blob: 117b40821055fa2cacd630538a2ce87445e28c4c [file] [log] [blame]
/*
* Copyright © 2016 Dave Airlie
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "radv_meta.h"
#include "radv_private.h"
#include "nir/nir_builder.h"
#include "sid.h"
#include "vk_format.h"
static nir_ssa_def *radv_meta_build_resolve_srgb_conversion(nir_builder *b,
nir_ssa_def *input)
{
unsigned i;
nir_ssa_def *cmp[3];
for (i = 0; i < 3; i++)
cmp[i] = nir_flt(b, nir_channel(b, input, i),
nir_imm_int(b, 0x3b4d2e1c));
nir_ssa_def *ltvals[3];
for (i = 0; i < 3; i++)
ltvals[i] = nir_fmul(b, nir_channel(b, input, i),
nir_imm_float(b, 12.92));
nir_ssa_def *gtvals[3];
for (i = 0; i < 3; i++) {
gtvals[i] = nir_fpow(b, nir_channel(b, input, i),
nir_imm_float(b, 1.0/2.4));
gtvals[i] = nir_fmul(b, gtvals[i],
nir_imm_float(b, 1.055));
gtvals[i] = nir_fsub(b, gtvals[i],
nir_imm_float(b, 0.055));
}
nir_ssa_def *comp[4];
for (i = 0; i < 3; i++)
comp[i] = nir_bcsel(b, cmp[i], ltvals[i], gtvals[i]);
comp[3] = nir_channels(b, input, 1 << 3);
return nir_vec(b, comp, 4);
}
static nir_shader *
build_resolve_compute_shader(struct radv_device *dev, bool is_integer, bool is_srgb, int samples)
{
nir_builder b;
char name[64];
const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
false,
false,
GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_2D,
false,
GLSL_TYPE_FLOAT);
snprintf(name, 64, "meta_resolve_cs-%d-%s", samples, is_integer ? "int" : (is_srgb ? "srgb" : "float"));
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
b.shader->info.name = ralloc_strdup(b.shader, name);
b.shader->info.cs.local_size[0] = 16;
b.shader->info.cs.local_size[1] = 16;
b.shader->info.cs.local_size[2] = 1;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b);
nir_ssa_def *wg_id = nir_load_work_group_id(&b, 32);
nir_ssa_def *block_size = nir_imm_ivec4(&b,
b.shader->info.cs.local_size[0],
b.shader->info.cs.local_size[1],
b.shader->info.cs.local_size[2], 0);
nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(src_offset, 0);
nir_intrinsic_set_range(src_offset, 16);
src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
src_offset->num_components = 2;
nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
nir_builder_instr_insert(&b, &src_offset->instr);
nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(dst_offset, 0);
nir_intrinsic_set_range(dst_offset, 16);
dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 8));
dst_offset->num_components = 2;
nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, 2, 32, "dst_offset");
nir_builder_instr_insert(&b, &dst_offset->instr);
nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, global_id, &src_offset->dest.ssa), 0x3);
nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img,
color, img_coord);
nir_ssa_def *outval = nir_load_var(&b, color);
if (is_srgb)
outval = radv_meta_build_resolve_srgb_conversion(&b, outval);
nir_ssa_def *coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa);
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store);
store->num_components = 4;
store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa);
store->src[1] = nir_src_for_ssa(coord);
store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
store->src[3] = nir_src_for_ssa(outval);
store->src[4] = nir_src_for_ssa(nir_imm_int(&b, 0));
nir_builder_instr_insert(&b, &store->instr);
return b.shader;
}
enum {
DEPTH_RESOLVE,
STENCIL_RESOLVE,
};
static const char *
get_resolve_mode_str(VkResolveModeFlagBits resolve_mode)
{
switch (resolve_mode) {
case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
return "zero";
case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
return "average";
case VK_RESOLVE_MODE_MIN_BIT_KHR:
return "min";
case VK_RESOLVE_MODE_MAX_BIT_KHR:
return "max";
default:
unreachable("invalid resolve mode");
}
}
static nir_shader *
build_depth_stencil_resolve_compute_shader(struct radv_device *dev, int samples,
int index,
VkResolveModeFlagBits resolve_mode)
{
nir_builder b;
char name[64];
const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
false,
false,
GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_2D,
false,
GLSL_TYPE_FLOAT);
snprintf(name, 64, "meta_resolve_cs_%s-%s-%d",
index == DEPTH_RESOLVE ? "depth" : "stencil",
get_resolve_mode_str(resolve_mode), samples);
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
b.shader->info.name = ralloc_strdup(b.shader, name);
b.shader->info.cs.local_size[0] = 16;
b.shader->info.cs.local_size[1] = 16;
b.shader->info.cs.local_size[2] = 1;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b);
nir_ssa_def *wg_id = nir_load_work_group_id(&b, 32);
nir_ssa_def *block_size = nir_imm_ivec4(&b,
b.shader->info.cs.local_size[0],
b.shader->info.cs.local_size[1],
b.shader->info.cs.local_size[2], 0);
nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(src_offset, 0);
nir_intrinsic_set_range(src_offset, 16);
src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
src_offset->num_components = 2;
nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
nir_builder_instr_insert(&b, &src_offset->instr);
nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(dst_offset, 0);
nir_intrinsic_set_range(dst_offset, 16);
dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 8));
dst_offset->num_components = 2;
nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, 2, 32, "dst_offset");
nir_builder_instr_insert(&b, &dst_offset->instr);
nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, global_id, &src_offset->dest.ssa), 0x3);
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_alu_type type = index == DEPTH_RESOLVE ? nir_type_float : nir_type_uint;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->op = nir_texop_txf_ms;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(img_coord);
tex->src[1].src_type = nir_tex_src_ms_index;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = type;
tex->is_array = false;
tex->coord_components = 2;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *outval = &tex->dest.ssa;
if (resolve_mode != VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR) {
for (int i = 1; i < samples; i++) {
nir_tex_instr *tex_add = nir_tex_instr_create(b.shader, 3);
tex_add->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex_add->op = nir_texop_txf_ms;
tex_add->src[0].src_type = nir_tex_src_coord;
tex_add->src[0].src = nir_src_for_ssa(img_coord);
tex_add->src[1].src_type = nir_tex_src_ms_index;
tex_add->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i));
tex_add->src[2].src_type = nir_tex_src_texture_deref;
tex_add->src[2].src = nir_src_for_ssa(input_img_deref);
tex_add->dest_type = type;
tex_add->is_array = false;
tex_add->coord_components = 2;
nir_ssa_dest_init(&tex_add->instr, &tex_add->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex_add->instr);
switch (resolve_mode) {
case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
assert(index == DEPTH_RESOLVE);
outval = nir_fadd(&b, outval, &tex_add->dest.ssa);
break;
case VK_RESOLVE_MODE_MIN_BIT_KHR:
if (index == DEPTH_RESOLVE)
outval = nir_fmin(&b, outval, &tex_add->dest.ssa);
else
outval = nir_umin(&b, outval, &tex_add->dest.ssa);
break;
case VK_RESOLVE_MODE_MAX_BIT_KHR:
if (index == DEPTH_RESOLVE)
outval = nir_fmax(&b, outval, &tex_add->dest.ssa);
else
outval = nir_umax(&b, outval, &tex_add->dest.ssa);
break;
default:
unreachable("invalid resolve mode");
}
}
if (resolve_mode == VK_RESOLVE_MODE_AVERAGE_BIT_KHR)
outval = nir_fdiv(&b, outval, nir_imm_float(&b, samples));
}
nir_ssa_def *coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa);
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store);
store->num_components = 4;
store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa);
store->src[1] = nir_src_for_ssa(coord);
store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
store->src[3] = nir_src_for_ssa(outval);
store->src[4] = nir_src_for_ssa(nir_imm_int(&b, 0));
nir_builder_instr_insert(&b, &store->instr);
return b.shader;
}
static VkResult
create_layout(struct radv_device *device)
{
VkResult result;
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
}
};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
&ds_create_info,
&device->meta_state.alloc,
&device->meta_state.resolve_compute.ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.resolve_compute.ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_create_info,
&device->meta_state.alloc,
&device->meta_state.resolve_compute.p_layout);
if (result != VK_SUCCESS)
goto fail;
return VK_SUCCESS;
fail:
return result;
}
static VkResult
create_resolve_pipeline(struct radv_device *device,
int samples,
bool is_integer,
bool is_srgb,
VkPipeline *pipeline)
{
VkResult result;
struct radv_shader_module cs = { .nir = NULL };
mtx_lock(&device->meta_state.mtx);
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
cs.nir = build_resolve_compute_shader(device, is_integer, is_srgb, samples);
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.resolve_compute.p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info, NULL,
pipeline);
if (result != VK_SUCCESS)
goto fail;
ralloc_free(cs.nir);
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
fail:
ralloc_free(cs.nir);
mtx_unlock(&device->meta_state.mtx);
return result;
}
static VkResult
create_depth_stencil_resolve_pipeline(struct radv_device *device,
int samples,
int index,
VkResolveModeFlagBits resolve_mode,
VkPipeline *pipeline)
{
VkResult result;
struct radv_shader_module cs = { .nir = NULL };
mtx_lock(&device->meta_state.mtx);
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
cs.nir = build_depth_stencil_resolve_compute_shader(device, samples,
index, resolve_mode);
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.resolve_compute.p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info, NULL,
pipeline);
if (result != VK_SUCCESS)
goto fail;
ralloc_free(cs.nir);
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
fail:
ralloc_free(cs.nir);
mtx_unlock(&device->meta_state.mtx);
return result;
}
VkResult
radv_device_init_meta_resolve_compute_state(struct radv_device *device, bool on_demand)
{
struct radv_meta_state *state = &device->meta_state;
VkResult res;
res = create_layout(device);
if (res != VK_SUCCESS)
goto fail;
if (on_demand)
return VK_SUCCESS;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
uint32_t samples = 1 << i;
res = create_resolve_pipeline(device, samples, false, false,
&state->resolve_compute.rc[i].pipeline);
if (res != VK_SUCCESS)
goto fail;
res = create_resolve_pipeline(device, samples, true, false,
&state->resolve_compute.rc[i].i_pipeline);
if (res != VK_SUCCESS)
goto fail;
res = create_resolve_pipeline(device, samples, false, true,
&state->resolve_compute.rc[i].srgb_pipeline);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, samples,
DEPTH_RESOLVE,
VK_RESOLVE_MODE_AVERAGE_BIT_KHR,
&state->resolve_compute.depth[i].average_pipeline);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, samples,
DEPTH_RESOLVE,
VK_RESOLVE_MODE_MAX_BIT_KHR,
&state->resolve_compute.depth[i].max_pipeline);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, samples,
DEPTH_RESOLVE,
VK_RESOLVE_MODE_MIN_BIT_KHR,
&state->resolve_compute.depth[i].min_pipeline);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, samples,
STENCIL_RESOLVE,
VK_RESOLVE_MODE_MAX_BIT_KHR,
&state->resolve_compute.stencil[i].max_pipeline);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, samples,
STENCIL_RESOLVE,
VK_RESOLVE_MODE_MIN_BIT_KHR,
&state->resolve_compute.stencil[i].min_pipeline);
if (res != VK_SUCCESS)
goto fail;
}
res = create_depth_stencil_resolve_pipeline(device, 0,
DEPTH_RESOLVE,
VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR,
&state->resolve_compute.depth_zero_pipeline);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, 0,
STENCIL_RESOLVE,
VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR,
&state->resolve_compute.stencil_zero_pipeline);
if (res != VK_SUCCESS)
goto fail;
return VK_SUCCESS;
fail:
radv_device_finish_meta_resolve_compute_state(device);
return res;
}
void
radv_device_finish_meta_resolve_compute_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.rc[i].pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.rc[i].i_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.rc[i].srgb_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.depth[i].average_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.depth[i].max_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.depth[i].min_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.stencil[i].max_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.stencil[i].min_pipeline,
&state->alloc);
}
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.depth_zero_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.stencil_zero_pipeline,
&state->alloc);
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->resolve_compute.ds_layout,
&state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->resolve_compute.p_layout,
&state->alloc);
}
static VkPipeline *
radv_get_resolve_pipeline(struct radv_cmd_buffer *cmd_buffer,
struct radv_image_view *src_iview)
{
struct radv_device *device = cmd_buffer->device;
struct radv_meta_state *state = &device->meta_state;
uint32_t samples = src_iview->image->info.samples;
uint32_t samples_log2 = ffs(samples) - 1;
VkPipeline *pipeline;
if (vk_format_is_int(src_iview->vk_format))
pipeline = &state->resolve_compute.rc[samples_log2].i_pipeline;
else if (vk_format_is_srgb(src_iview->vk_format))
pipeline = &state->resolve_compute.rc[samples_log2].srgb_pipeline;
else
pipeline = &state->resolve_compute.rc[samples_log2].pipeline;
if (!*pipeline) {
VkResult ret;
ret = create_resolve_pipeline(device, samples,
vk_format_is_int(src_iview->vk_format),
vk_format_is_srgb(src_iview->vk_format),
pipeline);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return NULL;
}
}
return pipeline;
}
static void
emit_resolve(struct radv_cmd_buffer *cmd_buffer,
struct radv_image_view *src_iview,
struct radv_image_view *dest_iview,
const VkOffset2D *src_offset,
const VkOffset2D *dest_offset,
const VkExtent2D *resolve_extent)
{
struct radv_device *device = cmd_buffer->device;
VkPipeline *pipeline;
radv_meta_push_descriptor_set(cmd_buffer,
VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.resolve_compute.p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL },
}
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dest_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
}
});
pipeline = radv_get_resolve_pipeline(cmd_buffer, src_iview);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
unsigned push_constants[4] = {
src_offset->x,
src_offset->y,
dest_offset->x,
dest_offset->y,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.resolve_compute.p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 16,
push_constants);
radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1);
}
static void
emit_depth_stencil_resolve(struct radv_cmd_buffer *cmd_buffer,
struct radv_image_view *src_iview,
struct radv_image_view *dest_iview,
const VkOffset2D *src_offset,
const VkOffset2D *dest_offset,
const VkExtent2D *resolve_extent,
VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode)
{
struct radv_device *device = cmd_buffer->device;
const uint32_t samples = src_iview->image->info.samples;
const uint32_t samples_log2 = ffs(samples) - 1;
VkPipeline *pipeline;
radv_meta_push_descriptor_set(cmd_buffer,
VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.resolve_compute.p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL },
}
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dest_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
}
});
switch (resolve_mode) {
case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_compute.depth_zero_pipeline;
else
pipeline = &device->meta_state.resolve_compute.stencil_zero_pipeline;
break;
case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
assert(aspects == VK_IMAGE_ASPECT_DEPTH_BIT);
pipeline = &device->meta_state.resolve_compute.depth[samples_log2].average_pipeline;
break;
case VK_RESOLVE_MODE_MIN_BIT_KHR:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_compute.depth[samples_log2].min_pipeline;
else
pipeline = &device->meta_state.resolve_compute.stencil[samples_log2].min_pipeline;
break;
case VK_RESOLVE_MODE_MAX_BIT_KHR:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_compute.depth[samples_log2].max_pipeline;
else
pipeline = &device->meta_state.resolve_compute.stencil[samples_log2].max_pipeline;
break;
default:
unreachable("invalid resolve mode");
}
if (!*pipeline) {
int index = aspects == VK_IMAGE_ASPECT_DEPTH_BIT ? DEPTH_RESOLVE : STENCIL_RESOLVE;
VkResult ret;
ret = create_depth_stencil_resolve_pipeline(device, samples,
index, resolve_mode,
pipeline);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return;
}
}
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
unsigned push_constants[4] = {
src_offset->x,
src_offset->y,
dest_offset->x,
dest_offset->y,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.resolve_compute.p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 16,
push_constants);
radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1);
}
void radv_meta_resolve_compute_image(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *src_image,
VkFormat src_format,
VkImageLayout src_image_layout,
struct radv_image *dest_image,
VkFormat dest_format,
VkImageLayout dest_image_layout,
const VkImageResolve2KHR *region)
{
struct radv_meta_saved_state saved_state;
radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout,
region);
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_COMPUTE_PIPELINE |
RADV_META_SAVE_CONSTANTS |
RADV_META_SAVE_DESCRIPTORS);
assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
const uint32_t src_base_layer =
radv_meta_get_iview_layer(src_image, &region->srcSubresource,
&region->srcOffset);
const uint32_t dest_base_layer =
radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
&region->dstOffset);
const struct VkExtent3D extent =
radv_sanitize_image_extent(src_image->type, region->extent);
const struct VkOffset3D srcOffset =
radv_sanitize_image_offset(src_image->type, region->srcOffset);
const struct VkOffset3D dstOffset =
radv_sanitize_image_offset(dest_image->type, region->dstOffset);
for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
++layer) {
struct radv_image_view src_iview;
radv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(src_image),
.viewType = radv_meta_get_view_type(src_image),
.format = src_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->srcSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = src_base_layer + layer,
.layerCount = 1,
},
}, NULL);
struct radv_image_view dest_iview;
radv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(dest_image),
.viewType = radv_meta_get_view_type(dest_image),
.format = vk_to_non_srgb_format(dest_format),
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_layer + layer,
.layerCount = 1,
},
}, NULL);
emit_resolve(cmd_buffer,
&src_iview,
&dest_iview,
&(VkOffset2D) {srcOffset.x, srcOffset.y },
&(VkOffset2D) {dstOffset.x, dstOffset.y },
&(VkExtent2D) {extent.width, extent.height });
}
radv_meta_restore(&saved_state, cmd_buffer);
}
/**
* Emit any needed resolves for the current subpass.
*/
void
radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radv_subpass_barrier barrier;
uint32_t layer_count = fb->layers;
if (subpass->view_mask)
layer_count = util_last_bit(subpass->view_mask);
/* Resolves happen before the end-of-subpass barriers get executed, so
* we have to make the attachment shader-readable.
*/
barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
barrier.src_access_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
radv_subpass_barrier(cmd_buffer, &barrier);
for (uint32_t i = 0; i < subpass->color_count; ++i) {
struct radv_subpass_attachment src_att = subpass->color_attachments[i];
struct radv_subpass_attachment dst_att = subpass->resolve_attachments[i];
if (dst_att.attachment == VK_ATTACHMENT_UNUSED)
continue;
struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview;
struct radv_image_view *dst_iview = cmd_buffer->state.attachments[dst_att.attachment].iview;
VkImageResolve2KHR region = {
.sType = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2_KHR,
.extent = (VkExtent3D){ fb->width, fb->height, 0 },
.srcSubresource = (VkImageSubresourceLayers) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = src_iview->base_mip,
.baseArrayLayer = src_iview->base_layer,
.layerCount = layer_count,
},
.dstSubresource = (VkImageSubresourceLayers) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = dst_iview->base_mip,
.baseArrayLayer = dst_iview->base_layer,
.layerCount = layer_count,
},
.srcOffset = (VkOffset3D){ 0, 0, 0 },
.dstOffset = (VkOffset3D){ 0, 0, 0 },
};
radv_meta_resolve_compute_image(cmd_buffer,
src_iview->image,
src_iview->vk_format,
src_att.layout,
dst_iview->image,
dst_iview->vk_format,
dst_att.layout,
&region);
}
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
RADV_CMD_FLAG_INV_VCACHE;
}
void
radv_depth_stencil_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode)
{
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radv_meta_saved_state saved_state;
struct radv_subpass_barrier barrier;
uint32_t layer_count = fb->layers;
if (subpass->view_mask)
layer_count = util_last_bit(subpass->view_mask);
/* Resolves happen before the end-of-subpass barriers get executed, so
* we have to make the attachment shader-readable.
*/
barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
barrier.src_access_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
radv_subpass_barrier(cmd_buffer, &barrier);
radv_decompress_resolve_subpass_src(cmd_buffer);
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_COMPUTE_PIPELINE |
RADV_META_SAVE_CONSTANTS |
RADV_META_SAVE_DESCRIPTORS);
struct radv_subpass_attachment src_att = *subpass->depth_stencil_attachment;
struct radv_subpass_attachment dest_att = *subpass->ds_resolve_attachment;
struct radv_image_view *src_iview =
cmd_buffer->state.attachments[src_att.attachment].iview;
struct radv_image_view *dst_iview =
cmd_buffer->state.attachments[dest_att.attachment].iview;
struct radv_image *src_image = src_iview->image;
struct radv_image *dst_image = dst_iview->image;
for (uint32_t layer = 0; layer < layer_count; layer++) {
struct radv_image_view tsrc_iview;
radv_image_view_init(&tsrc_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(src_image),
.viewType = radv_meta_get_view_type(src_image),
.format = src_iview->vk_format,
.subresourceRange = {
.aspectMask = aspects,
.baseMipLevel = src_iview->base_mip,
.levelCount = 1,
.baseArrayLayer = src_iview->base_layer + layer,
.layerCount = 1,
},
}, NULL);
struct radv_image_view tdst_iview;
radv_image_view_init(&tdst_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(dst_image),
.viewType = radv_meta_get_view_type(dst_image),
.format = dst_iview->vk_format,
.subresourceRange = {
.aspectMask = aspects,
.baseMipLevel = dst_iview->base_mip,
.levelCount = 1,
.baseArrayLayer = dst_iview->base_layer + layer,
.layerCount = 1,
},
}, NULL);
emit_depth_stencil_resolve(cmd_buffer, &tsrc_iview, &tdst_iview,
&(VkOffset2D) { 0, 0 },
&(VkOffset2D) { 0, 0 },
&(VkExtent2D) { fb->width, fb->height },
aspects,
resolve_mode);
}
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
RADV_CMD_FLAG_INV_VCACHE;
if (radv_image_has_htile(dst_image)) {
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
VkImageSubresourceRange range = {0};
range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
range.baseMipLevel = dst_iview->base_mip;
range.levelCount = 1;
range.baseArrayLayer = dst_iview->base_layer;
range.layerCount = layer_count;
uint32_t clear_value = 0xfffc000f;
if (vk_format_is_stencil(dst_image->vk_format) &&
subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
/* Only clear the stencil part of the HTILE
* buffer if it's resolved, otherwise this
* might break if the stencil has been cleared.
*/
clear_value = 0xfffff30f;
}
cmd_buffer->state.flush_bits |=
radv_clear_htile(cmd_buffer, dst_image, &range,
clear_value);
}
}
radv_meta_restore(&saved_state, cmd_buffer);
}