blob: 9eddd3cb7c2deda1808efcd53d7d3b105184fa46 [file] [log] [blame]
/*
* Copyright © 2011 Red Hat All Rights Reserved.
* Copyright © 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
#include "ac_surface.h"
#include "ac_gpu_info.h"
#include "addrlib/inc/addrinterface.h"
#include "addrlib/src/amdgpu_asic_addr.h"
#include "amd_family.h"
#include "drm-uapi/amdgpu_drm.h"
#include "sid.h"
#include "util/hash_table.h"
#include "util/macros.h"
#include "util/simple_mtx.h"
#include "util/u_atomic.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include <amdgpu.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef CIASICIDGFXENGINE_SOUTHERNISLAND
#define CIASICIDGFXENGINE_SOUTHERNISLAND 0x0000000A
#endif
#ifndef CIASICIDGFXENGINE_ARCTICISLAND
#define CIASICIDGFXENGINE_ARCTICISLAND 0x0000000D
#endif
struct ac_addrlib {
ADDR_HANDLE handle;
/* The cache of DCC retile maps for reuse when allocating images of
* similar sizes.
*/
simple_mtx_t dcc_retile_map_lock;
struct hash_table *dcc_retile_maps;
struct hash_table *dcc_retile_tile_indices;
};
struct dcc_retile_map_key {
enum radeon_family family;
unsigned retile_width;
unsigned retile_height;
bool rb_aligned;
bool pipe_aligned;
unsigned dcc_retile_num_elements;
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT input;
};
static uint32_t dcc_retile_map_hash_key(const void *key)
{
return _mesa_hash_data(key, sizeof(struct dcc_retile_map_key));
}
static bool dcc_retile_map_keys_equal(const void *a, const void *b)
{
return memcmp(a, b, sizeof(struct dcc_retile_map_key)) == 0;
}
static void dcc_retile_map_free(struct hash_entry *entry)
{
free((void *)entry->key);
free(entry->data);
}
struct dcc_retile_tile_key {
enum radeon_family family;
unsigned bpp;
unsigned swizzle_mode;
bool rb_aligned;
bool pipe_aligned;
};
struct dcc_retile_tile_data {
unsigned tile_width_log2;
unsigned tile_height_log2;
uint16_t *data;
};
static uint32_t dcc_retile_tile_hash_key(const void *key)
{
return _mesa_hash_data(key, sizeof(struct dcc_retile_tile_key));
}
static bool dcc_retile_tile_keys_equal(const void *a, const void *b)
{
return memcmp(a, b, sizeof(struct dcc_retile_tile_key)) == 0;
}
static void dcc_retile_tile_free(struct hash_entry *entry)
{
free((void *)entry->key);
free(((struct dcc_retile_tile_data *)entry->data)->data);
free(entry->data);
}
/* Assumes dcc_retile_map_lock is taken. */
static const struct dcc_retile_tile_data *
ac_compute_dcc_retile_tile_indices(struct ac_addrlib *addrlib, const struct radeon_info *info,
unsigned bpp, unsigned swizzle_mode, bool rb_aligned,
bool pipe_aligned)
{
struct dcc_retile_tile_key key;
memset(&key, 0, sizeof(key));
key.family = info->family;
key.bpp = bpp;
key.swizzle_mode = swizzle_mode;
key.rb_aligned = rb_aligned;
key.pipe_aligned = pipe_aligned;
struct hash_entry *entry = _mesa_hash_table_search(addrlib->dcc_retile_tile_indices, &key);
if (entry)
return entry->data;
ADDR2_COMPUTE_DCCINFO_INPUT din = {0};
ADDR2_COMPUTE_DCCINFO_OUTPUT dout = {0};
din.size = sizeof(ADDR2_COMPUTE_DCCINFO_INPUT);
dout.size = sizeof(ADDR2_COMPUTE_DCCINFO_OUTPUT);
din.dccKeyFlags.pipeAligned = pipe_aligned;
din.dccKeyFlags.rbAligned = rb_aligned;
din.resourceType = ADDR_RSRC_TEX_2D;
din.swizzleMode = swizzle_mode;
din.bpp = bpp;
din.unalignedWidth = 1;
din.unalignedHeight = 1;
din.numSlices = 1;
din.numFrags = 1;
din.numMipLevels = 1;
ADDR_E_RETURNCODE ret = Addr2ComputeDccInfo(addrlib->handle, &din, &dout);
if (ret != ADDR_OK)
return NULL;
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT addrin = {0};
addrin.size = sizeof(addrin);
addrin.swizzleMode = swizzle_mode;
addrin.resourceType = ADDR_RSRC_TEX_2D;
addrin.bpp = bpp;
addrin.numSlices = 1;
addrin.numMipLevels = 1;
addrin.numFrags = 1;
addrin.pitch = dout.pitch;
addrin.height = dout.height;
addrin.compressBlkWidth = dout.compressBlkWidth;
addrin.compressBlkHeight = dout.compressBlkHeight;
addrin.compressBlkDepth = dout.compressBlkDepth;
addrin.metaBlkWidth = dout.metaBlkWidth;
addrin.metaBlkHeight = dout.metaBlkHeight;
addrin.metaBlkDepth = dout.metaBlkDepth;
addrin.dccKeyFlags.pipeAligned = pipe_aligned;
addrin.dccKeyFlags.rbAligned = rb_aligned;
unsigned w = dout.metaBlkWidth / dout.compressBlkWidth;
unsigned h = dout.metaBlkHeight / dout.compressBlkHeight;
uint16_t *indices = malloc(w * h * sizeof(uint16_t));
if (!indices)
return NULL;
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_OUTPUT addrout = {0};
addrout.size = sizeof(addrout);
for (unsigned y = 0; y < h; ++y) {
addrin.y = y * dout.compressBlkHeight;
for (unsigned x = 0; x < w; ++x) {
addrin.x = x * dout.compressBlkWidth;
addrout.addr = 0;
if (Addr2ComputeDccAddrFromCoord(addrlib->handle, &addrin, &addrout) != ADDR_OK) {
free(indices);
return NULL;
}
indices[y * w + x] = addrout.addr;
}
}
struct dcc_retile_tile_data *data = calloc(1, sizeof(*data));
if (!data) {
free(indices);
return NULL;
}
data->tile_width_log2 = util_logbase2(w);
data->tile_height_log2 = util_logbase2(h);
data->data = indices;
struct dcc_retile_tile_key *heap_key = mem_dup(&key, sizeof(key));
if (!heap_key) {
free(data);
free(indices);
return NULL;
}
entry = _mesa_hash_table_insert(addrlib->dcc_retile_tile_indices, heap_key, data);
if (!entry) {
free(heap_key);
free(data);
free(indices);
}
return data;
}
static uint32_t ac_compute_retile_tile_addr(const struct dcc_retile_tile_data *tile,
unsigned stride, unsigned x, unsigned y)
{
unsigned x_mask = (1u << tile->tile_width_log2) - 1;
unsigned y_mask = (1u << tile->tile_height_log2) - 1;
unsigned tile_size_log2 = tile->tile_width_log2 + tile->tile_height_log2;
unsigned base = ((y >> tile->tile_height_log2) * stride + (x >> tile->tile_width_log2))
<< tile_size_log2;
unsigned offset_in_tile = tile->data[((y & y_mask) << tile->tile_width_log2) + (x & x_mask)];
return base + offset_in_tile;
}
static uint32_t *ac_compute_dcc_retile_map(struct ac_addrlib *addrlib,
const struct radeon_info *info, unsigned retile_width,
unsigned retile_height, bool rb_aligned,
bool pipe_aligned, bool use_uint16,
unsigned dcc_retile_num_elements,
const ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT *in)
{
unsigned dcc_retile_map_size = dcc_retile_num_elements * (use_uint16 ? 2 : 4);
struct dcc_retile_map_key key;
assert(in->numFrags == 1 && in->numSlices == 1 && in->numMipLevels == 1);
memset(&key, 0, sizeof(key));
key.family = info->family;
key.retile_width = retile_width;
key.retile_height = retile_height;
key.rb_aligned = rb_aligned;
key.pipe_aligned = pipe_aligned;
key.dcc_retile_num_elements = dcc_retile_num_elements;
memcpy(&key.input, in, sizeof(*in));
simple_mtx_lock(&addrlib->dcc_retile_map_lock);
/* If we have already computed this retile map, get it from the hash table. */
struct hash_entry *entry = _mesa_hash_table_search(addrlib->dcc_retile_maps, &key);
if (entry) {
uint32_t *map = entry->data;
simple_mtx_unlock(&addrlib->dcc_retile_map_lock);
return map;
}
const struct dcc_retile_tile_data *src_tile = ac_compute_dcc_retile_tile_indices(
addrlib, info, in->bpp, in->swizzleMode, rb_aligned, pipe_aligned);
const struct dcc_retile_tile_data *dst_tile =
ac_compute_dcc_retile_tile_indices(addrlib, info, in->bpp, in->swizzleMode, false, false);
if (!src_tile || !dst_tile) {
simple_mtx_unlock(&addrlib->dcc_retile_map_lock);
return NULL;
}
void *dcc_retile_map = malloc(dcc_retile_map_size);
if (!dcc_retile_map) {
simple_mtx_unlock(&addrlib->dcc_retile_map_lock);
return NULL;
}
unsigned index = 0;
unsigned w = DIV_ROUND_UP(retile_width, in->compressBlkWidth);
unsigned h = DIV_ROUND_UP(retile_height, in->compressBlkHeight);
unsigned src_stride = DIV_ROUND_UP(w, 1u << src_tile->tile_width_log2);
unsigned dst_stride = DIV_ROUND_UP(w, 1u << dst_tile->tile_width_log2);
for (unsigned y = 0; y < h; ++y) {
for (unsigned x = 0; x < w; ++x) {
unsigned src_addr = ac_compute_retile_tile_addr(src_tile, src_stride, x, y);
unsigned dst_addr = ac_compute_retile_tile_addr(dst_tile, dst_stride, x, y);
if (use_uint16) {
((uint16_t *)dcc_retile_map)[2 * index] = src_addr;
((uint16_t *)dcc_retile_map)[2 * index + 1] = dst_addr;
} else {
((uint32_t *)dcc_retile_map)[2 * index] = src_addr;
((uint32_t *)dcc_retile_map)[2 * index + 1] = dst_addr;
}
++index;
}
}
/* Fill the remaining pairs with the last one (for the compute shader). */
for (unsigned i = index * 2; i < dcc_retile_num_elements; i++) {
if (use_uint16)
((uint16_t *)dcc_retile_map)[i] = ((uint16_t *)dcc_retile_map)[i - 2];
else
((uint32_t *)dcc_retile_map)[i] = ((uint32_t *)dcc_retile_map)[i - 2];
}
/* Insert the retile map into the hash table, so that it can be reused and
* the computation can be skipped for similar image sizes.
*/
_mesa_hash_table_insert(addrlib->dcc_retile_maps, mem_dup(&key, sizeof(key)), dcc_retile_map);
simple_mtx_unlock(&addrlib->dcc_retile_map_lock);
return dcc_retile_map;
}
static void *ADDR_API allocSysMem(const ADDR_ALLOCSYSMEM_INPUT *pInput)
{
return malloc(pInput->sizeInBytes);
}
static ADDR_E_RETURNCODE ADDR_API freeSysMem(const ADDR_FREESYSMEM_INPUT *pInput)
{
free(pInput->pVirtAddr);
return ADDR_OK;
}
struct ac_addrlib *ac_addrlib_create(const struct radeon_info *info,
const struct amdgpu_gpu_info *amdinfo, uint64_t *max_alignment)
{
ADDR_CREATE_INPUT addrCreateInput = {0};
ADDR_CREATE_OUTPUT addrCreateOutput = {0};
ADDR_REGISTER_VALUE regValue = {0};
ADDR_CREATE_FLAGS createFlags = {{0}};
ADDR_GET_MAX_ALIGNMENTS_OUTPUT addrGetMaxAlignmentsOutput = {0};
ADDR_E_RETURNCODE addrRet;
addrCreateInput.size = sizeof(ADDR_CREATE_INPUT);
addrCreateOutput.size = sizeof(ADDR_CREATE_OUTPUT);
regValue.gbAddrConfig = amdinfo->gb_addr_cfg;
createFlags.value = 0;
addrCreateInput.chipFamily = info->family_id;
addrCreateInput.chipRevision = info->chip_external_rev;
if (addrCreateInput.chipFamily == FAMILY_UNKNOWN)
return NULL;
if (addrCreateInput.chipFamily >= FAMILY_AI) {
addrCreateInput.chipEngine = CIASICIDGFXENGINE_ARCTICISLAND;
} else {
regValue.noOfBanks = amdinfo->mc_arb_ramcfg & 0x3;
regValue.noOfRanks = (amdinfo->mc_arb_ramcfg & 0x4) >> 2;
regValue.backendDisables = amdinfo->enabled_rb_pipes_mask;
regValue.pTileConfig = amdinfo->gb_tile_mode;
regValue.noOfEntries = ARRAY_SIZE(amdinfo->gb_tile_mode);
if (addrCreateInput.chipFamily == FAMILY_SI) {
regValue.pMacroTileConfig = NULL;
regValue.noOfMacroEntries = 0;
} else {
regValue.pMacroTileConfig = amdinfo->gb_macro_tile_mode;
regValue.noOfMacroEntries = ARRAY_SIZE(amdinfo->gb_macro_tile_mode);
}
createFlags.useTileIndex = 1;
createFlags.useHtileSliceAlign = 1;
addrCreateInput.chipEngine = CIASICIDGFXENGINE_SOUTHERNISLAND;
}
addrCreateInput.callbacks.allocSysMem = allocSysMem;
addrCreateInput.callbacks.freeSysMem = freeSysMem;
addrCreateInput.callbacks.debugPrint = 0;
addrCreateInput.createFlags = createFlags;
addrCreateInput.regValue = regValue;
addrRet = AddrCreate(&addrCreateInput, &addrCreateOutput);
if (addrRet != ADDR_OK)
return NULL;
if (max_alignment) {
addrRet = AddrGetMaxAlignments(addrCreateOutput.hLib, &addrGetMaxAlignmentsOutput);
if (addrRet == ADDR_OK) {
*max_alignment = addrGetMaxAlignmentsOutput.baseAlign;
}
}
struct ac_addrlib *addrlib = calloc(1, sizeof(struct ac_addrlib));
if (!addrlib) {
AddrDestroy(addrCreateOutput.hLib);
return NULL;
}
addrlib->handle = addrCreateOutput.hLib;
simple_mtx_init(&addrlib->dcc_retile_map_lock, mtx_plain);
addrlib->dcc_retile_maps =
_mesa_hash_table_create(NULL, dcc_retile_map_hash_key, dcc_retile_map_keys_equal);
addrlib->dcc_retile_tile_indices =
_mesa_hash_table_create(NULL, dcc_retile_tile_hash_key, dcc_retile_tile_keys_equal);
return addrlib;
}
void ac_addrlib_destroy(struct ac_addrlib *addrlib)
{
AddrDestroy(addrlib->handle);
simple_mtx_destroy(&addrlib->dcc_retile_map_lock);
_mesa_hash_table_destroy(addrlib->dcc_retile_maps, dcc_retile_map_free);
_mesa_hash_table_destroy(addrlib->dcc_retile_tile_indices, dcc_retile_tile_free);
free(addrlib);
}
static int surf_config_sanity(const struct ac_surf_config *config, unsigned flags)
{
/* FMASK is allocated together with the color surface and can't be
* allocated separately.
*/
assert(!(flags & RADEON_SURF_FMASK));
if (flags & RADEON_SURF_FMASK)
return -EINVAL;
/* all dimension must be at least 1 ! */
if (!config->info.width || !config->info.height || !config->info.depth ||
!config->info.array_size || !config->info.levels)
return -EINVAL;
switch (config->info.samples) {
case 0:
case 1:
case 2:
case 4:
case 8:
break;
case 16:
if (flags & RADEON_SURF_Z_OR_SBUFFER)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (!(flags & RADEON_SURF_Z_OR_SBUFFER)) {
switch (config->info.storage_samples) {
case 0:
case 1:
case 2:
case 4:
case 8:
break;
default:
return -EINVAL;
}
}
if (config->is_3d && config->info.array_size > 1)
return -EINVAL;
if (config->is_cube && config->info.depth > 1)
return -EINVAL;
return 0;
}
static int gfx6_compute_level(ADDR_HANDLE addrlib, const struct ac_surf_config *config,
struct radeon_surf *surf, bool is_stencil, unsigned level,
bool compressed, ADDR_COMPUTE_SURFACE_INFO_INPUT *AddrSurfInfoIn,
ADDR_COMPUTE_SURFACE_INFO_OUTPUT *AddrSurfInfoOut,
ADDR_COMPUTE_DCCINFO_INPUT *AddrDccIn,
ADDR_COMPUTE_DCCINFO_OUTPUT *AddrDccOut,
ADDR_COMPUTE_HTILE_INFO_INPUT *AddrHtileIn,
ADDR_COMPUTE_HTILE_INFO_OUTPUT *AddrHtileOut)
{
struct legacy_surf_level *surf_level;
ADDR_E_RETURNCODE ret;
AddrSurfInfoIn->mipLevel = level;
AddrSurfInfoIn->width = u_minify(config->info.width, level);
AddrSurfInfoIn->height = u_minify(config->info.height, level);
/* Make GFX6 linear surfaces compatible with GFX9 for hybrid graphics,
* because GFX9 needs linear alignment of 256 bytes.
*/
if (config->info.levels == 1 && AddrSurfInfoIn->tileMode == ADDR_TM_LINEAR_ALIGNED &&
AddrSurfInfoIn->bpp && util_is_power_of_two_or_zero(AddrSurfInfoIn->bpp)) {
unsigned alignment = 256 / (AddrSurfInfoIn->bpp / 8);
AddrSurfInfoIn->width = align(AddrSurfInfoIn->width, alignment);
}
/* addrlib assumes the bytes/pixel is a divisor of 64, which is not
* true for r32g32b32 formats. */
if (AddrSurfInfoIn->bpp == 96) {
assert(config->info.levels == 1);
assert(AddrSurfInfoIn->tileMode == ADDR_TM_LINEAR_ALIGNED);
/* The least common multiple of 64 bytes and 12 bytes/pixel is
* 192 bytes, or 16 pixels. */
AddrSurfInfoIn->width = align(AddrSurfInfoIn->width, 16);
}
if (config->is_3d)
AddrSurfInfoIn->numSlices = u_minify(config->info.depth, level);
else if (config->is_cube)
AddrSurfInfoIn->numSlices = 6;
else
AddrSurfInfoIn->numSlices = config->info.array_size;
if (level > 0) {
/* Set the base level pitch. This is needed for calculation
* of non-zero levels. */
if (is_stencil)
AddrSurfInfoIn->basePitch = surf->u.legacy.stencil_level[0].nblk_x;
else
AddrSurfInfoIn->basePitch = surf->u.legacy.level[0].nblk_x;
/* Convert blocks to pixels for compressed formats. */
if (compressed)
AddrSurfInfoIn->basePitch *= surf->blk_w;
}
ret = AddrComputeSurfaceInfo(addrlib, AddrSurfInfoIn, AddrSurfInfoOut);
if (ret != ADDR_OK) {
return ret;
}
surf_level = is_stencil ? &surf->u.legacy.stencil_level[level] : &surf->u.legacy.level[level];
surf_level->offset = align64(surf->surf_size, AddrSurfInfoOut->baseAlign);
surf_level->slice_size_dw = AddrSurfInfoOut->sliceSize / 4;
surf_level->nblk_x = AddrSurfInfoOut->pitch;
surf_level->nblk_y = AddrSurfInfoOut->height;
switch (AddrSurfInfoOut->tileMode) {
case ADDR_TM_LINEAR_ALIGNED:
surf_level->mode = RADEON_SURF_MODE_LINEAR_ALIGNED;
break;
case ADDR_TM_1D_TILED_THIN1:
surf_level->mode = RADEON_SURF_MODE_1D;
break;
case ADDR_TM_2D_TILED_THIN1:
surf_level->mode = RADEON_SURF_MODE_2D;
break;
default:
assert(0);
}
if (is_stencil)
surf->u.legacy.stencil_tiling_index[level] = AddrSurfInfoOut->tileIndex;
else
surf->u.legacy.tiling_index[level] = AddrSurfInfoOut->tileIndex;
surf->surf_size = surf_level->offset + AddrSurfInfoOut->surfSize;
/* Clear DCC fields at the beginning. */
surf_level->dcc_offset = 0;
/* The previous level's flag tells us if we can use DCC for this level. */
if (AddrSurfInfoIn->flags.dccCompatible && (level == 0 || AddrDccOut->subLvlCompressible)) {
bool prev_level_clearable = level == 0 || AddrDccOut->dccRamSizeAligned;
AddrDccIn->colorSurfSize = AddrSurfInfoOut->surfSize;
AddrDccIn->tileMode = AddrSurfInfoOut->tileMode;
AddrDccIn->tileInfo = *AddrSurfInfoOut->pTileInfo;
AddrDccIn->tileIndex = AddrSurfInfoOut->tileIndex;
AddrDccIn->macroModeIndex = AddrSurfInfoOut->macroModeIndex;
ret = AddrComputeDccInfo(addrlib, AddrDccIn, AddrDccOut);
if (ret == ADDR_OK) {
surf_level->dcc_offset = surf->dcc_size;
surf->num_dcc_levels = level + 1;
surf->dcc_size = surf_level->dcc_offset + AddrDccOut->dccRamSize;
surf->dcc_alignment = MAX2(surf->dcc_alignment, AddrDccOut->dccRamBaseAlign);
/* If the DCC size of a subresource (1 mip level or 1 slice)
* is not aligned, the DCC memory layout is not contiguous for
* that subresource, which means we can't use fast clear.
*
* We only do fast clears for whole mipmap levels. If we did
* per-slice fast clears, the same restriction would apply.
* (i.e. only compute the slice size and see if it's aligned)
*
* The last level can be non-contiguous and still be clearable
* if it's interleaved with the next level that doesn't exist.
*/
if (AddrDccOut->dccRamSizeAligned ||
(prev_level_clearable && level == config->info.levels - 1))
surf_level->dcc_fast_clear_size = AddrDccOut->dccFastClearSize;
else
surf_level->dcc_fast_clear_size = 0;
/* Compute the DCC slice size because addrlib doesn't
* provide this info. As DCC memory is linear (each
* slice is the same size) it's easy to compute.
*/
surf->dcc_slice_size = AddrDccOut->dccRamSize / config->info.array_size;
/* For arrays, we have to compute the DCC info again
* with one slice size to get a correct fast clear
* size.
*/
if (config->info.array_size > 1) {
AddrDccIn->colorSurfSize = AddrSurfInfoOut->sliceSize;
AddrDccIn->tileMode = AddrSurfInfoOut->tileMode;
AddrDccIn->tileInfo = *AddrSurfInfoOut->pTileInfo;
AddrDccIn->tileIndex = AddrSurfInfoOut->tileIndex;
AddrDccIn->macroModeIndex = AddrSurfInfoOut->macroModeIndex;
ret = AddrComputeDccInfo(addrlib, AddrDccIn, AddrDccOut);
if (ret == ADDR_OK) {
/* If the DCC memory isn't properly
* aligned, the data are interleaved
* accross slices.
*/
if (AddrDccOut->dccRamSizeAligned)
surf_level->dcc_slice_fast_clear_size = AddrDccOut->dccFastClearSize;
else
surf_level->dcc_slice_fast_clear_size = 0;
}
if (surf->flags & RADEON_SURF_CONTIGUOUS_DCC_LAYERS &&
surf->dcc_slice_size != surf_level->dcc_slice_fast_clear_size) {
surf->dcc_size = 0;
surf->num_dcc_levels = 0;
AddrDccOut->subLvlCompressible = false;
}
} else {
surf_level->dcc_slice_fast_clear_size = surf_level->dcc_fast_clear_size;
}
}
}
/* HTILE. */
if (!is_stencil && AddrSurfInfoIn->flags.depth && surf_level->mode == RADEON_SURF_MODE_2D &&
level == 0 && !(surf->flags & RADEON_SURF_NO_HTILE)) {
AddrHtileIn->flags.tcCompatible = AddrSurfInfoOut->tcCompatible;
AddrHtileIn->pitch = AddrSurfInfoOut->pitch;
AddrHtileIn->height = AddrSurfInfoOut->height;
AddrHtileIn->numSlices = AddrSurfInfoOut->depth;
AddrHtileIn->blockWidth = ADDR_HTILE_BLOCKSIZE_8;
AddrHtileIn->blockHeight = ADDR_HTILE_BLOCKSIZE_8;
AddrHtileIn->pTileInfo = AddrSurfInfoOut->pTileInfo;
AddrHtileIn->tileIndex = AddrSurfInfoOut->tileIndex;
AddrHtileIn->macroModeIndex = AddrSurfInfoOut->macroModeIndex;
ret = AddrComputeHtileInfo(addrlib, AddrHtileIn, AddrHtileOut);
if (ret == ADDR_OK) {
surf->htile_size = AddrHtileOut->htileBytes;
surf->htile_slice_size = AddrHtileOut->sliceSize;
surf->htile_alignment = AddrHtileOut->baseAlign;
}
}
return 0;
}
static void gfx6_set_micro_tile_mode(struct radeon_surf *surf, const struct radeon_info *info)
{
uint32_t tile_mode = info->si_tile_mode_array[surf->u.legacy.tiling_index[0]];
if (info->chip_class >= GFX7)
surf->micro_tile_mode = G_009910_MICRO_TILE_MODE_NEW(tile_mode);
else
surf->micro_tile_mode = G_009910_MICRO_TILE_MODE(tile_mode);
}
static unsigned cik_get_macro_tile_index(struct radeon_surf *surf)
{
unsigned index, tileb;
tileb = 8 * 8 * surf->bpe;
tileb = MIN2(surf->u.legacy.tile_split, tileb);
for (index = 0; tileb > 64; index++)
tileb >>= 1;
assert(index < 16);
return index;
}
static bool get_display_flag(const struct ac_surf_config *config, const struct radeon_surf *surf)
{
unsigned num_channels = config->info.num_channels;
unsigned bpe = surf->bpe;
if (!config->is_3d && !config->is_cube && !(surf->flags & RADEON_SURF_Z_OR_SBUFFER) &&
surf->flags & RADEON_SURF_SCANOUT && config->info.samples <= 1 && surf->blk_w <= 2 &&
surf->blk_h == 1) {
/* subsampled */
if (surf->blk_w == 2 && surf->blk_h == 1)
return true;
if (/* RGBA8 or RGBA16F */
(bpe >= 4 && bpe <= 8 && num_channels == 4) ||
/* R5G6B5 or R5G5B5A1 */
(bpe == 2 && num_channels >= 3) ||
/* C8 palette */
(bpe == 1 && num_channels == 1))
return true;
}
return false;
}
/**
* This must be called after the first level is computed.
*
* Copy surface-global settings like pipe/bank config from level 0 surface
* computation, and compute tile swizzle.
*/
static int gfx6_surface_settings(ADDR_HANDLE addrlib, const struct radeon_info *info,
const struct ac_surf_config *config,
ADDR_COMPUTE_SURFACE_INFO_OUTPUT *csio, struct radeon_surf *surf)
{
surf->surf_alignment = csio->baseAlign;
surf->u.legacy.pipe_config = csio->pTileInfo->pipeConfig - 1;
gfx6_set_micro_tile_mode(surf, info);
/* For 2D modes only. */
if (csio->tileMode >= ADDR_TM_2D_TILED_THIN1) {
surf->u.legacy.bankw = csio->pTileInfo->bankWidth;
surf->u.legacy.bankh = csio->pTileInfo->bankHeight;
surf->u.legacy.mtilea = csio->pTileInfo->macroAspectRatio;
surf->u.legacy.tile_split = csio->pTileInfo->tileSplitBytes;
surf->u.legacy.num_banks = csio->pTileInfo->banks;
surf->u.legacy.macro_tile_index = csio->macroModeIndex;
} else {
surf->u.legacy.macro_tile_index = 0;
}
/* Compute tile swizzle. */
/* TODO: fix tile swizzle with mipmapping for GFX6 */
if ((info->chip_class >= GFX7 || config->info.levels == 1) && config->info.surf_index &&
surf->u.legacy.level[0].mode == RADEON_SURF_MODE_2D &&
!(surf->flags & (RADEON_SURF_Z_OR_SBUFFER | RADEON_SURF_SHAREABLE)) &&
!get_display_flag(config, surf)) {
ADDR_COMPUTE_BASE_SWIZZLE_INPUT AddrBaseSwizzleIn = {0};
ADDR_COMPUTE_BASE_SWIZZLE_OUTPUT AddrBaseSwizzleOut = {0};
AddrBaseSwizzleIn.size = sizeof(ADDR_COMPUTE_BASE_SWIZZLE_INPUT);
AddrBaseSwizzleOut.size = sizeof(ADDR_COMPUTE_BASE_SWIZZLE_OUTPUT);
AddrBaseSwizzleIn.surfIndex = p_atomic_inc_return(config->info.surf_index) - 1;
AddrBaseSwizzleIn.tileIndex = csio->tileIndex;
AddrBaseSwizzleIn.macroModeIndex = csio->macroModeIndex;
AddrBaseSwizzleIn.pTileInfo = csio->pTileInfo;
AddrBaseSwizzleIn.tileMode = csio->tileMode;
int r = AddrComputeBaseSwizzle(addrlib, &AddrBaseSwizzleIn, &AddrBaseSwizzleOut);
if (r != ADDR_OK)
return r;
assert(AddrBaseSwizzleOut.tileSwizzle <=
u_bit_consecutive(0, sizeof(surf->tile_swizzle) * 8));
surf->tile_swizzle = AddrBaseSwizzleOut.tileSwizzle;
}
return 0;
}
static void ac_compute_cmask(const struct radeon_info *info, const struct ac_surf_config *config,
struct radeon_surf *surf)
{
unsigned pipe_interleave_bytes = info->pipe_interleave_bytes;
unsigned num_pipes = info->num_tile_pipes;
unsigned cl_width, cl_height;
if (surf->flags & RADEON_SURF_Z_OR_SBUFFER || surf->is_linear ||
(config->info.samples >= 2 && !surf->fmask_size))
return;
assert(info->chip_class <= GFX8);
switch (num_pipes) {
case 2:
cl_width = 32;
cl_height = 16;
break;
case 4:
cl_width = 32;
cl_height = 32;
break;
case 8:
cl_width = 64;
cl_height = 32;
break;
case 16: /* Hawaii */
cl_width = 64;
cl_height = 64;
break;
default:
assert(0);
return;
}
unsigned base_align = num_pipes * pipe_interleave_bytes;
unsigned width = align(surf->u.legacy.level[0].nblk_x, cl_width * 8);
unsigned height = align(surf->u.legacy.level[0].nblk_y, cl_height * 8);
unsigned slice_elements = (width * height) / (8 * 8);
/* Each element of CMASK is a nibble. */
unsigned slice_bytes = slice_elements / 2;
surf->u.legacy.cmask_slice_tile_max = (width * height) / (128 * 128);
if (surf->u.legacy.cmask_slice_tile_max)
surf->u.legacy.cmask_slice_tile_max -= 1;
unsigned num_layers;
if (config->is_3d)
num_layers = config->info.depth;
else if (config->is_cube)
num_layers = 6;
else
num_layers = config->info.array_size;
surf->cmask_alignment = MAX2(256, base_align);
surf->cmask_slice_size = align(slice_bytes, base_align);
surf->cmask_size = surf->cmask_slice_size * num_layers;
}
/**
* Fill in the tiling information in \p surf based on the given surface config.
*
* The following fields of \p surf must be initialized by the caller:
* blk_w, blk_h, bpe, flags.
*/
static int gfx6_compute_surface(ADDR_HANDLE addrlib, const struct radeon_info *info,
const struct ac_surf_config *config, enum radeon_surf_mode mode,
struct radeon_surf *surf)
{
unsigned level;
bool compressed;
ADDR_COMPUTE_SURFACE_INFO_INPUT AddrSurfInfoIn = {0};
ADDR_COMPUTE_SURFACE_INFO_OUTPUT AddrSurfInfoOut = {0};
ADDR_COMPUTE_DCCINFO_INPUT AddrDccIn = {0};
ADDR_COMPUTE_DCCINFO_OUTPUT AddrDccOut = {0};
ADDR_COMPUTE_HTILE_INFO_INPUT AddrHtileIn = {0};
ADDR_COMPUTE_HTILE_INFO_OUTPUT AddrHtileOut = {0};
ADDR_TILEINFO AddrTileInfoIn = {0};
ADDR_TILEINFO AddrTileInfoOut = {0};
int r;
AddrSurfInfoIn.size = sizeof(ADDR_COMPUTE_SURFACE_INFO_INPUT);
AddrSurfInfoOut.size = sizeof(ADDR_COMPUTE_SURFACE_INFO_OUTPUT);
AddrDccIn.size = sizeof(ADDR_COMPUTE_DCCINFO_INPUT);
AddrDccOut.size = sizeof(ADDR_COMPUTE_DCCINFO_OUTPUT);
AddrHtileIn.size = sizeof(ADDR_COMPUTE_HTILE_INFO_INPUT);
AddrHtileOut.size = sizeof(ADDR_COMPUTE_HTILE_INFO_OUTPUT);
AddrSurfInfoOut.pTileInfo = &AddrTileInfoOut;
compressed = surf->blk_w == 4 && surf->blk_h == 4;
/* MSAA requires 2D tiling. */
if (config->info.samples > 1)
mode = RADEON_SURF_MODE_2D;
/* DB doesn't support linear layouts. */
if (surf->flags & (RADEON_SURF_Z_OR_SBUFFER) && mode < RADEON_SURF_MODE_1D)
mode = RADEON_SURF_MODE_1D;
/* Set the requested tiling mode. */
switch (mode) {
case RADEON_SURF_MODE_LINEAR_ALIGNED:
AddrSurfInfoIn.tileMode = ADDR_TM_LINEAR_ALIGNED;
break;
case RADEON_SURF_MODE_1D:
AddrSurfInfoIn.tileMode = ADDR_TM_1D_TILED_THIN1;
break;
case RADEON_SURF_MODE_2D:
AddrSurfInfoIn.tileMode = ADDR_TM_2D_TILED_THIN1;
break;
default:
assert(0);
}
/* The format must be set correctly for the allocation of compressed
* textures to work. In other cases, setting the bpp is sufficient.
*/
if (compressed) {
switch (surf->bpe) {
case 8:
AddrSurfInfoIn.format = ADDR_FMT_BC1;
break;
case 16:
AddrSurfInfoIn.format = ADDR_FMT_BC3;
break;
default:
assert(0);
}
} else {
AddrDccIn.bpp = AddrSurfInfoIn.bpp = surf->bpe * 8;
}
AddrDccIn.numSamples = AddrSurfInfoIn.numSamples = MAX2(1, config->info.samples);
AddrSurfInfoIn.tileIndex = -1;
if (!(surf->flags & RADEON_SURF_Z_OR_SBUFFER)) {
AddrDccIn.numSamples = AddrSurfInfoIn.numFrags = MAX2(1, config->info.storage_samples);
}
/* Set the micro tile type. */
if (surf->flags & RADEON_SURF_SCANOUT)
AddrSurfInfoIn.tileType = ADDR_DISPLAYABLE;
else if (surf->flags & RADEON_SURF_Z_OR_SBUFFER)
AddrSurfInfoIn.tileType = ADDR_DEPTH_SAMPLE_ORDER;
else
AddrSurfInfoIn.tileType = ADDR_NON_DISPLAYABLE;
AddrSurfInfoIn.flags.color = !(surf->flags & RADEON_SURF_Z_OR_SBUFFER);
AddrSurfInfoIn.flags.depth = (surf->flags & RADEON_SURF_ZBUFFER) != 0;
AddrSurfInfoIn.flags.cube = config->is_cube;
AddrSurfInfoIn.flags.display = get_display_flag(config, surf);
AddrSurfInfoIn.flags.pow2Pad = config->info.levels > 1;
AddrSurfInfoIn.flags.tcCompatible = (surf->flags & RADEON_SURF_TC_COMPATIBLE_HTILE) != 0;
/* Only degrade the tile mode for space if TC-compatible HTILE hasn't been
* requested, because TC-compatible HTILE requires 2D tiling.
*/
AddrSurfInfoIn.flags.opt4Space = !AddrSurfInfoIn.flags.tcCompatible &&
!AddrSurfInfoIn.flags.fmask && config->info.samples <= 1 &&
!(surf->flags & RADEON_SURF_FORCE_SWIZZLE_MODE);
/* DCC notes:
* - If we add MSAA support, keep in mind that CB can't decompress 8bpp
* with samples >= 4.
* - Mipmapped array textures have low performance (discovered by a closed
* driver team).
*/
AddrSurfInfoIn.flags.dccCompatible =
info->chip_class >= GFX8 && info->has_graphics && /* disable DCC on compute-only chips */
!(surf->flags & RADEON_SURF_Z_OR_SBUFFER) && !(surf->flags & RADEON_SURF_DISABLE_DCC) &&
!compressed &&
((config->info.array_size == 1 && config->info.depth == 1) || config->info.levels == 1);
AddrSurfInfoIn.flags.noStencil = (surf->flags & RADEON_SURF_SBUFFER) == 0;
AddrSurfInfoIn.flags.compressZ = !!(surf->flags & RADEON_SURF_Z_OR_SBUFFER);
/* On GFX7-GFX8, the DB uses the same pitch and tile mode (except tilesplit)
* for Z and stencil. This can cause a number of problems which we work
* around here:
*
* - a depth part that is incompatible with mipmapped texturing
* - at least on Stoney, entirely incompatible Z/S aspects (e.g.
* incorrect tiling applied to the stencil part, stencil buffer
* memory accesses that go out of bounds) even without mipmapping
*
* Some piglit tests that are prone to different types of related
* failures:
* ./bin/ext_framebuffer_multisample-upsample 2 stencil
* ./bin/framebuffer-blit-levels {draw,read} stencil
* ./bin/ext_framebuffer_multisample-unaligned-blit N {depth,stencil} {msaa,upsample,downsample}
* ./bin/fbo-depth-array fs-writes-{depth,stencil} / {depth,stencil}-{clear,layered-clear,draw}
* ./bin/depthstencil-render-miplevels 1024 d=s=z24_s8
*/
int stencil_tile_idx = -1;
if (AddrSurfInfoIn.flags.depth && !AddrSurfInfoIn.flags.noStencil &&
(config->info.levels > 1 || info->family == CHIP_STONEY)) {
/* Compute stencilTileIdx that is compatible with the (depth)
* tileIdx. This degrades the depth surface if necessary to
* ensure that a matching stencilTileIdx exists. */
AddrSurfInfoIn.flags.matchStencilTileCfg = 1;
/* Keep the depth mip-tail compatible with texturing. */
AddrSurfInfoIn.flags.noStencil = 1;
}
/* Set preferred macrotile parameters. This is usually required
* for shared resources. This is for 2D tiling only. */
if (!(surf->flags & RADEON_SURF_Z_OR_SBUFFER) &&
AddrSurfInfoIn.tileMode >= ADDR_TM_2D_TILED_THIN1 && surf->u.legacy.bankw &&
surf->u.legacy.bankh && surf->u.legacy.mtilea && surf->u.legacy.tile_split) {
/* If any of these parameters are incorrect, the calculation
* will fail. */
AddrTileInfoIn.banks = surf->u.legacy.num_banks;
AddrTileInfoIn.bankWidth = surf->u.legacy.bankw;
AddrTileInfoIn.bankHeight = surf->u.legacy.bankh;
AddrTileInfoIn.macroAspectRatio = surf->u.legacy.mtilea;
AddrTileInfoIn.tileSplitBytes = surf->u.legacy.tile_split;
AddrTileInfoIn.pipeConfig = surf->u.legacy.pipe_config + 1; /* +1 compared to GB_TILE_MODE */
AddrSurfInfoIn.flags.opt4Space = 0;
AddrSurfInfoIn.pTileInfo = &AddrTileInfoIn;
/* If AddrSurfInfoIn.pTileInfo is set, Addrlib doesn't set
* the tile index, because we are expected to know it if
* we know the other parameters.
*
* This is something that can easily be fixed in Addrlib.
* For now, just figure it out here.
* Note that only 2D_TILE_THIN1 is handled here.
*/
assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER));
assert(AddrSurfInfoIn.tileMode == ADDR_TM_2D_TILED_THIN1);
if (info->chip_class == GFX6) {
if (AddrSurfInfoIn.tileType == ADDR_DISPLAYABLE) {
if (surf->bpe == 2)
AddrSurfInfoIn.tileIndex = 11; /* 16bpp */
else
AddrSurfInfoIn.tileIndex = 12; /* 32bpp */
} else {
if (surf->bpe == 1)
AddrSurfInfoIn.tileIndex = 14; /* 8bpp */
else if (surf->bpe == 2)
AddrSurfInfoIn.tileIndex = 15; /* 16bpp */
else if (surf->bpe == 4)
AddrSurfInfoIn.tileIndex = 16; /* 32bpp */
else
AddrSurfInfoIn.tileIndex = 17; /* 64bpp (and 128bpp) */
}
} else {
/* GFX7 - GFX8 */
if (AddrSurfInfoIn.tileType == ADDR_DISPLAYABLE)
AddrSurfInfoIn.tileIndex = 10; /* 2D displayable */
else
AddrSurfInfoIn.tileIndex = 14; /* 2D non-displayable */
/* Addrlib doesn't set this if tileIndex is forced like above. */
AddrSurfInfoOut.macroModeIndex = cik_get_macro_tile_index(surf);
}
}
surf->has_stencil = !!(surf->flags & RADEON_SURF_SBUFFER);
surf->num_dcc_levels = 0;
surf->surf_size = 0;
surf->dcc_size = 0;
surf->dcc_alignment = 1;
surf->htile_size = 0;
surf->htile_slice_size = 0;
surf->htile_alignment = 1;
const bool only_stencil =
(surf->flags & RADEON_SURF_SBUFFER) && !(surf->flags & RADEON_SURF_ZBUFFER);
/* Calculate texture layout information. */
if (!only_stencil) {
for (level = 0; level < config->info.levels; level++) {
r = gfx6_compute_level(addrlib, config, surf, false, level, compressed, &AddrSurfInfoIn,
&AddrSurfInfoOut, &AddrDccIn, &AddrDccOut, &AddrHtileIn,
&AddrHtileOut);
if (r)
return r;
if (level > 0)
continue;
if (!AddrSurfInfoOut.tcCompatible) {
AddrSurfInfoIn.flags.tcCompatible = 0;
surf->flags &= ~RADEON_SURF_TC_COMPATIBLE_HTILE;
}
if (AddrSurfInfoIn.flags.matchStencilTileCfg) {
AddrSurfInfoIn.flags.matchStencilTileCfg = 0;
AddrSurfInfoIn.tileIndex = AddrSurfInfoOut.tileIndex;
stencil_tile_idx = AddrSurfInfoOut.stencilTileIdx;
assert(stencil_tile_idx >= 0);
}
r = gfx6_surface_settings(addrlib, info, config, &AddrSurfInfoOut, surf);
if (r)
return r;
}
}
/* Calculate texture layout information for stencil. */
if (surf->flags & RADEON_SURF_SBUFFER) {
AddrSurfInfoIn.tileIndex = stencil_tile_idx;
AddrSurfInfoIn.bpp = 8;
AddrSurfInfoIn.flags.depth = 0;
AddrSurfInfoIn.flags.stencil = 1;
AddrSurfInfoIn.flags.tcCompatible = 0;
/* This will be ignored if AddrSurfInfoIn.pTileInfo is NULL. */
AddrTileInfoIn.tileSplitBytes = surf->u.legacy.stencil_tile_split;
for (level = 0; level < config->info.levels; level++) {
r = gfx6_compute_level(addrlib, config, surf, true, level, compressed, &AddrSurfInfoIn,
&AddrSurfInfoOut, &AddrDccIn, &AddrDccOut, NULL, NULL);
if (r)
return r;
/* DB uses the depth pitch for both stencil and depth. */
if (!only_stencil) {
if (surf->u.legacy.stencil_level[level].nblk_x != surf->u.legacy.level[level].nblk_x)
surf->u.legacy.stencil_adjusted = true;
} else {
surf->u.legacy.level[level].nblk_x = surf->u.legacy.stencil_level[level].nblk_x;
}
if (level == 0) {
if (only_stencil) {
r = gfx6_surface_settings(addrlib, info, config, &AddrSurfInfoOut, surf);
if (r)
return r;
}
/* For 2D modes only. */
if (AddrSurfInfoOut.tileMode >= ADDR_TM_2D_TILED_THIN1) {
surf->u.legacy.stencil_tile_split = AddrSurfInfoOut.pTileInfo->tileSplitBytes;
}
}
}
}
/* Compute FMASK. */
if (config->info.samples >= 2 && AddrSurfInfoIn.flags.color && info->has_graphics &&
!(surf->flags & RADEON_SURF_NO_FMASK)) {
ADDR_COMPUTE_FMASK_INFO_INPUT fin = {0};
ADDR_COMPUTE_FMASK_INFO_OUTPUT fout = {0};
ADDR_TILEINFO fmask_tile_info = {0};
fin.size = sizeof(fin);
fout.size = sizeof(fout);
fin.tileMode = AddrSurfInfoOut.tileMode;
fin.pitch = AddrSurfInfoOut.pitch;
fin.height = config->info.height;
fin.numSlices = AddrSurfInfoIn.numSlices;
fin.numSamples = AddrSurfInfoIn.numSamples;
fin.numFrags = AddrSurfInfoIn.numFrags;
fin.tileIndex = -1;
fout.pTileInfo = &fmask_tile_info;
r = AddrComputeFmaskInfo(addrlib, &fin, &fout);
if (r)
return r;
surf->fmask_size = fout.fmaskBytes;
surf->fmask_alignment = fout.baseAlign;
surf->fmask_tile_swizzle = 0;
surf->u.legacy.fmask.slice_tile_max = (fout.pitch * fout.height) / 64;
if (surf->u.legacy.fmask.slice_tile_max)
surf->u.legacy.fmask.slice_tile_max -= 1;
surf->u.legacy.fmask.tiling_index = fout.tileIndex;
surf->u.legacy.fmask.bankh = fout.pTileInfo->bankHeight;
surf->u.legacy.fmask.pitch_in_pixels = fout.pitch;
surf->u.legacy.fmask.slice_size = fout.sliceSize;
/* Compute tile swizzle for FMASK. */
if (config->info.fmask_surf_index && !(surf->flags & RADEON_SURF_SHAREABLE)) {
ADDR_COMPUTE_BASE_SWIZZLE_INPUT xin = {0};
ADDR_COMPUTE_BASE_SWIZZLE_OUTPUT xout = {0};
xin.size = sizeof(ADDR_COMPUTE_BASE_SWIZZLE_INPUT);
xout.size = sizeof(ADDR_COMPUTE_BASE_SWIZZLE_OUTPUT);
/* This counter starts from 1 instead of 0. */
xin.surfIndex = p_atomic_inc_return(config->info.fmask_surf_index);
xin.tileIndex = fout.tileIndex;
xin.macroModeIndex = fout.macroModeIndex;
xin.pTileInfo = fout.pTileInfo;
xin.tileMode = fin.tileMode;
int r = AddrComputeBaseSwizzle(addrlib, &xin, &xout);
if (r != ADDR_OK)
return r;
assert(xout.tileSwizzle <= u_bit_consecutive(0, sizeof(surf->tile_swizzle) * 8));
surf->fmask_tile_swizzle = xout.tileSwizzle;
}
}
/* Recalculate the whole DCC miptree size including disabled levels.
* This is what addrlib does, but calling addrlib would be a lot more
* complicated.
*/
if (surf->dcc_size && config->info.levels > 1) {
/* The smallest miplevels that are never compressed by DCC
* still read the DCC buffer via TC if the base level uses DCC,
* and for some reason the DCC buffer needs to be larger if
* the miptree uses non-zero tile_swizzle. Otherwise there are
* VM faults.
*
* "dcc_alignment * 4" was determined by trial and error.
*/
surf->dcc_size = align64(surf->surf_size >> 8, surf->dcc_alignment * 4);
}
/* Make sure HTILE covers the whole miptree, because the shader reads
* TC-compatible HTILE even for levels where it's disabled by DB.
*/
if (surf->htile_size && config->info.levels > 1 &&
surf->flags & RADEON_SURF_TC_COMPATIBLE_HTILE) {
/* MSAA can't occur with levels > 1, so ignore the sample count. */
const unsigned total_pixels = surf->surf_size / surf->bpe;
const unsigned htile_block_size = 8 * 8;
const unsigned htile_element_size = 4;
surf->htile_size = (total_pixels / htile_block_size) * htile_element_size;
surf->htile_size = align(surf->htile_size, surf->htile_alignment);
} else if (!surf->htile_size) {
/* Unset this if HTILE is not present. */
surf->flags &= ~RADEON_SURF_TC_COMPATIBLE_HTILE;
}
surf->is_linear = surf->u.legacy.level[0].mode == RADEON_SURF_MODE_LINEAR_ALIGNED;
surf->is_displayable = surf->is_linear || surf->micro_tile_mode == RADEON_MICRO_MODE_DISPLAY ||
surf->micro_tile_mode == RADEON_MICRO_MODE_RENDER;
/* The rotated micro tile mode doesn't work if both CMASK and RB+ are
* used at the same time. This case is not currently expected to occur
* because we don't use rotated. Enforce this restriction on all chips
* to facilitate testing.
*/
if (surf->micro_tile_mode == RADEON_MICRO_MODE_RENDER) {
assert(!"rotate micro tile mode is unsupported");
return ADDR_ERROR;
}
ac_compute_cmask(info, config, surf);
return 0;
}
/* This is only called when expecting a tiled layout. */
static int gfx9_get_preferred_swizzle_mode(ADDR_HANDLE addrlib, struct radeon_surf *surf,
ADDR2_COMPUTE_SURFACE_INFO_INPUT *in, bool is_fmask,
AddrSwizzleMode *swizzle_mode)
{
ADDR_E_RETURNCODE ret;
ADDR2_GET_PREFERRED_SURF_SETTING_INPUT sin = {0};
ADDR2_GET_PREFERRED_SURF_SETTING_OUTPUT sout = {0};
sin.size = sizeof(ADDR2_GET_PREFERRED_SURF_SETTING_INPUT);
sout.size = sizeof(ADDR2_GET_PREFERRED_SURF_SETTING_OUTPUT);
sin.flags = in->flags;
sin.resourceType = in->resourceType;
sin.format = in->format;
sin.resourceLoction = ADDR_RSRC_LOC_INVIS;
/* TODO: We could allow some of these: */
sin.forbiddenBlock.micro = 1; /* don't allow the 256B swizzle modes */
sin.forbiddenBlock.var = 1; /* don't allow the variable-sized swizzle modes */
sin.bpp = in->bpp;
sin.width = in->width;
sin.height = in->height;
sin.numSlices = in->numSlices;
sin.numMipLevels = in->numMipLevels;
sin.numSamples = in->numSamples;
sin.numFrags = in->numFrags;
if (is_fmask) {
sin.flags.display = 0;
sin.flags.color = 0;
sin.flags.fmask = 1;
}
if (surf->flags & RADEON_SURF_FORCE_MICRO_TILE_MODE) {
sin.forbiddenBlock.linear = 1;
if (surf->micro_tile_mode == RADEON_MICRO_MODE_DISPLAY)
sin.preferredSwSet.sw_D = 1;
else if (surf->micro_tile_mode == RADEON_MICRO_MODE_STANDARD)
sin.preferredSwSet.sw_S = 1;
else if (surf->micro_tile_mode == RADEON_MICRO_MODE_DEPTH)
sin.preferredSwSet.sw_Z = 1;
else if (surf->micro_tile_mode == RADEON_MICRO_MODE_RENDER)
sin.preferredSwSet.sw_R = 1;
}
ret = Addr2GetPreferredSurfaceSetting(addrlib, &sin, &sout);
if (ret != ADDR_OK)
return ret;
*swizzle_mode = sout.swizzleMode;
return 0;
}
static bool is_dcc_supported_by_CB(const struct radeon_info *info, unsigned sw_mode)
{
if (info->chip_class >= GFX10)
return sw_mode == ADDR_SW_64KB_Z_X || sw_mode == ADDR_SW_64KB_R_X;
return sw_mode != ADDR_SW_LINEAR;
}
ASSERTED static bool is_dcc_supported_by_L2(const struct radeon_info *info,
const struct radeon_surf *surf)
{
if (info->chip_class <= GFX9) {
/* Only independent 64B blocks are supported. */
return surf->u.gfx9.dcc.independent_64B_blocks && !surf->u.gfx9.dcc.independent_128B_blocks &&
surf->u.gfx9.dcc.max_compressed_block_size == V_028C78_MAX_BLOCK_SIZE_64B;
}
if (info->family == CHIP_NAVI10) {
/* Only independent 128B blocks are supported. */
return !surf->u.gfx9.dcc.independent_64B_blocks && surf->u.gfx9.dcc.independent_128B_blocks &&
surf->u.gfx9.dcc.max_compressed_block_size <= V_028C78_MAX_BLOCK_SIZE_128B;
}
if (info->family == CHIP_NAVI12 || info->family == CHIP_NAVI14) {
/* Either 64B or 128B can be used, but not both.
* If 64B is used, DCC image stores are unsupported.
*/
return surf->u.gfx9.dcc.independent_64B_blocks != surf->u.gfx9.dcc.independent_128B_blocks &&
(!surf->u.gfx9.dcc.independent_64B_blocks ||
surf->u.gfx9.dcc.max_compressed_block_size == V_028C78_MAX_BLOCK_SIZE_64B) &&
(!surf->u.gfx9.dcc.independent_128B_blocks ||
surf->u.gfx9.dcc.max_compressed_block_size <= V_028C78_MAX_BLOCK_SIZE_128B);
}
/* 128B is recommended, but 64B can be set too if needed for 4K by DCN.
* Since there is no reason to ever disable 128B, require it.
* DCC image stores are always supported.
*/
return surf->u.gfx9.dcc.independent_128B_blocks &&
surf->u.gfx9.dcc.max_compressed_block_size <= V_028C78_MAX_BLOCK_SIZE_128B;
}
static bool is_dcc_supported_by_DCN(const struct radeon_info *info,
const struct ac_surf_config *config,
const struct radeon_surf *surf, bool rb_aligned,
bool pipe_aligned)
{
if (!info->use_display_dcc_unaligned && !info->use_display_dcc_with_retile_blit)
return false;
/* 16bpp and 64bpp are more complicated, so they are disallowed for now. */
if (surf->bpe != 4)
return false;
/* Handle unaligned DCC. */
if (info->use_display_dcc_unaligned && (rb_aligned || pipe_aligned))
return false;
switch (info->chip_class) {
case GFX9:
/* There are more constraints, but we always set
* INDEPENDENT_64B_BLOCKS = 1 and MAX_COMPRESSED_BLOCK_SIZE = 64B,
* which always works.
*/
assert(surf->u.gfx9.dcc.independent_64B_blocks &&
surf->u.gfx9.dcc.max_compressed_block_size == V_028C78_MAX_BLOCK_SIZE_64B);
return true;
case GFX10:
case GFX10_3:
/* DCN requires INDEPENDENT_128B_BLOCKS = 0 only on Navi1x. */
if (info->chip_class == GFX10 && surf->u.gfx9.dcc.independent_128B_blocks)
return false;
/* For 4K, DCN requires INDEPENDENT_64B_BLOCKS = 1. */
return ((config->info.width <= 2560 && config->info.height <= 2560) ||
(surf->u.gfx9.dcc.independent_64B_blocks &&
surf->u.gfx9.dcc.max_compressed_block_size == V_028C78_MAX_BLOCK_SIZE_64B));
default:
unreachable("unhandled chip");
return false;
}
}
static int gfx9_compute_miptree(struct ac_addrlib *addrlib, const struct radeon_info *info,
const struct ac_surf_config *config, struct radeon_surf *surf,
bool compressed, ADDR2_COMPUTE_SURFACE_INFO_INPUT *in)
{
ADDR2_MIP_INFO mip_info[RADEON_SURF_MAX_LEVELS] = {0};
ADDR2_COMPUTE_SURFACE_INFO_OUTPUT out = {0};
ADDR_E_RETURNCODE ret;
out.size = sizeof(ADDR2_COMPUTE_SURFACE_INFO_OUTPUT);
out.pMipInfo = mip_info;
ret = Addr2ComputeSurfaceInfo(addrlib->handle, in, &out);
if (ret != ADDR_OK)
return ret;
if (in->flags.stencil) {
surf->u.gfx9.stencil.swizzle_mode = in->swizzleMode;
surf->u.gfx9.stencil.epitch =
out.epitchIsHeight ? out.mipChainHeight - 1 : out.mipChainPitch - 1;
surf->surf_alignment = MAX2(surf->surf_alignment, out.baseAlign);
surf->u.gfx9.stencil_offset = align(surf->surf_size, out.baseAlign);
surf->surf_size = surf->u.gfx9.stencil_offset + out.surfSize;
return 0;
}
surf->u.gfx9.surf.swizzle_mode = in->swizzleMode;
surf->u.gfx9.surf.epitch = out.epitchIsHeight ? out.mipChainHeight - 1 : out.mipChainPitch - 1;
/* CMASK fast clear uses these even if FMASK isn't allocated.
* FMASK only supports the Z swizzle modes, whose numbers are multiples of 4.
*/
surf->u.gfx9.fmask.swizzle_mode = surf->u.gfx9.surf.swizzle_mode & ~0x3;
surf->u.gfx9.fmask.epitch = surf->u.gfx9.surf.epitch;
surf->u.gfx9.surf_slice_size = out.sliceSize;
surf->u.gfx9.surf_pitch = out.pitch;
surf->u.gfx9.surf_height = out.height;
surf->surf_size = out.surfSize;
surf->surf_alignment = out.baseAlign;
if (!compressed && surf->blk_w > 1 && out.pitch == out.pixelPitch &&
surf->u.gfx9.surf.swizzle_mode == ADDR_SW_LINEAR) {
/* Adjust surf_pitch to be in elements units not in pixels */
surf->u.gfx9.surf_pitch = align(surf->u.gfx9.surf_pitch / surf->blk_w, 256 / surf->bpe);
surf->u.gfx9.surf.epitch =
MAX2(surf->u.gfx9.surf.epitch, surf->u.gfx9.surf_pitch * surf->blk_w - 1);
/* The surface is really a surf->bpe bytes per pixel surface even if we
* use it as a surf->bpe bytes per element one.
* Adjust surf_slice_size and surf_size to reflect the change
* made to surf_pitch.
*/
surf->u.gfx9.surf_slice_size =
MAX2(surf->u.gfx9.surf_slice_size,
surf->u.gfx9.surf_pitch * out.height * surf->bpe * surf->blk_w);
surf->surf_size = surf->u.gfx9.surf_slice_size * in->numSlices;
}
if (in->swizzleMode == ADDR_SW_LINEAR) {
for (unsigned i = 0; i < in->numMipLevels; i++) {
surf->u.gfx9.offset[i] = mip_info[i].offset;
surf->u.gfx9.pitch[i] = mip_info[i].pitch;
}
}
surf->u.gfx9.base_mip_width = mip_info[0].pitch;
surf->u.gfx9.base_mip_height = mip_info[0].height;
if (in->flags.depth) {
assert(in->swizzleMode != ADDR_SW_LINEAR);
if (surf->flags & RADEON_SURF_NO_HTILE)
return 0;
/* HTILE */
ADDR2_COMPUTE_HTILE_INFO_INPUT hin = {0};
ADDR2_COMPUTE_HTILE_INFO_OUTPUT hout = {0};
hin.size = sizeof(ADDR2_COMPUTE_HTILE_INFO_INPUT);
hout.size = sizeof(ADDR2_COMPUTE_HTILE_INFO_OUTPUT);
assert(in->flags.metaPipeUnaligned == 0);
assert(in->flags.metaRbUnaligned == 0);
hin.hTileFlags.pipeAligned = 1;
hin.hTileFlags.rbAligned = 1;
hin.depthFlags = in->flags;
hin.swizzleMode = in->swizzleMode;
hin.unalignedWidth = in->width;
hin.unalignedHeight = in->height;
hin.numSlices = in->numSlices;
hin.numMipLevels = in->numMipLevels;
hin.firstMipIdInTail = out.firstMipIdInTail;
ret = Addr2ComputeHtileInfo(addrlib->handle, &hin, &hout);
if (ret != ADDR_OK)
return ret;
surf->htile_size = hout.htileBytes;
surf->htile_slice_size = hout.sliceSize;
surf->htile_alignment = hout.baseAlign;
return 0;
}
{
/* Compute tile swizzle for the color surface.
* All *_X and *_T modes can use the swizzle.
*/
if (config->info.surf_index && in->swizzleMode >= ADDR_SW_64KB_Z_T && !out.mipChainInTail &&
!(surf->flags & RADEON_SURF_SHAREABLE) && !in->flags.display) {
ADDR2_COMPUTE_PIPEBANKXOR_INPUT xin = {0};
ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT xout = {0};
xin.size = sizeof(ADDR2_COMPUTE_PIPEBANKXOR_INPUT);
xout.size = sizeof(ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT);
xin.surfIndex = p_atomic_inc_return(config->info.surf_index) - 1;
xin.flags = in->flags;
xin.swizzleMode = in->swizzleMode;
xin.resourceType = in->resourceType;
xin.format = in->format;
xin.numSamples = in->numSamples;
xin.numFrags = in->numFrags;
ret = Addr2ComputePipeBankXor(addrlib->handle, &xin, &xout);
if (ret != ADDR_OK)
return ret;
assert(xout.pipeBankXor <= u_bit_consecutive(0, sizeof(surf->tile_swizzle) * 8));
surf->tile_swizzle = xout.pipeBankXor;
}
/* DCC */
if (info->has_graphics && !(surf->flags & RADEON_SURF_DISABLE_DCC) && !compressed &&
is_dcc_supported_by_CB(info, in->swizzleMode) &&
(!in->flags.display ||
is_dcc_supported_by_DCN(info, config, surf, !in->flags.metaRbUnaligned,
!in->flags.metaPipeUnaligned))) {
ADDR2_COMPUTE_DCCINFO_INPUT din = {0};
ADDR2_COMPUTE_DCCINFO_OUTPUT dout = {0};
ADDR2_META_MIP_INFO meta_mip_info[RADEON_SURF_MAX_LEVELS] = {0};
din.size = sizeof(ADDR2_COMPUTE_DCCINFO_INPUT);
dout.size = sizeof(ADDR2_COMPUTE_DCCINFO_OUTPUT);
dout.pMipInfo = meta_mip_info;
din.dccKeyFlags.pipeAligned = !in->flags.metaPipeUnaligned;
din.dccKeyFlags.rbAligned = !in->flags.metaRbUnaligned;
din.resourceType = in->resourceType;
din.swizzleMode = in->swizzleMode;
din.bpp = in->bpp;
din.unalignedWidth = in->width;
din.unalignedHeight = in->height;
din.numSlices = in->numSlices;
din.numFrags = in->numFrags;
din.numMipLevels = in->numMipLevels;
din.dataSurfaceSize = out.surfSize;
din.firstMipIdInTail = out.firstMipIdInTail;
ret = Addr2ComputeDccInfo(addrlib->handle, &din, &dout);
if (ret != ADDR_OK)
return ret;
surf->u.gfx9.dcc.rb_aligned = din.dccKeyFlags.rbAligned;
surf->u.gfx9.dcc.pipe_aligned = din.dccKeyFlags.pipeAligned;
surf->u.gfx9.dcc_block_width = dout.compressBlkWidth;
surf->u.gfx9.dcc_block_height = dout.compressBlkHeight;
surf->u.gfx9.dcc_block_depth = dout.compressBlkDepth;
surf->dcc_size = dout.dccRamSize;
surf->dcc_alignment = dout.dccRamBaseAlign;
surf->num_dcc_levels = in->numMipLevels;
/* Disable DCC for levels that are in the mip tail.
*
* There are two issues that this is intended to
* address:
*
* 1. Multiple mip levels may share a cache line. This
* can lead to corruption when switching between
* rendering to different mip levels because the
* RBs don't maintain coherency.
*
* 2. Texturing with metadata after rendering sometimes
* fails with corruption, probably for a similar
* reason.
*
* Working around these issues for all levels in the
* mip tail may be overly conservative, but it's what
* Vulkan does.
*
* Alternative solutions that also work but are worse:
* - Disable DCC entirely.
* - Flush TC L2 after rendering.
*/
for (unsigned i = 0; i < in->numMipLevels; i++) {
if (meta_mip_info[i].inMiptail) {
/* GFX10 can only compress the first level
* in the mip tail.
*
* TODO: Try to do the same thing for gfx9
* if there are no regressions.
*/
if (info->chip_class >= GFX10)
surf->num_dcc_levels = i + 1;
else
surf->num_dcc_levels = i;
break;
}
}
if (!surf->num_dcc_levels)
surf->dcc_size = 0;
surf->u.gfx9.display_dcc_size = surf->dcc_size;
surf->u.gfx9.display_dcc_alignment = surf->dcc_alignment;
surf->u.gfx9.display_dcc_pitch_max = dout.pitch - 1;
surf->u.gfx9.dcc_pitch_max = dout.pitch - 1;
/* Compute displayable DCC. */
if (in->flags.display && surf->num_dcc_levels && info->use_display_dcc_with_retile_blit) {
/* Compute displayable DCC info. */
din.dccKeyFlags.pipeAligned = 0;
din.dccKeyFlags.rbAligned = 0;
assert(din.numSlices == 1);
assert(din.numMipLevels == 1);
assert(din.numFrags == 1);
assert(surf->tile_swizzle == 0);
assert(surf->u.gfx9.dcc.pipe_aligned || surf->u.gfx9.dcc.rb_aligned);
ret = Addr2ComputeDccInfo(addrlib->handle, &din, &dout);
if (ret != ADDR_OK)
return ret;
surf->u.gfx9.display_dcc_size = dout.dccRamSize;
surf->u.gfx9.display_dcc_alignment = dout.dccRamBaseAlign;
surf->u.gfx9.display_dcc_pitch_max = dout.pitch - 1;
assert(surf->u.gfx9.display_dcc_size <= surf->dcc_size);
surf->u.gfx9.dcc_retile_use_uint16 =
surf->u.gfx9.display_dcc_size <= UINT16_MAX + 1 && surf->dcc_size <= UINT16_MAX + 1;
/* Align the retile map size to get more hash table hits and
* decrease the maximum memory footprint when all retile maps
* are cached in the hash table.
*/
unsigned retile_dim[2] = {in->width, in->height};
for (unsigned i = 0; i < 2; i++) {
/* Increase the alignment as the size increases.
* Greater alignment increases retile compute work,
* but decreases maximum memory footprint for the cache.
*
* With this alignment, the worst case memory footprint of
* the cache is:
* 1920x1080: 55 MB
* 2560x1440: 99 MB
* 3840x2160: 305 MB
*
* The worst case size in MB can be computed in Haskell as follows:
* (sum (map get_retile_size (map get_dcc_size (deduplicate (map align_pair
* [(i*16,j*16) | i <- [1..maxwidth`div`16], j <- [1..maxheight`div`16]])))))
* `div` 1024^2 where alignment x = if x <= 512 then 16 else if x <= 1024 then 32
* else if x <= 2048 then 64 else 128 align x = (x + (alignment x) - 1) `div`
* (alignment x) * (alignment x) align_pair e = (align (fst e), align (snd e))
* deduplicate = map head . groupBy (\ a b -> ((fst a) == (fst b)) && ((snd a)
* == (snd b))) . sortBy compare get_dcc_size e = ((fst e) * (snd e) * bpp) `div` 256
* get_retile_size dcc_size = dcc_size * 2 * (if dcc_size <= 2^16 then 2 else
* 4) bpp = 4; maxwidth = 3840; maxheight = 2160
*/
if (retile_dim[i] <= 512)
retile_dim[i] = align(retile_dim[i], 16);
else if (retile_dim[i] <= 1024)
retile_dim[i] = align(retile_dim[i], 32);
else if (retile_dim[i] <= 2048)
retile_dim[i] = align(retile_dim[i], 64);
else
retile_dim[i] = align(retile_dim[i], 128);
/* Don't align more than the DCC pixel alignment. */
assert(dout.metaBlkWidth >= 128 && dout.metaBlkHeight >= 128);
}
surf->u.gfx9.dcc_retile_num_elements =
DIV_ROUND_UP(retile_dim[0], dout.compressBlkWidth) *
DIV_ROUND_UP(retile_dim[1], dout.compressBlkHeight) * 2;
/* Align the size to 4 (for the compute shader). */
surf->u.gfx9.dcc_retile_num_elements = align(surf->u.gfx9.dcc_retile_num_elements, 4);
/* Compute address mapping from non-displayable to displayable DCC. */
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT addrin;
memset(&addrin, 0, sizeof(addrin));
addrin.size = sizeof(addrin);
addrin.swizzleMode = din.swizzleMode;
addrin.resourceType = din.resourceType;
addrin.bpp = din.bpp;
addrin.numSlices = 1;
addrin.numMipLevels = 1;
addrin.numFrags = 1;
addrin.pitch = dout.pitch;
addrin.height = dout.height;
addrin.compressBlkWidth = dout.compressBlkWidth;
addrin.compressBlkHeight = dout.compressBlkHeight;
addrin.compressBlkDepth = dout.compressBlkDepth;
addrin.metaBlkWidth = dout.metaBlkWidth;
addrin.metaBlkHeight = dout.metaBlkHeight;
addrin.metaBlkDepth = dout.metaBlkDepth;
addrin.dccRamSliceSize = 0; /* Don't care for non-layered images. */
surf->u.gfx9.dcc_retile_map = ac_compute_dcc_retile_map(
addrlib, info, retile_dim[0], retile_dim[1], surf->u.gfx9.dcc.rb_aligned,
surf->u.gfx9.dcc.pipe_aligned, surf->u.gfx9.dcc_retile_use_uint16,
surf->u.gfx9.dcc_retile_num_elements, &addrin);
if (!surf->u.gfx9.dcc_retile_map)
return ADDR_OUTOFMEMORY;
}
}
/* FMASK */
if (in->numSamples > 1 && info->has_graphics && !(surf->flags & RADEON_SURF_NO_FMASK)) {
ADDR2_COMPUTE_FMASK_INFO_INPUT fin = {0};
ADDR2_COMPUTE_FMASK_INFO_OUTPUT fout = {0};
fin.size = sizeof(ADDR2_COMPUTE_FMASK_INFO_INPUT);
fout.size = sizeof(ADDR2_COMPUTE_FMASK_INFO_OUTPUT);
ret = gfx9_get_preferred_swizzle_mode(addrlib->handle, surf, in, true, &fin.swizzleMode);
if (ret != ADDR_OK)
return ret;
fin.unalignedWidth = in->width;
fin.unalignedHeight = in->height;
fin.numSlices = in->numSlices;
fin.numSamples = in->numSamples;
fin.numFrags = in->numFrags;
ret = Addr2ComputeFmaskInfo(addrlib->handle, &fin, &fout);
if (ret != ADDR_OK)
return ret;
surf->u.gfx9.fmask.swizzle_mode = fin.swizzleMode;
surf->u.gfx9.fmask.epitch = fout.pitch - 1;
surf->fmask_size = fout.fmaskBytes;
surf->fmask_alignment = fout.baseAlign;
/* Compute tile swizzle for the FMASK surface. */
if (config->info.fmask_surf_index && fin.swizzleMode >= ADDR_SW_64KB_Z_T &&
!(surf->flags & RADEON_SURF_SHAREABLE)) {
ADDR2_COMPUTE_PIPEBANKXOR_INPUT xin = {0};
ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT xout = {0};
xin.size = sizeof(ADDR2_COMPUTE_PIPEBANKXOR_INPUT);
xout.size = sizeof(ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT);
/* This counter starts from 1 instead of 0. */
xin.surfIndex = p_atomic_inc_return(config->info.fmask_surf_index);
xin.flags = in->flags;
xin.swizzleMode = fin.swizzleMode;
xin.resourceType = in->resourceType;
xin.format = in->format;
xin.numSamples = in->numSamples;
xin.numFrags = in->numFrags;
ret = Addr2ComputePipeBankXor(addrlib->handle, &xin, &xout);
if (ret != ADDR_OK)
return ret;
assert(xout.pipeBankXor <= u_bit_consecutive(0, sizeof(surf->fmask_tile_swizzle) * 8));
surf->fmask_tile_swizzle = xout.pipeBankXor;
}
}
/* CMASK -- on GFX10 only for FMASK */
if (in->swizzleMode != ADDR_SW_LINEAR && in->resourceType == ADDR_RSRC_TEX_2D &&
((info->chip_class <= GFX9 && in->numSamples == 1 && in->flags.metaPipeUnaligned == 0 &&
in->flags.metaRbUnaligned == 0) ||
(surf->fmask_size && in->numSamples >= 2))) {
ADDR2_COMPUTE_CMASK_INFO_INPUT cin = {0};
ADDR2_COMPUTE_CMASK_INFO_OUTPUT cout = {0};
cin.size = sizeof(ADDR2_COMPUTE_CMASK_INFO_INPUT);
cout.size = sizeof(ADDR2_COMPUTE_CMASK_INFO_OUTPUT);
assert(in->flags.metaPipeUnaligned == 0);
assert(in->flags.metaRbUnaligned == 0);
cin.cMaskFlags.pipeAligned = 1;
cin.cMaskFlags.rbAligned = 1;
cin.resourceType = in->resourceType;
cin.unalignedWidth = in->width;
cin.unalignedHeight = in->height;
cin.numSlices = in->numSlices;
if (in->numSamples > 1)
cin.swizzleMode = surf->u.gfx9.fmask.swizzle_mode;
else
cin.swizzleMode = in->swizzleMode;
ret = Addr2ComputeCmaskInfo(addrlib->handle, &cin, &cout);
if (ret != ADDR_OK)
return ret;
surf->cmask_size = cout.cmaskBytes;
surf->cmask_alignment = cout.baseAlign;
}
}
return 0;
}
static int gfx9_compute_surface(struct ac_addrlib *addrlib, const struct radeon_info *info,
const struct ac_surf_config *config, enum radeon_surf_mode mode,
struct radeon_surf *surf)
{
bool compressed;
ADDR2_COMPUTE_SURFACE_INFO_INPUT AddrSurfInfoIn = {0};
int r;
AddrSurfInfoIn.size = sizeof(ADDR2_COMPUTE_SURFACE_INFO_INPUT);
compressed = surf->blk_w == 4 && surf->blk_h == 4;
/* The format must be set correctly for the allocation of compressed
* textures to work. In other cases, setting the bpp is sufficient. */
if (compressed) {
switch (surf->bpe) {
case 8:
AddrSurfInfoIn.format = ADDR_FMT_BC1;
break;
case 16:
AddrSurfInfoIn.format = ADDR_FMT_BC3;
break;
default:
assert(0);
}
} else {
switch (surf->bpe) {
case 1:
assert(!(surf->flags & RADEON_SURF_ZBUFFER));
AddrSurfInfoIn.format = ADDR_FMT_8;
break;
case 2:
assert(surf->flags & RADEON_SURF_ZBUFFER || !(surf->flags & RADEON_SURF_SBUFFER));
AddrSurfInfoIn.format = ADDR_FMT_16;
break;
case 4:
assert(surf->flags & RADEON_SURF_ZBUFFER || !(surf->flags & RADEON_SURF_SBUFFER));
AddrSurfInfoIn.format = ADDR_FMT_32;
break;
case 8:
assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER));
AddrSurfInfoIn.format = ADDR_FMT_32_32;
break;
case 12:
assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER));
AddrSurfInfoIn.format = ADDR_FMT_32_32_32;
break;
case 16:
assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER));
AddrSurfInfoIn.format = ADDR_FMT_32_32_32_32;
break;
default:
assert(0);
}
AddrSurfInfoIn.bpp = surf->bpe * 8;
}
bool is_color_surface = !(surf->flags & RADEON_SURF_Z_OR_SBUFFER);
AddrSurfInfoIn.flags.color = is_color_surface && !(surf->flags & RADEON_SURF_NO_RENDER_TARGET);
AddrSurfInfoIn.flags.depth = (surf->flags & RADEON_SURF_ZBUFFER) != 0;
AddrSurfInfoIn.flags.display = get_display_flag(config, surf);
/* flags.texture currently refers to TC-compatible HTILE */
AddrSurfInfoIn.flags.texture = is_color_surface || surf->flags & RADEON_SURF_TC_COMPATIBLE_HTILE;
AddrSurfInfoIn.flags.opt4space = 1;
AddrSurfInfoIn.numMipLevels = config->info.levels;
AddrSurfInfoIn.numSamples = MAX2(1, config->info.samples);
AddrSurfInfoIn.numFrags = AddrSurfInfoIn.numSamples;
if (!(surf->flags & RADEON_SURF_Z_OR_SBUFFER))
AddrSurfInfoIn.numFrags = MAX2(1, config->info.storage_samples);
/* GFX9 doesn't support 1D depth textures, so allocate all 1D textures
* as 2D to avoid having shader variants for 1D vs 2D, so all shaders
* must sample 1D textures as 2D. */
if (config->is_3d)
AddrSurfInfoIn.resourceType = ADDR_RSRC_TEX_3D;
else if (info->chip_class != GFX9 && config->is_1d)
AddrSurfInfoIn.resourceType = ADDR_RSRC_TEX_1D;
else
AddrSurfInfoIn.resourceType = ADDR_RSRC_TEX_2D;
AddrSurfInfoIn.width = config->info.width;
AddrSurfInfoIn.height = config->info.height;
if (config->is_3d)
AddrSurfInfoIn.numSlices = config->info.depth;
else if (config->is_cube)
AddrSurfInfoIn.numSlices = 6;
else
AddrSurfInfoIn.numSlices = config->info.array_size;
/* This is propagated to DCC. It must be 0 for HTILE and CMASK. */
AddrSurfInfoIn.flags.metaPipeUnaligned = 0;
AddrSurfInfoIn.flags.metaRbUnaligned = 0;
/* Optimal values for the L2 cache. */
if (info->chip_class == GFX9) {
surf->u.gfx9.dcc.independent_64B_blocks = 1;
surf->u.gfx9.dcc.independent_128B_blocks = 0;
surf->u.gfx9.dcc.max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
} else if (info->chip_class >= GFX10) {
surf->u.gfx9.dcc.independent_64B_blocks = 0;
surf->u.gfx9.dcc.independent_128B_blocks = 1;
surf->u.gfx9.dcc.max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
}
if (AddrSurfInfoIn.flags.display) {
/* The display hardware can only read DCC with RB_ALIGNED=0 and
* PIPE_ALIGNED=0. PIPE_ALIGNED really means L2CACHE_ALIGNED.
*
* The CB block requires RB_ALIGNED=1 except 1 RB chips.
* PIPE_ALIGNED is optional, but PIPE_ALIGNED=0 requires L2 flushes
* after rendering, so PIPE_ALIGNED=1 is recommended.
*/
if (info->use_display_dcc_unaligned) {
AddrSurfInfoIn.flags.metaPipeUnaligned = 1;
AddrSurfInfoIn.flags.metaRbUnaligned = 1;
}
/* Adjust DCC settings to meet DCN requirements. */
if (info->use_display_dcc_unaligned || info->use_display_dcc_with_retile_blit) {
/* Only Navi12/14 support independent 64B blocks in L2,
* but without DCC image stores.
*/
if (info->family == CHIP_NAVI12 || info->family == CHIP_NAVI14) {
surf->u.gfx9.dcc.independent_64B_blocks = 1;
surf->u.gfx9.dcc.independent_128B_blocks = 0;
surf->u.gfx9.dcc.max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
}
if (info->chip_class >= GFX10_3) {
surf->u.gfx9.dcc.independent_64B_blocks = 1;
surf->u.gfx9.dcc.independent_128B_blocks = 1;
surf->u.gfx9.dcc.max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
}
}
}
switch (mode) {
case RADEON_SURF_MODE_LINEAR_ALIGNED:
assert(config->info.samples <= 1);
assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER));
AddrSurfInfoIn.swizzleMode = ADDR_SW_LINEAR;
break;
case RADEON_SURF_MODE_1D:
case RADEON_SURF_MODE_2D:
if (surf->flags & RADEON_SURF_IMPORTED ||
(info->chip_class >= GFX10 && surf->flags & RADEON_SURF_FORCE_SWIZZLE_MODE)) {
AddrSurfInfoIn.swizzleMode = surf->u.gfx9.surf.swizzle_mode;
break;
}
r = gfx9_get_preferred_swizzle_mode(addrlib->handle, surf, &AddrSurfInfoIn, false,
&AddrSurfInfoIn.swizzleMode);
if (r)
return r;
break;
default:
assert(0);
}
surf->u.gfx9.resource_type = AddrSurfInfoIn.resourceType;
surf->has_stencil = !!(surf->flags & RADEON_SURF_SBUFFER);
surf->num_dcc_levels = 0;
surf->surf_size = 0;
surf->fmask_size = 0;
surf->dcc_size = 0;
surf->htile_size = 0;
surf->htile_slice_size = 0;
surf->u.gfx9.surf_offset = 0;
surf->u.gfx9.stencil_offset = 0;
surf->cmask_size = 0;
surf->u.gfx9.dcc_retile_use_uint16 = false;
surf->u.gfx9.dcc_retile_num_elements = 0;
surf->u.gfx9.dcc_retile_map = NULL;
/* Calculate texture layout information. */
r = gfx9_compute_miptree(addrlib, info, config, surf, compressed, &AddrSurfInfoIn);
if (r)
return r;
/* Calculate texture layout information for stencil. */
if (surf->flags & RADEON_SURF_SBUFFER) {
AddrSurfInfoIn.flags.stencil = 1;
AddrSurfInfoIn.bpp = 8;
AddrSurfInfoIn.format = ADDR_FMT_8;
if (!AddrSurfInfoIn.flags.depth) {
r = gfx9_get_preferred_swizzle_mode(addrlib->handle, surf, &AddrSurfInfoIn, false,
&AddrSurfInfoIn.swizzleMode);
if (r)
return r;
} else
AddrSurfInfoIn.flags.depth = 0;
r = gfx9_compute_miptree(addrlib, info, config, surf, compressed, &AddrSurfInfoIn);
if (r)
return r;
}
surf->is_linear = surf->u.gfx9.surf.swizzle_mode == ADDR_SW_LINEAR;
/* Query whether the surface is displayable. */
/* This is only useful for surfaces that are allocated without SCANOUT. */
bool displayable = false;
if (!config->is_3d && !config->is_cube) {
r = Addr2IsValidDisplaySwizzleMode(addrlib->handle, surf->u.gfx9.surf.swizzle_mode,
surf->bpe * 8, &displayable);
if (r)
return r;
/* Display needs unaligned DCC. */
if (surf->num_dcc_levels &&
(!is_dcc_supported_by_DCN(info, config, surf, surf->u.gfx9.dcc.rb_aligned,
surf->u.gfx9.dcc.pipe_aligned) ||
/* Don't set is_displayable if displayable DCC is missing. */
(info->use_display_dcc_with_retile_blit && !surf->u.gfx9.dcc_retile_num_elements)))
displayable = false;
}
surf->is_displayable = displayable;
/* Validate that we allocated a displayable surface if requested. */
assert(!AddrSurfInfoIn.flags.display || surf->is_displayable);
/* Validate that DCC is set up correctly. */
if (surf->num_dcc_levels) {
assert(is_dcc_supported_by_L2(info, surf));
if (AddrSurfInfoIn.flags.color)
assert(is_dcc_supported_by_CB(info, surf->u.gfx9.surf.swizzle_mode));
if (AddrSurfInfoIn.flags.display) {
assert(is_dcc_supported_by_DCN(info, config, surf, surf->u.gfx9.dcc.rb_aligned,
surf->u.gfx9.dcc.pipe_aligned));
}
}
if (info->has_graphics && !compressed && !config->is_3d && config->info.levels == 1 &&
AddrSurfInfoIn.flags.color && !surf->is_linear &&
surf->surf_alignment >= 64 * 1024 && /* 64KB tiling */
!(surf->flags & (RADEON_SURF_DISABLE_DCC | RADEON_SURF_FORCE_SWIZZLE_MODE |
RADEON_SURF_FORCE_MICRO_TILE_MODE))) {
/* Validate that DCC is enabled if DCN can do it. */
if ((info->use_display_dcc_unaligned || info->use_display_dcc_with_retile_blit) &&
AddrSurfInfoIn.flags.display && surf->bpe == 4) {
assert(surf->num_dcc_levels);
}
/* Validate that non-scanout DCC is always enabled. */
if (!AddrSurfInfoIn.flags.display)
assert(surf->num_dcc_levels);
}
if (!surf->htile_size) {
/* Unset this if HTILE is not present. */
surf->flags &= ~RADEON_SURF_TC_COMPATIBLE_HTILE;
}
switch (surf->u.gfx9.surf.swizzle_mode) {
/* S = standard. */
case ADDR_SW_256B_S:
case ADDR_SW_4KB_S:
case ADDR_SW_64KB_S:
case ADDR_SW_64KB_S_T:
case ADDR_SW_4KB_S_X:
case ADDR_SW_64KB_S_X:
surf->micro_tile_mode = RADEON_MICRO_MODE_STANDARD;
break;
/* D = display. */
case ADDR_SW_LINEAR:
case ADDR_SW_256B_D:
case ADDR_SW_4KB_D:
case ADDR_SW_64KB_D:
case ADDR_SW_64KB_D_T:
case ADDR_SW_4KB_D_X:
case ADDR_SW_64KB_D_X:
surf->micro_tile_mode = RADEON_MICRO_MODE_DISPLAY;
break;
/* R = rotated (gfx9), render target (gfx10). */
case ADDR_SW_256B_R:
case ADDR_SW_4KB_R:
case ADDR_SW_64KB_R:
case ADDR_SW_64KB_R_T:
case ADDR_SW_4KB_R_X:
case ADDR_SW_64KB_R_X:
case ADDR_SW_VAR_R_X:
/* The rotated micro tile mode doesn't work if both CMASK and RB+ are
* used at the same time. We currently do not use rotated
* in gfx9.
*/
assert(info->chip_class >= GFX10 || !"rotate micro tile mode is unsupported");
surf->micro_tile_mode = RADEON_MICRO_MODE_RENDER;
break;
/* Z = depth. */
case ADDR_SW_4KB_Z:
case ADDR_SW_64KB_Z:
case ADDR_SW_64KB_Z_T:
case ADDR_SW_4KB_Z_X:
case ADDR_SW_64KB_Z_X:
case ADDR_SW_VAR_Z_X:
surf->micro_tile_mode = RADEON_MICRO_MODE_DEPTH;
break;
default:
assert(0);
}
return 0;
}
int ac_compute_surface(struct ac_addrlib *addrlib, const struct radeon_info *info,
const struct ac_surf_config *config, enum radeon_surf_mode mode,
struct radeon_surf *surf)
{
int r;
r = surf_config_sanity(config, surf->flags);
if (r)
return r;
if (info->chip_class >= GFX9)
r = gfx9_compute_surface(addrlib, info, config, mode, surf);
else
r = gfx6_compute_surface(addrlib->handle, info, config, mode, surf);
if (r)
return r;
/* Determine the memory layout of multiple allocations in one buffer. */
surf->total_size = surf->surf_size;
surf->alignment = surf->surf_alignment;
/* Ensure the offsets are always 0 if not available. */
surf->dcc_offset = surf->display_dcc_offset = 0;
surf->fmask_offset = surf->cmask_offset = 0;
surf->htile_offset = 0;
if (surf->htile_size) {
surf->htile_offset = align64(surf->total_size, surf->htile_alignment);
surf->total_size = surf->htile_offset + surf->htile_size;
surf->alignment = MAX2(surf->alignment, surf->htile_alignment);
}
if (surf->fmask_size) {
assert(config->info.samples >= 2);
surf->fmask_offset = align64(surf->total_size, surf->fmask_alignment);
surf->total_size = surf->fmask_offset + surf->fmask_size;
surf->alignment = MAX2(surf->alignment, surf->fmask_alignment);
}
/* Single-sample CMASK is in a separate buffer. */
if (surf->cmask_size && config->info.samples >= 2) {
surf->cmask_offset = align64(surf->total_size, surf->cmask_alignment);
surf->total_size = surf->cmask_offset + surf->cmask_size;
surf->alignment = MAX2(surf->alignment, surf->cmask_alignment);
}
if (surf->is_displayable)
surf->flags |= RADEON_SURF_SCANOUT;
if (surf->dcc_size &&
/* dcc_size is computed on GFX9+ only if it's displayable. */
(info->chip_class >= GFX9 || !get_display_flag(config, surf))) {
/* It's better when displayable DCC is immediately after
* the image due to hw-specific reasons.
*/
if (info->chip_class >= GFX9 && surf->u.gfx9.dcc_retile_num_elements) {
/* Add space for the displayable DCC buffer. */
surf->display_dcc_offset = align64(surf->total_size, surf->u.gfx9.display_dcc_alignment);
surf->total_size = surf->display_dcc_offset + surf->u.gfx9.display_dcc_size;
}
surf->dcc_offset = align64(surf->total_size, surf->dcc_alignment);
surf->total_size = surf->dcc_offset + surf->dcc_size;
surf->alignment = MAX2(surf->alignment, surf->dcc_alignment);
}
return 0;
}
/* This is meant to be used for disabling DCC. */
void ac_surface_zero_dcc_fields(struct radeon_surf *surf)
{
surf->dcc_offset = 0;
surf->display_dcc_offset = 0;
}
static unsigned eg_tile_split(unsigned tile_split)
{
switch (tile_split) {
case 0:
tile_split = 64;
break;
case 1:
tile_split = 128;
break;
case 2:
tile_split = 256;
break;
case 3:
tile_split = 512;
break;
default:
case 4:
tile_split = 1024;
break;
case 5:
tile_split = 2048;
break;
case 6:
tile_split = 4096;
break;
}
return tile_split;
}
static unsigned eg_tile_split_rev(unsigned eg_tile_split)
{
switch (eg_tile_split) {
case 64:
return 0;
case 128:
return 1;
case 256:
return 2;
case 512:
return 3;
default:
case 1024:
return 4;
case 2048:
return 5;
case 4096:
return 6;
}
}
#define AMDGPU_TILING_DCC_MAX_COMPRESSED_BLOCK_SIZE_SHIFT 45
#define AMDGPU_TILING_DCC_MAX_COMPRESSED_BLOCK_SIZE_MASK 0x3
/* This should be called before ac_compute_surface. */
void ac_surface_set_bo_metadata(const struct radeon_info *info, struct radeon_surf *surf,
uint64_t tiling_flags, enum radeon_surf_mode *mode)
{
bool scanout;
if (info->chip_class >= GFX9) {
surf->u.gfx9.surf.swizzle_mode = AMDGPU_TILING_GET(tiling_flags, SWIZZLE_MODE);
surf->u.gfx9.dcc.independent_64B_blocks =
AMDGPU_TILING_GET(tiling_flags, DCC_INDEPENDENT_64B);
surf->u.gfx9.dcc.independent_128B_blocks =
AMDGPU_TILING_GET(tiling_flags, DCC_INDEPENDENT_128B);
surf->u.gfx9.dcc.max_compressed_block_size =
AMDGPU_TILING_GET(tiling_flags, DCC_MAX_COMPRESSED_BLOCK_SIZE);
surf->u.gfx9.display_dcc_pitch_max = AMDGPU_TILING_GET(tiling_flags, DCC_PITCH_MAX);
scanout = AMDGPU_TILING_GET(tiling_flags, SCANOUT);
*mode =
surf->u.gfx9.surf.swizzle_mode > 0 ? RADEON_SURF_MODE_2D : RADEON_SURF_MODE_LINEAR_ALIGNED;
} else {
surf->u.legacy.pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG);
surf->u.legacy.bankw = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH);
surf->u.legacy.bankh = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT);
surf->u.legacy.tile_split = eg_tile_split(AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT));
surf->u.legacy.mtilea = 1 << AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT);
surf->u.legacy.num_banks = 2 << AMDGPU_TILING_GET(tiling_flags, NUM_BANKS);
scanout = AMDGPU_TILING_GET(tiling_flags, MICRO_TILE_MODE) == 0; /* DISPLAY */
if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 4) /* 2D_TILED_THIN1 */
*mode = RADEON_SURF_MODE_2D;
else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 2) /* 1D_TILED_THIN1 */
*mode = RADEON_SURF_MODE_1D;
else
*mode = RADEON_SURF_MODE_LINEAR_ALIGNED;
}
if (scanout)
surf->flags |= RADEON_SURF_SCANOUT;
else
surf->flags &= ~RADEON_SURF_SCANOUT;
}
void ac_surface_get_bo_metadata(const struct radeon_info *info, struct radeon_surf *surf,
uint64_t *tiling_flags)
{
*tiling_flags = 0;
if (info->chip_class >= GFX9) {
uint64_t dcc_offset = 0;
if (surf->dcc_offset) {
dcc_offset = surf->display_dcc_offset ? surf->display_dcc_offset : surf->dcc_offset;
assert((dcc_offset >> 8) != 0 && (dcc_offset >> 8) < (1 << 24));
}
*tiling_flags |= AMDGPU_TILING_SET(SWIZZLE_MODE, surf->u.gfx9.surf.swizzle_mode);
*tiling_flags |= AMDGPU_TILING_SET(DCC_OFFSET_256B, dcc_offset >> 8);
*tiling_flags |= AMDGPU_TILING_SET(DCC_PITCH_MAX, surf->u.gfx9.display_dcc_pitch_max);
*tiling_flags |=
AMDGPU_TILING_SET(DCC_INDEPENDENT_64B, surf->u.gfx9.dcc.independent_64B_blocks);
*tiling_flags |=
AMDGPU_TILING_SET(DCC_INDEPENDENT_128B, surf->u.gfx9.dcc.independent_128B_blocks);
*tiling_flags |= AMDGPU_TILING_SET(DCC_MAX_COMPRESSED_BLOCK_SIZE,
surf->u.gfx9.dcc.max_compressed_block_size);
*tiling_flags |= AMDGPU_TILING_SET(SCANOUT, (surf->flags & RADEON_SURF_SCANOUT) != 0);
} else {
if (surf->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D)
*tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 4); /* 2D_TILED_THIN1 */
else if (surf->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D)
*tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 2); /* 1D_TILED_THIN1 */
else
*tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 1); /* LINEAR_ALIGNED */
*tiling_flags |= AMDGPU_TILING_SET(PIPE_CONFIG, surf->u.legacy.pipe_config);
*tiling_flags |= AMDGPU_TILING_SET(BANK_WIDTH, util_logbase2(surf->u.legacy.bankw));
*tiling_flags |= AMDGPU_TILING_SET(BANK_HEIGHT, util_logbase2(surf->u.legacy.bankh));
if (surf->u.legacy.tile_split)
*tiling_flags |=
AMDGPU_TILING_SET(TILE_SPLIT, eg_tile_split_rev(surf->u.legacy.tile_split));
*tiling_flags |= AMDGPU_TILING_SET(MACRO_TILE_ASPECT, util_logbase2(surf->u.legacy.mtilea));
*tiling_flags |= AMDGPU_TILING_SET(NUM_BANKS, util_logbase2(surf->u.legacy.num_banks) - 1);
if (surf->flags & RADEON_SURF_SCANOUT)
*tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 0); /* DISPLAY_MICRO_TILING */
else
*tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 1); /* THIN_MICRO_TILING */
}
}
static uint32_t ac_get_umd_metadata_word1(const struct radeon_info *info)
{
return (ATI_VENDOR_ID << 16) | info->pci_id;
}
/* This should be called after ac_compute_surface. */
bool ac_surface_set_umd_metadata(const struct radeon_info *info, struct radeon_surf *surf,
unsigned num_storage_samples, unsigned num_mipmap_levels,
unsigned size_metadata, uint32_t metadata[64])
{
uint32_t *desc = &metadata[2];
uint64_t offset;
if (info->chip_class >= GFX9)
offset = surf->u.gfx9.surf_offset;
else
offset = surf->u.legacy.level[0].offset;
if (offset || /* Non-zero planes ignore metadata. */
size_metadata < 10 * 4 || /* at least 2(header) + 8(desc) dwords */
metadata[0] == 0 || /* invalid version number */
metadata[1] != ac_get_umd_metadata_word1(info)) /* invalid PCI ID */ {
/* Disable DCC because it might not be enabled. */
ac_surface_zero_dcc_fields(surf);
/* Don't report an error if the texture comes from an incompatible driver,
* but this might not work.
*/
return true;
}
/* Validate that sample counts and the number of mipmap levels match. */
unsigned desc_last_level = G_008F1C_LAST_LEVEL(desc[3]);
unsigned type = G_008F1C_TYPE(desc[3]);
if (type == V_008F1C_SQ_RSRC_IMG_2D_MSAA || type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) {
unsigned log_samples = util_logbase2(MAX2(1, num_storage_samples));
if (desc_last_level != log_samples) {
fprintf(stderr,
"amdgpu: invalid MSAA texture import, "
"metadata has log2(samples) = %u, the caller set %u\n",
desc_last_level, log_samples);
return false;
}
} else {
if (desc_last_level != num_mipmap_levels - 1) {
fprintf(stderr,
"amdgpu: invalid mipmapped texture import, "
"metadata has last_level = %u, the caller set %u\n",
desc_last_level, num_mipmap_levels - 1);
return false;
}
}
if (info->chip_class >= GFX8 && G_008F28_COMPRESSION_EN(desc[6])) {
/* Read DCC information. */
switch (info->chip_class) {
case GFX8:
surf->dcc_offset = (uint64_t)desc[7] << 8;
break;
case GFX9:
surf->dcc_offset =
((uint64_t)desc[7] << 8) | ((uint64_t)G_008F24_META_DATA_ADDRESS(desc[5]) << 40);
surf->u.gfx9.dcc.pipe_aligned = G_008F24_META_PIPE_ALIGNED(desc[5]);
surf->u.gfx9.dcc.rb_aligned = G_008F24_META_RB_ALIGNED(desc[5]);
/* If DCC is unaligned, this can only be a displayable image. */
if (!surf->u.gfx9.dcc.pipe_aligned && !surf->u.gfx9.dcc.rb_aligned)
assert(surf->is_displayable);
break;
case GFX10:
case GFX10_3:
surf->dcc_offset =
((uint64_t)G_00A018_META_DATA_ADDRESS_LO(desc[6]) << 8) | ((uint64_t)desc[7] << 16);
surf->u.gfx9.dcc.pipe_aligned = G_00A018_META_PIPE_ALIGNED(desc[6]);
break;
default:
assert(0);
return false;
}
} else {
/* Disable DCC. dcc_offset is always set by texture_from_handle
* and must be cleared here.
*/
ac_surface_zero_dcc_fields(surf);
}
return true;
}
void ac_surface_get_umd_metadata(const struct radeon_info *info, struct radeon_surf *surf,
unsigned num_mipmap_levels, uint32_t desc[8],
unsigned *size_metadata, uint32_t metadata[64])
{
/* Clear the base address and set the relative DCC offset. */
desc[0] = 0;
desc[1] &= C_008F14_BASE_ADDRESS_HI;
switch (info->chip_class) {
case GFX6:
case GFX7:
break;
case GFX8:
desc[7] = surf->dcc_offset >> 8;
break;
case GFX9:
desc[7] = surf->dcc_offset >> 8;
desc[5] &= C_008F24_META_DATA_ADDRESS;
desc[5] |= S_008F24_META_DATA_ADDRESS(surf->dcc_offset >> 40);
break;
case GFX10:
case GFX10_3:
desc[6] &= C_00A018_META_DATA_ADDRESS_LO;
desc[6] |= S_00A018_META_DATA_ADDRESS_LO(surf->dcc_offset >> 8);
desc[7] = surf->dcc_offset >> 16;
break;
default:
assert(0);
}
/* Metadata image format format version 1:
* [0] = 1 (metadata format identifier)
* [1] = (VENDOR_ID << 16) | PCI_ID
* [2:9] = image descriptor for the whole resource
* [2] is always 0, because the base address is cleared
* [9] is the DCC offset bits [39:8] from the beginning of
* the buffer
* [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level
*/
metadata[0] = 1; /* metadata image format version 1 */
/* Tiling modes are ambiguous without a PCI ID. */
metadata[1] = ac_get_umd_metadata_word1(info);
/* Dwords [2:9] contain the image descriptor. */
memcpy(&metadata[2], desc, 8 * 4);
*size_metadata = 10 * 4;
/* Dwords [10:..] contain the mipmap level offsets. */
if (info->chip_class <= GFX8) {
for (unsigned i = 0; i < num_mipmap_levels; i++)
metadata[10 + i] = surf->u.legacy.level[i].offset >> 8;
*size_metadata += num_mipmap_levels * 4;
}
}
void ac_surface_override_offset_stride(const struct radeon_info *info, struct radeon_surf *surf,
unsigned num_mipmap_levels, uint64_t offset, unsigned pitch)
{
if (info->chip_class >= GFX9) {
if (pitch) {
surf->u.gfx9.surf_pitch = pitch;
if (num_mipmap_levels == 1)
surf->u.gfx9.surf.epitch = pitch - 1;
surf->u.gfx9.surf_slice_size = (uint64_t)pitch * surf->u.gfx9.surf_height * surf->bpe;
}
surf->u.gfx9.surf_offset = offset;
if (surf->u.gfx9.stencil_offset)
surf->u.gfx9.stencil_offset += offset;
} else {
if (pitch) {
surf->u.legacy.level[0].nblk_x = pitch;
surf->u.legacy.level[0].slice_size_dw =
((uint64_t)pitch * surf->u.legacy.level[0].nblk_y * surf->bpe) / 4;
}
if (offset) {
for (unsigned i = 0; i < ARRAY_SIZE(surf->u.legacy.level); ++i)
surf->u.legacy.level[i].offset += offset;
}
}
if (surf->htile_offset)
surf->htile_offset += offset;
if (surf->fmask_offset)
surf->fmask_offset += offset;
if (surf->cmask_offset)
surf->cmask_offset += offset;
if (surf->dcc_offset)
surf->dcc_offset += offset;
if (surf->display_dcc_offset)
surf->display_dcc_offset += offset;
}