blob: 15c6be72e158de910b6e117c565039dfa5388497 [file] [log] [blame]
'''
/**************************************************************************
*
* Copyright 2009-2010 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Pixel format packing and unpacking functions.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
'''
from __future__ import division, print_function
import sys
from u_format_parse import *
if sys.version_info < (3, 0):
integer_types = (int, long)
else:
integer_types = (int, )
def inv_swizzles(swizzles):
'''Return an array[4] of inverse swizzle terms'''
'''Only pick the first matching value to avoid l8 getting blue and i8 getting alpha'''
inv_swizzle = [None]*4
for i in range(4):
swizzle = swizzles[i]
if swizzle < 4 and inv_swizzle[swizzle] == None:
inv_swizzle[swizzle] = i
return inv_swizzle
def print_channels(format, func):
if format.nr_channels() <= 1:
func(format.le_channels, format.le_swizzles)
else:
if (format.le_channels == format.be_channels and
[c.shift for c in format.le_channels] ==
[c.shift for c in format.be_channels] and
format.le_swizzles == format.be_swizzles):
func(format.le_channels, format.le_swizzles)
else:
print('#if UTIL_ARCH_BIG_ENDIAN')
func(format.be_channels, format.be_swizzles)
print('#else')
func(format.le_channels, format.le_swizzles)
print('#endif')
def generate_format_type(format):
'''Generate a structure that describes the format.'''
assert format.layout == PLAIN
def generate_bitfields(channels, swizzles):
for channel in channels:
if channel.type == VOID:
if channel.size:
print(' unsigned %s:%u;' % (channel.name, channel.size))
elif channel.type == UNSIGNED:
print(' unsigned %s:%u;' % (channel.name, channel.size))
elif channel.type in (SIGNED, FIXED):
print(' int %s:%u;' % (channel.name, channel.size))
elif channel.type == FLOAT:
if channel.size == 64:
print(' double %s;' % (channel.name))
elif channel.size == 32:
print(' float %s;' % (channel.name))
else:
print(' unsigned %s:%u;' % (channel.name, channel.size))
else:
assert 0
def generate_full_fields(channels, swizzles):
for channel in channels:
assert channel.size % 8 == 0 and is_pot(channel.size)
if channel.type == VOID:
if channel.size:
print(' uint%u_t %s;' % (channel.size, channel.name))
elif channel.type == UNSIGNED:
print(' uint%u_t %s;' % (channel.size, channel.name))
elif channel.type in (SIGNED, FIXED):
print(' int%u_t %s;' % (channel.size, channel.name))
elif channel.type == FLOAT:
if channel.size == 64:
print(' double %s;' % (channel.name))
elif channel.size == 32:
print(' float %s;' % (channel.name))
elif channel.size == 16:
print(' uint16_t %s;' % (channel.name))
else:
assert 0
else:
assert 0
use_bitfields = False
for channel in format.le_channels:
if channel.size % 8 or not is_pot(channel.size):
use_bitfields = True
print('struct util_format_%s {' % format.short_name())
if use_bitfields:
print_channels(format, generate_bitfields)
else:
print_channels(format, generate_full_fields)
print('};')
print()
def is_format_supported(format):
'''Determines whether we actually have the plumbing necessary to generate the
to read/write to/from this format.'''
# FIXME: Ideally we would support any format combination here.
if format.layout != PLAIN:
return False
for i in range(4):
channel = format.le_channels[i]
if channel.type not in (VOID, UNSIGNED, SIGNED, FLOAT, FIXED):
return False
if channel.type == FLOAT and channel.size not in (16, 32, 64):
return False
return True
def native_type(format):
'''Get the native appropriate for a format.'''
if format.name == 'PIPE_FORMAT_R11G11B10_FLOAT':
return 'uint32_t'
if format.name == 'PIPE_FORMAT_R9G9B9E5_FLOAT':
return 'uint32_t'
if format.layout == PLAIN:
if not format.is_array():
# For arithmetic pixel formats return the integer type that matches the whole pixel
return 'uint%u_t' % format.block_size()
else:
# For array pixel formats return the integer type that matches the color channel
channel = format.array_element()
if channel.type in (UNSIGNED, VOID):
return 'uint%u_t' % channel.size
elif channel.type in (SIGNED, FIXED):
return 'int%u_t' % channel.size
elif channel.type == FLOAT:
if channel.size == 16:
return 'uint16_t'
elif channel.size == 32:
return 'float'
elif channel.size == 64:
return 'double'
else:
assert False
else:
assert False
else:
assert False
def intermediate_native_type(bits, sign):
'''Find a native type adequate to hold intermediate results of the request bit size.'''
bytes = 4 # don't use anything smaller than 32bits
while bytes * 8 < bits:
bytes *= 2
bits = bytes*8
if sign:
return 'int%u_t' % bits
else:
return 'uint%u_t' % bits
def get_one_shift(type):
'''Get the number of the bit that matches unity for this type.'''
if type.type == 'FLOAT':
assert False
if not type.norm:
return 0
if type.type == UNSIGNED:
return type.size
if type.type == SIGNED:
return type.size - 1
if type.type == FIXED:
return type.size / 2
assert False
def truncate_mantissa(x, bits):
'''Truncate an integer so it can be represented exactly with a floating
point mantissa'''
assert isinstance(x, integer_types)
s = 1
if x < 0:
s = -1
x = -x
# We can represent integers up to mantissa + 1 bits exactly
mask = (1 << (bits + 1)) - 1
# Slide the mask until the MSB matches
shift = 0
while (x >> shift) & ~mask:
shift += 1
x &= mask << shift
x *= s
return x
def value_to_native(type, value):
'''Get the value of unity for this type.'''
if type.type == FLOAT:
if type.size <= 32 \
and isinstance(value, integer_types):
return truncate_mantissa(value, 23)
return value
if type.type == FIXED:
return int(value * (1 << (type.size // 2)))
if not type.norm:
return int(value)
if type.type == UNSIGNED:
return int(value * ((1 << type.size) - 1))
if type.type == SIGNED:
return int(value * ((1 << (type.size - 1)) - 1))
assert False
def native_to_constant(type, value):
'''Get the value of unity for this type.'''
if type.type == FLOAT:
if type.size <= 32:
return "%.1ff" % float(value)
else:
return "%.1f" % float(value)
else:
return str(int(value))
def get_one(type):
'''Get the value of unity for this type.'''
return value_to_native(type, 1)
def clamp_expr(src_channel, dst_channel, dst_native_type, value):
'''Generate the expression to clamp the value in the source type to the
destination type range.'''
if src_channel == dst_channel:
return value
src_min = src_channel.min()
src_max = src_channel.max()
dst_min = dst_channel.min()
dst_max = dst_channel.max()
# Translate the destination range to the src native value
dst_min_native = native_to_constant(src_channel, value_to_native(src_channel, dst_min))
dst_max_native = native_to_constant(src_channel, value_to_native(src_channel, dst_max))
if src_min < dst_min and src_max > dst_max:
return 'CLAMP(%s, %s, %s)' % (value, dst_min_native, dst_max_native)
if src_max > dst_max:
return 'MIN2(%s, %s)' % (value, dst_max_native)
if src_min < dst_min:
return 'MAX2(%s, %s)' % (value, dst_min_native)
return value
def conversion_expr(src_channel,
dst_channel, dst_native_type,
value,
clamp=True,
src_colorspace = RGB,
dst_colorspace = RGB):
'''Generate the expression to convert a value between two types.'''
if src_colorspace != dst_colorspace:
if src_colorspace == SRGB:
assert src_channel.type == UNSIGNED
assert src_channel.norm
assert src_channel.size <= 8
assert src_channel.size >= 4
assert dst_colorspace == RGB
if src_channel.size < 8:
value = '%s << %x | %s >> %x' % (value, 8 - src_channel.size, value, 2 * src_channel.size - 8)
if dst_channel.type == FLOAT:
return 'util_format_srgb_8unorm_to_linear_float(%s)' % value
else:
assert dst_channel.type == UNSIGNED
assert dst_channel.norm
assert dst_channel.size == 8
return 'util_format_srgb_to_linear_8unorm(%s)' % value
elif dst_colorspace == SRGB:
assert dst_channel.type == UNSIGNED
assert dst_channel.norm
assert dst_channel.size <= 8
assert src_colorspace == RGB
if src_channel.type == FLOAT:
value = 'util_format_linear_float_to_srgb_8unorm(%s)' % value
else:
assert src_channel.type == UNSIGNED
assert src_channel.norm
assert src_channel.size == 8
value = 'util_format_linear_to_srgb_8unorm(%s)' % value
# XXX rounding is all wrong.
if dst_channel.size < 8:
return '%s >> %x' % (value, 8 - dst_channel.size)
else:
return value
elif src_colorspace == ZS:
pass
elif dst_colorspace == ZS:
pass
else:
assert 0
if src_channel == dst_channel:
return value
src_type = src_channel.type
src_size = src_channel.size
src_norm = src_channel.norm
src_pure = src_channel.pure
# Promote half to float
if src_type == FLOAT and src_size == 16:
value = 'util_half_to_float(%s)' % value
src_size = 32
# Special case for float <-> ubytes for more accurate results
# Done before clamping since these functions already take care of that
if src_type == UNSIGNED and src_norm and src_size == 8 and dst_channel.type == FLOAT and dst_channel.size == 32:
return 'ubyte_to_float(%s)' % value
if src_type == FLOAT and src_size == 32 and dst_channel.type == UNSIGNED and dst_channel.norm and dst_channel.size == 8:
return 'float_to_ubyte(%s)' % value
if clamp:
if dst_channel.type != FLOAT or src_type != FLOAT:
value = clamp_expr(src_channel, dst_channel, dst_native_type, value)
if src_type in (SIGNED, UNSIGNED) and dst_channel.type in (SIGNED, UNSIGNED):
if not src_norm and not dst_channel.norm:
# neither is normalized -- just cast
return '(%s)%s' % (dst_native_type, value)
src_one = get_one(src_channel)
dst_one = get_one(dst_channel)
if src_one > dst_one and src_norm and dst_channel.norm:
# We can just bitshift
src_shift = get_one_shift(src_channel)
dst_shift = get_one_shift(dst_channel)
value = '(%s >> %s)' % (value, src_shift - dst_shift)
else:
# We need to rescale using an intermediate type big enough to hold the multiplication of both
tmp_native_type = intermediate_native_type(src_size + dst_channel.size, src_channel.sign and dst_channel.sign)
value = '((%s)%s)' % (tmp_native_type, value)
value = '(%s * 0x%x / 0x%x)' % (value, dst_one, src_one)
value = '(%s)%s' % (dst_native_type, value)
return value
# Promote to either float or double
if src_type != FLOAT:
if src_norm or src_type == FIXED:
one = get_one(src_channel)
if src_size <= 23:
value = '(%s * (1.0f/0x%x))' % (value, one)
if dst_channel.size <= 32:
value = '(float)%s' % value
src_size = 32
else:
# bigger than single precision mantissa, use double
value = '(%s * (1.0/0x%x))' % (value, one)
src_size = 64
src_norm = False
else:
if src_size <= 23 or dst_channel.size <= 32:
value = '(float)%s' % value
src_size = 32
else:
# bigger than single precision mantissa, use double
value = '(double)%s' % value
src_size = 64
src_type = FLOAT
# Convert double or float to non-float
if dst_channel.type != FLOAT:
if dst_channel.norm or dst_channel.type == FIXED:
dst_one = get_one(dst_channel)
if dst_channel.size <= 23:
value = 'util_iround(%s * 0x%x)' % (value, dst_one)
else:
# bigger than single precision mantissa, use double
value = '(%s * (double)0x%x)' % (value, dst_one)
value = '(%s)%s' % (dst_native_type, value)
else:
# Cast double to float when converting to either half or float
if dst_channel.size <= 32 and src_size > 32:
value = '(float)%s' % value
src_size = 32
if dst_channel.size == 16:
value = 'util_float_to_half_rtz(%s)' % value
elif dst_channel.size == 64 and src_size < 64:
value = '(double)%s' % value
return value
def generate_unpack_kernel(format, dst_channel, dst_native_type):
if not is_format_supported(format):
return
assert format.layout == PLAIN
def unpack_from_bitmask(channels, swizzles):
depth = format.block_size()
print(' uint%u_t value = *(const uint%u_t *)src;' % (depth, depth))
# Declare the intermediate variables
for i in range(format.nr_channels()):
src_channel = channels[i]
if src_channel.type == UNSIGNED:
print(' uint%u_t %s;' % (depth, src_channel.name))
elif src_channel.type == SIGNED:
print(' int%u_t %s;' % (depth, src_channel.name))
# Compute the intermediate unshifted values
for i in range(format.nr_channels()):
src_channel = channels[i]
value = 'value'
shift = src_channel.shift
if src_channel.type == UNSIGNED:
if shift:
value = '%s >> %u' % (value, shift)
if shift + src_channel.size < depth:
value = '(%s) & 0x%x' % (value, (1 << src_channel.size) - 1)
elif src_channel.type == SIGNED:
if shift + src_channel.size < depth:
# Align the sign bit
lshift = depth - (shift + src_channel.size)
value = '%s << %u' % (value, lshift)
# Cast to signed
value = '(int%u_t)(%s) ' % (depth, value)
if src_channel.size < depth:
# Align the LSB bit
rshift = depth - src_channel.size
value = '(%s) >> %u' % (value, rshift)
else:
value = None
if value is not None:
print(' %s = %s;' % (src_channel.name, value))
# Convert, swizzle, and store final values
for i in range(4):
swizzle = swizzles[i]
if swizzle < 4:
src_channel = channels[swizzle]
src_colorspace = format.colorspace
if src_colorspace == SRGB and i == 3:
# Alpha channel is linear
src_colorspace = RGB
value = src_channel.name
value = conversion_expr(src_channel,
dst_channel, dst_native_type,
value,
src_colorspace = src_colorspace)
elif swizzle == SWIZZLE_0:
value = '0'
elif swizzle == SWIZZLE_1:
value = get_one(dst_channel)
elif swizzle == SWIZZLE_NONE:
value = '0'
else:
assert False
print(' dst[%u] = %s; /* %s */' % (i, value, 'rgba'[i]))
def unpack_from_struct(channels, swizzles):
print(' struct util_format_%s pixel;' % format.short_name())
print(' memcpy(&pixel, src, sizeof pixel);')
for i in range(4):
swizzle = swizzles[i]
if swizzle < 4:
src_channel = channels[swizzle]
src_colorspace = format.colorspace
if src_colorspace == SRGB and i == 3:
# Alpha channel is linear
src_colorspace = RGB
value = 'pixel.%s' % src_channel.name
value = conversion_expr(src_channel,
dst_channel, dst_native_type,
value,
src_colorspace = src_colorspace)
elif swizzle == SWIZZLE_0:
value = '0'
elif swizzle == SWIZZLE_1:
value = get_one(dst_channel)
elif swizzle == SWIZZLE_NONE:
value = '0'
else:
assert False
print(' dst[%u] = %s; /* %s */' % (i, value, 'rgba'[i]))
if format.is_bitmask():
print_channels(format, unpack_from_bitmask)
else:
print_channels(format, unpack_from_struct)
def generate_pack_kernel(format, src_channel, src_native_type):
if not is_format_supported(format):
return
dst_native_type = native_type(format)
assert format.layout == PLAIN
def pack_into_bitmask(channels, swizzles):
inv_swizzle = inv_swizzles(swizzles)
depth = format.block_size()
print(' uint%u_t value = 0;' % depth)
for i in range(4):
dst_channel = channels[i]
shift = dst_channel.shift
if inv_swizzle[i] is not None:
value ='src[%u]' % inv_swizzle[i]
dst_colorspace = format.colorspace
if dst_colorspace == SRGB and inv_swizzle[i] == 3:
# Alpha channel is linear
dst_colorspace = RGB
value = conversion_expr(src_channel,
dst_channel, dst_native_type,
value,
dst_colorspace = dst_colorspace)
if dst_channel.type in (UNSIGNED, SIGNED):
if shift + dst_channel.size < depth:
value = '(%s) & 0x%x' % (value, (1 << dst_channel.size) - 1)
if shift:
value = '(uint32_t)(%s) << %u' % (value, shift)
if dst_channel.type == SIGNED:
# Cast to unsigned
value = '(uint%u_t)(%s) ' % (depth, value)
else:
value = None
if value is not None:
print(' value |= %s;' % (value))
print(' *(uint%u_t *)dst = value;' % depth)
def pack_into_struct(channels, swizzles):
inv_swizzle = inv_swizzles(swizzles)
print(' struct util_format_%s pixel = {0};' % format.short_name())
for i in range(4):
dst_channel = channels[i]
width = dst_channel.size
if inv_swizzle[i] is None:
continue
dst_colorspace = format.colorspace
if dst_colorspace == SRGB and inv_swizzle[i] == 3:
# Alpha channel is linear
dst_colorspace = RGB
value ='src[%u]' % inv_swizzle[i]
value = conversion_expr(src_channel,
dst_channel, dst_native_type,
value,
dst_colorspace = dst_colorspace)
print(' pixel.%s = %s;' % (dst_channel.name, value))
print(' memcpy(dst, &pixel, sizeof pixel);')
if format.is_bitmask():
print_channels(format, pack_into_bitmask)
else:
print_channels(format, pack_into_struct)
def generate_format_unpack(format, dst_channel, dst_native_type, dst_suffix):
'''Generate the function to unpack pixels from a particular format'''
name = format.short_name()
if "8unorm" in dst_suffix:
dst_proto_type = dst_native_type
else:
dst_proto_type = 'void'
print('static inline void')
print('util_format_%s_unpack_%s(%s *dst_row, unsigned dst_stride, const uint8_t *src_row, unsigned src_stride, unsigned width, unsigned height)' % (name, dst_suffix, dst_proto_type))
print('{')
if is_format_supported(format):
print(' unsigned x, y;')
print(' for(y = 0; y < height; y += %u) {' % (format.block_height,))
print(' %s *dst = dst_row;' % (dst_native_type))
print(' const uint8_t *src = src_row;')
print(' for(x = 0; x < width; x += %u) {' % (format.block_width,))
generate_unpack_kernel(format, dst_channel, dst_native_type)
print(' src += %u;' % (format.block_size() / 8,))
print(' dst += 4;')
print(' }')
print(' src_row += src_stride;')
print(' dst_row = (uint8_t *)dst_row + dst_stride;')
print(' }')
print('}')
print()
def generate_format_pack(format, src_channel, src_native_type, src_suffix):
'''Generate the function to pack pixels to a particular format'''
name = format.short_name()
print('static inline void')
print('util_format_%s_pack_%s(uint8_t *dst_row, unsigned dst_stride, const %s *src_row, unsigned src_stride, unsigned width, unsigned height)' % (name, src_suffix, src_native_type))
print('{')
if is_format_supported(format):
print(' unsigned x, y;')
print(' for(y = 0; y < height; y += %u) {' % (format.block_height,))
print(' const %s *src = src_row;' % (src_native_type))
print(' uint8_t *dst = dst_row;')
print(' for(x = 0; x < width; x += %u) {' % (format.block_width,))
generate_pack_kernel(format, src_channel, src_native_type)
print(' src += 4;')
print(' dst += %u;' % (format.block_size() / 8,))
print(' }')
print(' dst_row += dst_stride;')
print(' src_row += src_stride/sizeof(*src_row);')
print(' }')
print('}')
print()
def generate_format_fetch(format, dst_channel, dst_native_type, dst_suffix):
'''Generate the function to unpack pixels from a particular format'''
name = format.short_name()
print('static inline void')
print('util_format_%s_fetch_%s(%s *dst, const uint8_t *src, UNUSED unsigned i, UNUSED unsigned j)' % (name, dst_suffix, dst_native_type))
print('{')
if is_format_supported(format):
generate_unpack_kernel(format, dst_channel, dst_native_type)
print('}')
print()
def is_format_hand_written(format):
return format.layout != PLAIN or format.colorspace == ZS
def generate(formats):
print()
print('#include "pipe/p_compiler.h"')
print('#include "util/u_math.h"')
print('#include "util/u_half.h"')
print('#include "u_format.h"')
print('#include "u_format_other.h"')
print('#include "util/format_srgb.h"')
print('#include "u_format_yuv.h"')
print('#include "u_format_zs.h"')
print()
for format in formats:
if not is_format_hand_written(format):
if is_format_supported(format) and not format.is_bitmask():
generate_format_type(format)
if format.is_pure_unsigned():
native_type = 'unsigned'
suffix = 'unsigned'
channel = Channel(UNSIGNED, False, True, 32)
generate_format_unpack(format, channel, native_type, suffix)
generate_format_pack(format, channel, native_type, suffix)
generate_format_fetch(format, channel, native_type, suffix)
channel = Channel(SIGNED, False, True, 32)
native_type = 'int'
suffix = 'signed'
generate_format_pack(format, channel, native_type, suffix)
elif format.is_pure_signed():
native_type = 'int'
suffix = 'signed'
channel = Channel(SIGNED, False, True, 32)
generate_format_unpack(format, channel, native_type, suffix)
generate_format_pack(format, channel, native_type, suffix)
generate_format_fetch(format, channel, native_type, suffix)
native_type = 'unsigned'
suffix = 'unsigned'
channel = Channel(UNSIGNED, False, True, 32)
generate_format_pack(format, channel, native_type, suffix)
else:
channel = Channel(FLOAT, False, False, 32)
native_type = 'float'
suffix = 'rgba_float'
generate_format_unpack(format, channel, native_type, suffix)
generate_format_pack(format, channel, native_type, suffix)
generate_format_fetch(format, channel, native_type, suffix)
channel = Channel(UNSIGNED, True, False, 8)
native_type = 'uint8_t'
suffix = 'rgba_8unorm'
generate_format_unpack(format, channel, native_type, suffix)
generate_format_pack(format, channel, native_type, suffix)