blob: ddd5edd7c84b72f86b7a149327945ecb736cb9ef [file] [log] [blame]
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
#include "util/u_memory.h"
#include "util/register_allocate.h"
/* Scheduling for Midgard is complicated, to say the least. ALU instructions
* must be grouped into VLIW bundles according to following model:
*
* [VMUL] [SADD]
* [VADD] [SMUL] [VLUT]
*
* A given instruction can execute on some subset of the units (or a few can
* execute on all). Instructions can be either vector or scalar; only scalar
* instructions can execute on SADD/SMUL units. Units on a given line execute
* in parallel. Subsequent lines execute separately and can pass results
* directly via pipeline registers r24/r25, bypassing the register file.
*
* A bundle can optionally have 128-bits of embedded constants, shared across
* all of the instructions within a bundle.
*
* Instructions consuming conditionals (branches and conditional selects)
* require their condition to be written into the conditional register (r31)
* within the same bundle they are consumed.
*
* Fragment writeout requires its argument to be written in full within the
* same bundle as the branch, with no hanging dependencies.
*
* Load/store instructions are also in bundles of simply two instructions, and
* texture instructions have no bundling.
*
* -------------------------------------------------------------------------
*
*/
/* We create the dependency graph with per-component granularity */
#define COMPONENT_COUNT 8
static void
add_dependency(struct util_dynarray *table, unsigned index, unsigned mask, midgard_instruction **instructions, unsigned child)
{
for (unsigned i = 0; i < COMPONENT_COUNT; ++i) {
if (!(mask & (1 << i)))
continue;
struct util_dynarray *parents = &table[(COMPONENT_COUNT * index) + i];
util_dynarray_foreach(parents, unsigned, parent) {
BITSET_WORD *dependents = instructions[*parent]->dependents;
/* Already have the dependency */
if (BITSET_TEST(dependents, child))
continue;
BITSET_SET(dependents, child);
instructions[child]->nr_dependencies++;
}
}
}
static void
mark_access(struct util_dynarray *table, unsigned index, unsigned mask, unsigned parent)
{
for (unsigned i = 0; i < COMPONENT_COUNT; ++i) {
if (!(mask & (1 << i)))
continue;
util_dynarray_append(&table[(COMPONENT_COUNT * index) + i], unsigned, parent);
}
}
static void
mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count)
{
size_t sz = node_count * COMPONENT_COUNT;
struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz);
struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz);
for (unsigned i = 0; i < sz; ++i) {
util_dynarray_init(&last_read[i], NULL);
util_dynarray_init(&last_write[i], NULL);
}
/* Initialize dependency graph */
for (unsigned i = 0; i < count; ++i) {
instructions[i]->dependents =
calloc(BITSET_WORDS(count), sizeof(BITSET_WORD));
instructions[i]->nr_dependencies = 0;
}
/* Populate dependency graph */
for (signed i = count - 1; i >= 0; --i) {
if (instructions[i]->compact_branch)
continue;
unsigned dest = instructions[i]->dest;
unsigned mask = instructions[i]->mask;
mir_foreach_src((*instructions), s) {
unsigned src = instructions[i]->src[s];
if (src < node_count) {
unsigned readmask = mir_mask_of_read_components(instructions[i], src);
add_dependency(last_write, src, readmask, instructions, i);
}
}
if (dest < node_count) {
add_dependency(last_read, dest, mask, instructions, i);
add_dependency(last_write, dest, mask, instructions, i);
mark_access(last_write, dest, mask, i);
}
mir_foreach_src((*instructions), s) {
unsigned src = instructions[i]->src[s];
if (src < node_count) {
unsigned readmask = mir_mask_of_read_components(instructions[i], src);
mark_access(last_read, src, readmask, i);
}
}
}
/* If there is a branch, all instructions depend on it, as interblock
* execution must be purely in-order */
if (instructions[count - 1]->compact_branch) {
BITSET_WORD *dependents = instructions[count - 1]->dependents;
for (signed i = count - 2; i >= 0; --i) {
if (BITSET_TEST(dependents, i))
continue;
BITSET_SET(dependents, i);
instructions[i]->nr_dependencies++;
}
}
/* Free the intermediate structures */
for (unsigned i = 0; i < sz; ++i) {
util_dynarray_fini(&last_read[i]);
util_dynarray_fini(&last_write[i]);
}
}
/* Does the mask cover more than a scalar? */
static bool
is_single_component_mask(unsigned mask)
{
int components = 0;
for (int c = 0; c < 8; ++c) {
if (mask & (1 << c))
components++;
}
return components == 1;
}
/* Helpers for scheudling */
static bool
mir_is_scalar(midgard_instruction *ains)
{
/* Do we try to use it as a vector op? */
if (!is_single_component_mask(ains->mask))
return false;
/* Otherwise, check mode hazards */
bool could_scalar = true;
/* Only 16/32-bit can run on a scalar unit */
could_scalar &= ains->alu.reg_mode != midgard_reg_mode_8;
could_scalar &= ains->alu.reg_mode != midgard_reg_mode_64;
could_scalar &= ains->alu.dest_override == midgard_dest_override_none;
if (ains->alu.reg_mode == midgard_reg_mode_16) {
/* If we're running in 16-bit mode, we
* can't have any 8-bit sources on the
* scalar unit (since the scalar unit
* doesn't understand 8-bit) */
midgard_vector_alu_src s1 =
vector_alu_from_unsigned(ains->alu.src1);
could_scalar &= !s1.half;
midgard_vector_alu_src s2 =
vector_alu_from_unsigned(ains->alu.src2);
could_scalar &= !s2.half;
}
return could_scalar;
}
/* How many bytes does this ALU instruction add to the bundle? */
static unsigned
bytes_for_instruction(midgard_instruction *ains)
{
if (ains->unit & UNITS_ANY_VECTOR)
return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
else if (ains->unit == ALU_ENAB_BRANCH)
return sizeof(midgard_branch_extended);
else if (ains->compact_branch)
return sizeof(ains->br_compact);
else
return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu);
}
/* We would like to flatten the linked list of midgard_instructions in a bundle
* to an array of pointers on the heap for easy indexing */
static midgard_instruction **
flatten_mir(midgard_block *block, unsigned *len)
{
*len = list_length(&block->instructions);
if (!(*len))
return NULL;
midgard_instruction **instructions =
calloc(sizeof(midgard_instruction *), *len);
unsigned i = 0;
mir_foreach_instr_in_block(block, ins)
instructions[i++] = ins;
return instructions;
}
/* The worklist is the set of instructions that can be scheduled now; that is,
* the set of instructions with no remaining dependencies */
static void
mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count)
{
for (unsigned i = 0; i < count; ++i) {
if (instructions[i]->nr_dependencies == 0)
BITSET_SET(worklist, i);
}
}
/* Update the worklist after an instruction terminates. Remove its edges from
* the graph and if that causes any node to have no dependencies, add it to the
* worklist */
static void
mir_update_worklist(
BITSET_WORD *worklist, unsigned count,
midgard_instruction **instructions, midgard_instruction *done)
{
/* Sanity check: if no instruction terminated, there is nothing to do.
* If the instruction that terminated had dependencies, that makes no
* sense and means we messed up the worklist. Finally, as the purpose
* of this routine is to update dependents, we abort early if there are
* no dependents defined. */
if (!done)
return;
assert(done->nr_dependencies == 0);
if (!done->dependents)
return;
/* We have an instruction with dependents. Iterate each dependent to
* remove one dependency (`done`), adding dependents to the worklist
* where possible. */
unsigned i;
BITSET_WORD tmp;
BITSET_FOREACH_SET(i, tmp, done->dependents, count) {
assert(instructions[i]->nr_dependencies);
if (!(--instructions[i]->nr_dependencies))
BITSET_SET(worklist, i);
}
free(done->dependents);
}
/* While scheduling, we need to choose instructions satisfying certain
* criteria. As we schedule backwards, we choose the *last* instruction in the
* worklist to simulate in-order scheduling. Chosen instructions must satisfy a
* given predicate. */
struct midgard_predicate {
/* TAG or ~0 for dont-care */
unsigned tag;
/* True if we want to pop off the chosen instruction */
bool destructive;
/* For ALU, choose only this unit */
unsigned unit;
/* State for bundle constants. constants is the actual constants
* for the bundle. constant_count is the number of bytes (up to
* 16) currently in use for constants. When picking in destructive
* mode, the constants array will be updated, and the instruction
* will be adjusted to index into the constants array */
uint8_t *constants;
unsigned constant_count;
bool blend_constant;
/* Exclude this destination (if not ~0) */
unsigned exclude;
};
/* For an instruction that can fit, adjust it to fit and update the constants
* array, in destructive mode. Returns whether the fitting was successful. */
static bool
mir_adjust_constants(midgard_instruction *ins,
struct midgard_predicate *pred,
bool destructive)
{
/* Blend constants dominate */
if (ins->has_blend_constant) {
if (pred->constant_count)
return false;
else if (destructive) {
pred->blend_constant = true;
pred->constant_count = 16;
return true;
}
}
/* No constant, nothing to adjust */
if (!ins->has_constants)
return true;
/* TODO: Deduplicate; permit multiple constants within a bundle */
if (destructive && !pred->constant_count) {
if (ins->alu.reg_mode == midgard_reg_mode_16) {
/* TODO: Fix packing XXX */
uint16_t *bundles = (uint16_t *) pred->constants;
uint32_t *constants = (uint32_t *) ins->constants;
/* Copy them wholesale */
for (unsigned i = 0; i < 4; ++i)
bundles[i] = constants[i];
} else {
memcpy(pred->constants, ins->constants, 16);
}
pred->constant_count = 16;
return true;
}
return !pred->constant_count;
}
static midgard_instruction *
mir_choose_instruction(
midgard_instruction **instructions,
BITSET_WORD *worklist, unsigned count,
struct midgard_predicate *predicate)
{
/* Parse the predicate */
unsigned tag = predicate->tag;
bool alu = tag == TAG_ALU_4;
unsigned unit = predicate->unit;
bool branch = alu && (unit == ALU_ENAB_BR_COMPACT);
bool scalar = (unit != ~0) && (unit & UNITS_SCALAR);
/* Iterate to find the best instruction satisfying the predicate */
unsigned i;
BITSET_WORD tmp;
signed best_index = -1;
/* Enforce a simple metric limiting distance to keep down register
* pressure. TOOD: replace with liveness tracking for much better
* results */
unsigned max_active = 0;
unsigned max_distance = 6;
BITSET_FOREACH_SET(i, tmp, worklist, count) {
max_active = MAX2(max_active, i);
}
BITSET_FOREACH_SET(i, tmp, worklist, count) {
if ((max_active - i) >= max_distance)
continue;
if (tag != ~0 && instructions[i]->type != tag)
continue;
if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude)
continue;
if (alu && !branch && !(alu_opcode_props[instructions[i]->alu.op].props & unit))
continue;
if (branch && !instructions[i]->compact_branch)
continue;
if (alu && scalar && !mir_is_scalar(instructions[i]))
continue;
if (alu && !mir_adjust_constants(instructions[i], predicate, false))
continue;
/* Simulate in-order scheduling */
if ((signed) i < best_index)
continue;
best_index = i;
}
/* Did we find anything? */
if (best_index < 0)
return NULL;
/* If we found something, remove it from the worklist */
assert(best_index < count);
if (predicate->destructive) {
BITSET_CLEAR(worklist, best_index);
if (alu)
mir_adjust_constants(instructions[best_index], predicate, true);
}
return instructions[best_index];
}
/* Still, we don't choose instructions in a vacuum. We need a way to choose the
* best bundle type (ALU, load/store, texture). Nondestructive. */
static unsigned
mir_choose_bundle(
midgard_instruction **instructions,
BITSET_WORD *worklist, unsigned count)
{
/* At the moment, our algorithm is very simple - use the bundle of the
* best instruction, regardless of what else could be scheduled
* alongside it. This is not optimal but it works okay for in-order */
struct midgard_predicate predicate = {
.tag = ~0,
.destructive = false,
.exclude = ~0
};
midgard_instruction *chosen = mir_choose_instruction(instructions, worklist, count, &predicate);
if (chosen)
return chosen->type;
else
return ~0;
}
/* We want to choose an ALU instruction filling a given unit */
static void
mir_choose_alu(midgard_instruction **slot,
midgard_instruction **instructions,
BITSET_WORD *worklist, unsigned len,
struct midgard_predicate *predicate,
unsigned unit)
{
/* Did we already schedule to this slot? */
if ((*slot) != NULL)
return;
/* Try to schedule something, if not */
predicate->unit = unit;
*slot = mir_choose_instruction(instructions, worklist, len, predicate);
/* Store unit upon scheduling */
if (*slot && !((*slot)->compact_branch))
(*slot)->unit = unit;
}
/* When we are scheduling a branch/csel, we need the consumed condition in the
* same block as a pipeline register. There are two options to enable this:
*
* - Move the conditional into the bundle. Preferred, but only works if the
* conditional is used only once and is from this block.
* - Copy the conditional.
*
* We search for the conditional. If it's in this block, single-use, and
* without embedded constants, we schedule it immediately. Otherwise, we
* schedule a move for it.
*
* mir_comparison_mobile is a helper to find the moveable condition.
*/
static unsigned
mir_comparison_mobile(
compiler_context *ctx,
midgard_instruction **instructions,
unsigned count,
unsigned cond)
{
if (!mir_single_use(ctx, cond))
return ~0;
unsigned ret = ~0;
for (unsigned i = 0; i < count; ++i) {
if (instructions[i]->dest != cond)
continue;
/* Must fit in an ALU bundle */
if (instructions[i]->type != TAG_ALU_4)
return ~0;
/* We'll need to rewrite to .w but that doesn't work for vector
* ops that don't replicate (ball/bany), so bail there */
if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->alu.op].props))
return ~0;
/* TODO: moving conditionals with constants */
if (instructions[i]->has_constants)
return ~0;
/* Ensure it is written only once */
if (ret != ~0)
return ~0;
else
ret = i;
}
return ret;
}
/* Using the information about the moveable conditional itself, we either pop
* that condition off the worklist for use now, or create a move to
* artificially schedule instead as a fallback */
static midgard_instruction *
mir_schedule_comparison(
compiler_context *ctx,
midgard_instruction **instructions,
BITSET_WORD *worklist, unsigned count,
unsigned cond, bool vector, unsigned swizzle,
midgard_instruction *user)
{
/* TODO: swizzle when scheduling */
unsigned comp_i =
(!vector && (swizzle == 0)) ?
mir_comparison_mobile(ctx, instructions, count, cond) : ~0;
/* If we can, schedule the condition immediately */
if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) {
assert(comp_i < count);
BITSET_CLEAR(worklist, comp_i);
return instructions[comp_i];
}
/* Otherwise, we insert a move */
midgard_vector_alu_src csel = {
.swizzle = swizzle
};
midgard_instruction mov = v_mov(cond, csel, cond);
mov.mask = vector ? 0xF : 0x1;
return mir_insert_instruction_before(ctx, user, mov);
}
/* Most generally, we need instructions writing to r31 in the appropriate
* components */
static midgard_instruction *
mir_schedule_condition(compiler_context *ctx,
struct midgard_predicate *predicate,
BITSET_WORD *worklist, unsigned count,
midgard_instruction **instructions,
midgard_instruction *last)
{
/* For a branch, the condition is the only argument; for csel, third */
bool branch = last->compact_branch;
unsigned condition_index = branch ? 0 : 2;
/* csel_v is vector; otherwise, conditions are scalar */
bool vector = !branch && OP_IS_CSEL_V(last->alu.op);
/* Grab the conditional instruction */
midgard_instruction *cond = mir_schedule_comparison(
ctx, instructions, worklist, count, last->src[condition_index],
vector, last->cond_swizzle, last);
/* We have exclusive reign over this (possibly move) conditional
* instruction. We can rewrite into a pipeline conditional register */
predicate->exclude = cond->dest;
cond->dest = SSA_FIXED_REGISTER(31);
if (!vector) {
cond->mask = (1 << COMPONENT_W);
mir_foreach_src(cond, s) {
if (cond->src[s] == ~0)
continue;
mir_set_swizzle(cond, s, (mir_get_swizzle(cond, s) << (2*3)) & 0xFF);
}
}
/* Schedule the unit: csel is always in the latter pipeline, so a csel
* condition must be in the former pipeline stage (vmul/sadd),
* depending on scalar/vector of the instruction itself. A branch must
* be written from the latter pipeline stage and a branch condition is
* always scalar, so it is always in smul (exception: ball/bany, which
* will be vadd) */
if (branch)
cond->unit = UNIT_SMUL;
else
cond->unit = vector ? UNIT_VMUL : UNIT_SADD;
return cond;
}
/* Schedules a single bundle of the given type */
static midgard_bundle
mir_schedule_texture(
midgard_instruction **instructions,
BITSET_WORD *worklist, unsigned len)
{
struct midgard_predicate predicate = {
.tag = TAG_TEXTURE_4,
.destructive = true,
.exclude = ~0
};
midgard_instruction *ins =
mir_choose_instruction(instructions, worklist, len, &predicate);
mir_update_worklist(worklist, len, instructions, ins);
struct midgard_bundle out = {
.tag = TAG_TEXTURE_4,
.instruction_count = 1,
.instructions = { ins }
};
return out;
}
static midgard_bundle
mir_schedule_ldst(
midgard_instruction **instructions,
BITSET_WORD *worklist, unsigned len)
{
struct midgard_predicate predicate = {
.tag = TAG_LOAD_STORE_4,
.destructive = true,
.exclude = ~0
};
/* Try to pick two load/store ops. Second not gauranteed to exist */
midgard_instruction *ins =
mir_choose_instruction(instructions, worklist, len, &predicate);
midgard_instruction *pair =
mir_choose_instruction(instructions, worklist, len, &predicate);
struct midgard_bundle out = {
.tag = TAG_LOAD_STORE_4,
.instruction_count = pair ? 2 : 1,
.instructions = { ins, pair }
};
/* We have to update the worklist atomically, since the two
* instructions run concurrently (TODO: verify it's not pipelined) */
mir_update_worklist(worklist, len, instructions, ins);
mir_update_worklist(worklist, len, instructions, pair);
return out;
}
static midgard_bundle
mir_schedule_alu(
compiler_context *ctx,
midgard_instruction **instructions,
BITSET_WORD *worklist, unsigned len)
{
struct midgard_bundle bundle = {};
unsigned bytes_emitted = sizeof(bundle.control);
struct midgard_predicate predicate = {
.tag = TAG_ALU_4,
.destructive = true,
.exclude = ~0,
.constants = (uint8_t *) bundle.constants
};
midgard_instruction *vmul = NULL;
midgard_instruction *vadd = NULL;
midgard_instruction *vlut = NULL;
midgard_instruction *smul = NULL;
midgard_instruction *sadd = NULL;
midgard_instruction *branch = NULL;
mir_choose_alu(&branch, instructions, worklist, len, &predicate, ALU_ENAB_BR_COMPACT);
mir_update_worklist(worklist, len, instructions, branch);
bool writeout = branch && branch->writeout;
if (branch && !branch->prepacked_branch && branch->branch.conditional) {
midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch);
if (cond->unit == UNIT_VADD)
vadd = cond;
else if (cond->unit == UNIT_SMUL)
smul = cond;
else
unreachable("Bad condition");
}
mir_choose_alu(&smul, instructions, worklist, len, &predicate, UNIT_SMUL);
if (!writeout)
mir_choose_alu(&vlut, instructions, worklist, len, &predicate, UNIT_VLUT);
mir_choose_alu(&vadd, instructions, worklist, len, &predicate, UNIT_VADD);
mir_update_worklist(worklist, len, instructions, vlut);
mir_update_worklist(worklist, len, instructions, vadd);
mir_update_worklist(worklist, len, instructions, smul);
bool vadd_csel = vadd && OP_IS_CSEL(vadd->alu.op);
bool smul_csel = smul && OP_IS_CSEL(smul->alu.op);
if (vadd_csel || smul_csel) {
midgard_instruction *ins = vadd_csel ? vadd : smul;
midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins);
if (cond->unit == UNIT_VMUL)
vmul = cond;
else if (cond->unit == UNIT_SADD)
sadd = cond;
else
unreachable("Bad condition");
}
/* Stage 2, let's schedule sadd before vmul for writeout */
mir_choose_alu(&sadd, instructions, worklist, len, &predicate, UNIT_SADD);
/* Check if writeout reads its own register */
bool bad_writeout = false;
if (branch && branch->writeout) {
midgard_instruction *stages[] = { sadd, vadd, smul };
unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : branch->src[0];
unsigned writeout_mask = 0x0;
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
if (!stages[i])
continue;
if (stages[i]->dest != src)
continue;
writeout_mask |= stages[i]->mask;
bad_writeout |= mir_has_arg(stages[i], branch->src[0]);
}
/* Add a move if necessary */
if (bad_writeout || writeout_mask != 0xF) {
unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : make_compiler_temp(ctx);
midgard_instruction mov = v_mov(src, blank_alu_src, temp);
vmul = mem_dup(&mov, sizeof(midgard_instruction));
vmul->unit = UNIT_VMUL;
vmul->mask = 0xF ^ writeout_mask;
/* TODO: Don't leak */
/* Rewrite to use our temp */
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
if (stages[i])
mir_rewrite_index_dst_single(stages[i], src, temp);
}
mir_rewrite_index_src_single(branch, src, temp);
}
}
mir_choose_alu(&vmul, instructions, worklist, len, &predicate, UNIT_VMUL);
mir_update_worklist(worklist, len, instructions, vmul);
mir_update_worklist(worklist, len, instructions, sadd);
bundle.has_blend_constant = predicate.blend_constant;
bundle.has_embedded_constants = predicate.constant_count > 0;
unsigned padding = 0;
/* Now that we have finished scheduling, build up the bundle */
midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch };
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
if (stages[i]) {
bundle.control |= stages[i]->unit;
bytes_emitted += bytes_for_instruction(stages[i]);
bundle.instructions[bundle.instruction_count++] = stages[i];
}
}
/* Pad ALU op to nearest word */
if (bytes_emitted & 15) {
padding = 16 - (bytes_emitted & 15);
bytes_emitted += padding;
}
/* Constants must always be quadwords */
if (bundle.has_embedded_constants)
bytes_emitted += 16;
/* Size ALU instruction for tag */
bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
bundle.padding = padding;
bundle.control |= bundle.tag;
return bundle;
}
/* Schedule a single block by iterating its instruction to create bundles.
* While we go, tally about the bundle sizes to compute the block size. */
static void
schedule_block(compiler_context *ctx, midgard_block *block)
{
/* Copy list to dynamic array */
unsigned len = 0;
midgard_instruction **instructions = flatten_mir(block, &len);
if (!len)
return;
/* Calculate dependencies and initial worklist */
unsigned node_count = ctx->temp_count + 1;
mir_create_dependency_graph(instructions, len, node_count);
/* Allocate the worklist */
size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD);
BITSET_WORD *worklist = calloc(sz, 1);
mir_initialize_worklist(worklist, instructions, len);
struct util_dynarray bundles;
util_dynarray_init(&bundles, NULL);
block->quadword_count = 0;
unsigned blend_offset = 0;
for (;;) {
unsigned tag = mir_choose_bundle(instructions, worklist, len);
midgard_bundle bundle;
if (tag == TAG_TEXTURE_4)
bundle = mir_schedule_texture(instructions, worklist, len);
else if (tag == TAG_LOAD_STORE_4)
bundle = mir_schedule_ldst(instructions, worklist, len);
else if (tag == TAG_ALU_4)
bundle = mir_schedule_alu(ctx, instructions, worklist, len);
else
break;
util_dynarray_append(&bundles, midgard_bundle, bundle);
if (bundle.has_blend_constant)
blend_offset = block->quadword_count;
block->quadword_count += quadword_size(bundle.tag);
}
/* We emitted bundles backwards; copy into the block in reverse-order */
util_dynarray_init(&block->bundles, NULL);
util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) {
util_dynarray_append(&block->bundles, midgard_bundle, *bundle);
}
/* Blend constant was backwards as well. blend_offset if set is
* strictly positive, as an offset of zero would imply constants before
* any instructions which is invalid in Midgard */
if (blend_offset)
ctx->blend_constant_offset = ((ctx->quadword_count + block->quadword_count) - blend_offset - 1) * 0x10;
block->is_scheduled = true;
ctx->quadword_count += block->quadword_count;
/* Reorder instructions to match bundled. First remove existing
* instructions and then recreate the list */
mir_foreach_instr_in_block_safe(block, ins) {
list_del(&ins->link);
}
mir_foreach_instr_in_block_scheduled_rev(block, ins) {
list_add(&ins->link, &block->instructions);
}
}
/* When we're 'squeezing down' the values in the IR, we maintain a hash
* as such */
static unsigned
find_or_allocate_temp(compiler_context *ctx, unsigned hash)
{
if (hash >= SSA_FIXED_MINIMUM)
return hash;
unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(
ctx->hash_to_temp, hash + 1);
if (temp)
return temp - 1;
/* If no temp is find, allocate one */
temp = ctx->temp_count++;
ctx->max_hash = MAX2(ctx->max_hash, hash);
_mesa_hash_table_u64_insert(ctx->hash_to_temp,
hash + 1, (void *) ((uintptr_t) temp + 1));
return temp;
}
/* Reassigns numbering to get rid of gaps in the indices */
static void
mir_squeeze_index(compiler_context *ctx)
{
/* Reset */
ctx->temp_count = 0;
/* TODO don't leak old hash_to_temp */
ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
mir_foreach_instr_global(ctx, ins) {
ins->dest = find_or_allocate_temp(ctx, ins->dest);
for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i)
ins->src[i] = find_or_allocate_temp(ctx, ins->src[i]);
}
}
static midgard_instruction
v_load_store_scratch(
unsigned srcdest,
unsigned index,
bool is_store,
unsigned mask)
{
/* We index by 32-bit vec4s */
unsigned byte = (index * 4 * 4);
midgard_instruction ins = {
.type = TAG_LOAD_STORE_4,
.mask = mask,
.dest = ~0,
.src = { ~0, ~0, ~0 },
.load_store = {
.op = is_store ? midgard_op_st_int4 : midgard_op_ld_int4,
.swizzle = SWIZZLE_XYZW,
/* For register spilling - to thread local storage */
.arg_1 = 0xEA,
.arg_2 = 0x1E,
/* Splattered across, TODO combine logically */
.varying_parameters = (byte & 0x1FF) << 1,
.address = (byte >> 9)
},
/* If we spill an unspill, RA goes into an infinite loop */
.no_spill = true
};
if (is_store) {
/* r0 = r26, r1 = r27 */
assert(srcdest == SSA_FIXED_REGISTER(26) || srcdest == SSA_FIXED_REGISTER(27));
ins.src[0] = srcdest;
} else {
ins.dest = srcdest;
}
return ins;
}
/* If register allocation fails, find the best spill node and spill it to fix
* whatever the issue was. This spill node could be a work register (spilling
* to thread local storage), but it could also simply be a special register
* that needs to spill to become a work register. */
static void mir_spill_register(
compiler_context *ctx,
struct ra_graph *g,
unsigned *spill_count)
{
unsigned spill_index = ctx->temp_count;
/* Our first step is to calculate spill cost to figure out the best
* spill node. All nodes are equal in spill cost, but we can't spill
* nodes written to from an unspill */
for (unsigned i = 0; i < ctx->temp_count; ++i) {
ra_set_node_spill_cost(g, i, 1.0);
}
/* We can't spill any bundles that contain unspills. This could be
* optimized to allow use of r27 to spill twice per bundle, but if
* you're at the point of optimizing spilling, it's too late. */
mir_foreach_block(ctx, block) {
mir_foreach_bundle_in_block(block, bun) {
bool no_spill = false;
for (unsigned i = 0; i < bun->instruction_count; ++i)
no_spill |= bun->instructions[i]->no_spill;
if (!no_spill)
continue;
for (unsigned i = 0; i < bun->instruction_count; ++i) {
unsigned dest = bun->instructions[i]->dest;
if (dest < ctx->temp_count)
ra_set_node_spill_cost(g, dest, -1.0);
}
}
}
int spill_node = ra_get_best_spill_node(g);
if (spill_node < 0) {
mir_print_shader(ctx);
assert(0);
}
/* We have a spill node, so check the class. Work registers
* legitimately spill to TLS, but special registers just spill to work
* registers */
unsigned class = ra_get_node_class(g, spill_node);
bool is_special = (class >> 2) != REG_CLASS_WORK;
bool is_special_w = (class >> 2) == REG_CLASS_TEXW;
/* Allocate TLS slot (maybe) */
unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
/* For TLS, replace all stores to the spilled node. For
* special reads, just keep as-is; the class will be demoted
* implicitly. For special writes, spill to a work register */
if (!is_special || is_special_w) {
if (is_special_w)
spill_slot = spill_index++;
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block_safe(block, ins) {
if (ins->dest != spill_node) continue;
midgard_instruction st;
if (is_special_w) {
st = v_mov(spill_node, blank_alu_src, spill_slot);
st.no_spill = true;
} else {
ins->dest = SSA_FIXED_REGISTER(26);
ins->no_spill = true;
st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask);
}
/* Hint: don't rewrite this node */
st.hint = true;
mir_insert_instruction_after_scheduled(ctx, block, ins, st);
if (!is_special)
ctx->spills++;
}
}
}
/* For special reads, figure out how many components we need */
unsigned read_mask = 0;
mir_foreach_instr_global_safe(ctx, ins) {
read_mask |= mir_mask_of_read_components(ins, spill_node);
}
/* Insert a load from TLS before the first consecutive
* use of the node, rewriting to use spilled indices to
* break up the live range. Or, for special, insert a
* move. Ironically the latter *increases* register
* pressure, but the two uses of the spilling mechanism
* are somewhat orthogonal. (special spilling is to use
* work registers to back special registers; TLS
* spilling is to use memory to back work registers) */
mir_foreach_block(ctx, block) {
bool consecutive_skip = false;
unsigned consecutive_index = 0;
mir_foreach_instr_in_block(block, ins) {
/* We can't rewrite the moves used to spill in the
* first place. These moves are hinted. */
if (ins->hint) continue;
if (!mir_has_arg(ins, spill_node)) {
consecutive_skip = false;
continue;
}
if (consecutive_skip) {
/* Rewrite */
mir_rewrite_index_src_single(ins, spill_node, consecutive_index);
continue;
}
if (!is_special_w) {
consecutive_index = ++spill_index;
midgard_instruction *before = ins;
/* For a csel, go back one more not to break up the bundle */
if (ins->type == TAG_ALU_4 && OP_IS_CSEL(ins->alu.op))
before = mir_prev_op(before);
midgard_instruction st;
if (is_special) {
/* Move */
st = v_mov(spill_node, blank_alu_src, consecutive_index);
st.no_spill = true;
} else {
/* TLS load */
st = v_load_store_scratch(consecutive_index, spill_slot, false, 0xF);
}
/* Mask the load based on the component count
* actually needed to prvent RA loops */
st.mask = read_mask;
mir_insert_instruction_before_scheduled(ctx, block, before, st);
// consecutive_skip = true;
} else {
/* Special writes already have their move spilled in */
consecutive_index = spill_slot;
}
/* Rewrite to use */
mir_rewrite_index_src_single(ins, spill_node, consecutive_index);
if (!is_special)
ctx->fills++;
}
}
/* Reset hints */
mir_foreach_instr_global(ctx, ins) {
ins->hint = false;
}
}
void
schedule_program(compiler_context *ctx)
{
struct ra_graph *g = NULL;
bool spilled = false;
int iter_count = 1000; /* max iterations */
/* Number of 128-bit slots in memory we've spilled into */
unsigned spill_count = 0;
midgard_promote_uniforms(ctx, 16);
/* Must be lowered right before RA */
mir_squeeze_index(ctx);
mir_lower_special_reads(ctx);
mir_squeeze_index(ctx);
/* Lowering can introduce some dead moves */
mir_foreach_block(ctx, block) {
midgard_opt_dead_move_eliminate(ctx, block);
schedule_block(ctx, block);
}
mir_create_pipeline_registers(ctx);
do {
if (spilled)
mir_spill_register(ctx, g, &spill_count);
mir_squeeze_index(ctx);
g = NULL;
g = allocate_registers(ctx, &spilled);
} while(spilled && ((iter_count--) > 0));
if (iter_count <= 0) {
fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
assert(0);
}
/* Report spilling information. spill_count is in 128-bit slots (vec4 x
* fp32), but tls_size is in bytes, so multiply by 16 */
ctx->tls_size = spill_count * 16;
install_registers(ctx, g);
}