
progress |= OPT(s, nir_opt_intrinsics);
progress |= OPT(s, nir_opt_algebraic);
progress |= OPT(s, nir_opt_constant_folding);
progress |= OPT(s, nir_opt_dead_cf);
if (OPT(s, nir_opt_trivial_continues)) {
progress = true;
/* If nir_opt_trivial_continues makes progress, then we need to clean
* things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
* to make progress.
*/
OPT(s, nir_copy_prop);
OPT(s, nir_opt_dce);
}
progress |= OPT(s, nir_opt_loop_unroll, nir_var_all);
progress |= OPT(s, nir_opt_if, false);
progress |= OPT(s, nir_opt_remove_phis);
progress |= OPT(s, nir_opt_undef);
}
while (progress);
}
static int
etna_glsl_type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static void
copy_uniform_state_to_shader(struct etna_shader_variant *sobj, uint64_t *consts, unsigned count)
{
struct etna_shader_uniform_info *uinfo = &sobj->uniforms;
uinfo->imm_count = count * 4;
uinfo->imm_data = MALLOC(uinfo->imm_count * sizeof(*uinfo->imm_data));
uinfo->imm_contents = MALLOC(uinfo->imm_count * sizeof(*uinfo->imm_contents));
for (unsigned i = 0; i < uinfo->imm_count; i++) {
uinfo->imm_data[i] = consts[i];
uinfo->imm_contents[i] = consts[i] >> 32;
}
etna_set_shader_uniforms_dirty_flags(sobj);
}
#define ALU_SWIZ(s) INST_SWIZ((s)->swizzle[0], (s)->swizzle[1], (s)->swizzle[2], (s)->swizzle[3])
#define SRC_DISABLE ((hw_src){})
#define SRC_CONST(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_UNIFORM_0, .reg=idx, .swiz=s})
#define SRC_REG(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_TEMP, .reg=idx, .swiz=s})
typedef struct etna_inst_dst hw_dst;
typedef struct etna_inst_src hw_src;
static inline hw_src
src_swizzle(hw_src src, unsigned swizzle)
{
if (src.rgroup != INST_RGROUP_IMMEDIATE)
src.swiz = inst_swiz_compose(src.swiz, swizzle);
return src;
}
/* constants are represented as 64-bit ints
* 32-bit for the value and 32-bit for the type (imm, uniform, etc)
*/
#define CONST_VAL(a, b) (nir_const_value) {.u64 = (uint64_t)(a) << 32 | (uint64_t)(b)}
#define CONST(x) CONST_VAL(ETNA_IMMEDIATE_CONSTANT, x)
#define UNIFORM(x) CONST_VAL(ETNA_IMMEDIATE_UNIFORM, x)
#define TEXSCALE(x, i) CONST_VAL(ETNA_IMMEDIATE_TEXRECT_SCALE_X + (i), x)
static int
const_add(uint64_t *c, uint64_t value)
{
for (unsigned i = 0; i < 4; i++) {
if (c[i] == value || !c[i]) {
c[i] = value;
return i;
}
}
return -1;
}
static hw_src
const_src(struct etna_compile *c, nir_const_value *value, unsigned num_components)
{
/* use inline immediates if possible */
if (c->specs->halti >= 2 && num_components == 1 &&
value[0].u64 >> 32 == ETNA_IMMEDIATE_CONSTANT) {
uint32_t bits = value[0].u32;
/* "float" - shifted by 12 */
if ((bits & 0xfff) == 0)
return etna_immediate_src(0, bits >> 12);
/* "unsigned" - raw 20 bit value */
if (bits < (1 << 20))
return etna_immediate_src(2, bits);
/* "signed" - sign extended 20-bit (sign included) value */
if (bits >= 0xfff80000)
return etna_immediate_src(1, bits);
}
unsigned i;
int swiz = -1;
for (i = 0; swiz < 0; i++) {
uint64_t *a = &c->consts[i*4];
uint64_t save[4];
memcpy(save, a, sizeof(save));
swiz = 0;
for (unsigned j = 0; j < num_components; j++) {
int c = const_add(a, value[j].u64);
if (c < 0) {
memcpy(a, save, sizeof(save));
swiz = -1;
break;
}
swiz |= c << j * 2;
}
}
assert(i <= ETNA_MAX_IMM / 4);
c->const_count = MAX2(c->const_count, i);
return SRC_CONST(i - 1, swiz);
}
/* how to swizzle when used as a src */
static const uint8_t
reg_swiz[NUM_REG_TYPES] = {
[REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(Y, Y, Y, Y),
[REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(Z, Z, Z, Z),
[REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, Z, X, Z),
[REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(Y, Z, Y, Z),
[REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(Y, Z, Y, Z),
[REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(W, W, W, W),
[REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, W, X, W),
[REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(Y, W, Y, W),
[REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, W, X),
[REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(Z, W, Z, W),
[REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(Z, W, Z, W),
[REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(Z, W, Z, W),
[REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Z, W, X),
[REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(Y, Z, W, X),
[REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(Y, Z, W, X),
};
/* how to swizzle when used as a dest */
static const uint8_t
reg_dst_swiz[NUM_REG_TYPES] = {
[REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(X, X, X, X),
[REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(X, X, X, X),
[REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(X, X, X, X),
[REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, Z, Z),
[REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(X, X, X, Y),
[REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(X, X, X, Y),
[REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(X, X, X, Y),
[REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Y, Y, Z),
[REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(X, X, Y, Z),
[REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(X, X, Y, Z),
};
/* nir_src to allocated register */
static hw_src
ra_src(struct etna_compile *c, nir_src *src)
{
unsigned reg = ra_get_node_reg(c->g, c->live_map[src_index(c->impl, src)]);
return SRC_REG(reg_get_base(c, reg), reg_swiz[reg_get_type(reg)]);
}
static hw_src
get_src(struct etna_compile *c, nir_src *src)
{
if (!src->is_ssa)
return ra_src(c, src);
nir_instr *instr = src->ssa->parent_instr;
if (instr->pass_flags & BYPASS_SRC) {
assert(instr->type == nir_instr_type_alu);
nir_alu_instr *alu = nir_instr_as_alu(instr);
assert(alu->op == nir_op_mov);
return src_swizzle(get_src(c, &alu->src[0].src), ALU_SWIZ(&alu->src[0]));
}
switch (instr->type) {
case nir_instr_type_load_const:
return const_src(c, nir_instr_as_load_const(instr)->value, src->ssa->num_components);
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_load_input:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_ubo:
return ra_src(c, src);
case nir_intrinsic_load_front_face:
return (hw_src) { .use = 1, .rgroup = INST_RGROUP_INTERNAL };
case nir_intrinsic_load_frag_coord:
return SRC_REG(0, INST_SWIZ_IDENTITY);
default:
compile_error(c, "Unhandled NIR intrinsic type: %s\n",
nir_intrinsic_infos[intr->intrinsic].name);
break;
}
} break;
case nir_instr_type_alu:
case nir_instr_type_tex:
return ra_src(c, src);
case nir_instr_type_ssa_undef: {
/* return zero to deal with broken Blur demo */
nir_const_value value = CONST(0);
return src_swizzle(const_src(c, &value, 1), SWIZZLE(X,X,X,X));
}
default:
compile_error(c, "Unhandled NIR instruction type: %d\n", instr->type);
break;
}
return SRC_DISABLE;
}
static bool
vec_dest_has_swizzle(nir_alu_instr *vec, nir_ssa_def *ssa)
{
for (unsigned i = 0; i < 4; i++) {
if (!(vec->dest.write_mask & (1 << i)) || vec->src[i].src.ssa != ssa)
continue;
if (vec->src[i].swizzle[0] != i)
return true;
}
/* don't deal with possible bypassed vec/mov chain */
nir_foreach_use(use_src, ssa) {
nir_instr *instr = use_src->parent_instr;
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_mov:
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
return true;
default:
break;
}
}
return false;
}
/* get allocated dest register for nir_dest
* *p_swiz tells how the components need to be placed into register
*/
static hw_dst
ra_dest(struct etna_compile *c, nir_dest *dest, unsigned *p_swiz)
{
unsigned swiz = INST_SWIZ_IDENTITY, mask = 0xf;
dest = real_dest(dest, &swiz, &mask);
unsigned r = ra_get_node_reg(c->g, c->live_map[dest_index(c->impl, dest)]);
unsigned t = reg_get_type(r);
*p_swiz = inst_swiz_compose(swiz, reg_dst_swiz[t]);
return (hw_dst) {
.use = 1,
.reg = reg_get_base(c, r),
.write_mask = inst_write_mask_compose(mask, reg_writemask[t]),
};
}
static void
emit_alu(struct etna_compile *c, nir_alu_instr * alu)
{
const nir_op_info *info = &nir_op_infos[alu->op];
/* marked as dead instruction (vecN and other bypassed instr) */
if (alu->instr.pass_flags)
return;
assert(!(alu->op >= nir_op_vec2 && alu->op <= nir_op_vec4));
unsigned dst_swiz;
hw_dst dst = ra_dest(c, &alu->dest.dest, &dst_swiz);
/* compose alu write_mask with RA write mask */
if (!alu->dest.dest.is_ssa)
dst.write_mask = inst_write_mask_compose(alu->dest.write_mask, dst.write_mask);
switch (alu->op) {
case nir_op_fdot2:
case nir_op_fdot3:
case nir_op_fdot4:
/* not per-component - don't compose dst_swiz */
dst_swiz = INST_SWIZ_IDENTITY;
break;
default:
break;
}
hw_src srcs[3];
for (int i = 0; i < info->num_inputs; i++) {
nir_alu_src *asrc = &alu->src[i];
hw_src src;
src = src_swizzle(get_src(c, &asrc->src), ALU_SWIZ(asrc));
src = src_swizzle(src, dst_swiz);
if (src.rgroup != INST_RGROUP_IMMEDIATE) {
src.neg = asrc->negate || (alu->op == nir_op_fneg);
src.abs = asrc->abs || (alu->op == nir_op_fabs);
} else {
assert(!asrc->negate && alu->op != nir_op_fneg);
assert(!asrc->abs && alu->op != nir_op_fabs);
}
srcs[i] = src;
}
etna_emit_alu(c, alu->op, dst, srcs, alu->dest.saturate || (alu->op == nir_op_fsat));
}
static void
emit_tex(struct etna_compile *c, nir_tex_instr * tex)
{
unsigned dst_swiz;
hw_dst dst = ra_dest(c, &tex->dest, &dst_swiz);
nir_src *coord = NULL, *lod_bias = NULL, *compare = NULL;
for (unsigned i = 0; i < tex->num_srcs; i++) {
switch (tex->src[i].src_type) {
case nir_tex_src_coord:
coord = &tex->src[i].src;
break;
case nir_tex_src_bias:
case nir_tex_src_lod:
assert(!lod_bias);
lod_bias = &tex->src[i].src;
break;
case nir_tex_src_comparator:
compare = &tex->src[i].src;
break;
default:
compile_error(c, "Unhandled NIR tex src type: %d\n",
tex->src[i].src_type);
break;
}
}
etna_emit_tex(c, tex->op, tex->sampler_index, dst_swiz, dst, get_src(c, coord),
lod_bias ? get_src(c, lod_bias) : SRC_DISABLE,
compare ? get_src(c, compare) : SRC_DISABLE);
}
static void
emit_intrinsic(struct etna_compile *c, nir_intrinsic_instr * intr)
{
switch (intr->intrinsic) {
case nir_intrinsic_store_deref:
etna_emit_output(c, nir_src_as_deref(intr->src[0])->var, get_src(c, &intr->src[1]));
break;
case nir_intrinsic_discard_if:
etna_emit_discard(c, get_src(c, &intr->src[0]));
break;
case nir_intrinsic_discard:
etna_emit_discard(c, SRC_DISABLE);
break;
case nir_intrinsic_load_uniform: {
unsigned dst_swiz;
struct etna_inst_dst dst = ra_dest(c, &intr->dest, &dst_swiz);
/* TODO: rework so extra MOV isn't required, load up to 4 addresses at once */
emit_inst(c, &(struct etna_inst) {
.opcode = INST_OPCODE_MOVAR,
.dst.write_mask = 0x1,
.src[2] = get_src(c, &intr->src[0]),
});
emit_inst(c, &(struct etna_inst) {
.opcode = INST_OPCODE_MOV,
.dst = dst,
.src[2] = {
.use = 1,
.rgroup = INST_RGROUP_UNIFORM_0,
.reg = nir_intrinsic_base(intr),
.swiz = dst_swiz,
.amode = INST_AMODE_ADD_A_X,
},
});
} break;
case nir_intrinsic_load_ubo: {
/* TODO: if offset is of the form (x + C) then add C to the base instead */
unsigned idx = nir_src_as_const_value(intr->src[0])[0].u32;
unsigned dst_swiz;
emit_inst(c, &(struct etna_inst) {
.opcode = INST_OPCODE_LOAD,
.type = INST_TYPE_U32,
.dst = ra_dest(c, &intr->dest, &dst_swiz),
.src[0] = get_src(c, &intr->src[1]),
.src[1] = const_src(c, &CONST_VAL(ETNA_IMMEDIATE_UBO0_ADDR + idx, 0), 1),
});
} break;
case nir_intrinsic_load_front_face:
case nir_intrinsic_load_frag_coord:
assert(intr->dest.is_ssa); /* TODO - lower phis could cause this */
break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_instance_id:
break;
default:
compile_error(c, "Unhandled NIR intrinsic type: %s\n",
nir_intrinsic_infos[intr->intrinsic].name);
}
}
static void
emit_instr(struct etna_compile *c, nir_instr * instr)
{
switch (instr->type) {
case nir_instr_type_alu:
emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_tex:
emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_intrinsic:
emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_jump:
assert(nir_instr_is_last(instr));
case nir_instr_type_load_const:
case nir_instr_type_ssa_undef:
case nir_instr_type_deref:
break;
default:
compile_error(c, "Unhandled NIR instruction type: %d\n", instr->type);
break;
}
}
static void
emit_block(struct etna_compile *c, nir_block * block)
{
etna_emit_block_start(c, block->index);
nir_foreach_instr(instr, block)
emit_instr(c, instr);
/* succs->index < block->index is for the loop case */
nir_block *succs = block->successors[0];
if (nir_block_ends_in_jump(block) || succs->index < block->index)
etna_emit_jump(c, succs->index, SRC_DISABLE);
}
static void
emit_cf_list(struct etna_compile *c, struct exec_list *list);
static void
emit_if(struct etna_compile *c, nir_if * nif)
{
etna_emit_jump(c, nir_if_first_else_block(nif)->index, get_src(c, &nif->condition));
emit_cf_list(c, &nif->then_list);
/* jump at end of then_list to skip else_list
* not needed if then_list already ends with a jump or else_list is empty
*/
if (!nir_block_ends_in_jump(nir_if_last_then_block(nif)) &&
!nir_cf_list_is_empty_block(&nif->else_list))
etna_emit_jump(c, nir_if_last_else_block(nif)->successors[0]->index, SRC_DISABLE);
emit_cf_list(c, &nif->else_list);
}
static void
emit_cf_list(struct etna_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
emit_cf_list(c, &nir_cf_node_as_loop(node)->body);
break;
default:
compile_error(c, "Unknown NIR node type\n");
break;
}
}
}
/* based on nir_lower_vec_to_movs */
static unsigned
insert_vec_mov(nir_alu_instr *vec, unsigned start_idx, nir_shader *shader)
{
assert(start_idx < nir_op_infos[vec->op].num_inputs);
unsigned write_mask = (1u << start_idx);
nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
nir_alu_src_copy(&mov->src[0], &vec->src[start_idx], mov);
mov->src[0].swizzle[0] = vec->src[start_idx].swizzle[0];
mov->src[0].negate = vec->src[start_idx].negate;
mov->src[0].abs = vec->src[start_idx].abs;
unsigned num_components = 1;
for (unsigned i = start_idx + 1; i < 4; i++) {
if (!(vec->dest.write_mask & (1 << i)))
continue;
if (nir_srcs_equal(vec->src[i].src, vec->src[start_idx].src) &&
vec->src[i].negate == vec->src[start_idx].negate &&
vec->src[i].abs == vec->src[start_idx].abs) {
write_mask |= (1 << i);
mov->src[0].swizzle[num_components] = vec->src[i].swizzle[0];
num_components++;
}
}
mov->dest.write_mask = (1 << num_components) - 1;
nir_ssa_dest_init(&mov->instr, &mov->dest.dest, num_components, 32, NULL);
/* replace vec srcs with inserted mov */
for (unsigned i = 0, j = 0; i < 4; i++) {
if (!(write_mask & (1 << i)))
continue;
nir_instr_rewrite_src(&vec->instr, &vec->src[i].src, nir_src_for_ssa(&mov->dest.dest.ssa));
vec->src[i].swizzle[0] = j++;
}
nir_instr_insert_before(&vec->instr, &mov->instr);
return write_mask;
}
/*
* for vecN instructions:
* -merge constant sources into a single src
* -insert movs (nir_lower_vec_to_movs equivalent)
* for non-vecN instructions:
* -try to merge constants as single constant
* -insert movs for multiple constants (pre-HALTI5)
*/
static void
lower_alu(struct etna_compile *c, nir_alu_instr *alu)
{
const nir_op_info *info = &nir_op_infos[alu->op];
nir_builder b;
nir_builder_init(&b, c->impl);
b.cursor = nir_before_instr(&alu->instr);
switch (alu->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
break;
default:
/* pre-GC7000L can only have 1 uniform src per instruction */
if (c->specs->halti >= 5)
return;
nir_const_value value[4] = {};
uint8_t swizzle[4][4] = {};
unsigned swiz_max = 0, num_const = 0;
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
if (!cv)
continue;
unsigned num_components = info->input_sizes[i] ?: alu->dest.dest.ssa.num_components;
for (unsigned j = 0; j < num_components; j++) {
int idx = const_add(&value[0].u64, cv[alu->src[i].swizzle[j]].u64);
swizzle[i][j] = idx;
swiz_max = MAX2(swiz_max, (unsigned) idx);
}
num_const++;
}
/* nothing to do */
if (num_const <= 1)
return;
/* resolve with single combined const src */
if (swiz_max < 4) {
nir_ssa_def *def = nir_build_imm(&b, swiz_max + 1, 32, value);
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
if (!cv)
continue;
nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def));
for (unsigned j = 0; j < 4; j++)
alu->src[i].swizzle[j] = swizzle[i][j];
}
return;
}
/* resolve with movs */
num_const = 0;
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
if (!cv)
continue;
num_const++;
if (num_const == 1)
continue;
nir_ssa_def *mov = nir_mov(&b, alu->src[i].src.ssa);
nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(mov));
}
return;
}
nir_const_value value[4];
unsigned num_components = 0;
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
if (cv)
value[num_components++] = cv[alu->src[i].swizzle[0]];
}
/* if there is more than one constant source to the vecN, combine them
* into a single load_const (removing the vecN completely if all components
* are constant)
*/
if (num_components > 1) {
nir_ssa_def *def = nir_build_imm(&b, num_components, 32, value);
if (num_components == info->num_inputs) {
nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(def));
nir_instr_remove(&alu->instr);
return;
}
for (unsigned i = 0, j = 0; i < info->num_inputs; i++) {
nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
if (!cv)
continue;
nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def));
alu->src[i].swizzle[0] = j++;
}
}
unsigned finished_write_mask = 0;
for (unsigned i = 0; i < 4; i++) {
if (!(alu->dest.write_mask & (1 << i)))
continue;
nir_ssa_def *ssa = alu->src[i].src.ssa;
/* check that vecN instruction is only user of this */
bool need_mov = list_length(&ssa->if_uses) != 0;
nir_foreach_use(use_src, ssa) {
if (use_src->parent_instr != &alu->instr)
need_mov = true;
}
nir_instr *instr = ssa->parent_instr;
switch (instr->type) {
case nir_instr_type_alu:
case nir_instr_type_tex:
break;
case nir_instr_type_intrinsic:
if (nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_load_input) {
need_mov = vec_dest_has_swizzle(alu, &nir_instr_as_intrinsic(instr)->dest.ssa);
break;
}
/* fallthrough */
default:
need_mov = true;
}
if (need_mov && !(finished_write_mask & (1 << i)))
finished_write_mask |= insert_vec_mov(alu, i, c->nir);
}
}
static bool
emit_shader(struct etna_compile *c, unsigned *num_temps, unsigned *num_consts)
{
nir_shader *shader = c->nir;
c->impl = nir_shader_get_entrypoint(shader);
bool have_indirect_uniform = false;
unsigned indirect_max = 0;
nir_builder b;
nir_builder_init(&b, c->impl);
/* convert non-dynamic uniform loads to constants, etc */
nir_foreach_block(block, c->impl) {
nir_foreach_instr_safe(instr, block) {
switch(instr->type) {
case nir_instr_type_alu:
/* deals with vecN and const srcs */
lower_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_load_const: {
nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
for (unsigned i = 0; i < load_const->def.num_components; i++)
load_const->value[i] = CONST(load_const->value[i].u32);
} break;
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
/* TODO: load_ubo can also become a constant in some cases
* (at the moment it can end up emitting a LOAD with two
* uniform sources, which could be a problem on HALTI2)
*/
if (intr->intrinsic != nir_intrinsic_load_uniform)
break;
nir_const_value *off = nir_src_as_const_value(intr->src[0]);
if (!off || off[0].u64 >> 32 != ETNA_IMMEDIATE_CONSTANT) {
have_indirect_uniform = true;
indirect_max = nir_intrinsic_base(intr) + nir_intrinsic_range(intr);
break;
}
unsigned base = nir_intrinsic_base(intr);
/* pre halti2 uniform offset will be float */
if (c->specs->halti < 2)
base += (unsigned) off[0].f32;
else
base += off[0].u32;
nir_const_value value[4];
for (unsigned i = 0; i < intr->dest.ssa.num_components; i++) {
if (nir_intrinsic_base(intr) < 0)
value[i] = TEXSCALE(~nir_intrinsic_base(intr), i);
else
value[i] = UNIFORM(base * 4 + i);
}
b.cursor = nir_after_instr(instr);
nir_ssa_def *def = nir_build_imm(&b, intr->dest.ssa.num_components, 32, value);
nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_src_for_ssa(def));
nir_instr_remove(instr);
} break;
default:
break;
}
}
}
/* TODO: only emit required indirect uniform ranges */
if (have_indirect_uniform) {
for (unsigned i = 0; i < indirect_max * 4; i++)
c->consts[i] = UNIFORM(i).u64;
c->const_count = indirect_max;
}
/* add mov for any store output using sysval/const */
nir_foreach_block(block, c->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_store_deref: {
nir_src *src = &intr->src[1];
if (nir_src_is_const(*src) || is_sysval(src->ssa->parent_instr)) {
b.cursor = nir_before_instr(instr);
nir_instr_rewrite_src(instr, src, nir_src_for_ssa(nir_mov(&b, src->ssa)));
}
} break;
default:
break;
}
}
}
/* call directly to avoid validation (load_const don't pass validation at this point) */
nir_convert_from_ssa(shader, true);
nir_opt_dce(shader);
etna_ra_assign(c, shader);
emit_cf_list(c, &nir_shader_get_entrypoint(shader)->body);
*num_temps = etna_ra_finish(c);
*num_consts = c->const_count;
return true;
}
static bool
etna_compile_check_limits(struct etna_shader_variant *v)
{
const struct etna_specs *specs = v->shader->specs;
int max_uniforms = (v->stage == MESA_SHADER_VERTEX)
? specs->max_vs_uniforms
: specs->max_ps_uniforms;
if (!specs->has_icache && v->needs_icache) {
DBG("Number of instructions (%d) exceeds maximum %d", v->code_size / 4,
specs->max_instructions);
return false;
}
if (v->num_temps > specs->max_registers) {
DBG("Number of registers (%d) exceeds maximum %d", v->num_temps,
specs->max_registers);
return false;
}
if (v->uniforms.imm_count / 4 > max_uniforms) {
DBG("Number of uniforms (%d) exceeds maximum %d",
v->uniforms.imm_count / 4, max_uniforms);
return false;
}
return true;
}
static void
fill_vs_mystery(struct etna_shader_variant *v)
{
const struct etna_specs *specs = v->shader->specs;
v->input_count_unk8 = DIV_ROUND_UP(v->infile.num_reg + 4, 16); /* XXX what is this */
/* fill in "mystery meat" load balancing value. This value determines how
* work is scheduled between VS and PS
* in the unified shader architecture. More precisely, it is determined from
* the number of VS outputs, as well as chip-specific
* vertex output buffer size, vertex cache size, and the number of shader
* cores.
*
* XXX this is a conservative estimate, the "optimal" value is only known for
* sure at link time because some
* outputs may be unused and thus unmapped. Then again, in the general use
* case with GLSL the vertex and fragment
* shaders are linked already before submitting to Gallium, thus all outputs
* are used.
*
* note: TGSI compiler counts all outputs (including position and pointsize), here
* v->outfile.num_reg only counts varyings, +1 to compensate for the position output
* TODO: might have a problem that we don't count pointsize when it is used
*/
int half_out = v->outfile.num_reg / 2 + 1;
assert(half_out);
uint32_t b = ((20480 / (specs->vertex_output_buffer_size -
2 * half_out * specs->vertex_cache_size)) +
9) /
10;
uint32_t a = (b + 256 / (specs->shader_core_count * half_out)) / 2;
v->vs_load_balancing = VIVS_VS_LOAD_BALANCING_A(MIN2(a, 255)) |
VIVS_VS_LOAD_BALANCING_B(MIN2(b, 255)) |
VIVS_VS_LOAD_BALANCING_C(0x3f) |
VIVS_VS_LOAD_BALANCING_D(0x0f);
}
bool
etna_compile_shader_nir(struct etna_shader_variant *v)
{
if (unlikely(!v))
return false;
struct etna_compile *c = CALLOC_STRUCT(etna_compile);
if (!c)
return false;
c->variant = v;
c->specs = v->shader->specs;
c->nir = nir_shader_clone(NULL, v->shader->nir);
nir_shader *s = c->nir;
const struct etna_specs *specs = c->specs;
v->stage = s->info.stage;
v->num_loops = 0; /* TODO */
v->vs_id_in_reg = -1;
v->vs_pos_out_reg = -1;
v->vs_pointsize_out_reg = -1;
v->ps_color_out_reg = 0; /* 0 for shader that doesn't write fragcolor.. */
v->ps_depth_out_reg = -1;
/* setup input linking */
struct etna_shader_io_file *sf = &v->infile;
if (s->info.stage == MESA_SHADER_VERTEX) {
nir_foreach_shader_in_variable(var, s) {
unsigned idx = var->data.driver_location;
sf->reg[idx].reg = idx;
sf->reg[idx].slot = var->data.location;
sf->reg[idx].num_components = glsl_get_components(var->type);
sf->num_reg = MAX2(sf->num_reg, idx+1);
}
} else {
unsigned count = 0;
nir_foreach_shader_in_variable(var, s) {
unsigned idx = var->data.driver_location;
sf->reg[idx].reg = idx + 1;
sf->reg[idx].slot = var->data.location;
sf->reg[idx].num_components = glsl_get_components(var->type);
sf->num_reg = MAX2(sf->num_reg, idx+1);
count++;
}
assert(sf->num_reg == count);
}
NIR_PASS_V(s, nir_lower_io, nir_var_shader_in | nir_var_uniform, etna_glsl_type_size,
(nir_lower_io_options)0);
NIR_PASS_V(s, nir_lower_regs_to_ssa);
NIR_PASS_V(s, nir_lower_vars_to_ssa);
NIR_PASS_V(s, nir_lower_indirect_derefs, nir_var_all);
NIR_PASS_V(s, nir_lower_tex, &(struct nir_lower_tex_options) { .lower_txp = ~0u });
NIR_PASS_V(s, nir_lower_alu_to_scalar, etna_alu_to_scalar_filter_cb, specs);
etna_optimize_loop(s);
NIR_PASS_V(s, etna_lower_io, v);
if (v->shader->specs->vs_need_z_div)
NIR_PASS_V(s, nir_lower_clip_halfz);
/* lower pre-halti2 to float (halti0 has integers, but only scalar..) */
if (c->specs->halti < 2) {
/* use opt_algebraic between int_to_float and boot_to_float because
* int_to_float emits ftrunc, and ftrunc lowering generates bool ops
*/
NIR_PASS_V(s, nir_lower_int_to_float);
NIR_PASS_V(s, nir_opt_algebraic);
NIR_PASS_V(s, nir_lower_bool_to_float);
} else {
NIR_PASS_V(s, nir_lower_idiv, nir_lower_idiv_fast);
NIR_PASS_V(s, nir_lower_bool_to_int32);
}
etna_optimize_loop(s);
if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
nir_print_shader(s, stdout);
while( OPT(s, nir_opt_vectorize) );
NIR_PASS_V(s, nir_lower_alu_to_scalar, etna_alu_to_scalar_filter_cb, specs);
NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
NIR_PASS_V(s, nir_opt_algebraic_late);
NIR_PASS_V(s, nir_move_vec_src_uses_to_dest);
NIR_PASS_V(s, nir_copy_prop);
/* only HW supported integer source mod is ineg for iadd instruction (?) */
NIR_PASS_V(s, nir_lower_to_source_mods, ~nir_lower_int_source_mods);
/* need copy prop after uses_to_dest, and before src mods: see
* dEQP-GLES2.functional.shaders.random.all_features.fragment.95
*/
NIR_PASS_V(s, nir_opt_dce);
NIR_PASS_V(s, etna_lower_alu, c->specs->has_new_transcendentals);
if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
nir_print_shader(s, stdout);
unsigned block_ptr[nir_shader_get_entrypoint(s)->num_blocks];
c->block_ptr = block_ptr;
unsigned num_consts;
ASSERTED bool ok = emit_shader(c, &v->num_temps, &num_consts);
assert(ok);
/* empty shader, emit NOP */
if (!c->inst_ptr)
emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_NOP });
/* assemble instructions, fixing up labels */
uint32_t *code = MALLOC(c->inst_ptr * 16);
for (unsigned i = 0; i < c->inst_ptr; i++) {
struct etna_inst *inst = &c->code[i];
if (inst->opcode == INST_OPCODE_BRANCH)
inst->imm = block_ptr[inst->imm];
inst->halti5 = specs->halti >= 5;
etna_assemble(&code[i * 4], inst);
}
v->code_size = c->inst_ptr * 4;
v->code = code;
v->needs_icache = c->inst_ptr > specs->max_instructions;
copy_uniform_state_to_shader(v, c->consts, num_consts);
if (s->info.stage == MESA_SHADER_FRAGMENT) {
v->input_count_unk8 = 31; /* XXX what is this */
assert(v->ps_depth_out_reg <= 0);
} else {
fill_vs_mystery(v);
}
bool result = etna_compile_check_limits(v);
ralloc_free(c->nir);
FREE(c);
return result;
}
void
etna_destroy_shader_nir(struct etna_shader_variant *shader)
{
assert(shader);
FREE(shader->code);
FREE(shader->uniforms.imm_data);
FREE(shader->uniforms.imm_contents);
FREE(shader);
}
extern const char *tgsi_swizzle_names[];
void
etna_dump_shader_nir(const struct etna_shader_variant *shader)
{
if (shader->stage == MESA_SHADER_VERTEX)
printf("VERT\n");
else
printf("FRAG\n");
etna_disasm(shader->code, shader->code_size, PRINT_RAW);
printf("num loops: %i\n", shader->num_loops);
printf("num temps: %i\n", shader->num_temps);
printf("immediates:\n");
for (int idx = 0; idx < shader->uniforms.imm_count; ++idx) {
printf(" [%i].%s = %f (0x%08x) (%d)\n",
idx / 4,
tgsi_swizzle_names[idx % 4],
*((float *)&shader->uniforms.imm_data[idx]),
shader->uniforms.imm_data[idx],
shader->uniforms.imm_contents[idx]);
}
printf("inputs:\n");
for (int idx = 0; idx < shader->infile.num_reg; ++idx) {
printf(" [%i] name=%s comps=%i\n", shader->infile.reg[idx].reg,
(shader->stage == MESA_SHADER_VERTEX) ?
gl_vert_attrib_name(shader->infile.reg[idx].slot) :
gl_varying_slot_name(shader->infile.reg[idx].slot),
shader->infile.reg[idx].num_components);
}
printf("outputs:\n");
for (int idx = 0; idx < shader->outfile.num_reg; ++idx) {
printf(" [%i] name=%s comps=%i\n", shader->outfile.reg[idx].reg,
(shader->stage == MESA_SHADER_VERTEX) ?
gl_varying_slot_name(shader->outfile.reg[idx].slot) :
gl_frag_result_name(shader->outfile.reg[idx].slot),
shader->outfile.reg[idx].num_components);
}
printf("special:\n");
if (shader->stage == MESA_SHADER_VERTEX) {
printf(" vs_pos_out_reg=%i\n", shader->vs_pos_out_reg);
printf(" vs_pointsize_out_reg=%i\n", shader->vs_pointsize_out_reg);
printf(" vs_load_balancing=0x%08x\n", shader->vs_load_balancing);
} else {
printf(" ps_color_out_reg=%i\n", shader->ps_color_out_reg);
printf(" ps_depth_out_reg=%i\n", shader->ps_depth_out_reg);
}
printf(" input_count_unk8=0x%08x\n", shader->input_count_unk8);
}
static const struct etna_shader_inout *
etna_shader_vs_lookup(const struct etna_shader_variant *sobj,
const struct etna_shader_inout *in)
{
for (int i = 0; i < sobj->outfile.num_reg; i++)
if (sobj->outfile.reg[i].slot == in->slot)
return &sobj->outfile.reg[i];
return NULL;
}
bool
etna_link_shader_nir(struct etna_shader_link_info *info,
const struct etna_shader_variant *vs,
const struct etna_shader_variant *fs)
{
int comp_ofs = 0;
/* For each fragment input we need to find the associated vertex shader
* output, which can be found by matching on semantic name and index. A
* binary search could be used because the vs outputs are sorted by their
* semantic index and grouped by semantic type by fill_in_vs_outputs.
*/
assert(fs->infile.num_reg < ETNA_NUM_INPUTS);
info->pcoord_varying_comp_ofs = -1;
for (int idx = 0; idx < fs->infile.num_reg; ++idx) {
const struct etna_shader_inout *fsio = &fs->infile.reg[idx];
const struct etna_shader_inout *vsio = etna_shader_vs_lookup(vs, fsio);
struct etna_varying *varying;
bool interpolate_always = true;
assert(fsio->reg > 0 && fsio->reg <= ARRAY_SIZE(info->varyings));
if (fsio->reg > info->num_varyings)
info->num_varyings = fsio->reg;
varying = &info->varyings[fsio->reg - 1];
varying->num_components = fsio->num_components;
if (!interpolate_always) /* colors affected by flat shading */
varying->pa_attributes = 0x200;
else /* texture coord or other bypasses flat shading */
varying->pa_attributes = 0x2f1;
varying->use[0] = VARYING_COMPONENT_USE_UNUSED;
varying->use[1] = VARYING_COMPONENT_USE_UNUSED;
varying->use[2] = VARYING_COMPONENT_USE_UNUSED;
varying->use[3] = VARYING_COMPONENT_USE_UNUSED;
/* point coord is an input to the PS without matching VS output,
* so it gets a varying slot without being assigned a VS register.
*/
if (fsio->slot == VARYING_SLOT_PNTC) {
varying->use[0] = VARYING_COMPONENT_USE_POINTCOORD_X;
varying->use[1] = VARYING_COMPONENT_USE_POINTCOORD_Y;
info->pcoord_varying_comp_ofs = comp_ofs;
} else {
if (vsio == NULL) { /* not found -- link error */
BUG("Semantic value not found in vertex shader outputs\n");
return true;
}
varying->reg = vsio->reg;
}
comp_ofs += varying->num_components;
}
assert(info->num_varyings == fs->infile.num_reg);
return false;
}