blob: 235cac4e30e6a0e26e3fd855af4a93c0473d4e3b [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <algorithm>
#include <array>
#include <map>
#include "ac_shader_util.h"
#include "aco_ir.h"
#include "aco_builder.h"
#include "aco_interface.h"
#include "aco_instruction_selection_setup.cpp"
#include "util/fast_idiv_by_const.h"
namespace aco {
namespace {
class loop_info_RAII {
isel_context* ctx;
unsigned header_idx_old;
Block* exit_old;
bool divergent_cont_old;
bool divergent_branch_old;
bool divergent_if_old;
public:
loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
: ctx(ctx),
header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
divergent_if_old(ctx->cf_info.parent_if.is_divergent)
{
ctx->cf_info.parent_loop.header_idx = loop_header_idx;
ctx->cf_info.parent_loop.exit = loop_exit;
ctx->cf_info.parent_loop.has_divergent_continue = false;
ctx->cf_info.parent_loop.has_divergent_branch = false;
ctx->cf_info.parent_if.is_divergent = false;
ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
}
~loop_info_RAII()
{
ctx->cf_info.parent_loop.header_idx = header_idx_old;
ctx->cf_info.parent_loop.exit = exit_old;
ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
ctx->cf_info.parent_if.is_divergent = divergent_if_old;
ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty = false;
}
};
struct if_context {
Temp cond;
bool divergent_old;
bool exec_potentially_empty_old;
unsigned BB_if_idx;
unsigned invert_idx;
bool then_branch_divergent;
Block BB_invert;
Block BB_endif;
};
static void visit_cf_list(struct isel_context *ctx,
struct exec_list *list);
static void add_logical_edge(unsigned pred_idx, Block *succ)
{
succ->logical_preds.emplace_back(pred_idx);
}
static void add_linear_edge(unsigned pred_idx, Block *succ)
{
succ->linear_preds.emplace_back(pred_idx);
}
static void add_edge(unsigned pred_idx, Block *succ)
{
add_logical_edge(pred_idx, succ);
add_linear_edge(pred_idx, succ);
}
static void append_logical_start(Block *b)
{
Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
}
static void append_logical_end(Block *b)
{
Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
}
Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
{
assert(ctx->allocated[def->index].id());
return ctx->allocated[def->index];
}
Temp emit_mbcnt(isel_context *ctx, Definition dst,
Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
{
Builder bld(ctx->program, ctx->block);
Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
if (ctx->program->wave_size == 32) {
return thread_id_lo;
} else {
Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
return thread_id_hi;
}
}
Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
{
Builder bld(ctx->program, ctx->block);
if (!dst.id())
dst = bld.tmp(src.regClass());
assert(src.size() == dst.size());
if (ctx->stage != fragment_fs) {
if (!dst.id())
return src;
bld.copy(Definition(dst), src);
return dst;
}
bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
ctx->program->needs_wqm |= program_needs_wqm;
return dst;
}
static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
{
if (index.regClass() == s1)
return bld.readlane(bld.def(s1), data, index);
Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
/* Currently not implemented on GFX6-7 */
assert(ctx->options->chip_class >= GFX8);
if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
}
/* GFX10, wave64 mode:
* The bpermute instruction is limited to half-wave operation, which means that it can't
* properly support subgroup shuffle like older generations (or wave32 mode), so we
* emulate it here.
*/
if (!ctx->has_gfx10_wave64_bpermute) {
ctx->has_gfx10_wave64_bpermute = true;
ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
}
Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
}
Temp as_vgpr(isel_context *ctx, Temp val)
{
if (val.type() == RegType::sgpr) {
Builder bld(ctx->program, ctx->block);
return bld.copy(bld.def(RegType::vgpr, val.size()), val);
}
assert(val.type() == RegType::vgpr);
return val;
}
//assumes a != 0xffffffff
void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
{
assert(b != 0);
Builder bld(ctx->program, ctx->block);
if (util_is_power_of_two_or_zero(b)) {
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
return;
}
util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
assert(info.multiplier <= 0xffffffff);
bool pre_shift = info.pre_shift != 0;
bool increment = info.increment != 0;
bool multiply = true;
bool post_shift = info.post_shift != 0;
if (!pre_shift && !increment && !multiply && !post_shift) {
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
return;
}
Temp pre_shift_dst = a;
if (pre_shift) {
pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
}
Temp increment_dst = pre_shift_dst;
if (increment) {
increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
}
Temp multiply_dst = increment_dst;
if (multiply) {
multiply_dst = post_shift ? bld.tmp(v1) : dst;
bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
}
if (post_shift) {
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
}
}
void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
{
Builder bld(ctx->program, ctx->block);
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
}
Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
{
/* no need to extract the whole vector */
if (src.regClass() == dst_rc) {
assert(idx == 0);
return src;
}
assert(src.size() > idx);
Builder bld(ctx->program, ctx->block);
auto it = ctx->allocated_vec.find(src.id());
/* the size check needs to be early because elements other than 0 may be garbage */
if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
if (it->second[idx].regClass() == dst_rc) {
return it->second[idx];
} else {
assert(dst_rc.size() == it->second[idx].regClass().size());
assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
return bld.copy(bld.def(dst_rc), it->second[idx]);
}
}
if (src.size() == dst_rc.size()) {
assert(idx == 0);
return bld.copy(bld.def(dst_rc), src);
} else {
Temp dst = bld.tmp(dst_rc);
emit_extract_vector(ctx, src, idx, dst);
return dst;
}
}
void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
{
if (num_components == 1)
return;
if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
return;
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
split->operands[0] = Operand(vec_src);
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
for (unsigned i = 0; i < num_components; i++) {
elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
split->definitions[i] = Definition(elems[i]);
}
ctx->block->instructions.emplace_back(std::move(split));
ctx->allocated_vec.emplace(vec_src.id(), elems);
}
/* This vector expansion uses a mask to determine which elements in the new vector
* come from the original vector. The other elements are undefined. */
void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
{
emit_split_vector(ctx, vec_src, util_bitcount(mask));
if (vec_src == dst)
return;
Builder bld(ctx->program, ctx->block);
if (num_components == 1) {
if (dst.type() == RegType::sgpr)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
else
bld.copy(Definition(dst), vec_src);
return;
}
unsigned component_size = dst.size() / num_components;
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
vec->definitions[0] = Definition(dst);
unsigned k = 0;
for (unsigned i = 0; i < num_components; i++) {
if (mask & (1 << i)) {
Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
if (dst.type() == RegType::sgpr)
src = bld.as_uniform(src);
vec->operands[i] = Operand(src);
} else {
vec->operands[i] = Operand(0u);
}
elems[i] = vec->operands[i].getTemp();
}
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
}
Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
{
Builder bld(ctx->program, ctx->block);
if (!dst.id())
dst = bld.tmp(bld.lm);
assert(val.regClass() == s1);
assert(dst.regClass() == bld.lm);
return bld.sop2(Builder::s_cselect, bld.hint_vcc(Definition(dst)), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
}
Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
{
Builder bld(ctx->program, ctx->block);
if (!dst.id())
dst = bld.tmp(s1);
assert(val.regClass() == bld.lm);
assert(dst.regClass() == s1);
/* if we're currently in WQM mode, ensure that the source is also computed in WQM */
Temp tmp = bld.tmp(s1);
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
return emit_wqm(ctx, tmp, dst);
}
Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
{
if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
return get_ssa_temp(ctx, src.src.ssa);
if (src.src.ssa->num_components == size) {
bool identity_swizzle = true;
for (unsigned i = 0; identity_swizzle && i < size; i++) {
if (src.swizzle[i] != i)
identity_swizzle = false;
}
if (identity_swizzle)
return get_ssa_temp(ctx, src.src.ssa);
}
Temp vec = get_ssa_temp(ctx, src.src.ssa);
unsigned elem_size = vec.size() / src.src.ssa->num_components;
assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
assert(vec.size() % elem_size == 0);
RegClass elem_rc = RegClass(vec.type(), elem_size);
if (size == 1) {
return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
} else {
assert(size <= 4);
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
for (unsigned i = 0; i < size; ++i) {
elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
vec_instr->operands[i] = Operand{elems[i]};
}
Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
vec_instr->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec_instr));
ctx->allocated_vec.emplace(dst.id(), elems);
return dst;
}
}
Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
{
if (ptr.size() == 2)
return ptr;
Builder bld(ctx->program, ctx->block);
if (ptr.type() == RegType::vgpr)
ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
ptr, Operand((unsigned)ctx->options->address32_hi));
}
void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
{
aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
sop2->definitions[0] = Definition(dst);
if (writes_scc)
sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
ctx->block->instructions.emplace_back(std::move(sop2));
}
void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
bool commutative, bool swap_srcs=false, bool flush_denorms = false)
{
Builder bld(ctx->program, ctx->block);
Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
if (src1.type() == RegType::sgpr) {
if (commutative && src0.type() == RegType::vgpr) {
Temp t = src0;
src0 = src1;
src1 = t;
} else if (src0.type() == RegType::vgpr &&
op != aco_opcode::v_madmk_f32 &&
op != aco_opcode::v_madak_f32 &&
op != aco_opcode::v_madmk_f16 &&
op != aco_opcode::v_madak_f16) {
/* If the instruction is not commutative, we emit a VOP3A instruction */
bld.vop2_e64(op, Definition(dst), src0, src1);
return;
} else {
src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
}
}
if (flush_denorms && ctx->program->chip_class < GFX9) {
assert(dst.size() == 1);
Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
} else {
bld.vop2(op, Definition(dst), src0, src1);
}
}
void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
bool flush_denorms = false)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
Temp src2 = get_alu_src(ctx, instr->src[2]);
/* ensure that the instruction has at most 1 sgpr operand
* The optimizer will inline constants for us */
if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
src0 = as_vgpr(ctx, src0);
if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
src1 = as_vgpr(ctx, src1);
if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
src2 = as_vgpr(ctx, src2);
Builder bld(ctx->program, ctx->block);
if (flush_denorms && ctx->program->chip_class < GFX9) {
assert(dst.size() == 1);
Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
} else {
bld.vop3(op, Definition(dst), src0, src1, src2);
}
}
void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
{
Builder bld(ctx->program, ctx->block);
bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
}
void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
assert(src0.size() == src1.size());
aco_ptr<Instruction> vopc;
if (src1.type() == RegType::sgpr) {
if (src0.type() == RegType::vgpr) {
/* to swap the operands, we might also have to change the opcode */
switch (op) {
case aco_opcode::v_cmp_lt_f32:
op = aco_opcode::v_cmp_gt_f32;
break;
case aco_opcode::v_cmp_ge_f32:
op = aco_opcode::v_cmp_le_f32;
break;
case aco_opcode::v_cmp_lt_i32:
op = aco_opcode::v_cmp_gt_i32;
break;
case aco_opcode::v_cmp_ge_i32:
op = aco_opcode::v_cmp_le_i32;
break;
case aco_opcode::v_cmp_lt_u32:
op = aco_opcode::v_cmp_gt_u32;
break;
case aco_opcode::v_cmp_ge_u32:
op = aco_opcode::v_cmp_le_u32;
break;
case aco_opcode::v_cmp_lt_f64:
op = aco_opcode::v_cmp_gt_f64;
break;
case aco_opcode::v_cmp_ge_f64:
op = aco_opcode::v_cmp_le_f64;
break;
case aco_opcode::v_cmp_lt_i64:
op = aco_opcode::v_cmp_gt_i64;
break;
case aco_opcode::v_cmp_ge_i64:
op = aco_opcode::v_cmp_le_i64;
break;
case aco_opcode::v_cmp_lt_u64:
op = aco_opcode::v_cmp_gt_u64;
break;
case aco_opcode::v_cmp_ge_u64:
op = aco_opcode::v_cmp_le_u64;
break;
default: /* eq and ne are commutative */
break;
}
Temp t = src0;
src0 = src1;
src1 = t;
} else {
src1 = as_vgpr(ctx, src1);
}
}
Builder bld(ctx->program, ctx->block);
bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
}
void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
Builder bld(ctx->program, ctx->block);
assert(dst.regClass() == bld.lm);
assert(src0.type() == RegType::sgpr);
assert(src1.type() == RegType::sgpr);
assert(src0.regClass() == src1.regClass());
/* Emit the SALU comparison instruction */
Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
/* Turn the result into a per-lane bool */
bool_to_vector_condition(ctx, cmp, dst);
}
void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
{
aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
bool use_valu = s_op == aco_opcode::num_opcodes ||
divergent_vals ||
ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
aco_opcode op = use_valu ? v_op : s_op;
assert(op != aco_opcode::num_opcodes);
assert(dst.regClass() == ctx->program->lane_mask);
if (use_valu)
emit_vopc_instruction(ctx, instr, op, dst);
else
emit_sopc_instruction(ctx, instr, op, dst);
}
void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
assert(dst.regClass() == bld.lm);
assert(src0.regClass() == bld.lm);
assert(src1.regClass() == bld.lm);
bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
}
void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Temp cond = get_alu_src(ctx, instr->src[0]);
Temp then = get_alu_src(ctx, instr->src[1]);
Temp els = get_alu_src(ctx, instr->src[2]);
assert(cond.regClass() == bld.lm);
if (dst.type() == RegType::vgpr) {
aco_ptr<Instruction> bcsel;
if (dst.size() == 1) {
then = as_vgpr(ctx, then);
els = as_vgpr(ctx, els);
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
} else if (dst.size() == 2) {
Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
return;
}
if (instr->dest.dest.ssa.bit_size == 1) {
assert(dst.regClass() == bld.lm);
assert(then.regClass() == bld.lm);
assert(els.regClass() == bld.lm);
}
if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
if (dst.regClass() == s1 || dst.regClass() == s2) {
assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
assert(dst.size() == then.size());
aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
} else {
fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
return;
}
/* divergent boolean bcsel
* this implements bcsel on bools: dst = s0 ? s1 : s2
* are going to be: dst = (s0 & s1) | (~s0 & s2) */
assert(instr->dest.dest.ssa.bit_size == 1);
if (cond.id() != then.id())
then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
if (cond.id() == els.id())
bld.sop1(Builder::s_mov, Definition(dst), then);
else
bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
}
void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
aco_opcode op, uint32_t undo)
{
/* multiply by 16777216 to handle denormals */
Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
scaled = bld.vop1(op, bld.def(v1), scaled);
scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
Temp not_scaled = bld.vop1(op, bld.def(v1), val);
bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
}
void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_rcp_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
}
void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_rsq_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
}
void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
}
void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_log_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
}
void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
{
if (!instr->dest.dest.is_ssa) {
fprintf(stderr, "nir alu dst not in ssa: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
switch(instr->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4: {
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
elems[i] = get_alu_src(ctx, instr->src[i]);
vec->operands[i] = Operand{elems[i]};
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
break;
}
case nir_op_mov: {
Temp src = get_alu_src(ctx, instr->src[0]);
aco_ptr<Instruction> mov;
if (dst.type() == RegType::sgpr) {
if (src.type() == RegType::vgpr)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
else if (src.regClass() == s1)
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
else if (src.regClass() == s2)
bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
else
unreachable("wrong src register class for nir_op_imov");
} else if (dst.regClass() == v1) {
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
} else if (dst.regClass() == v2) {
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
} else {
nir_print_instr(&instr->instr, stderr);
unreachable("Should have been lowered to scalar.");
}
break;
}
case nir_op_inot: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->dest.dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
/* Don't use s_andn2 here, this allows the optimizer to make a better decision */
Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
} else if (dst.type() == RegType::sgpr) {
aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ineg: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v1) {
bld.vsub32(Definition(dst), Operand(0u), Operand(src));
} else if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
} else if (dst.size() == 2) {
Temp src0 = bld.tmp(dst.type(), 1);
Temp src1 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
Temp lower = bld.tmp(v1);
Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
}
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_iabs: {
if (dst.regClass() == s1) {
bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v1) {
Temp src = get_alu_src(ctx, instr->src[0]);
bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_isign: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == s1) {
Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
} else if (dst.regClass() == s2) {
Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
Temp neqz;
if (ctx->program->chip_class >= GFX8)
neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
else
neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
/* SCC gets zero-extended to 64 bit */
bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
} else if (dst.regClass() == v1) {
Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
} else if (dst.regClass() == v2) {
Temp upper = emit_extract_vector(ctx, src, 1, v1);
Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_imax: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_umax: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_imin: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_umin: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ior: {
if (instr->dest.dest.ssa.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_or, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_iand: {
if (instr->dest.dest.ssa.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_and, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ixor: {
if (instr->dest.dest.ssa.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ushr: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ishl: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ishr: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_find_lsb: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
} else if (src.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
} else if (src.regClass() == s2) {
bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ufind_msb:
case nir_op_ifind_msb: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1 || src.regClass() == s2) {
aco_opcode op = src.regClass() == s2 ?
(instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
(instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
Temp msb_rev = bld.sop1(op, bld.def(s1), src);
Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
Operand(src.size() * 32u - 1u), msb_rev);
Temp msb = sub.def(0).getTemp();
Temp carry = sub.def(1).getTemp();
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
} else if (src.regClass() == v1) {
aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
Temp msb_rev = bld.tmp(v1);
emit_vop1_instruction(ctx, instr, op, msb_rev);
Temp msb = bld.tmp(v1);
Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_bitfield_reverse: {
if (dst.regClass() == s1) {
bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v1) {
bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_iadd: {
if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v1) {
bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
break;
}
assert(src0.size() == 2 && src1.size() == 2);
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else if (dst.regClass() == v2) {
Temp dst0 = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_uadd_sat: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
src0, src1);
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
} else if (dst.regClass() == v1) {
if (ctx->options->chip_class >= GFX9) {
aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
add->operands[0] = Operand(src0);
add->operands[1] = Operand(src1);
add->definitions[0] = Definition(dst);
add->clamp = 1;
ctx->block->instructions.emplace_back(std::move(add));
} else {
if (src1.regClass() != v1)
std::swap(src0, src1);
assert(src1.regClass() == v1);
Temp tmp = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
}
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_uadd_carry: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
break;
}
if (dst.regClass() == v1) {
Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
} else if (dst.regClass() == v2) {
Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_isub: {
if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v1) {
bld.vsub32(Definition(dst), src0, src1);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else if (dst.regClass() == v2) {
Temp lower = bld.tmp(v1);
Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_usub_borrow: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
break;
} else if (dst.regClass() == v1) {
Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp borrow = bld.tmp(s1);
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
} else if (dst.regClass() == v2) {
Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_imul: {
if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_umul_high: {
if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_imul_high: {
if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fmul: {
if (dst.size() == 1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
} else if (dst.size() == 2) {
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fadd: {
if (dst.size() == 1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
} else if (dst.size() == 2) {
bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fsub: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.size() == 1) {
if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
else
emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
} else if (dst.size() == 2) {
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
sub->neg[1] = true;
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fmax: {
if (dst.size() == 1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
} else if (dst.size() == 2) {
if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
} else {
bld.vop3(aco_opcode::v_max_f64, Definition(dst),
get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
}
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fmin: {
if (dst.size() == 1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
} else if (dst.size() == 2) {
if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
} else {
bld.vop3(aco_opcode::v_min_f64, Definition(dst),
get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
}
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fmax3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fmin3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fmed3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_umax3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_umin3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_umed3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_imax3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_imin3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_imed3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_cube_face_coord: {
Temp in = get_alu_src(ctx, instr->src[0], 3);
Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
emit_extract_vector(ctx, in, 1, v1),
emit_extract_vector(ctx, in, 2, v1) };
Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
break;
}
case nir_op_cube_face_index: {
Temp in = get_alu_src(ctx, instr->src[0], 3);
Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
emit_extract_vector(ctx, in, 1, v1),
emit_extract_vector(ctx, in, 2, v1) };
bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
break;
}
case nir_op_bcsel: {
emit_bcsel(ctx, instr, dst);
break;
}
case nir_op_frsq: {
if (dst.size() == 1) {
emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else if (dst.size() == 2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fneg: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.size() == 1) {
if (ctx->block->fp_mode.must_flush_denorms32)
src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
} else if (dst.size() == 2) {
if (ctx->block->fp_mode.must_flush_denorms16_64)
src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fabs: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.size() == 1) {
if (ctx->block->fp_mode.must_flush_denorms32)
src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
} else if (dst.size() == 2) {
if (ctx->block->fp_mode.must_flush_denorms16_64)
src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fsat: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.size() == 1) {
bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
/* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
// TODO: confirm that this holds under any circumstances
} else if (dst.size() == 2) {
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
vop3->clamp = true;
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_flog2: {
if (dst.size() == 1) {
emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_frcp: {
if (dst.size() == 1) {
emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else if (dst.size() == 2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fexp2: {
if (dst.size() == 1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fsqrt: {
if (dst.size() == 1) {
emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else if (dst.size() == 2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ffract: {
if (dst.size() == 1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
} else if (dst.size() == 2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ffloor: {
if (dst.size() == 1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
} else if (dst.size() == 2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fceil: {
if (dst.size() == 1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
} else if (dst.size() == 2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ftrunc: {
if (dst.size() == 1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
} else if (dst.size() == 2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fround_even: {
if (dst.size() == 1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
} else if (dst.size() == 2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fsin:
case nir_op_fcos: {
Temp src = get_alu_src(ctx, instr->src[0]);
aco_ptr<Instruction> norm;
if (dst.size() == 1) {
Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
/* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
if (ctx->options->chip_class < GFX9)
tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
bld.vop1(opcode, Definition(dst), tmp);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ldexp: {
if (dst.size() == 1) {
bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
get_alu_src(ctx, instr->src[1]));
} else if (dst.size() == 2) {
bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
get_alu_src(ctx, instr->src[1]));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_frexp_sig: {
if (dst.size() == 1) {
bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
get_alu_src(ctx, instr->src[0]));
} else if (dst.size() == 2) {
bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
get_alu_src(ctx, instr->src[0]));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_frexp_exp: {
if (instr->src[0].src.ssa->bit_size == 32) {
bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
get_alu_src(ctx, instr->src[0]));
} else if (instr->src[0].src.ssa->bit_size == 64) {
bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
get_alu_src(ctx, instr->src[0]));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fsign: {
Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
if (dst.size() == 1) {
Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
} else if (dst.size() == 2) {
Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_f2f32: {
if (instr->src[0].src.ssa->bit_size == 64) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_f2f64: {
if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_i2f32: {
assert(dst.size() == 1);
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
break;
}
case nir_op_i2f64: {
if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
Temp src = get_alu_src(ctx, instr->src[0]);
RegClass rc = RegClass(src.type(), 1);
Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_u2f32: {
assert(dst.size() == 1);
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
break;
}
case nir_op_u2f64: {
if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
Temp src = get_alu_src(ctx, instr->src[0]);
RegClass rc = RegClass(src.type(), 1);
Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_f2i32: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 32) {
if (dst.type() == RegType::vgpr)
bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
else
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
} else if (instr->src[0].src.ssa->bit_size == 64) {
if (dst.type() == RegType::vgpr)
bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
else
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_f2u32: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 32) {
if (dst.type() == RegType::vgpr)
bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
else
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
} else if (instr->src[0].src.ssa->bit_size == 64) {
if (dst.type() == RegType::vgpr)
bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
else
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_f2i64: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
Temp new_exponent = bld.tmp(v1);
Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
if (ctx->program->chip_class >= GFX8)
mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
else
mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
Temp new_lower = bld.tmp(v1);
borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
} else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
if (src.type() == RegType::vgpr)
src = bld.as_uniform(src);
Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
Temp borrow = bld.tmp(s1);
lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else if (instr->src[0].src.ssa->bit_size == 64) {
Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
if (dst.type() == RegType::sgpr) {
lower = bld.as_uniform(lower);
upper = bld.as_uniform(upper);
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_f2u64: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
Temp new_exponent = bld.tmp(v1);
Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
if (ctx->program->chip_class >= GFX8)
mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
else
mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
if (src.type() == RegType::vgpr)
src = bld.as_uniform(src);
Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else if (instr->src[0].src.ssa->bit_size == 64) {
Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
if (dst.type() == RegType::sgpr) {
lower = bld.as_uniform(lower);
upper = bld.as_uniform(upper);
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_b2f32: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s1) {
src = bool_to_scalar_condition(ctx, src);
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
} else if (dst.regClass() == v1) {
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
} else {
unreachable("Wrong destination register class for nir_op_b2f32.");
}
break;
}
case nir_op_b2f64: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s2) {
src = bool_to_scalar_condition(ctx, src);
bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
} else if (dst.regClass() == v2) {
Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
} else {
unreachable("Wrong destination register class for nir_op_b2f64.");
}
break;
}
case nir_op_i2i32: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 64) {
/* we can actually just say dst = src, as it would map the lower register */
emit_extract_vector(ctx, src, 0, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_u2u32: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16) {
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
} else {
// TODO: do better with SDWA
bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
}
} else if (instr->src[0].src.ssa->bit_size == 64) {
/* we can actually just say dst = src, as it would map the lower register */
emit_extract_vector(ctx, src, 0, dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_i2i64: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1) {
Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
} else if (src.regClass() == v1) {
Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_u2u64: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 32) {
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_b2i32: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s1) {
// TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
bool_to_scalar_condition(ctx, src, dst);
} else if (dst.regClass() == v1) {
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
} else {
unreachable("Invalid register class for b2i32");
}
break;
}
case nir_op_i2b1: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(dst.regClass() == bld.lm);
if (src.type() == RegType::vgpr) {
assert(src.regClass() == v1 || src.regClass() == v2);
assert(dst.regClass() == bld.lm);
bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
Definition(dst), Operand(0u), src).def(0).setHint(vcc);
} else {
assert(src.regClass() == s1 || src.regClass() == s2);
Temp tmp;
if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
} else {
tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
bld.scc(bld.def(s1)), Operand(0u), src);
}
bool_to_vector_condition(ctx, tmp, dst);
}
break;
}
case nir_op_pack_64_2x32_split: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
break;
}
case nir_op_unpack_64_2x32_split_x:
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
break;
case nir_op_unpack_64_2x32_split_y:
bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
break;
case nir_op_pack_half_2x16: {
Temp src = get_alu_src(ctx, instr->src[0], 2);
if (dst.regClass() == v1) {
Temp src0 = bld.tmp(v1);
Temp src1 = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
else
bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_unpack_half_2x16_split_x: {
if (dst.regClass() == v1) {
Builder bld(ctx->program, ctx->block);
bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_unpack_half_2x16_split_y: {
if (dst.regClass() == v1) {
Builder bld(ctx->program, ctx->block);
/* TODO: use SDWA here */
bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_fquantize2f16: {
Temp src = get_alu_src(ctx, instr->src[0]);
Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
Temp f32, cmp_res;
if (ctx->program->chip_class >= GFX8) {
Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
} else {
/* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
* so compare the result and flush to 0 if it's smaller.
*/
f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
cmp_res = vop3->definitions[0].getTemp();
}
if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
} else {
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
}
break;
}
case nir_op_bfm: {
Temp bits = get_alu_src(ctx, instr->src[0]);
Temp offset = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_bitfield_select: {
/* (mask & insert) | (~mask & base) */
Temp bitmask = get_alu_src(ctx, instr->src[0]);
Temp insert = get_alu_src(ctx, instr->src[1]);
Temp base = get_alu_src(ctx, instr->src[2]);
/* dst = (insert & bitmask) | (base & ~bitmask) */
if (dst.regClass() == s1) {
aco_ptr<Instruction> sop2;
nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
Operand lhs;
if (const_insert && const_bitmask) {
lhs = Operand(const_insert->u32 & const_bitmask->u32);
} else {
insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
lhs = Operand(insert);
}
Operand rhs;
nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
if (const_base && const_bitmask) {
rhs = Operand(const_base->u32 & ~const_bitmask->u32);
} else {
base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
rhs = Operand(base);
}
bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
} else if (dst.regClass() == v1) {
if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
base = as_vgpr(ctx, base);
if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
insert = as_vgpr(ctx, insert);
bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_ubfe:
case nir_op_ibfe: {
Temp base = get_alu_src(ctx, instr->src[0]);
Temp offset = get_alu_src(ctx, instr->src[1]);
Temp bits = get_alu_src(ctx, instr->src[2]);
if (dst.type() == RegType::sgpr) {
Operand extract;
nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
if (const_offset && const_bits) {
uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
extract = Operand(const_extract);
} else {
Operand width;
if (const_bits) {
width = Operand(const_bits->u32 << 16);
} else {
width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
}
extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
}
aco_opcode opcode;
if (dst.regClass() == s1) {
if (instr->op == nir_op_ubfe)
opcode = aco_opcode::s_bfe_u32;
else
opcode = aco_opcode::s_bfe_i32;
} else if (dst.regClass() == s2) {
if (instr->op == nir_op_ubfe)
opcode = aco_opcode::s_bfe_u64;
else
opcode = aco_opcode::s_bfe_i64;
} else {
unreachable("Unsupported BFE bit size");
}
bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
} else {
aco_opcode opcode;
if (dst.regClass() == v1) {
if (instr->op == nir_op_ubfe)
opcode = aco_opcode::v_bfe_u32;
else
opcode = aco_opcode::v_bfe_i32;
} else {
unreachable("Unsupported BFE bit size");
}
emit_vop3a_instruction(ctx, instr, opcode, dst);
}
break;
}
case nir_op_bit_count: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
} else if (src.regClass() == v1) {
bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
} else if (src.regClass() == v2) {
bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
emit_extract_vector(ctx, src, 1, v1),
bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
} else if (src.regClass() == s2) {
bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_op_flt: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
break;
}
case nir_op_fge: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
break;
}
case nir_op_feq: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
break;
}
case nir_op_fne: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
break;
}
case nir_op_ilt: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
break;
}
case nir_op_ige: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
break;
}
case nir_op_ieq: {
if (instr->src[0].src.ssa->bit_size == 1)
emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
else
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
break;
}
case nir_op_ine: {
if (instr->src[0].src.ssa->bit_size == 1)
emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
else
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
break;
}
case nir_op_ult: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
break;
}
case nir_op_uge: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
break;
}
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse: {
Temp src = get_alu_src(ctx, instr->src[0]);
uint16_t dpp_ctrl1, dpp_ctrl2;
if (instr->op == nir_op_fddx_fine) {
dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
} else if (instr->op == nir_op_fddy_fine) {
dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
} else {
dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
else
dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
}
Temp tmp;
if (ctx->program->chip_class >= GFX8) {
Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
} else {
Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
}
emit_wqm(ctx, tmp, dst, true);
break;
}
default:
fprintf(stderr, "Unknown NIR ALU instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
}
void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
// TODO: we really want to have the resulting type as this would allow for 64bit literals
// which get truncated the lsb if double and msb if int
// for now, we only use s_mov_b64 with 64bit inline constants
assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
assert(dst.type() == RegType::sgpr);
Builder bld(ctx->program, ctx->block);
if (instr->def.bit_size == 1) {
assert(dst.regClass() == bld.lm);
int val = instr->value[0].b ? -1 : 0;
Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
bld.sop1(Builder::s_mov, Definition(dst), op);
} else if (dst.size() == 1) {
bld.copy(Definition(dst), Operand(instr->value[0].u32));
} else {
assert(dst.size() != 1);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
if (instr->def.bit_size == 64)
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
else {
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand{instr->value[i].u32};
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
uint32_t widen_mask(uint32_t mask, unsigned multiplier)
{
uint32_t new_mask = 0;
for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
if (mask & (1u << i))
new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
return new_mask;
}
void visit_store_vs_output(isel_context *ctx, nir_intrinsic_instr *instr)
{
/* This wouldn't work inside control flow or with indirect offsets but
* that doesn't happen because of nir_lower_io_to_temporaries(). */
unsigned write_mask = nir_intrinsic_write_mask(instr);
unsigned component = nir_intrinsic_component(instr);
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned idx = nir_intrinsic_base(instr) + component;
nir_instr *off_instr = instr->src[1].ssa->parent_instr;
if (off_instr->type != nir_instr_type_load_const) {
fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
nir_print_instr(off_instr, stderr);
fprintf(stderr, "\n");
}
idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
if (instr->src[0].ssa->bit_size == 64)
write_mask = widen_mask(write_mask, 2);
for (unsigned i = 0; i < 8; ++i) {
if (write_mask & (1 << i)) {
ctx->vs_output.mask[idx / 4u] |= 1 << (idx % 4u);
ctx->vs_output.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
}
idx++;
}
}
void visit_store_fs_output(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
unsigned write_mask = nir_intrinsic_write_mask(instr);
Operand values[4];
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
for (unsigned i = 0; i < 4; ++i) {
if (write_mask & (1 << i)) {
Temp tmp = emit_extract_vector(ctx, src, i, v1);
values[i] = Operand(tmp);
} else {
values[i] = Operand(v1);
}
}
unsigned index = nir_intrinsic_base(instr) / 4;
unsigned target, col_format;
unsigned enabled_channels = 0xF;
aco_opcode compr_op = (aco_opcode)0;
nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
assert(offset && "Non-const offsets on exports not yet supported");
index += offset->u32;
assert(index != FRAG_RESULT_COLOR);
/* Unlike vertex shader exports, it's fine to use multiple exports to
* export separate channels of one target. So shaders which export both
* FRAG_RESULT_SAMPLE_MASK and FRAG_RESULT_DEPTH should work fine.
* TODO: combine the exports in those cases and create better code
*/
if (index == FRAG_RESULT_SAMPLE_MASK) {
if (ctx->program->info->ps.writes_z) {
target = V_008DFC_SQ_EXP_MRTZ;
enabled_channels = 0x4;
col_format = (unsigned) -1;
values[2] = values[0];
values[0] = Operand(v1);
} else {
bld.exp(aco_opcode::exp, Operand(v1), Operand(values[0]), Operand(v1), Operand(v1),
0xc, V_008DFC_SQ_EXP_MRTZ, true);
return;
}
} else if (index == FRAG_RESULT_DEPTH) {
target = V_008DFC_SQ_EXP_MRTZ;
enabled_channels = 0x1;
col_format = (unsigned) -1;
} else if (index == FRAG_RESULT_STENCIL) {
if (ctx->program->info->ps.writes_z) {
target = V_008DFC_SQ_EXP_MRTZ;
enabled_channels = 0x2;
col_format = (unsigned) -1;
values[1] = values[0];
values[0] = Operand(v1);
} else {
values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
bld.exp(aco_opcode::exp, values[0], Operand(v1), Operand(v1), Operand(v1),
0x3, V_008DFC_SQ_EXP_MRTZ, true);
return;
}
} else {
index -= FRAG_RESULT_DATA0;
target = V_008DFC_SQ_EXP_MRT + index;
col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
}
bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
switch (col_format)
{
case V_028714_SPI_SHADER_ZERO:
enabled_channels = 0; /* writemask */
target = V_008DFC_SQ_EXP_NULL;
break;
case V_028714_SPI_SHADER_32_R:
enabled_channels = 1;
break;
case V_028714_SPI_SHADER_32_GR:
enabled_channels = 0x3;
break;
case V_028714_SPI_SHADER_32_AR:
if (ctx->options->chip_class >= GFX10) {
/* Special case: on GFX10, the outputs are different for 32_AR */
enabled_channels = 0x3;
values[1] = values[3];
values[3] = Operand(v1);
} else {
enabled_channels = 0x9;
}
break;
case V_028714_SPI_SHADER_FP16_ABGR:
enabled_channels = 0x5;
compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
break;
case V_028714_SPI_SHADER_UNORM16_ABGR:
enabled_channels = 0x5;
compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
break;
case V_028714_SPI_SHADER_SNORM16_ABGR:
enabled_channels = 0x5;
compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
break;
case V_028714_SPI_SHADER_UINT16_ABGR: {
enabled_channels = 0x5;
compr_op = aco_opcode::v_cvt_pk_u16_u32;
if (is_int8 || is_int10) {
/* clamp */
uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
for (unsigned i = 0; i < 4; i++) {
if ((write_mask >> i) & 1) {
values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
values[i]);
}
}
}
break;
}
case V_028714_SPI_SHADER_SINT16_ABGR:
enabled_channels = 0x5;
compr_op = aco_opcode::v_cvt_pk_i16_i32;
if (is_int8 || is_int10) {
/* clamp */
uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
for (unsigned i = 0; i < 4; i++) {
if ((write_mask >> i) & 1) {
values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
values[i]);
values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
values[i]);
}
}
}
break;
case V_028714_SPI_SHADER_32_ABGR:
enabled_channels = 0xF;
break;
default:
break;
}
if (target == V_008DFC_SQ_EXP_NULL)
return;
if ((bool) compr_op) {
for (int i = 0; i < 2; i++) {
/* check if at least one of the values to be compressed is enabled */
unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
if (enabled) {
enabled_channels |= enabled << (i*2);
values[i] = bld.vop3(compr_op, bld.def(v1),
values[i*2].isUndefined() ? Operand(0u) : values[i*2],
values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
} else {
values[i] = Operand(v1);
}
}
values[2] = Operand(v1);
values[3] = Operand(v1);
} else {
for (int i = 0; i < 4; i++)
values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
}
bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
enabled_channels, target, (bool) compr_op);
}
Operand load_lds_size_m0(isel_context *ctx)
{
/* TODO: m0 does not need to be initialized on GFX9+ */
Builder bld(ctx->program, ctx->block);
return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
}
void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
Temp address, unsigned base_offset, unsigned align)
{
assert(util_is_power_of_two_nonzero(align) && align >= 4);
Builder bld(ctx->program, ctx->block);
Operand m = load_lds_size_m0(ctx);
unsigned num_components = dst.size() * 4u / elem_size_bytes;
unsigned bytes_read = 0;
unsigned result_size = 0;
unsigned total_bytes = num_components * elem_size_bytes;
std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
bool large_ds_read = ctx->options->chip_class >= GFX7;
while (bytes_read < total_bytes) {
unsigned todo = total_bytes - bytes_read;
bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
aco_opcode op = aco_opcode::last_opcode;
bool read2 = false;
if (todo >= 16 && aligned16 && large_ds_read) {
op = aco_opcode::ds_read_b128;
todo = 16;
} else if (todo >= 16 && aligned8) {
op = aco_opcode::ds_read2_b64;
read2 = true;
todo = 16;
} else if (todo >= 12 && aligned16 && large_ds_read) {
op = aco_opcode::ds_read_b96;
todo = 12;
} else if (todo >= 8 && aligned8) {
op = aco_opcode::ds_read_b64;
todo = 8;
} else if (todo >= 8) {
op = aco_opcode::ds_read2_b32;
read2 = true;
todo = 8;
} else if (todo >= 4) {
op = aco_opcode::ds_read_b32;
todo = 4;
} else {
assert(false);
}
assert(todo % elem_size_bytes == 0);
unsigned num_elements = todo / elem_size_bytes;
unsigned offset = base_offset + bytes_read;
unsigned max_offset = read2 ? 1019 : 65535;
Temp address_offset = address;
if (offset > max_offset) {
address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
offset = bytes_read;
}
assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
Temp res;
if (num_components == 1 && dst.type() == RegType::vgpr)
res = dst;
else
res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
if (read2)
res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
else
res = bld.ds(op, Definition(res), address_offset, m, offset);
if (num_components == 1) {
assert(todo == total_bytes);
if (dst.type() == RegType::sgpr)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
return;
}
if (dst.type() == RegType::sgpr) {
Temp new_res = bld.tmp(RegType::sgpr, res.size());
expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
res = new_res;
}
if (num_elements == 1) {
result[result_size++] = res;
} else {
assert(res != dst && res.size() % num_elements == 0);
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
split->operands[0] = Operand(res);
for (unsigned i = 0; i < num_elements; i++)
split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
ctx->block->instructions.emplace_back(std::move(split));
}
bytes_read += todo;
}
assert(result_size == num_components && result_size > 1);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
for (unsigned i = 0; i < result_size; i++)
vec->operands[i] = Operand(result[i]);
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), result);
}
Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
{
if (start == 0 && size == data.size())
return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
unsigned size_hint = 1;
auto it = ctx->allocated_vec.find(data.id());
if (it != ctx->allocated_vec.end())
size_hint = it->second[0].size();
if (size % size_hint || start % size_hint)
size_hint = 1;
start /= size_hint;
size /= size_hint;
Temp elems[size];
for (unsigned i = 0; i < size; i++)
elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
if (size == 1)
return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
for (unsigned i = 0; i < size; i++)
vec->operands[i] = Operand(elems[i]);
Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
vec->definitions[0] = Definition(res);
ctx->block->instructions.emplace_back(std::move(vec));
return res;
}
void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
{
Builder bld(ctx->program, ctx->block);
unsigned bytes_written = 0;
bool large_ds_write = ctx->options->chip_class >= GFX7;
while (bytes_written < total_size * 4) {
unsigned todo = total_size * 4 - bytes_written;
bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
aco_opcode op = aco_opcode::last_opcode;
bool write2 = false;
unsigned size = 0;
if (todo >= 16 && aligned16 && large_ds_write) {
op = aco_opcode::ds_write_b128;
size = 4;
} else if (todo >= 16 && aligned8) {
op = aco_opcode::ds_write2_b64;
write2 = true;
size = 4;
} else if (todo >= 12 && aligned16 && large_ds_write) {
op = aco_opcode::ds_write_b96;
size = 3;
} else if (todo >= 8 && aligned8) {
op = aco_opcode::ds_write_b64;
size = 2;
} else if (todo >= 8) {
op = aco_opcode::ds_write2_b32;
write2 = true;
size = 2;
} else if (todo >= 4) {
op = aco_opcode::ds_write_b32;
size = 1;
} else {
assert(false);
}
unsigned offset = offset0 + offset1 + bytes_written;
unsigned max_offset = write2 ? 1020 : 65535;
Temp address_offset = address;
if (offset > max_offset) {
address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
offset = offset1 + bytes_written;
}
assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
if (write2) {
Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
} else {
Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
bld.ds(op, address_offset, val, m, offset);
}
bytes_written += size * 4;
}
}
void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
Temp address, unsigned base_offset, unsigned align)
{
assert(util_is_power_of_two_nonzero(align) && align >= 4);
Operand m = load_lds_size_m0(ctx);
/* we need at most two stores for 32bit variables */
int start[2], count[2];
u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
assert(wrmask == 0);
/* one combined store is sufficient */
if (count[0] == count[1]) {
Builder bld(ctx->program, ctx->block);
Temp address_offset = address;
if ((base_offset >> 2) + start[1] > 255) {
address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
base_offset = 0;
}
assert(count[0] == 1);
Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
base_offset = base_offset / elem_size_bytes;
bld.ds(op, address_offset, val0, val1, m,
base_offset + start[0], base_offset + start[1]);
return;
}
for (unsigned i = 0; i < 2; i++) {
if (count[i] == 0)
continue;
unsigned elem_size_words = elem_size_bytes / 4;
ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
base_offset, start[i] * elem_size_bytes, align);
}
return;
}
void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
{
if (ctx->stage == vertex_vs) {
visit_store_vs_output(ctx, instr);
} else if (ctx->stage == fragment_fs) {
visit_store_fs_output(ctx, instr);
} else {
unreachable("Shader stage not implemented");
}
}
void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
{
Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
Builder bld(ctx->program, ctx->block);
Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
}
void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
{
aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
for (unsigned i = 0; i < num_components; i++)
vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
assert(num_components == 4);
Builder bld(ctx->program, ctx->block);
vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
}
for (Operand& op : vec->operands)
op = op.isUndefined() ? Operand(0u) : op;
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
emit_split_vector(ctx, dst, num_components);
return;
}
void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned idx = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
if (offset) {
assert(offset->u32 == 0);
} else {
/* the lower 15bit of the prim_mask contain the offset into LDS
* while the upper bits contain the number of prims */
Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
Builder bld(ctx->program, ctx->block);
Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
}
if (instr->dest.ssa.num_components == 1) {
emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
} else {
aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
{
Temp tmp = {ctx->program->allocateId(), v1};
emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
vec->operands[i] = Operand(tmp);
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
unsigned get_num_channels_from_data_format(unsigned data_format)
{
switch (data_format) {
case V_008F0C_BUF_DATA_FORMAT_8:
case V_008F0C_BUF_DATA_FORMAT_16:
case V_008F0C_BUF_DATA_FORMAT_32:
return 1;
case V_008F0C_BUF_DATA_FORMAT_8_8:
case V_008F0C_BUF_DATA_FORMAT_16_16:
case V_008F0C_BUF_DATA_FORMAT_32_32:
return 2;
case V_008F0C_BUF_DATA_FORMAT_10_11_11:
case V_008F0C_BUF_DATA_FORMAT_11_11_10:
case V_008F0C_BUF_DATA_FORMAT_32_32_32:
return 3;
case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
return 4;
default:
break;
}
return 4;
}
/* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
* so we may need to fix it up. */
Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
{
Builder bld(ctx->program, ctx->block);
if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
/* For the integer-like cases, do a natural sign extension.
*
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
* and happen to contain 0, 1, 2, 3 as the two LSBs of the
* exponent.
*/
alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
/* Convert back to the right type. */
if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
} else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
}
return alpha;
}
void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (ctx->stage & sw_vs) {
nir_instr *off_instr = instr->src[0].ssa->parent_instr;
if (off_instr->type != nir_instr_type_load_const) {
fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
nir_print_instr(off_instr, stderr);
fprintf(stderr, "\n");
}
uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
unsigned component = nir_intrinsic_component(instr);
unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
unsigned dfmt = attrib_format & 0xf;
unsigned nfmt = (attrib_format >> 4) & 0x7;
unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
if (post_shuffle)
num_channels = MAX2(num_channels, 3);
Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, Operand(attrib_binding * 16u));
Temp index;
if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
if (divisor) {
ctx->needs_instance_id = true;
Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
if (divisor != 1) {
Temp divided = bld.tmp(v1);
emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
index = bld.vadd32(bld.def(v1), start_instance, divided);
} else {
index = bld.vadd32(bld.def(v1), start_instance, instance_id);
}
} else {
index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
}
} else {
index = bld.vadd32(bld.def(v1),
get_arg(ctx, ctx->args->ac.base_vertex),
get_arg(ctx, ctx->args->ac.vertex_id));
}
if (attrib_stride != 0 && attrib_offset > attrib_stride) {
index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
attrib_offset = attrib_offset % attrib_stride;
}
Operand soffset(0u);
if (attrib_offset >= 4096) {
soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
attrib_offset = 0;
}
aco_opcode opcode;
switch (num_channels) {
case 1:
opcode = aco_opcode::tbuffer_load_format_x;
break;
case 2:
opcode = aco_opcode::tbuffer_load_format_xy;
break;
case 3:
opcode = aco_opcode::tbuffer_load_format_xyz;
break;
case 4:
opcode = aco_opcode::tbuffer_load_format_xyzw;
break;
default:
unreachable("Unimplemented load_input vector size");
}
Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
mubuf->operands[0] = Operand(index);
mubuf->operands[1] = Operand(list);
mubuf->operands[2] = soffset;
mubuf->definitions[0] = Definition(tmp);
mubuf->idxen = true;
mubuf->can_reorder = true;
mubuf->dfmt = dfmt;
mubuf->nfmt = nfmt;
assert(attrib_offset < 4096);
mubuf->offset = attrib_offset;
ctx->block->instructions.emplace_back(std::move(mubuf));
emit_split_vector(ctx, tmp, tmp.size());
if (tmp.id() != dst.id()) {
bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++) {
unsigned idx = i + component;
if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
} else if (idx < num_channels) {
vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
} else if (is_float && idx == 3) {
vec->operands[i] = Operand(0x3f800000u);
} else if (!is_float && idx == 3) {
vec->operands[i] = Operand(1u);
} else {
vec->operands[i] = Operand(0u);
}
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
emit_split_vector(ctx, dst, dst.size());
}
} else if (ctx->stage == fragment_fs) {
nir_instr *off_instr = instr->src[0].ssa->parent_instr;
if (off_instr->type != nir_instr_type_load_const ||
nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
nir_print_instr(off_instr, stderr);
fprintf(stderr, "\n");
}
Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
if (offset) {
assert(offset->u32 == 0);
} else {
/* the lower 15bit of the prim_mask contain the offset into LDS
* while the upper bits contain the number of prims */
Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
Builder bld(ctx->program, ctx->block);
Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
}
unsigned idx = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
if (dst.size() == 1) {
bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
} else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
vec->definitions[0] = Definition(dst);
bld.insert(std::move(vec));
}
} else {
unreachable("Shader stage not implemented");
}
}
Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
{
if (ctx->program->info->need_indirect_descriptor_sets) {
Builder bld(ctx->program, ctx->block);
Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, Operand(desc_set << 2));//, false, false, false);
}
return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
}
void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
if (!ctx->divergent_vals[instr->dest.ssa.index])
index = bld.as_uniform(index);
unsigned desc_set = nir_intrinsic_desc_set(instr);
unsigned binding = nir_intrinsic_binding(instr);
Temp desc_ptr;
radv_pipeline_layout *pipeline_layout = ctx->options->layout;
radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
unsigned offset = layout->binding[binding].offset;
unsigned stride;
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
offset = pipeline_layout->push_constant_size + 16 * idx;
stride = 16;
} else {
desc_ptr = load_desc_ptr(ctx, desc_set);
stride = layout->binding[binding].size;
}
nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
if (stride != 1) {
if (nir_const_index) {
const_index = const_index * stride;
} else if (index.type() == RegType::vgpr) {
bool index24bit = layout->binding[binding].array_size <= 0x1000000;
index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
} else {
index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
}
}
if (offset) {
if (nir_const_index) {
const_index = const_index + offset;
} else if (index.type() == RegType::vgpr) {
index = bld.vadd32(bld.def(v1), Operand(offset), index);
} else {
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
}
}
if (nir_const_index && const_index == 0) {
index = desc_ptr;
} else if (index.type() == RegType::vgpr) {
index = bld.vadd32(bld.def(v1),
nir_const_index ? Operand(const_index) : Operand(index),
Operand(desc_ptr));
} else {
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
nir_const_index ? Operand(const_index) : Operand(index),
Operand(desc_ptr));
}
bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
}
void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
{
Builder bld(ctx->program, ctx->block);
unsigned num_bytes = dst.size() * 4;
bool dlc = glc && ctx->options->chip_class >= GFX10;
aco_opcode op;
if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
unsigned const_offset = 0;
Temp lower = Temp();
if (num_bytes > 16) {
assert(num_components == 3 || num_components == 4);
op = aco_opcode::buffer_load_dwordx4;
lower = bld.tmp(v4);
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->definitions[0] = Definition(lower);
mubuf->operands[0] = vaddr;
mubuf->operands[1] = Operand(rsrc);
mubuf->operands[2] = soffset;
mubuf->offen = (offset.type() == RegType::vgpr);
mubuf->glc = glc;
mubuf->dlc = dlc;
mubuf->barrier = readonly ? barrier_none : barrier_buffer;
mubuf->can_reorder = readonly;
bld.insert(std::move(mubuf));
emit_split_vector(ctx, lower, 2);
num_bytes -= 16;
const_offset = 16;
} else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
/* GFX6 doesn't support loading vec3, expand to vec4. */
num_bytes = 16;
}
switch (num_bytes) {
case 4:
op = aco_opcode::buffer_load_dword;
break;
case 8:
op = aco_opcode::buffer_load_dwordx2;
break;
case 12:
assert(ctx->options->chip_class > GFX6);
op = aco_opcode::buffer_load_dwordx3;
break;
case 16:
op = aco_opcode::buffer_load_dwordx4;
break;
default:
unreachable("Load SSBO not implemented for this size.");
}
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = vaddr;
mubuf->operands[1] = Operand(rsrc);
mubuf->operands[2] = soffset;
mubuf->offen = (offset.type() == RegType::vgpr);
mubuf->glc = glc;
mubuf->dlc = dlc;
mubuf->barrier = readonly ? barrier_none : barrier_buffer;
mubuf->can_reorder = readonly;
mubuf->offset = const_offset;
aco_ptr<Instruction> instr = std::move(mubuf);
if (dst.size() > 4) {
assert(lower != Temp());
Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
instr->definitions[0] = Definition(upper);
bld.insert(std::move(instr));
if (dst.size() == 8)
emit_split_vector(ctx, upper, 2);
instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
if (dst.size() == 8)
instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
} else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
Temp vec = bld.tmp(v4);
instr->definitions[0] = Definition(vec);
bld.insert(std::move(instr));
emit_split_vector(ctx, vec, 4);
instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
}
if (dst.type() == RegType::sgpr) {
Temp vec = bld.tmp(RegType::vgpr, dst.size());
instr->definitions[0] = Definition(vec);
bld.insert(std::move(instr));
expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
} else {
instr->definitions[0] = Definition(dst);
bld.insert(std::move(instr));
emit_split_vector(ctx, dst, num_components);
}
} else {
switch (num_bytes) {
case 4:
op = aco_opcode::s_buffer_load_dword;
break;
case 8:
op = aco_opcode::s_buffer_load_dwordx2;
break;
case 12:
case 16:
op = aco_opcode::s_buffer_load_dwordx4;
break;
case 24:
case 32:
op = aco_opcode::s_buffer_load_dwordx8;
break;
default:
unreachable("Load SSBO not implemented for this size.");
}
aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
load->operands[0] = Operand(rsrc);
load->operands[1] = Operand(bld.as_uniform(offset));
assert(load->operands[1].getTemp().type() == RegType::sgpr);
load->definitions[0] = Definition(dst);
load->glc = glc;
load->dlc = dlc;
load->barrier = readonly ? barrier_none : barrier_buffer;
load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
assert(ctx->options->chip_class >= GFX8 || !glc);
/* trim vector */
if (dst.size() == 3) {
Temp vec = bld.tmp(s4);
load->definitions[0] = Definition(vec);
bld.insert(std::move(load));
emit_split_vector(ctx, vec, 4);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
emit_extract_vector(ctx, vec, 0, s1),
emit_extract_vector(ctx, vec, 1, s1),
emit_extract_vector(ctx, vec, 2, s1));
} else if (dst.size() == 6) {
Temp vec = bld.tmp(s8);
load->definitions[0] = Definition(vec);
bld.insert(std::move(load));
emit_split_vector(ctx, vec, 4);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
emit_extract_vector(ctx, vec, 0, s2),
emit_extract_vector(ctx, vec, 1, s2),
emit_extract_vector(ctx, vec, 2, s2));
} else {
bld.insert(std::move(load));
}
emit_split_vector(ctx, dst, num_components);
}
}
void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
Builder bld(ctx->program, ctx->block);
nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
unsigned binding = nir_intrinsic_binding(idx_instr);
radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (ctx->options->chip_class >= GFX10) {
desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
Operand(0xFFFFFFFFu),
Operand(desc_type));
rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
rsrc, upper_dwords);
} else {
rsrc = convert_pointer_to_64_bit(ctx, rsrc);
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
}
load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
}
void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
unsigned offset = nir_intrinsic_base(instr);
nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
if (index_cv && instr->dest.ssa.bit_size == 32) {
unsigned count = instr->dest.ssa.num_components;
unsigned start = (offset + index_cv->u32) / 4u;
start -= ctx->args->ac.base_inline_push_consts;
if (start + count <= ctx->args->ac.num_inline_push_consts) {
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
for (unsigned i = 0; i < count; ++i) {
elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
vec->operands[i] = Operand{elems[i]};
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
return;
}
}
Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
if (offset != 0) // TODO check if index != 0 as well
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
Temp vec = dst;
bool trim = false;
aco_opcode op;
switch (dst.size()) {
case 1:
op = aco_opcode::s_load_dword;
break;
case 2:
op = aco_opcode::s_load_dwordx2;
break;
case 3:
vec = bld.tmp(s4);
trim = true;
case 4:
op = aco_opcode::s_load_dwordx4;
break;
case 6:
vec = bld.tmp(s8);
trim = true;
case 8:
op = aco_opcode::s_load_dwordx8;
break;
default:
unreachable("unimplemented or forbidden load_push_constant.");
}
bld.smem(op, Definition(vec), ptr, index);
if (trim) {
emit_split_vector(ctx, vec, 4);
RegClass rc = dst.size() == 3 ? s1 : s2;
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
emit_extract_vector(ctx, vec, 0, rc),
emit_extract_vector(ctx, vec, 1, rc),
emit_extract_vector(ctx, vec, 2, rc));
}
emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
}
void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Builder bld(ctx->program, ctx->block);
uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (ctx->options->chip_class >= GFX10) {
desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
unsigned base = nir_intrinsic_base(instr);
unsigned range = nir_intrinsic_range(instr);
Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
if (base && offset.type() == RegType::sgpr)
offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
else if (base && offset.type() == RegType::vgpr)
offset = bld.vadd32(bld.def(v1), Operand(base), offset);
Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
Operand(MIN2(base + range, ctx->shader->constant_data_size)),
Operand(desc_type));
load_buffer(ctx, instr->num_components, dst, rsrc, offset);
}
void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
{
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty = true;
ctx->program->needs_exact = true;
// TODO: optimize uniform conditions
Builder bld(ctx->program, ctx->block);
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
assert(src.regClass() == bld.lm);
src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
bld.pseudo(aco_opcode::p_discard_if, src);
ctx->block->kind |= block_kind_uses_discard_if;
return;
}
void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty = true;
bool divergent = ctx->cf_info.parent_if.is_divergent ||
ctx->cf_info.parent_loop.has_divergent_continue;
if (ctx->block->loop_nest_depth &&
((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
/* we handle discards the same way as jump instructions */
append_logical_end(ctx->block);
/* in loops, discard behaves like break */
Block *linear_target = ctx->cf_info.parent_loop.exit;
ctx->block->kind |= block_kind_discard;
if (!divergent) {
/* uniform discard - loop ends here */
assert(nir_instr_is_last(&instr->instr));
ctx->block->kind |= block_kind_uniform;
ctx->cf_info.has_branch = true;
bld.branch(aco_opcode::p_branch);
add_linear_edge(ctx->block->index, linear_target);
return;
}
/* we add a break right behind the discard() instructions */
ctx->block->kind |= block_kind_break;
unsigned idx = ctx->block->index;
/* remove critical edges from linear CFG */
bld.branch(aco_opcode::p_branch);
Block* break_block = ctx->program->create_and_insert_block();
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
break_block->kind |= block_kind_uniform;
add_linear_edge(idx, break_block);
add_linear_edge(break_block->index, linear_target);
bld.reset(break_block);
bld.branch(aco_opcode::p_branch);
Block* continue_block = ctx->program->create_and_insert_block();
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_linear_edge(idx, continue_block);
append_logical_start(continue_block);
ctx->block = continue_block;
return;
}
/* it can currently happen that NIR doesn't remove the unreachable code */
if (!nir_instr_is_last(&instr->instr)) {
ctx->program->needs_exact = true;
/* save exec somewhere temporarily so that it doesn't get
* overwritten before the discard from outer exec masks */
Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
bld.pseudo(aco_opcode::p_discard_if, cond);
ctx->block->kind |= block_kind_uses_discard_if;
return;
}
/* This condition is incorrect for uniformly branched discards in a loop
* predicated by a divergent condition, but the above code catches that case
* and the discard would end up turning into a discard_if.
* For example:
* if (divergent) {
* while (...) {
* if (uniform) {
* discard;
* }
* }
* }
*/
if (!ctx->cf_info.parent_if.is_divergent) {
/* program just ends here */
ctx->block->kind |= block_kind_uniform;
bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
0 /* enabled mask */, 9 /* dest */,
false /* compressed */, true/* done */, true /* valid mask */);
bld.sopp(aco_opcode::s_endpgm);
// TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
} else {
ctx->block->kind |= block_kind_discard;
/* branch and linear edge is added by visit_if() */
}
}
enum aco_descriptor_type {
ACO_DESC_IMAGE,
ACO_DESC_FMASK,
ACO_DESC_SAMPLER,
ACO_DESC_BUFFER,
ACO_DESC_PLANE_0,
ACO_DESC_PLANE_1,
ACO_DESC_PLANE_2,
};
static bool
should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
return false;
ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
return dim == ac_image_cube ||
dim == ac_image_1darray ||
dim == ac_image_2darray ||
dim == ac_image_2darraymsaa;
}
Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
enum aco_descriptor_type desc_type,
const nir_tex_instr *tex_instr, bool image, bool write)
{
/* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
if (it != ctx->tex_desc.end())
return it->second;
*/
Temp index = Temp();
bool index_set = false;
unsigned constant_index = 0;
unsigned descriptor_set;
unsigned base_index;
Builder bld(ctx->program, ctx->block);
if (!deref_instr) {
assert(tex_instr && !image);
descriptor_set = 0;
base_index = tex_instr->sampler_index;
} else {
while(deref_instr->deref_type != nir_deref_type_var) {
unsigned array_size = glsl_get_aoa_size(deref_instr->type);
if (!array_size)
array_size = 1;
assert(deref_instr->deref_type == nir_deref_type_array);
nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
if (const_value) {
constant_index += array_size * const_value->u32;
} else {
Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
if (indirect.type() == RegType::vgpr)
indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
if (array_size != 1)
indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
if (!index_set) {
index = indirect;
index_set = true;
} else {
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
}
}
deref_instr = nir_src_as_deref(deref_instr->parent);
}
descriptor_set = deref_instr->var->data.descriptor_set;
base_index = deref_instr->var->data.binding;
}
Temp list = load_desc_ptr(ctx, descriptor_set);
list = convert_pointer_to_64_bit(ctx, list);
struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
unsigned offset = binding->offset;
unsigned stride = binding->size;
aco_opcode opcode;
RegClass type;
assert(base_index < layout->binding_count);
switch (desc_type) {
case ACO_DESC_IMAGE:
type = s8;
opcode = aco_opcode::s_load_dwordx8;
break;
case ACO_DESC_FMASK:
type = s8;
opcode = aco_opcode::s_load_dwordx8;
offset += 32;
break;
case ACO_DESC_SAMPLER:
type = s4;
opcode = aco_opcode::s_load_dwordx4;
if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
offset += radv_combined_image_descriptor_sampler_offset(binding);
break;
case ACO_DESC_BUFFER:
type = s4;
opcode = aco_opcode::s_load_dwordx4;
break;
case ACO_DESC_PLANE_0:
case ACO_DESC_PLANE_1:
type = s8;
opcode = aco_opcode::s_load_dwordx8;
offset += 32 * (desc_type - ACO_DESC_PLANE_0);
break;
case ACO_DESC_PLANE_2:
type = s4;
opcode = aco_opcode::s_load_dwordx4;
offset += 64;
break;
default:
unreachable("invalid desc_type\n");
}
offset += constant_index * stride;
if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
(!index_set || binding->immutable_samplers_equal)) {
if (binding->immutable_samplers_equal)
constant_index = 0;
const uint32_t *samplers = radv_immutable_samplers(layout, binding);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
Operand(samplers[constant_index * 4 + 0]),
Operand(samplers[constant_index * 4 + 1]),
Operand(samplers[constant_index * 4 + 2]),
Operand(samplers[constant_index * 4 + 3]));
}
Operand off;
if (!index_set) {
off = Operand(offset);
} else {
off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
}
Temp res = bld.smem(opcode, bld.def(type), list, off);
if (desc_type == ACO_DESC_PLANE_2) {
Temp components[8];
for (unsigned i = 0; i < 8; i++)
components[i] = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector,
Definition(components[0]),
Definition(components[1]),
Definition(components[2]),
Definition(components[3]),
res);
Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
bld.pseudo(aco_opcode::p_split_vector,
bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
Definition(components[4]),
Definition(components[5]),
Definition(components[6]),
Definition(components[7]),
desc2);
res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
components[0], components[1], components[2], components[3],
components[4], components[5], components[6], components[7]);
}
return res;
}
static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_1D:
return array ? 2 : 1;
case GLSL_SAMPLER_DIM_2D:
return array ? 3 : 2;
case GLSL_SAMPLER_DIM_MS:
return array ? 4 : 3;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
return 3;
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS:
return 2;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return 3;
default:
break;
}
return 0;
}
/* Adjust the sample index according to FMASK.
*
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* For example, 0x11111100 means there are only 2 samples stored and
* the second sample covers 3/4 of the pixel. When reading samples 0
* and 1, return physical sample 0 (determined by the first two 0s
* in FMASK), otherwise return physical sample 1.
*
* The sample index should be adjusted as follows:
* sample_index = (fmask >> (sample_index * 4)) & 0xF;
*/
static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
{
Builder bld(ctx->program, ctx->block);
Temp fmask = bld.tmp(v1);
unsigned dim = ctx->options->chip_class >= GFX10
? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
: 0;
aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
load->operands[0] = Operand(coords);
load->operands[1] = Operand(fmask_desc_ptr);
load->definitions[0] = Definition(fmask);
load->glc = false;
load->dlc = false;
load->dmask = 0x1;
load->unrm = true;
load->da = da;
load->dim = dim;
load->can_reorder = true; /* fmask images shouldn't be modified */
ctx->block->instructions.emplace_back(std::move(load));
Operand sample_index4;
if (sample_index.isConstant() && sample_index.constantValue() < 16) {
sample_index4 = Operand(sample_index.constantValue() << 2);
} else if (sample_index.regClass() == s1) {
sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
} else {
assert(sample_index.regClass() == v1);
sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
}
Temp final_sample;
if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
else
final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
* resource descriptor is 0 (invalid),
*/
Temp compare = bld.tmp(bld.lm);
bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
/* Replace the MSAA sample index. */
return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
}
static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
{
Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
assert(!add_frag_pos && "Input attachments should be lowered.");
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
int count = image_type_to_components_count(dim, is_array);
std::vector<Operand> coords(count);
if (is_ms) {
Operand sample_index;
nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
if (sample_cv)
sample_index = Operand(sample_cv->u32);
else
sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
if (instr->intrinsic == nir_intrinsic_image_deref_load) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
for (unsigned i = 0; i < vec->operands.size(); i++)
vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
vec->definitions[0] = Definition(fmask_load_address);
ctx->block->instructions.emplace_back(std::move(vec));
Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
}
count--;
coords[count] = sample_index;
}
if (count == 1 && !gfx9_1d)
return emit_extract_vector(ctx, src0, 0, v1);
if (gfx9_1d) {
coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
coords.resize(coords.size() + 1);
coords[1] = Operand((uint32_t) 0);
if (is_array)
coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
} else {
for (int i = 0; i < count; i++)
coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
}
if (instr->intrinsic == nir_intrinsic_image_deref_load ||
instr->intrinsic == nir_intrinsic_image_deref_store) {
int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
if (!level_zero)
coords.emplace_back(Operand(get_ssa_temp(ctx, instr->src[lod_index].ssa)));
}
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
for (unsigned i = 0; i < coords.size(); i++)
vec->operands[i] = coords[i];
Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
vec->definitions[0] = Definition(res);
ctx->block->instructions.emplace_back(std::move(vec));
return res;
}
void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
const struct glsl_type *type = glsl_without_array(var->type);
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (dim == GLSL_SAMPLER_DIM_BUF) {
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
unsigned num_channels = util_last_bit(mask);
Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
aco_opcode opcode;
switch (num_channels) {
case 1:
opcode = aco_opcode::buffer_load_format_x;
break;
case 2:
opcode = aco_opcode::buffer_load_format_xy;
break;
case 3:
opcode = aco_opcode::buffer_load_format_xyz;
break;
case 4:
opcode = aco_opcode::buffer_load_format_xyzw;
break;
default:
unreachable(">4 channel buffer image load");
}
aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
load->operands[0] = Operand(vindex);
load->operands[1] = Operand(rsrc);
load->operands[2] = Operand((uint32_t) 0);
Temp tmp;
if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
tmp = dst;
else
tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
load->definitions[0] = Definition(tmp);
load->idxen = true;
load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
load->dlc = load->glc && ctx->options->chip_class >= GFX10;
load->barrier = barrier_image;
ctx->block->instructions.emplace_back(std::move(load));
expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
return;
}
Temp coords = get_image_coords(ctx, instr, type);
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
unsigned num_components = util_bitcount(dmask);
Temp tmp;
if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
tmp = dst;
else
tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 2, 1)};
load->operands[0] = Operand(coords);
load->operands[1] = Operand(resource);
load->definitions[0] = Definition(tmp);
load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
load->dlc = load->glc && ctx->options->chip_class >= GFX10;
load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
load->dmask = dmask;
load->unrm = true;
load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
load->barrier = barrier_image;
ctx->block->instructions.emplace_back(std::move(load));
expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
return;
}
void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
{
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
const struct glsl_type *type = glsl_without_array(var->type);
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
if (dim == GLSL_SAMPLER_DIM_BUF) {
Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
aco_opcode opcode;
switch (data.size()) {
case 1:
opcode = aco_opcode::buffer_store_format_x;
break;
case 2:
opcode = aco_opcode::buffer_store_format_xy;
break;
case 3:
opcode = aco_opcode::buffer_store_format_xyz;
break;
case 4:
opcode = aco_opcode::buffer_store_format_xyzw;
break;
default:
unreachable(">4 channel buffer image store");
}
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
store->operands[0] = Operand(vindex);
store->operands[1] = Operand(rsrc);
store->operands[2] = Operand((uint32_t) 0);
store->operands[3] = Operand(data);
store->idxen = true;
store->glc = glc;
store->dlc = false;
store->disable_wqm = true;
store->barrier = barrier_image;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(store));
return;
}
assert(data.type() == RegType::vgpr);
Temp coords = get_image_coords(ctx, instr, type);
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 4, 0)};
store->operands[0] = Operand(coords);
store->operands[1] = Operand(resource);
store->operands[2] = Operand(s4);
store->operands[3] = Operand(data);
store->glc = glc;
store->dlc = false;
store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
store->dmask = (1 << data.size()) - 1;
store->unrm = true;
store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
store->disable_wqm = true;
store->barrier = barrier_image;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(store));
return;
}
void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
{
/* return the previous value if dest is ever used */
bool return_previous = false;
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
const struct glsl_type *type = glsl_without_array(var->type);
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
Builder bld(ctx->program, ctx->block);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
aco_opcode buf_op, image_op;
switch (instr->intrinsic) {
case nir_intrinsic_image_deref_atomic_add:
buf_op = aco_opcode::buffer_atomic_add;
image_op = aco_opcode::image_atomic_add;
break;
case nir_intrinsic_image_deref_atomic_umin:
buf_op = aco_opcode::buffer_atomic_umin;
image_op = aco_opcode::image_atomic_umin;
break;
case nir_intrinsic_image_deref_atomic_imin:
buf_op = aco_opcode::buffer_atomic_smin;
image_op = aco_opcode::image_atomic_smin;
break;
case nir_intrinsic_image_deref_atomic_umax:
buf_op = aco_opcode::buffer_atomic_umax;
image_op = aco_opcode::image_atomic_umax;
break;
case nir_intrinsic_image_deref_atomic_imax:
buf_op = aco_opcode::buffer_atomic_smax;
image_op = aco_opcode::image_atomic_smax;
break;
case nir_intrinsic_image_deref_atomic_and:
buf_op = aco_opcode::buffer_atomic_and;
image_op = aco_opcode::image_atomic_and;
break;
case nir_intrinsic_image_deref_atomic_or:
buf_op = aco_opcode::buffer_atomic_or;
image_op = aco_opcode::image_atomic_or;
break;
case nir_intrinsic_image_deref_atomic_xor:
buf_op = aco_opcode::buffer_atomic_xor;
image_op = aco_opcode::image_atomic_xor;
break;
case nir_intrinsic_image_deref_atomic_exchange:
buf_op = aco_opcode::buffer_atomic_swap;
image_op = aco_opcode::image_atomic_swap;
break;
case nir_intrinsic_image_deref_atomic_comp_swap:
buf_op = aco_opcode::buffer_atomic_cmpswap;
image_op = aco_opcode::image_atomic_cmpswap;
break;
default:
unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
}
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (dim == GLSL_SAMPLER_DIM_BUF) {
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
//assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
mubuf->operands[0] = Operand(vindex);
mubuf->operands[1] = Operand(resource);
mubuf->operands[2] = Operand((uint32_t)0);
mubuf->operands[3] = Operand(data);
if (return_previous)
mubuf->definitions[0] = Definition(dst);
mubuf->offset = 0;
mubuf->idxen = true;
mubuf->glc = return_previous;
mubuf->dlc = false; /* Not needed for atomics */
mubuf->disable_wqm = true;
mubuf->barrier = barrier_image;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
return;
}
Temp coords = get_image_coords(ctx, instr, type);
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
mimg->operands[0] = Operand(coords);
mimg->operands[1] = Operand(resource);
mimg->operands[2] = Operand(s4); /* no sampler */
mimg->operands[3] = Operand(data);
if (return_previous)
mimg->definitions[0] = Definition(dst);
mimg->glc = return_previous;
mimg->dlc = false; /* Not needed for atomics */
mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
mimg->dmask = (1 << data.size()) - 1;
mimg->unrm = true;
mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
mimg->disable_wqm = true;
mimg->barrier = barrier_image;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mimg));
return;
}
void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
{
if (in_elements && ctx->options->chip_class == GFX8) {
/* we only have to divide by 1, 2, 4, 8, 12 or 16 */
Builder bld(ctx->program, ctx->block);
Temp size = emit_extract_vector(ctx, desc, 2, s1);
Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
Temp stride = emit_extract_vector(ctx, desc, 1, s1);
stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
if (dst.type() == RegType::vgpr)
bld.copy(Definition(dst), shr_dst);
/* TODO: we can probably calculate this faster with v_skip when stride != 12 */
} else {
emit_extract_vector(ctx, desc, 2, dst);
}
}
void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
{
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
const struct glsl_type *type = glsl_without_array(var->type);
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
Builder bld(ctx->program, ctx->block);
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
}
/* LOD */
Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
/* Resource */
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
mimg->operands[0] = Operand(lod);
mimg->operands[1] = Operand(resource);
uint8_t& dmask = mimg->dmask;
mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
mimg->da = glsl_sampler_type_is_array(type);
mimg->can_reorder = true;
Definition& def = mimg->definitions[0];
ctx->block->instructions.emplace_back(std::move(mimg));
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
glsl_sampler_type_is_array(type)) {
assert(instr->dest.ssa.num_components == 3);
Temp tmp = {ctx->program->allocateId(), v3};
def = Definition(tmp);
emit_split_vector(ctx, tmp, 3);
/* divide 3rd value by 6 by multiplying with magic number */
Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
emit_extract_vector(ctx, tmp, 0, v1),
emit_extract_vector(ctx, tmp, 1, v1),
by_6);
} else if (ctx->options->chip_class == GFX9 &&
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
glsl_sampler_type_is_array(type)) {
assert(instr->dest.ssa.num_components == 2);
def = Definition(dst);
dmask = 0x5;
} else {
def = Definition(dst);
}
emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
}
void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
unsigned num_components = instr->num_components;
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
}
void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned writemask = nir_intrinsic_write_mask(instr);
Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
ctx->options->chip_class >= GFX8;
if (smem)
offset = bld.as_uniform(offset);
bool smem_nonfs = smem && ctx->stage != fragment_fs;
while (writemask) {
int start, count;
u_bit_scan_consecutive_range(&writemask, &start, &count);
if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
/* GFX6 doesn't support storing vec3, split it. */
writemask |= 1u << (start + 2);
count = 2;
}
int num_bytes = count * elem_size_bytes;
if (num_bytes > 16) {
assert(elem_size_bytes == 8);
writemask |= (((count - 2) << 1) - 1) << (start + 2);
count = 2;
num_bytes = 16;
}
// TODO: check alignment of sub-dword stores
// TODO: split 3 bytes. there is no store instruction for that
Temp write_data;
if (count != instr->num_components) {
emit_split_vector(ctx, data, instr->num_components);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
for (int i = 0; i < count; i++) {
Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
}
write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
vec->definitions[0] = Definition(write_data);
ctx->block->instructions.emplace_back(std::move(vec));
} else if (!smem && data.type() != RegType::vgpr) {
assert(num_bytes % 4 == 0);
write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
} else if (smem_nonfs && data.type() == RegType::vgpr) {
assert(num_bytes % 4 == 0);
write_data = bld.as_uniform(data);
} else {
write_data = data;
}
aco_opcode vmem_op, smem_op;
switch (num_bytes) {
case 4:
vmem_op = aco_opcode::buffer_store_dword;
smem_op = aco_opcode::s_buffer_store_dword;
break;
case 8:
vmem_op = aco_opcode::buffer_store_dwordx2;
smem_op = aco_opcode::s_buffer_store_dwordx2;
break;
case 12:
vmem_op = aco_opcode::buffer_store_dwordx3;
smem_op = aco_opcode::last_opcode;
assert(!smem && ctx->options->chip_class > GFX6);
break;
case 16:
vmem_op = aco_opcode::buffer_store_dwordx4;
smem_op = aco_opcode::s_buffer_store_dwordx4;
break;
default:
unreachable("Store SSBO not implemented for this size.");
}
if (ctx->stage == fragment_fs)
smem_op = aco_opcode::p_fs_buffer_store_smem;
if (smem) {
aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
store->operands[0] = Operand(rsrc);
if (start) {
Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
offset, Operand(start * elem_size_bytes));
store->operands[1] = Operand(off);
} else {
store->operands[1] = Operand(offset);
}
if (smem_op != aco_opcode::p_fs_buffer_store_smem)
store->operands[1].setFixed(m0);
store->operands[2] = Operand(write_data);
store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
store->dlc = false;
store->disable_wqm = true;
store->barrier = barrier_buffer;
ctx->block->instructions.emplace_back(std::move(store));
ctx->program->wb_smem_l1_on_end = true;
if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
ctx->block->kind |= block_kind_needs_lowering;
ctx->program->needs_exact = true;
}
} else {
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
store->operands[1] = Operand(rsrc);
store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
store->operands[3] = Operand(write_data);
store->offset = start * elem_size_bytes;
store->offen = (offset.type() == RegType::vgpr);
store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
store->dlc = false;
store->disable_wqm = true;
store->barrier = barrier_buffer;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(store));
}
}
}
void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
{
/* return the previous value if dest is ever used */
bool return_previous = false;
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
Builder bld(ctx->program, ctx->block);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
get_ssa_temp(ctx, instr->src[3].ssa), data);
Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
aco_opcode op32, op64;
switch (instr->intrinsic) {
case nir_intrinsic_ssbo_atomic_add:
op32 = aco_opcode::buffer_atomic_add;
op64 = aco_opcode::buffer_atomic_add_x2;
break;
case nir_intrinsic_ssbo_atomic_imin:
op32 = aco_opcode::buffer_atomic_smin;
op64 = aco_opcode::buffer_atomic_smin_x2;
break;
case nir_intrinsic_ssbo_atomic_umin:
op32 = aco_opcode::buffer_atomic_umin;
op64 = aco_opcode::buffer_atomic_umin_x2;
break;
case nir_intrinsic_ssbo_atomic_imax:
op32 = aco_opcode::buffer_atomic_smax;
op64 = aco_opcode::buffer_atomic_smax_x2;
break;
case nir_intrinsic_ssbo_atomic_umax:
op32 = aco_opcode::buffer_atomic_umax;
op64 = aco_opcode::buffer_atomic_umax_x2;
break;
case nir_intrinsic_ssbo_atomic_and:
op32 = aco_opcode::buffer_atomic_and;
op64 = aco_opcode::buffer_atomic_and_x2;
break;
case nir_intrinsic_ssbo_atomic_or:
op32 = aco_opcode::buffer_atomic_or;
op64 = aco_opcode::buffer_atomic_or_x2;
break;
case nir_intrinsic_ssbo_atomic_xor:
op32 = aco_opcode::buffer_atomic_xor;
op64 = aco_opcode::buffer_atomic_xor_x2;
break;
case nir_intrinsic_ssbo_atomic_exchange:
op32 = aco_opcode::buffer_atomic_swap;
op64 = aco_opcode::buffer_atomic_swap_x2;
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
op32 = aco_opcode::buffer_atomic_cmpswap;
op64 = aco_opcode::buffer_atomic_cmpswap_x2;
break;
default:
unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
}
aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
mubuf->operands[1] = Operand(rsrc);
mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
mubuf->operands[3] = Operand(data);
if (return_previous)
mubuf->definitions[0] = Definition(dst);
mubuf->offset = 0;
mubuf->offen = (offset.type() == RegType::vgpr);
mubuf->glc = return_previous;
mubuf->dlc = false; /* Not needed for atomics */
mubuf->disable_wqm = true;
mubuf->barrier = barrier_buffer;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
}
void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Builder bld(ctx->program, ctx->block);
Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
}
Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
{
uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
if (addr.type() == RegType::vgpr)
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
}
void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
unsigned num_components = instr->num_components;
unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
bool dlc = glc && ctx->options->chip_class >= GFX10;
aco_opcode op;
if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
bool global = ctx->options->chip_class >= GFX9;
if (ctx->options->chip_class >= GFX7) {
aco_opcode op;
switch (num_bytes) {
case 4:
op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
break;
case 8:
op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
break;
case 12:
op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
break;
case 16:
op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
break;
default:
unreachable("load_global not implemented for this size.");
}
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
flat->operands[0] = Operand(addr);
flat->operands[1] = Operand(s1);
flat->glc = glc;
flat->dlc = dlc;
flat->barrier = barrier_buffer;
if (dst.type() == RegType::sgpr) {
Temp vec = bld.tmp(RegType::vgpr, dst.size());
flat->definitions[0] = Definition(vec);
ctx->block->instructions.emplace_back(std::move(flat));
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
} else {
flat->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(flat));
}
emit_split_vector(ctx, dst, num_components);
} else {
assert(ctx->options->chip_class == GFX6);
/* GFX6 doesn't support loading vec3, expand to vec4. */
num_bytes = num_bytes == 12 ? 16 : num_bytes;
aco_opcode op;
switch (num_bytes) {
case 4:
op = aco_opcode::buffer_load_dword;
break;
case 8:
op = aco_opcode::buffer_load_dwordx2;
break;
case 16:
op = aco_opcode::buffer_load_dwordx4;
break;
default:
unreachable("load_global not implemented for this size.");
}
Temp rsrc = get_gfx6_global_rsrc(bld, addr);
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
mubuf->operands[1] = Operand(rsrc);
mubuf->operands[2] = Operand(0u);
mubuf->glc = glc;
mubuf->dlc = false;
mubuf->offset = 0;
mubuf->addr64 = addr.type() == RegType::vgpr;
mubuf->disable_wqm = false;
mubuf->barrier = barrier_buffer;
aco_ptr<Instruction> instr = std::move(mubuf);
/* expand vector */
if (dst.size() == 3) {
Temp vec = bld.tmp(v4);
instr->definitions[0] = Definition(vec);
bld.insert(std::move(instr));
emit_split_vector(ctx, vec, 4);
instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
}
if (dst.type() == RegType::sgpr) {
Temp vec = bld.tmp(RegType::vgpr, dst.size());
instr->definitions[0] = Definition(vec);
bld.insert(std::move(instr));
expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
} else {
instr->definitions[0] = Definition(dst);
bld.insert(std::move(instr));
emit_split_vector(ctx, dst, num_components);
}
}
} else {
switch (num_bytes) {
case 4:
op = aco_opcode::s_load_dword;
break;
case 8:
op = aco_opcode::s_load_dwordx2;
break;
case 12:
case 16:
op = aco_opcode::s_load_dwordx4;
break;
default:
unreachable("load_global not implemented for this size.");
}
aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
load->operands[0] = Operand(addr);
load->operands[1] = Operand(0u);
load->definitions[0] = Definition(dst);
load->glc = glc;
load->dlc = dlc;
load->barrier = barrier_buffer;
assert(ctx->options->chip_class >= GFX8 || !glc);
if (dst.size() == 3) {
/* trim vector */
Temp vec = bld.tmp(s4);
load->definitions[0] = Definition(vec);
ctx->block->instructions.emplace_back(std::move(load));
emit_split_vector(ctx, vec, 4);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
emit_extract_vector(ctx, vec, 0, s1),
emit_extract_vector(ctx, vec, 1, s1),
emit_extract_vector(ctx, vec, 2, s1));
} else {
ctx->block->instructions.emplace_back(std::move(load));
}
}
}
void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
if (ctx->options->chip_class >= GFX7)
addr = as_vgpr(ctx, addr);
unsigned writemask = nir_intrinsic_write_mask(instr);
while (writemask) {
int start, count;
u_bit_scan_consecutive_range(&writemask, &start, &count);
if (count == 3 && ctx->options->chip_class == GFX6) {
/* GFX6 doesn't support storing vec3, split it. */
writemask |= 1u << (start + 2);
count = 2;
}
unsigned num_bytes = count * elem_size_bytes;
Temp write_data = data;
if (count != instr->num_components) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
for (int i = 0; i < count; i++)
vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
write_data = bld.tmp(RegType::vgpr, count);
vec->definitions[0] = Definition(write_data);
ctx->block->instructions.emplace_back(std::move(vec));
}
bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
unsigned offset = start * elem_size_bytes;
if (ctx->options->chip_class >= GFX7) {
if (offset > 0 && ctx->options->chip_class < GFX9) {
Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
Temp carry = bld.tmp(bld.lm);
bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
Operand(offset), addr0);
bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
Operand(0u), addr1,
carry).def(1).setHint(vcc);
addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
offset = 0;
}
bool global = ctx->options->chip_class >= GFX9;
aco_opcode op;
switch (num_bytes) {
case 4:
op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
break;
case 8:
op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
break;
case 12:
op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
break;
case 16:
op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
break;
default:
unreachable("store_global not implemented for this size.");
}
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
flat->operands[0] = Operand(addr);
flat->operands[1] = Operand(s1);
flat->operands[2] = Operand(data);
flat->glc = glc;
flat->dlc = false;
flat->offset = offset;
flat->disable_wqm = true;
flat->barrier = barrier_buffer;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(flat));
} else {
assert(ctx->options->chip_class == GFX6);
aco_opcode op;
switch (num_bytes) {
case 4:
op = aco_opcode::buffer_store_dword;
break;
case 8:
op = aco_opcode::buffer_store_dwordx2;
break;
case 16:
op = aco_opcode::buffer_store_dwordx4;
break;
default:
unreachable("store_global not implemented for this size.");
}
Temp rsrc = get_gfx6_global_rsrc(bld, addr);
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
mubuf->operands[1] = Operand(rsrc);
mubuf->operands[2] = Operand(0u);
mubuf->operands[3] = Operand(write_data);
mubuf->glc = glc;
mubuf->dlc = false;
mubuf->offset = offset;
mubuf->addr64 = addr.type() == RegType::vgpr;
mubuf->disable_wqm = true;
mubuf->barrier = barrier_buffer;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
}
}
}
void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
{
/* return the previous value if dest is ever used */
bool return_previous = false;
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
Builder bld(ctx->program, ctx->block);
Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
get_ssa_temp(ctx, instr->src[2].ssa), data);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bool global = ctx->options->chip_class >= GFX9;
aco_opcode op32, op64;
switch (instr->intrinsic) {
case nir_intrinsic_global_atomic_add:
op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
break;
case nir_intrinsic_global_atomic_imin:
op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
break;
case nir_intrinsic_global_atomic_umin:
op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
break;
case nir_intrinsic_global_atomic_imax:
op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
break;
case nir_intrinsic_global_atomic_umax:
op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
break;
case nir_intrinsic_global_atomic_and:
op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
break;
case nir_intrinsic_global_atomic_or:
op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
break;
case nir_intrinsic_global_atomic_xor:
op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
break;
case nir_intrinsic_global_atomic_exchange:
op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
break;
case nir_intrinsic_global_atomic_comp_swap:
op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
break;
default:
unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
}
aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
flat->operands[0] = Operand(addr);
flat->operands[1] = Operand(s1);
flat->operands[2] = Operand(data);
if (return_previous)
flat->definitions[0] = Definition(dst);
flat->glc = return_previous;
flat->dlc = false; /* Not needed for atomics */
flat->offset = 0;
flat->disable_wqm = true;
flat->barrier = barrier_buffer;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(flat));
}
void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
Builder bld(ctx->program, ctx->block);
switch(instr->intrinsic) {
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier:
bld.barrier(aco_opcode::p_memory_barrier_all);
break;
case nir_intrinsic_memory_barrier_buffer:
bld.barrier(aco_opcode::p_memory_barrier_buffer);
break;
case nir_intrinsic_memory_barrier_image:
bld.barrier(aco_opcode::p_memory_barrier_image);
break;
case nir_intrinsic_memory_barrier_shared:
bld.barrier(aco_opcode::p_memory_barrier_shared);
break;
default:
unreachable("Unimplemented memory barrier intrinsic");
break;
}
}
void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
{
// TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Builder bld(ctx->program, ctx->block);
unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
}
void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
{
unsigned writemask = nir_intrinsic_write_mask(instr);
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
}
void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
{
unsigned offset = nir_intrinsic_base(instr);
Operand m = load_lds_size_m0(ctx);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
unsigned num_operands = 3;
aco_opcode op32, op64, op32_rtn, op64_rtn;
switch(instr->intrinsic) {
case nir_intrinsic_shared_atomic_add:
op32 = aco_opcode::ds_add_u32;
op64 = aco_opcode::ds_add_u64;
op32_rtn = aco_opcode::ds_add_rtn_u32;
op64_rtn = aco_opcode::ds_add_rtn_u64;
break;
case nir_intrinsic_shared_atomic_imin:
op32 = aco_opcode::ds_min_i32;
op64 = aco_opcode::ds_min_i64;
op32_rtn = aco_opcode::ds_min_rtn_i32;
op64_rtn = aco_opcode::ds_min_rtn_i64;
break;
case nir_intrinsic_shared_atomic_umin:
op32 = aco_opcode::ds_min_u32;
op64 = aco_opcode::ds_min_u64;
op32_rtn = aco_opcode::ds_min_rtn_u32;
op64_rtn = aco_opcode::ds_min_rtn_u64;
break;
case nir_intrinsic_shared_atomic_imax:
op32 = aco_opcode::ds_max_i32;
op64 = aco_opcode::ds_max_i64;
op32_rtn = aco_opcode::ds_max_rtn_i32;
op64_rtn = aco_opcode::ds_max_rtn_i64;
break;
case nir_intrinsic_shared_atomic_umax:
op32 = aco_opcode::ds_max_u32;
op64 = aco_opcode::ds_max_u64;
op32_rtn = aco_opcode::ds_max_rtn_u32;
op64_rtn = aco_opcode::ds_max_rtn_u64;
break;
case nir_intrinsic_shared_atomic_and:
op32 = aco_opcode::ds_and_b32;
op64 = aco_opcode::ds_and_b64;
op32_rtn = aco_opcode::ds_and_rtn_b32;
op64_rtn = aco_opcode::ds_and_rtn_b64;
break;
case nir_intrinsic_shared_atomic_or:
op32 = aco_opcode::ds_or_b32;
op64 = aco_opcode::ds_or_b64;
op32_rtn = aco_opcode::ds_or_rtn_b32;
op64_rtn = aco_opcode::ds_or_rtn_b64;
break;
case nir_intrinsic_shared_atomic_xor:
op32 = aco_opcode::ds_xor_b32;
op64 = aco_opcode::ds_xor_b64;
op32_rtn = aco_opcode::ds_xor_rtn_b32;
op64_rtn = aco_opcode::ds_xor_rtn_b64;
break;
case nir_intrinsic_shared_atomic_exchange:
op32 = aco_opcode::ds_write_b32;
op64 = aco_opcode::ds_write_b64;
op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
break;
case nir_intrinsic_shared_atomic_comp_swap:
op32 = aco_opcode::ds_cmpst_b32;
op64 = aco_opcode::ds_cmpst_b64;
op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
num_operands = 4;
break;
default:
unreachable("Unhandled shared atomic intrinsic");
}
/* return the previous value if dest is ever used */
bool return_previous = false;
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
aco_opcode op;
if (data.size() == 1) {
assert(instr->dest.ssa.bit_size == 32);
op = return_previous ? op32_rtn : op32;
} else {
assert(instr->dest.ssa.bit_size == 64);
op = return_previous ? op64_rtn : op64;
}
if (offset > 65535) {
Builder bld(ctx->program, ctx->block);
address = bld.vadd32(bld.def(v1), Operand(offset), address);
offset = 0;
}
aco_ptr<DS_instruction> ds;
ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
ds->operands[0] = Operand(address);
ds->operands[1] = Operand(data);
if (num_operands == 4)
ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
ds->operands[num_operands - 1] = m;
ds->offset0 = offset;
if (return_previous)
ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
ctx->block->instructions.emplace_back(std::move(ds));
}
Temp get_scratch_resource(isel_context *ctx)
{
Builder bld(ctx->program, ctx->block);
Temp scratch_addr = ctx->program->private_segment_buffer;
if (ctx->stage != compute_cs)
scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
if (ctx->program->chip_class >= GFX10) {
rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(1);
} else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
/* older generations need element size = 16 bytes. element size removed in GFX9 */
if (ctx->program->chip_class <= GFX8)
rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
}
void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
Builder bld(ctx->program, ctx->block);
Temp rsrc = get_scratch_resource(ctx);
Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
aco_opcode op;
switch (dst.size()) {
case 1:
op = aco_opcode::buffer_load_dword;
break;
case 2:
op = aco_opcode::buffer_load_dwordx2;
break;
case 3:
op = aco_opcode::buffer_load_dwordx3;
break;
case 4:
op = aco_opcode::buffer_load_dwordx4;
break;
case 6:
case 8: {
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
bld.def(v4), offset, rsrc,
ctx->program->scratch_offset, 0, true);
Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
aco_opcode::buffer_load_dwordx4,
dst.size() == 6 ? bld.def(v2) : bld.def(v4),
offset, rsrc, ctx->program->scratch_offset, 16, true);
emit_split_vector(ctx, lower, 2);
elems[0] = emit_extract_vector(ctx, lower, 0, v2);
elems[1] = emit_extract_vector(ctx, lower, 1, v2);
if (dst.size() == 8) {
emit_split_vector(ctx, upper, 2);
elems[2] = emit_extract_vector(ctx, upper, 0, v2);
elems[3] = emit_extract_vector(ctx, upper, 1, v2);
} else {
elems[2] = upper;
}
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
Format::PSEUDO, dst.size() / 2, 1)};
for (unsigned i = 0; i < dst.size() / 2; i++)
vec->operands[i] = Operand(elems[i]);
vec->definitions[0] = Definition(dst);
bld.insert(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
return;
}
default:
unreachable("Wrong dst size for nir_intrinsic_load_scratch");
}
bld.mubuf(op, Definition(dst), offset, rsrc, ctx->program->scratch_offset, 0, true);
emit_split_vector(ctx, dst, instr->num_components);
}
void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
Builder bld(ctx->program, ctx->block);
Temp rsrc = get_scratch_resource(ctx);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned writemask = nir_intrinsic_write_mask(instr);
while (writemask) {
int start, count;
u_bit_scan_consecutive_range(&writemask, &start, &count);
int num_bytes = count * elem_size_bytes;
if (num_bytes > 16) {
assert(elem_size_bytes == 8);
writemask |= (((count - 2) << 1) - 1) << (start + 2);
count = 2;
num_bytes = 16;
}
// TODO: check alignment of sub-dword stores
// TODO: split 3 bytes. there is no store instruction for that
Temp write_data;
if (count != instr->num_components) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
for (int i = 0; i < count; i++) {
Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
vec->operands[i] = Operand(elem);
}
write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
vec->definitions[0] = Definition(write_data);
ctx->block->instructions.emplace_back(std::move(vec));
} else {
write_data = data;
}
aco_opcode op;
switch (num_bytes) {
case 4:
op = aco_opcode::buffer_store_dword;
break;
case 8:
op = aco_opcode::buffer_store_dwordx2;
break;
case 12:
op = aco_opcode::buffer_store_dwordx3;
break;
case 16:
op = aco_opcode::buffer_store_dwordx4;
break;
default:
unreachable("Invalid data size for nir_intrinsic_store_scratch.");
}
bld.mubuf(op, offset, rsrc, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
}
}
void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
uint8_t log2_ps_iter_samples;
if (ctx->program->info->ps.force_persample) {
log2_ps_iter_samples =
util_logbase2(ctx->options->key.fs.num_samples);
} else {
log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
}
/* The bit pattern matches that used by fixed function fragment
* processing. */
static const unsigned ps_iter_masks[] = {
0xffff, /* not used */
0x5555,
0x1111,
0x0101,
0x0001,
};
assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
Builder bld(ctx->program, ctx->block);
Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
}
Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
{
Builder bld(ctx->program, ctx->block);
if (cluster_size == 1) {
return src;
} if (op == nir_op_iand && cluster_size == 4) {
//subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
} else if (op == nir_op_ior && cluster_size == 4) {
//subgroupClusteredOr(val, 4) -> wqm(val & exec)
return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
} else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
//subgroupAnd(val) -> (exec & ~val) == 0
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
} else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
//subgroupOr(val) -> (val & exec) != 0
Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
return bool_to_vector_condition(ctx, tmp);
} else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
//subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
return bool_to_vector_condition(ctx, tmp);
} else {
//subgroupClustered{And,Or,Xor}(val, n) ->
//lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
//cluster_offset = ~(n - 1) & lane_id
//cluster_mask = ((1 << n) - 1)
//subgroupClusteredAnd():
// return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
//subgroupClusteredOr():
// return ((val & exec) >> cluster_offset) & cluster_mask != 0
//subgroupClusteredXor():
// return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
Temp tmp;
if (op == nir_op_iand)
tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
else
tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
if (ctx->program->chip_class <= GFX7)
tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
else if (ctx->program->wave_size == 64)
tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
else
tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
tmp = emit_extract_vector(ctx, tmp, 0, v1);
if (cluster_mask != 0xffffffff)
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
Definition cmp_def = Definition();
if (op == nir_op_iand) {
cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
} else if (op == nir_op_ior) {
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
} else if (op == nir_op_ixor) {
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
}
cmp_def.setHint(vcc);
return cmp_def.getTemp();
}
}
Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
{
Builder bld(ctx->program, ctx->block);
//subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
//subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
//subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
Temp tmp;
if (op == nir_op_iand)
tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
else
tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
Temp lo = lohi.def(0).getTemp();
Temp hi = lohi.def(1).getTemp();
Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
Definition cmp_def = Definition();
if (op == nir_op_iand)
cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
else if (op == nir_op_ior)
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
else if (op == nir_op_ixor)
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
cmp_def.setHint(vcc);
return cmp_def.getTemp();
}
Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
{
Builder bld(ctx->program, ctx->block);
//subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
//subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
//subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
if (op == nir_op_iand)
return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
else if (op == nir_op_ior)
return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
else if (op == nir_op_ixor)
return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
assert(false);
return Temp();
}
void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
{
Builder bld(ctx->program, ctx->block);
Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
if (src.regClass().type() == RegType::vgpr) {
bld.pseudo(aco_opcode::p_as_uniform, dst, src);
} else if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_mov_b32, dst, src);
} else if (src.regClass() == s2) {
bld.sop1(aco_opcode::s_mov_b64, dst, src);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
}
void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
{
Builder bld(ctx->program, ctx->block);
Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
Temp ddx_1, ddx_2, ddy_1, ddy_2;
uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
/* Build DD X/Y */
if (ctx->program->chip_class >= GFX8) {
Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
} else {
Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
}
/* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
Temp wqm1 = bld.tmp(v1);
emit_wqm(ctx, tmp1, wqm1, true);
Temp wqm2 = bld.tmp(v1);
emit_wqm(ctx, tmp2, wqm2, true);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
return;
}
void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
switch(instr->intrinsic) {
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid: {
glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
Temp bary = Temp(0, s2);
switch (mode) {
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
bary = get_arg(ctx, ctx->args->ac.persp_center);
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
bary = ctx->persp_centroid;
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
bary = get_arg(ctx, ctx->args->ac.persp_sample);
break;
case INTERP_MODE_NOPERSPECTIVE:
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
bary = get_arg(ctx, ctx->args->ac.linear_center);
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
bary = ctx->linear_centroid;
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
bary = get_arg(ctx, ctx->args->ac.linear_sample);
break;
default:
break;
}
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
Operand(p1), Operand(p2));
emit_split_vector(ctx, dst, 2);
break;
}
case nir_intrinsic_load_barycentric_at_sample: {
uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
switch (ctx->options->key.fs.num_samples) {
case 2: sample_pos_offset += 1 << 3; break;
case 4: sample_pos_offset += 3 << 3; break;
case 8: sample_pos_offset += 7 << 3; break;
default: break;
}
Temp sample_pos;
Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
Temp private_segment_buffer = ctx->program->private_segment_buffer;
if (addr.type() == RegType::sgpr) {
Operand offset;
if (const_addr) {
sample_pos_offset += const_addr->u32 << 3;
offset = Operand(sample_pos_offset);
} else if (ctx->options->chip_class >= GFX9) {
offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
} else {
offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
}
sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand(offset));
} else if (ctx->options->chip_class >= GFX9) {
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
} else if (ctx->options->chip_class >= GFX7) {
/* addr += private_segment_buffer + sample_pos_offset */
Temp tmp0 = bld.tmp(s1);
Temp tmp1 = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
Definition scc_tmp = bld.def(s1, scc);
tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
Temp pck0 = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
tmp1 = as_vgpr(ctx, tmp1);
Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
/* sample_pos = flat_load_dwordx2 addr */
sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
} else {
assert(ctx->options->chip_class == GFX6);
uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
sample_pos = bld.tmp(v2);
aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
load->definitions[0] = Definition(sample_pos);
load->operands[0] = Operand(addr);
load->operands[1] = Operand(rsrc);
load->operands[2] = Operand(0u);
load->offset = sample_pos_offset;
load->offen = 0;
load->addr64 = true;
load->glc = false;
load->dlc = false;
load->disable_wqm = false;
load->barrier = barrier_none;
load->can_reorder = true;
ctx->block->instructions.emplace_back(std::move(load));
}
/* sample_pos -= 0.5 */
Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
break;
}
case nir_intrinsic_load_barycentric_at_offset: {
Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
RegClass rc = RegClass(offset.type(), 1);
Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
break;
}
case nir_intrinsic_load_front_face: {
bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
break;
}
case nir_intrinsic_load_view_index:
case nir_intrinsic_load_layer_id: {
if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & sw_vs)) {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
break;
}
unsigned idx = nir_intrinsic_base(instr);
bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
break;
}
case nir_intrinsic_load_frag_coord: {
emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
break;
}
case nir_intrinsic_load_sample_pos: {
Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
break;
}
case nir_intrinsic_load_interpolated_input:
visit_load_interpolated_input(ctx, instr);
break;
case nir_intrinsic_store_output:
visit_store_output(ctx, instr);
break;
case nir_intrinsic_load_input:
visit_load_input(ctx, instr);
break;
case nir_intrinsic_load_ubo:
visit_load_ubo(ctx, instr);
break;
case nir_intrinsic_load_push_constant:
visit_load_push_constant(ctx, instr);
break;
case nir_intrinsic_load_constant:
visit_load_constant(ctx, instr);
break;
case nir_intrinsic_vulkan_resource_index:
visit_load_resource(ctx, instr);
break;
case nir_intrinsic_discard:
visit_discard(ctx, instr);
break;
case nir_intrinsic_discard_if:
visit_discard_if(ctx, instr);
break;
case nir_intrinsic_load_shared:
visit_load_shared(ctx, instr);
break;
case nir_intrinsic_store_shared:
visit_store_shared(ctx, instr);
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
visit_shared_atomic(ctx, instr);
break;
case nir_intrinsic_image_deref_load:
visit_image_load(ctx, instr);
break;
case nir_intrinsic_image_deref_store:
visit_image_store(ctx, instr);
break;
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
visit_image_atomic(ctx, instr);
break;
case nir_intrinsic_image_deref_size:
visit_image_size(ctx, instr);
break;
case nir_intrinsic_load_ssbo:
visit_load_ssbo(ctx, instr);
break;
case nir_intrinsic_store_ssbo:
visit_store_ssbo(ctx, instr);
break;
case nir_intrinsic_load_global:
visit_load_global(ctx, instr);
break;
case nir_intrinsic_store_global:
visit_store_global(ctx, instr);
break;
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_comp_swap:
visit_global_atomic(ctx, instr);
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
visit_atomic_ssbo(ctx, instr);
break;
case nir_intrinsic_load_scratch:
visit_load_scratch(ctx, instr);
break;
case nir_intrinsic_store_scratch:
visit_store_scratch(ctx, instr);
break;
case nir_intrinsic_get_buffer_size:
visit_get_buffer_size(ctx, instr);
break;
case nir_intrinsic_control_barrier: {
unsigned* bsize = ctx->program->info->cs.block_size;
unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
if (workgroup_size > ctx->program->wave_size)
bld.sopp(aco_opcode::s_barrier);
break;
}
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
emit_memory_barrier(ctx, instr);
break;
case nir_intrinsic_memory_barrier_tcs_patch:
break;
case nir_intrinsic_load_num_work_groups: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_local_invocation_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_work_group_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
struct ac_arg *args = ctx->args->ac.workgroup_ids;
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_local_invocation_index: {
Temp id = emit_mbcnt(ctx, bld.def(v1));
/* The tg_size bits [6:11] contain the subgroup id,
* we need this multiplied by the wave size, and then OR the thread id to it.
*/
if (ctx->program->wave_size == 64) {
/* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
get_arg(ctx, ctx->args->ac.tg_size));
bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
} else {
/* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
}
break;
}
case nir_intrinsic_load_subgroup_id: {
if (ctx->stage == compute_cs) {
bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
} else {
bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
}
break;
}
case nir_intrinsic_load_subgroup_invocation: {
emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
break;
}
case nir_intrinsic_load_num_subgroups: {
if (ctx->stage == compute_cs)
bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
get_arg(ctx, ctx->args->ac.tg_size));
else
bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
break;
}
case nir_intrinsic_ballot: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Definition tmp = bld.def(dst.regClass());
Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
if (instr->src[0].ssa->bit_size == 1) {
assert(src.regClass() == bld.lm);
bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
} else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
} else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
if (dst.size() != bld.lm.size()) {
/* Wave32 with ballot size set to 64 */
bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
}
emit_wqm(ctx, tmp.getTemp(), dst);
break;
}
case nir_intrinsic_shuffle:
case nir_intrinsic_read_invocation: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
emit_uniform_subgroup(ctx, instr, src);
} else {
Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
tid = bld.as_uniform(tid);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (src.regClass() == v1) {
emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
} else if (src.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
assert(src.regClass() == bld.lm);
Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
} else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
assert(src.regClass() == bld.lm);
Temp tmp;
if (ctx->program->chip_class <= GFX7)
tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
else if (ctx->program->wave_size == 64)
tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
else
tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
tmp = emit_extract_vector(ctx, tmp, 0, v1);
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
}
break;
}
case nir_intrinsic_load_sample_id: {
bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
break;
}
case nir_intrinsic_load_sample_mask_in: {
visit_load_sample_mask_in(ctx, instr);
break;
}
case nir_intrinsic_read_first_invocation: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (src.regClass() == v1) {
emit_wqm(ctx,
bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
dst);
} else if (src.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else if (instr->dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
} else if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
} else if (src.regClass() == s2) {
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_intrinsic_vote_all: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
break;
}
case nir_intrinsic_vote_any: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
Temp tmp = bool_to_scalar_condition(ctx, src);
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
break;
}
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
nir_intrinsic_cluster_size(instr) : 0;
cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
emit_uniform_subgroup(ctx, instr, src);
} else if (instr->dest.ssa.bit_size == 1) {
if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
op = nir_op_iand;
else if (op == nir_op_iadd)
op = nir_op_ixor;
else if (op == nir_op_umax || op == nir_op_imax)
op = nir_op_ior;
assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
switch (instr->intrinsic) {
case nir_intrinsic_reduce:
emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
break;
case nir_intrinsic_exclusive_scan:
emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
break;
case nir_intrinsic_inclusive_scan:
emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
break;
default:
assert(false);
}
} else if (cluster_size == 1) {
bld.copy(Definition(dst), src);
} else {
src = as_vgpr(ctx, src);
ReduceOp reduce_op;
switch (op) {
#define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
CASE(iadd)
CASE(imul)
CASE(fadd)
CASE(fmul)
CASE(imin)
CASE(umin)
CASE(fmin)
CASE(imax)
CASE(umax)
CASE(fmax)
CASE(iand)
CASE(ior)
CASE(ixor)
default:
unreachable("unknown reduction op");
#undef CASE
}
aco_opcode aco_op;
switch (instr->intrinsic) {
case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
default:
unreachable("unknown reduce intrinsic");
}
aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
reduce->operands[0] = Operand(src);
// filled in by aco_reduce_assign.cpp, used internally as part of the
// reduce sequence
assert(dst.size() == 1 || dst.size() == 2);
reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
reduce->operands[2] = Operand(v1.as_linear());
Temp tmp_dst = bld.tmp(dst.regClass());
reduce->definitions[0] = Definition(tmp_dst);
reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
reduce->definitions[2] = Definition();
reduce->definitions[3] = Definition(scc, s1);
reduce->definitions[4] = Definition();
reduce->reduce_op = reduce_op;
reduce->cluster_size = cluster_size;
ctx->block->instructions.emplace_back(std::move(reduce));
emit_wqm(ctx, tmp_dst, dst);
}
break;
}
case nir_intrinsic_quad_broadcast: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!ctx->divergent_vals[instr->dest.ssa.index]) {
emit_uniform_subgroup(ctx, instr, src);
} else {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
if (instr->dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
uint32_t half_mask = 0x11111111u << lane;
Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
Temp tmp = bld.tmp(bld.lm);
bld.sop1(Builder::s_wqm, Definition(tmp),
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
emit_wqm(ctx, tmp, dst);
} else if (instr->dest.ssa.bit_size == 32) {
if (ctx->program->chip_class >= GFX8)
emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
else
emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
} else if (instr->dest.ssa.bit_size == 64) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
if (ctx->program->chip_class >= GFX8) {
lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
} else {
lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
}
break;
}
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_quad_swizzle_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!ctx->divergent_vals[instr->dest.ssa.index]) {
emit_uniform_subgroup(ctx, instr, src);
break;
}
uint16_t dpp_ctrl = 0;
switch (instr->intrinsic) {
case nir_intrinsic_quad_swap_horizontal:
dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
break;
case nir_intrinsic_quad_swap_vertical:
dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
break;
case nir_intrinsic_quad_swap_diagonal:
dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
break;
case nir_intrinsic_quad_swizzle_amd:
dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
break;
default:
break;
}
if (ctx->program->chip_class < GFX8)
dpp_ctrl |= (1 << 15);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (instr->dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
if (ctx->program->chip_class >= GFX8)
src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
else
src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
emit_wqm(ctx, tmp, dst);
} else if (instr->dest.ssa.bit_size == 32) {
Temp tmp;
if (ctx->program->chip_class >= GFX8)
tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
else
tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
emit_wqm(ctx, tmp, dst);
} else if (instr->dest.ssa.bit_size == 64) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
if (ctx->program->chip_class >= GFX8) {
lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
} else {
lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_intrinsic_masked_swizzle_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!ctx->divergent_vals[instr->dest.ssa.index]) {
emit_uniform_subgroup(ctx, instr, src);
break;
}
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
uint32_t mask = nir_intrinsic_swizzle_mask(instr);
if (dst.regClass() == v1) {
emit_wqm(ctx,
bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
dst);
} else if (dst.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_intrinsic_write_invocation_amd: {
Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (dst.regClass() == v1) {
/* src2 is ignored for writelane. RA assigns the same reg for dst */
emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
} else if (dst.regClass() == v2) {
Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
}
break;
}
case nir_intrinsic_mbcnt_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
RegClass rc = RegClass(src.type(), 1);
Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
emit_wqm(ctx, wqm_tmp, dst);
break;
}
case nir_intrinsic_load_helper_invocation: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
ctx->block->kind |= block_kind_needs_lowering;
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_is_helper_invocation: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
ctx->block->kind |= block_kind_needs_lowering;
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_demote:
bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty = true;
ctx->block->kind |= block_kind_uses_demote;
ctx->program->needs_exact = true;
break;
case nir_intrinsic_demote_if: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
assert(src.regClass() == bld.lm);
Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
bld.pseudo(aco_opcode::p_demote_to_helper, cond);
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty = true;
ctx->block->kind |= block_kind_uses_demote;
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_first_invocation: {
emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
get_ssa_temp(ctx, &instr->dest.ssa));
break;
}
case nir_intrinsic_shader_clock:
bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
break;
case nir_intrinsic_load_vertex_id_zero_base: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
break;
}
case nir_intrinsic_load_first_vertex: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
break;
}
case nir_intrinsic_load_base_instance: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
break;
}
case nir_intrinsic_load_instance_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
break;
}
case nir_intrinsic_load_draw_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
break;
}
default:
fprintf(stderr, "Unimplemented intrinsic instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
break;
}
}
void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
enum glsl_base_type *stype)
{
nir_deref_instr *texture_deref_instr = NULL;
nir_deref_instr *sampler_deref_instr = NULL;
int plane = -1;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_texture_deref:
texture_deref_instr = nir_src_as_deref(instr->src[i].src);
break;
case nir_tex_src_sampler_deref:
sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
break;
case nir_tex_src_plane:
plane = nir_src_as_int(instr->src[i].src);
break;
default:
break;
}
}
*stype = glsl_get_sampler_result_type(texture_deref_instr->type);
if (!sampler_deref_instr)
sampler_deref_instr = texture_deref_instr;
if (plane >= 0) {
assert(instr->op != nir_texop_txf_ms &&
instr->op != nir_texop_samples_identical);
assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
} else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
} else if (instr->op == nir_texop_fragment_mask_fetch) {
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
} else {
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
}
if (samp_ptr) {
*samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
/* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
Builder bld(ctx->program, ctx->block);
/* to avoid unnecessary moves, we split and recombine sampler and image */
Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
Definition(img[2]), Definition(img[3]), Definition(img[4]),
Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
Definition(samp[2]), Definition(samp[3]), *samp_ptr);
samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
*res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
img[0], img[1], img[2], img[3],
img[4], img[5], img[6], img[7]);
*samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
samp[0], samp[1], samp[2], samp[3]);
}
}
if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical))
*fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
}
void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
Temp *out_ma, Temp *out_sc, Temp *out_tc)
{
Builder bld(ctx->program, ctx->block);
Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
Operand neg_one(0xbf800000u);
Operand one(0x3f800000u);
Operand two(0x40000000u);
Operand four(0x40800000u);
Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
// select sc
Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
one, is_ma_y);
*out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
// select tc
tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
*out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
// select ma
tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
deriv_z, is_ma_z);
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
*out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
}
void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
{
Builder bld(ctx->program, ctx->block);
Temp coord_args[4], ma, tc, sc, id;
for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
if (is_array) {
coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
// see comment in ac_prepare_cube_coords()
if (ctx->options->chip_class <= GFX8)
coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
}
ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
vop3a->operands[0] = Operand(ma);
vop3a->abs[0] = true;
Temp invma = bld.tmp(v1);
vop3a->definitions[0] = Definition(invma);
ctx->block->instructions.emplace_back(std::move(vop3a));
sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
if (!is_deriv)
sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
if (!is_deriv)
tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
if (is_deriv) {
sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
for (unsigned i = 0; i < 2; i++) {
// see comment in ac_prepare_cube_coords()
Temp deriv_ma;
Temp deriv_sc, deriv_tc;
build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
&deriv_ma, &deriv_sc, &deriv_tc);
deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
*(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
}
sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
}
if (is_array)
id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
*coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
}
Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
{
Temp coord_vec[3];
for (unsigned i = 0; i < coords.size(); i++)
coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
Builder bld(ctx->program, ctx->block);
coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
for (unsigned i = 0; i < coords.size(); i++)
vec->operands[i] = Operand(coord_vec[i]);
Temp res = bld.tmp(RegType::vgpr, coords.size());
vec->definitions[0] = Definition(res);
ctx->block->instructions.emplace_back(std::move(vec));
return res;
}
void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
{
if (vec->parent_instr->type != nir_instr_type_alu)
return;
nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
if (vec_instr->op != nir_op_vec(vec->num_components))
return;
for (unsigned i = 0; i < vec->num_components; i++) {
cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
nir_src_as_const_value(vec_instr->src[i].src) : NULL;
}
}
void visit_tex(isel_context *ctx, nir_tex_instr *instr)
{
Builder bld(ctx->program, ctx->block);
bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
nir_const_value *sample_index_cv = NULL;
nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
enum glsl_base_type stype;
tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
(stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord:
coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
break;
case nir_tex_src_bias:
if (instr->op == nir_texop_txb) {
bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_bias = true;
}
break;
case nir_tex_src_lod: {
nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
if (val && val->f32 <= 0.0) {
level_zero = true;
} else {
lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_lod = true;
}
break;
}
case nir_tex_src_comparator:
if (instr->is_shadow) {
compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_compare = true;
}
break;
case nir_tex_src_offset:
offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
get_const_vec(instr->src[i].src.ssa, const_offset);
has_offset = true;
break;
case nir_tex_src_ddx:
ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_ddx = true;
break;
case nir_tex_src_ddy:
ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_ddy = true;
break;
case nir_tex_src_ms_index:
sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
sample_index_cv = nir_src_as_const_value(instr->src[i].src);
has_sample_index = true;
break;
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
default:
break;
}
}
// TODO: all other cases: structure taken from ac_nir_to_llvm.c
if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
if (instr->op == nir_texop_texture_samples) {
Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
samples, Operand(1u), bld.scc(is_msaa));
return;
}
if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
aco_ptr<Instruction> tmp_instr;
Temp acc, pack = Temp();
uint32_t pack_const = 0;
for (unsigned i = 0; i < offset.size(); i++) {
if (!const_offset[i])
continue;
pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
}
if (offset.type() == RegType::sgpr) {
for (unsigned i = 0; i < offset.size(); i++) {
if (const_offset[i])
continue;
acc = emit_extract_vector(ctx, offset, i, s1);
acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
if (i) {
acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
}
if (pack == Temp()) {
pack = acc;
} else {
pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
}
}
if (pack_const && pack != Temp())
pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
} else {
for (unsigned i = 0; i < offset.size(); i++) {
if (const_offset[i])
continue;
acc = emit_extract_vector(ctx, offset, i, v1);
acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
if (i) {
acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
}
if (pack == Temp()) {
pack = acc;
} else {
pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
}
}
if (pack_const && pack != Temp())
pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
}
if (pack_const && pack == Temp())
offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
else if (pack == Temp())
has_offset = false;
else
offset = pack;
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
/* pack derivatives */
if (has_ddx || has_ddy) {
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
ddx, Operand(0u), ddy, Operand(0u));
} else {
derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
}
has_derivs = true;
}
if (instr->coord_components > 1 &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->is_array &&
instr->op != nir_texop_txf)
coords = apply_round_slice(ctx, coords, 1);
if (instr->coord_components > 2 &&
(instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
instr->is_array &&
instr->op != nir_texop_txf &&
instr->op != nir_texop_txf_ms &&
instr->op != nir_texop_fragment_fetch &&
instr->op != nir_texop_fragment_mask_fetch)
coords = apply_round_slice(ctx, coords, 2);
if (ctx->options->chip_class == GFX9 &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->op != nir_texop_lod && instr->coord_components) {
assert(coords.size() > 0 && coords.size() < 3);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
if (coords.size() > 1)
vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
coords = bld.tmp(RegType::vgpr, coords.size() + 1);
vec->definitions[0] = Definition(coords);
ctx->block->instructions.emplace_back(std::move(vec));
}
bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
if (instr->op == nir_texop_samples_identical)
resource = fmask_ptr;
else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
instr->op != nir_texop_txs &&
instr->op != nir_texop_fragment_fetch &&
instr->op != nir_texop_fragment_mask_fetch) {
assert(has_sample_index);
Operand op(sample_index);
if (sample_index_cv)
op = Operand(sample_index_cv->u32);
sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
}
if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
Temp split_coords[coords.size()];
emit_split_vector(ctx, coords, coords.size());
for (unsigned i = 0; i < coords.size(); i++)
split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
unsigned i = 0;
for (; i < std::min(offset.size(), instr->coord_components); i++) {
Temp off = emit_extract_vector(ctx, offset, i, v1);
split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
}
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
for (unsigned i = 0; i < coords.size(); i++)
vec->operands[i] = Operand(split_coords[i]);
coords = bld.tmp(coords.regClass());
vec->definitions[0] = Definition(coords);
ctx->block->instructions.emplace_back(std::move(vec));
has_offset = false;
}
/* Build tex instruction */
unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
: 0;
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp tmp_dst = dst;
/* gather4 selects the component by dmask and always returns vec4 */
if (instr->op == nir_texop_tg4) {
assert(instr->dest.ssa.num_components == 4);
if (instr->is_shadow)
dmask = 1;
else
dmask = 1 << instr->component;
if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
tmp_dst = bld.tmp(v4);
} else if (instr->op == nir_texop_samples_identical) {
tmp_dst = bld.tmp(v1);
} else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
}
aco_ptr<MIMG_instruction> tex;
if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
if (!has_lod)
lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
bool div_by_6 = instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
instr->is_array &&
(dmask & (1 << 2));
if (tmp_dst.id() == dst.id() && div_by_6)
tmp_dst = bld.tmp(tmp_dst.regClass());
tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
tex->operands[0] = Operand(as_vgpr(ctx,lod));
tex->operands[1] = Operand(resource);
if (ctx->options->chip_class == GFX9 &&
instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->is_array) {
tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
} else if (instr->op == nir_texop_query_levels) {
tex->dmask = 1 << 3;
} else {
tex->dmask = dmask;
}
tex->da = da;
tex->definitions[0] = Definition(tmp_dst);
tex->dim = dim;
tex->can_reorder = true;
ctx->block->instructions.emplace_back(std::move(tex));
if (div_by_6) {
/* divide 3rd value by 6 by multiplying with magic number */
emit_split_vector(ctx, tmp_dst, tmp_dst.size());
Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
assert(instr->dest.ssa.num_components == 3);
Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
emit_extract_vector(ctx, tmp_dst, 0, v1),
emit_extract_vector(ctx, tmp_dst, 1, v1),
by_6);
}
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
return;
}
Temp tg4_compare_cube_wa64 = Temp();
if (tg4_integer_workarounds) {
tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
tex->operands[1] = Operand(resource);
tex->dim = dim;
tex->dmask = 0x3;
tex->da = da;
Temp size = bld.tmp(v2);
tex->definitions[0] = Definition(size);
tex->can_reorder = true;
ctx->block->instructions.emplace_back(std::move(tex));
emit_split_vector(ctx, size, size.size());
Temp half_texel[2];
for (unsigned i = 0; i < 2; i++) {
half_texel[i] = emit_extract_vector(ctx, size, i, v1);
half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
}
Temp orig_coords[2] = {
emit_extract_vector(ctx, coords, 0, v1),
emit_extract_vector(ctx, coords, 1, v1)};
Temp new_coords[2] = {
bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
};
if (tg4_integer_cube_workaround) {
// see comment in ac_nir_to_llvm.c's lower_gather4_integer()
Temp desc[resource.size()];
aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
Format::PSEUDO, 1, resource.size())};
split->operands[0] = Operand(resource);
for (unsigned i = 0; i < resource.size(); i++) {
desc[i] = bld.tmp(s1);
split->definitions[i] = Definition(desc[i]);
}
ctx->block->instructions.emplace_back(std::move(split));
Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
Temp nfmt;
if (stype == GLSL_TYPE_UINT) {
nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
bld.scc(compare_cube_wa));
} else {
nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
bld.scc(compare_cube_wa));
}
tg4_compare_cube_wa64 = bld.tmp(bld.lm);
bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
Operand((uint32_t)C_008F14_NUM_FORMAT));
desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
Format::PSEUDO, resource.size(), 1)};
for (unsigned i = 0; i < resource.size(); i++)
vec->operands[i] = Operand(desc[i]);
resource = bld.tmp(resource.regClass());
vec->definitions[0] = Definition(resource);
ctx->block->instructions.emplace_back(std::move(vec));
new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
}
if (coords.size() == 3) {
coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
new_coords[0], new_coords[1],
emit_extract_vector(ctx, coords, 2, v1));
} else {
assert(coords.size() == 2);
coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
new_coords[0], new_coords[1]);
}
}
std::vector<Operand> args;
if (has_offset)
args.emplace_back(Operand(offset));
if (has_bias)
args.emplace_back(Operand(bias));
if (has_compare)
args.emplace_back(Operand(compare));
if (has_derivs)
args.emplace_back(Operand(derivs));
args.emplace_back(Operand(coords));
if (has_sample_index)
args.emplace_back(Operand(sample_index));
if (has_lod)
args.emplace_back(lod);
Temp arg;
if (args.size() > 1) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
unsigned size = 0;
for (unsigned i = 0; i < args.size(); i++) {
size += args[i].size();
vec->operands[i] = args[i];
}
RegClass rc = RegClass(RegType::vgpr, size);
Temp tmp = bld.tmp(rc);
vec->definitions[0] = Definition(tmp);
ctx->block->instructions.emplace_back(std::move(vec));
arg = tmp;
} else {
assert(args[0].isTemp());
arg = as_vgpr(ctx, args[0].getTemp());
}
/* we don't need the bias, sample index, compare value or offset to be
* computed in WQM but if the p_create_vector copies the coordinates, then it
* needs to be in WQM */
if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
//FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
assert(coords.size() == 1);
unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
aco_opcode op;
switch (last_bit) {
case 1:
op = aco_opcode::buffer_load_format_x; break;
case 2:
op = aco_opcode::buffer_load_format_xy; break;
case 3:
op = aco_opcode::buffer_load_format_xyz; break;
case 4:
op = aco_opcode::buffer_load_format_xyzw; break;
default:
unreachable("Tex instruction loads more than 4 components.");
}
/* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
tmp_dst = dst;
else
tmp_dst = bld.tmp(RegType::vgpr, last_bit);
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = Operand(coords);
mubuf->operands[1] = Operand(resource);
mubuf->operands[2] = Operand((uint32_t) 0);
mubuf->definitions[0] = Definition(tmp_dst);
mubuf->idxen = true;
mubuf->can_reorder = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
return;
}
if (instr->op == nir_texop_txf ||
instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical ||
instr->op == nir_texop_fragment_fetch ||
instr->op == nir_texop_fragment_mask_fetch) {
aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
tex->operands[0] = Operand(arg);
tex->operands[1] = Operand(resource);
tex->dim = dim;
tex->dmask = dmask;
tex->unrm = true;
tex->da = da;
tex->definitions[0] = Definition(tmp_dst);
tex->can_reorder = true;
ctx->block->instructions.emplace_back(std::move(tex));
if (instr->op == nir_texop_samples_identical) {
assert(dmask == 1 && dst.regClass() == v1);
assert(dst.id() != tmp_dst.id());
Temp tmp = bld.tmp(bld.lm);
bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
} else {
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
}
return;
}
// TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
aco_opcode opcode = aco_opcode::image_sample;
if (has_offset) { /* image_sample_*_o */
if (has_compare) {
opcode = aco_opcode::image_sample_c_o;
if (has_derivs)
opcode = aco_opcode::image_sample_c_d_o;
if (has_bias)
opcode = aco_opcode::image_sample_c_b_o;
if (level_zero)
opcode = aco_opcode::image_sample_c_lz_o;
if (has_lod)
opcode = aco_opcode::image_sample_c_l_o;
} else {
opcode = aco_opcode::image_sample_o;
if (has_derivs)
opcode = aco_opcode::image_sample_d_o;
if (has_bias)
opcode = aco_opcode::image_sample_b_o;
if (level_zero)
opcode = aco_opcode::image_sample_lz_o;
if (has_lod)
opcode = aco_opcode::image_sample_l_o;
}
} else { /* no offset */
if (has_compare) {
opcode = aco_opcode::image_sample_c;
if (has_derivs)
opcode = aco_opcode::image_sample_c_d;
if (has_bias)
opcode = aco_opcode::image_sample_c_b;
if (level_zero)
opcode = aco_opcode::image_sample_c_lz;
if (has_lod)
opcode = aco_opcode::image_sample_c_l;
} else {
opcode = aco_opcode::image_sample;
if (has_derivs)
opcode = aco_opcode::image_sample_d;
if (has_bias)
opcode = aco_opcode::image_sample_b;
if (level_zero)
opcode = aco_opcode::image_sample_lz;
if (has_lod)
opcode = aco_opcode::image_sample_l;
}
}
if (instr->op == nir_texop_tg4) {
if (has_offset) {
opcode = aco_opcode::image_gather4_lz_o;
if (has_compare)
opcode = aco_opcode::image_gather4_c_lz_o;
} else {
opcode = aco_opcode::image_gather4_lz;
if (has_compare)
opcode = aco_opcode::image_gather4_c_lz;
}
} else if (instr->op == nir_texop_lod) {
opcode = aco_opcode::image_get_lod;
}
tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
tex->operands[0] = Operand(arg);
tex->operands[1] = Operand(resource);
tex->operands[2] = Operand(sampler);
tex->dim = dim;
tex->dmask = dmask;
tex->da = da;
tex->definitions[0] = Definition(tmp_dst);
tex->can_reorder = true;
ctx->block->instructions.emplace_back(std::move(tex));
if (tg4_integer_cube_workaround) {
assert(tmp_dst.id() != dst.id());
assert(tmp_dst.size() == dst.size() && dst.size() == 4);
emit_split_vector(ctx, tmp_dst, tmp_dst.size());
Temp val[4];
for (unsigned i = 0; i < dst.size(); i++) {
val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
Temp cvt_val;
if (stype == GLSL_TYPE_UINT)
cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
else
cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
}
Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
val[0], val[1], val[2], val[3]);
}
unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
}
Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
{
Temp tmp = get_ssa_temp(ctx, ssa);
if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
return Operand(tmp.regClass());
else
return Operand(tmp);
}
void visit_phi(isel_context *ctx, nir_phi_instr *instr)
{
aco_ptr<Pseudo_instruction> phi;
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
logical |= ctx->block->kind & block_kind_merge;
aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
/* we want a sorted list of sources, since the predecessor list is also sorted */
std::map<unsigned, nir_ssa_def*> phi_src;
nir_foreach_phi_src(src, instr)
phi_src[src->pred->index] = src->src.ssa;
std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
unsigned num_operands = 0;
Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
unsigned num_defined = 0;
unsigned cur_pred_idx = 0;
for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
if (cur_pred_idx < preds.size()) {
/* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
unsigned block = ctx->cf_info.nir_to_aco[src.first];
unsigned skipped = 0;
while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
skipped++;
if (cur_pred_idx + skipped < preds.size()) {
for (unsigned i = 0; i < skipped; i++)
operands[num_operands++] = Operand(dst.regClass());
cur_pred_idx += skipped;
} else {
continue;
}
}
cur_pred_idx++;
Operand op = get_phi_operand(ctx, src.second);
operands[num_operands++] = op;
num_defined += !op.isUndefined();
}
/* handle block_kind_continue_or_break at loop exit blocks */
while (cur_pred_idx++ < preds.size())
operands[num_operands++] = Operand(dst.regClass());
if (num_defined == 0) {
Builder bld(ctx->program, ctx->block);
if (dst.regClass() == s1) {
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
} else if (dst.regClass() == v1) {
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
} else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand(0u);
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
return;
}
/* we can use a linear phi in some cases if one src is undef */
if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
assert(invert->kind & block_kind_invert);
unsigned then_block = invert->linear_preds[0];
Block* insert_block = NULL;
for (unsigned i = 0; i < num_operands; i++) {
Operand op = operands[i];
if (op.isUndefined())
continue;
insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
phi->operands[0] = op;
break;
}
assert(insert_block); /* should be handled by the "num_defined == 0" case above */
phi->operands[1] = Operand(dst.regClass());
phi->definitions[0] = Definition(dst);
insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
return;
}
/* try to scalarize vector phis */
if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
// TODO: scalarize linear phis on divergent ifs
bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
Operand src = operands[i];
if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
can_scalarize = false;
}
if (can_scalarize) {
unsigned num_components = instr->dest.ssa.num_components;
assert(dst.size() % num_components == 0);
RegClass rc = RegClass(dst.type(), dst.size() / num_components);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
for (unsigned k = 0; k < num_components; k++) {
phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
for (unsigned i = 0; i < num_operands; i++) {
Operand src = operands[i];
phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
}
Temp phi_dst = {ctx->program->allocateId(), rc};
phi->definitions[0] = Definition(phi_dst);
ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
new_vec[k] = phi_dst;
vec->operands[k] = Operand(phi_dst);
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), new_vec);
return;
}
}
phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
for (unsigned i = 0; i < num_operands; i++)
phi->operands[i] = operands[i];
phi->definitions[0] = Definition(dst);
ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
}
void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
assert(dst.type() == RegType::sgpr);
if (dst.size() == 1) {
Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
} else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand(0u);
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
void visit_jump(isel_context *ctx, nir_jump_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Block *logical_target;
append_logical_end(ctx->block);
unsigned idx = ctx->block->index;
switch (instr->type) {
case nir_jump_break:
logical_target = ctx->cf_info.parent_loop.exit;
add_logical_edge(idx, logical_target);
ctx->block->kind |= block_kind_break;
if (!ctx->cf_info.parent_if.is_divergent &&
!ctx->cf_info.parent_loop.has_divergent_continue) {
/* uniform break - directly jump out of the loop */
ctx->block->kind |= block_kind_uniform;
ctx->cf_info.has_branch = true;
bld.branch(aco_opcode::p_branch);
add_linear_edge(idx, logical_target);
return;
}
ctx->cf_info.parent_loop.has_divergent_branch = true;
ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
break;
case nir_jump_continue:
logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
add_logical_edge(idx, logical_target);
ctx->block->kind |= block_kind_continue;
if (ctx->cf_info.parent_if.is_divergent) {
/* for potential uniform breaks after this continue,
we must ensure that they are handled correctly */
ctx->cf_info.parent_loop.has_divergent_continue = true;
ctx->cf_info.parent_loop.has_divergent_branch = true;
ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
} else {
/* uniform continue - directly jump to the loop header */
ctx->block->kind |= block_kind_uniform;
ctx->cf_info.has_branch = true;
bld.branch(aco_opcode::p_branch);
add_linear_edge(idx, logical_target);
return;
}
break;
default:
fprintf(stderr, "Unknown NIR jump instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
/* remove critical edges from linear CFG */
bld.branch(aco_opcode::p_branch);
Block* break_block = ctx->program->create_and_insert_block();
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
break_block->kind |= block_kind_uniform;
add_linear_edge(idx, break_block);
/* the loop_header pointer might be invalidated by this point */
if (instr->type == nir_jump_continue)
logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
add_linear_edge(break_block->index, logical_target);
bld.reset(break_block);
bld.branch(aco_opcode::p_branch);
Block* continue_block = ctx->program->create_and_insert_block();
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_linear_edge(idx, continue_block);
append_logical_start(continue_block);
ctx->block = continue_block;
return;
}
void visit_block(isel_context *ctx, nir_block *block)
{
nir_foreach_instr(instr, block) {
switch (instr->type) {
case nir_instr_type_alu:
visit_alu_instr(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_load_const:
visit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_tex:
visit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_phi:
visit_phi(ctx, nir_instr_as_phi(instr));
break;
case nir_instr_type_ssa_undef:
visit_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_deref:
break;
case nir_instr_type_jump:
visit_jump(ctx, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
//abort();
}
}
if (!ctx->cf_info.parent_loop.has_divergent_branch)
ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
}
static void visit_loop(isel_context *ctx, nir_loop *loop)
{
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
Builder bld(ctx->program, ctx->block);
bld.branch(aco_opcode::p_branch);
unsigned loop_preheader_idx = ctx->block->index;
Block loop_exit = Block();
loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
Block* loop_header = ctx->program->create_and_insert_block();
loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
loop_header->kind |= block_kind_loop_header;
add_edge(loop_preheader_idx, loop_header);
ctx->block = loop_header;
/* emit loop body */
unsigned loop_header_idx = loop_header->index;
loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
append_logical_start(ctx->block);
visit_cf_list(ctx, &loop->body);
//TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
if (!ctx->cf_info.has_branch) {
append_logical_end(ctx->block);
if (ctx->cf_info.exec_potentially_empty) {
/* Discards can result in code running with an empty exec mask.
* This would result in divergent breaks not ever being taken. As a
* workaround, break the loop when the loop mask is empty instead of
* always continuing. */
ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
unsigned block_idx = ctx->block->index;
/* create helper blocks to avoid critical edges */
Block *break_block = ctx->program->create_and_insert_block();
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
break_block->kind = block_kind_uniform;
bld.reset(break_block);
bld.branch(aco_opcode::p_branch);
add_linear_edge(block_idx, break_block);
add_linear_edge(break_block->index, &loop_exit);
Block *continue_block = ctx->program->create_and_insert_block();
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
continue_block->kind = block_kind_uniform;
bld.reset(continue_block);
bld.branch(aco_opcode::p_branch);
add_linear_edge(block_idx, continue_block);
add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
ctx->block = &ctx->program->blocks[block_idx];
} else {
ctx->block->kind |= (block_kind_continue | block_kind_uniform);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
else
add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
}
bld.reset(ctx->block);
bld.branch(aco_opcode::p_branch);
}
/* fixup phis in loop header from unreachable blocks */
if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
bool linear = ctx->cf_info.has_branch;
bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
if ((logical && instr->opcode == aco_opcode::p_phi) ||
(linear && instr->opcode == aco_opcode::p_linear_phi)) {
/* the last operand should be the one that needs to be removed */
instr->operands.pop_back();
} else if (!is_phi(instr)) {
break;
}
}
}
ctx->cf_info.has_branch = false;
// TODO: if the loop has not a single exit, we must add one °°
/* emit loop successor block */
ctx->block = ctx->program->insert_block(std::move(loop_exit));
append_logical_start(ctx->block);
#if 0
// TODO: check if it is beneficial to not branch on continues
/* trim linear phis in loop header */
for (auto&& instr : loop_entry->instructions) {
if (instr->opcode == aco_opcode::p_linear_phi) {
aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
new_phi->definitions[0] = instr->definitions[0];
for (unsigned i = 0; i < new_phi->operands.size(); i++)
new_phi->operands[i] = instr->operands[i];
/* check that the remaining operands are all the same */
for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
assert(instr->operands[i].tempId() == instr->operands.back().tempId());
instr.swap(new_phi);
} else if (instr->opcode == aco_opcode::p_phi) {
continue;
} else {
break;
}
}
#endif
}
static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
{
ic->cond = cond;
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_branch;
/* branch to linear then block */
assert(cond.regClass() == ctx->program->lane_mask);
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
branch->operands[0] = Operand(cond);
ctx->block->instructions.push_back(std::move(branch));
ic->BB_if_idx = ctx->block->index;
ic->BB_invert = Block();
ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
/* Invert blocks are intentionally not marked as top level because they
* are not part of the logical cfg. */
ic->BB_invert.kind |= block_kind_invert;
ic->BB_endif = Block();
ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
ctx->cf_info.parent_if.is_divergent = true;
ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
/** emit logical then block */
Block* BB_then_logical = ctx->program->create_and_insert_block();
BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_edge(ic->BB_if_idx, BB_then_logical);
ctx->block = BB_then_logical;
append_logical_start(BB_then_logical);
}
static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
{
Block *BB_then_logical = ctx->block;
append_logical_end(BB_then_logical);
/* branch from logical then block to invert block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_then_logical->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then_logical->index, &ic->BB_invert);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_then_logical->index, &ic->BB_endif);
BB_then_logical->kind |= block_kind_uniform;
assert(!ctx->cf_info.has_branch);
ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
ctx->cf_info.parent_loop.has_divergent_branch = false;
/** emit linear then block */
Block* BB_then_linear = ctx->program->create_and_insert_block();
BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
BB_then_linear->kind |= block_kind_uniform;
add_linear_edge(ic->BB_if_idx, BB_then_linear);
/* branch from linear then block to invert block */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_then_linear->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then_linear->index, &ic->BB_invert);
/** emit invert merge block */
ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
ic->invert_idx = ctx->block->index;
/* branch to linear else block (skip else) */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
branch->operands[0] = Operand(ic->cond);
ctx->block->instructions.push_back(std::move(branch));
ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
/** emit logical else block */
Block* BB_else_logical = ctx->program->create_and_insert_block();
BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_logical_edge(ic->BB_if_idx, BB_else_logical);
add_linear_edge(ic->invert_idx, BB_else_logical);
ctx->block = BB_else_logical;
append_logical_start(BB_else_logical);
}
static void end_divergent_if(isel_context *ctx, if_context *ic)
{
Block *BB_else_logical = ctx->block;
append_logical_end(BB_else_logical);
/* branch from logical else block to endif block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_else_logical->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else_logical->index, &ic->BB_endif);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_else_logical->index, &ic->BB_endif);
BB_else_logical->kind |= block_kind_uniform;
assert(!ctx->cf_info.has_branch);
ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
/** emit linear else block */
Block* BB_else_linear = ctx->program->create_and_insert_block();
BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
BB_else_linear->kind |= block_kind_uniform;
add_linear_edge(ic->invert_idx, BB_else_linear);
/* branch from linear else block to endif block */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_else_linear->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else_linear->index, &ic->BB_endif);
/** emit endif merge block */
ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
append_logical_start(ctx->block);
ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
/* uniform control flow never has an empty exec-mask */
if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty = false;
}
static void visit_if(isel_context *ctx, nir_if *if_stmt)
{
Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
Builder bld(ctx->program, ctx->block);
aco_ptr<Pseudo_branch_instruction> branch;
if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
/**
* Uniform conditionals are represented in the following way*) :
*
* The linear and logical CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_ELSE (logical)
* \ /
* BB_ENDIF
*
* *) Exceptions may be due to break and continue statements within loops
* If a break/continue happens within uniform control flow, it branches
* to the loop exit/entry block. Otherwise, it branches to the next
* merge block.
**/
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_uniform;
/* emit branch */
assert(cond.regClass() == bld.lm);
// TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
cond = bool_to_scalar_condition(ctx, cond);
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
branch->operands[0] = Operand(cond);
branch->operands[0].setFixed(scc);
ctx->block->instructions.emplace_back(std::move(branch));
unsigned BB_if_idx = ctx->block->index;
Block BB_endif = Block();
BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
BB_endif.kind |= ctx->block->kind & block_kind_top_level;
/** emit then block */
Block* BB_then = ctx->program->create_and_insert_block();
BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_edge(BB_if_idx, BB_then);
append_logical_start(BB_then);
ctx->block = BB_then;
visit_cf_list(ctx, &if_stmt->then_list);
BB_then = ctx->block;
bool then_branch = ctx->cf_info.has_branch;
bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
if (!then_branch) {
append_logical_end(BB_then);
/* branch from then block to endif block */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_then->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then->index, &BB_endif);
if (!then_branch_divergent)
add_logical_edge(BB_then->index, &BB_endif);
BB_then->kind |= block_kind_uniform;
}
ctx->cf_info.has_branch = false;
ctx->cf_info.parent_loop.has_divergent_branch = false;
/** emit else block */
Block* BB_else = ctx->program->create_and_insert_block();
BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_edge(BB_if_idx, BB_else);
append_logical_start(BB_else);
ctx->block = BB_else;
visit_cf_list(ctx, &if_stmt->else_list);
BB_else = ctx->block;
if (!ctx->cf_info.has_branch) {
append_logical_end(BB_else);
/* branch from then block to endif block */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_else->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else->index, &BB_endif);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_else->index, &BB_endif);
BB_else->kind |= block_kind_uniform;
}
ctx->cf_info.has_branch &= then_branch;
ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
/** emit endif merge block */
if (!ctx->cf_info.has_branch) {
ctx->block = ctx->program->insert_block(std::move(BB_endif));
append_logical_start(ctx->block);
}
} else { /* non-uniform condition */
/**
* To maintain a logical and linear CFG without critical edges,
* non-uniform conditionals are represented in the following way*) :
*
* The linear CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_THEN (linear)
* \ /
* BB_INVERT (linear)
* / \
* BB_ELSE (logical) BB_ELSE (linear)
* \ /
* BB_ENDIF
*
* The logical CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_ELSE (logical)
* \ /
* BB_ENDIF
*
* *) Exceptions may be due to break and continue statements within loops
**/
if_context ic;
begin_divergent_if_then(ctx, &ic, cond);
visit_cf_list(ctx, &if_stmt->then_list);
begin_divergent_if_else(ctx, &ic);
visit_cf_list(ctx, &if_stmt->else_list);
end_divergent_if(ctx, &ic);
}
}
static void visit_cf_list(isel_context *ctx,
struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
visit_block(ctx, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
visit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
visit_loop(ctx, nir_cf_node_as_loop(node));
break;
default:
unreachable("unimplemented cf list type");
}
}
}
static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
{
int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
uint64_t mask = ctx->vs_output.mask[slot];
if (!is_pos && !mask)
return;
if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
return;
aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
exp->enabled_mask = mask;
for (unsigned i = 0; i < 4; ++i) {
if (mask & (1 << i))
exp->operands[i] = Operand(ctx->vs_output.outputs[slot][i]);
else
exp->operands[i] = Operand(v1);
}
/* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
* Setting valid_mask=1 prevents it and has no other effect.
*/
exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
exp->done = false;
exp->compressed = false;
if (is_pos)
exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
else
exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
ctx->block->instructions.emplace_back(std::move(exp));
}
static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
{
aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
exp->enabled_mask = 0;
for (unsigned i = 0; i < 4; ++i)
exp->operands[i] = Operand(v1);
if (ctx->vs_output.mask[VARYING_SLOT_PSIZ]) {
exp->operands[0] = Operand(ctx->vs_output.outputs[VARYING_SLOT_PSIZ][0]);
exp->enabled_mask |= 0x1;
}
if (ctx->vs_output.mask[VARYING_SLOT_LAYER]) {
exp->operands[2] = Operand(ctx->vs_output.outputs[VARYING_SLOT_LAYER][0]);
exp->enabled_mask |= 0x4;
}
if (ctx->vs_output.mask[VARYING_SLOT_VIEWPORT]) {
if (ctx->options->chip_class < GFX9) {
exp->operands[3] = Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]);
exp->enabled_mask |= 0x8;
} else {
Builder bld(ctx->program, ctx->block);
Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]));
if (exp->operands[2].isTemp())
out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
exp->operands[2] = Operand(out);
exp->enabled_mask |= 0x4;
}
}
exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
exp->done = false;
exp->compressed = false;
exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
ctx->block->instructions.emplace_back(std::move(exp));
}
static void create_vs_exports(isel_context *ctx)
{
radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
if (outinfo->export_prim_id) {
ctx->vs_output.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
ctx->vs_output.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
}
if (ctx->options->key.has_multiview_view_index) {
ctx->vs_output.mask[VARYING_SLOT_LAYER] |= 0x1;
ctx->vs_output.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
}
/* the order these position exports are created is important */
int next_pos = 0;
export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
export_vs_psiz_layer_viewport(ctx, &next_pos);
}
if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
if (ctx->options->key.vs_common_out.export_clip_dists) {
if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
}
for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
i != VARYING_SLOT_PRIMITIVE_ID)
continue;
export_vs_varying(ctx, i, false, NULL);
}
}
static void emit_stream_output(isel_context *ctx,
Temp const *so_buffers,
Temp const *so_write_offset,
const struct radv_stream_output *output)
{
unsigned num_comps = util_bitcount(output->component_mask);
unsigned writemask = (1 << num_comps) - 1;
unsigned loc = output->location;
unsigned buf = output->buffer;
assert(num_comps && num_comps <= 4);
if (!num_comps || num_comps > 4)
return;
unsigned start = ffs(output->component_mask) - 1;
Temp out[4];
bool all_undef = true;
assert(ctx->stage == vertex_vs);
for (unsigned i = 0; i < num_comps; i++) {
out[i] = ctx->vs_output.outputs[loc][start + i];
all_undef = all_undef && !out[i].id();
}
if (all_undef)
return;
while (writemask) {
int start, count;
u_bit_scan_consecutive_range(&writemask, &start, &count);
if (count == 3 && ctx->options->chip_class == GFX6) {
/* GFX6 doesn't support storing vec3, split it. */
writemask |= 1u << (start + 2);
count = 2;
}
unsigned offset = output->offset + start * 4;
Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
for (int i = 0; i < count; ++i)
vec->operands[i] = (ctx->vs_output.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
vec->definitions[0] = Definition(write_data);
ctx->block->instructions.emplace_back(std::move(vec));
aco_opcode opcode;
switch (count) {
case 1:
opcode = aco_opcode::buffer_store_dword;
break;
case 2:
opcode = aco_opcode::buffer_store_dwordx2;
break;
case 3:
opcode = aco_opcode::buffer_store_dwordx3;
break;
case 4:
opcode = aco_opcode::buffer_store_dwordx4;
break;
default:
unreachable("Unsupported dword count.");
}
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
store->operands[0] = Operand(so_write_offset[buf]);
store->operands[1] = Operand(so_buffers[buf]);
store->operands[2] = Operand((uint32_t) 0);
store->operands[3] = Operand(write_data);
if (offset > 4095) {
/* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
Builder bld(ctx->program, ctx->block);
store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
} else {
store->offset = offset;
}
store->offen = true;
store->glc = true;
store->dlc = false;
store->slc = true;
store->can_reorder = true;
ctx->block->instructions.emplace_back(std::move(store));
}
}
static void emit_streamout(isel_context *ctx, unsigned stream)
{
Builder bld(ctx->program, ctx->block);
Temp so_buffers[4];
Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
for (unsigned i = 0; i < 4; i++) {
unsigned stride = ctx->program->info->so.strides[i];
if (!stride)
continue;
so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, Operand(i * 16u));
}
Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
Temp tid = emit_mbcnt(ctx, bld.def(v1));
Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
if_context ic;
begin_divergent_if_then(ctx, &ic, can_emit);
bld.reset(ctx->block);
Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
Temp so_write_offset[4];
for (unsigned i = 0; i < 4; i++) {
unsigned stride = ctx->program->info->so.strides[i];
if (!stride)
continue;
if (stride == 1) {
Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->streamout_write_idx),
get_arg(ctx, ctx->args->streamout_offset[i]));
Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
} else {
Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
get_arg(ctx, ctx->args->streamout_offset[i]));
so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
}
}
for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
struct radv_stream_output *output =
&ctx->program->info->so.outputs[i];
if (stream != output->stream)
continue;
emit_stream_output(ctx, so_buffers, so_write_offset, output);
}
begin_divergent_if_else(ctx, &ic);
end_divergent_if(ctx, &ic);
}
} /* end namespace */
void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
{
/* Split all arguments except for the first (ring_offsets) and the last
* (exec) so that the dead channels don't stay live throughout the program.
*/
for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
if (startpgm->definitions[i].regClass().size() > 1) {
emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
startpgm->definitions[i].regClass().size());
}
}
}
void handle_bc_optimize(isel_context *ctx)
{
/* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
Builder bld(ctx->program, ctx->block);
uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
if (uses_center && uses_centroid) {
Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
Temp new_coord[2];
for (unsigned i = 0; i < 2; i++) {
Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
persp_centroid, persp_center, sel);
}
ctx->persp_centroid = bld.tmp(v2);
bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
Operand(new_coord[0]), Operand(new_coord[1]));
emit_split_vector(ctx, ctx->persp_centroid, 2);
}
if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
Temp new_coord[2];
for (unsigned i = 0; i < 2; i++) {
Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
linear_centroid, linear_center, sel);
}
ctx->linear_centroid = bld.tmp(v2);
bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
Operand(new_coord[0]), Operand(new_coord[1]));
emit_split_vector(ctx, ctx->linear_centroid, 2);
}
}
}
void setup_fp_mode(isel_context *ctx, nir_shader *shader)
{
Program *program = ctx->program;
unsigned float_controls = shader->info.float_controls_execution_mode;
program->next_fp_mode.preserve_signed_zero_inf_nan32 =
float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
program->next_fp_mode.must_flush_denorms32 =
float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
program->next_fp_mode.must_flush_denorms16_64 =
float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
program->next_fp_mode.care_about_round32 =
float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
program->next_fp_mode.care_about_round16_64 =
float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
/* default to preserving fp16 and fp64 denorms, since it's free */
if (program->next_fp_mode.must_flush_denorms16_64)
program->next_fp_mode.denorm16_64 = 0;
else
program->next_fp_mode.denorm16_64 = fp_denorm_keep;
/* preserving fp32 denorms is expensive, so only do it if asked */
if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
program->next_fp_mode.denorm32 = fp_denorm_keep;
else
program->next_fp_mode.denorm32 = 0;
if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
program->next_fp_mode.round32 = fp_round_tz;
else
program->next_fp_mode.round32 = fp_round_ne;
if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
program->next_fp_mode.round16_64 = fp_round_tz;
else
program->next_fp_mode.round16_64 = fp_round_ne;
ctx->block->fp_mode = program->next_fp_mode;
}
void select_program(Program *program,
unsigned shader_count,
struct nir_shader *const *shaders,
ac_shader_config* config,
struct radv_shader_args *args)
{
isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args);
for (unsigned i = 0; i < shader_count; i++) {
nir_shader *nir = shaders[i];
init_context(&ctx, nir);
setup_fp_mode(&ctx, nir);
if (!i) {
/* needs to be after init_context() for FS */
Pseudo_instruction *startpgm = add_startpgm(&ctx);
append_logical_start(ctx.block);
split_arguments(&ctx, startpgm);
}
if_context ic;
if (shader_count >= 2) {
Builder bld(ctx.program, ctx.block);
Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), ctx.merged_wave_info, Operand((8u << 16) | (i * 8u)));
Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
begin_divergent_if_then(&ctx, &ic, cond);
}
if (i) {
Builder bld(ctx.program, ctx.block);
bld.barrier(aco_opcode::p_memory_barrier_shared); //TODO: different barriers are needed for different stages
bld.sopp(aco_opcode::s_barrier);
}
if (ctx.stage == fragment_fs)
handle_bc_optimize(&ctx);
nir_function_impl *func = nir_shader_get_entrypoint(nir);
visit_cf_list(&ctx, &func->body);
if (ctx.program->info->so.num_outputs/*&& !ctx->is_gs_copy_shader */)
emit_streamout(&ctx, 0);
if (ctx.stage == vertex_vs)
create_vs_exports(&ctx);
if (shader_count >= 2) {
begin_divergent_if_else(&ctx, &ic);
end_divergent_if(&ctx, &ic);
}
ralloc_free(ctx.divergent_vals);
}
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
ctx.block->kind |= block_kind_uniform;
Builder bld(ctx.program, ctx.block);
if (ctx.program->wb_smem_l1_on_end)
bld.smem(aco_opcode::s_dcache_wb, false);
bld.sopp(aco_opcode::s_endpgm);
/* cleanup CFG */
for (Block& BB : program->blocks) {
for (unsigned idx : BB.linear_preds)
program->blocks[idx].linear_succs.emplace_back(BB.index);
for (unsigned idx : BB.logical_preds)
program->blocks[idx].logical_succs.emplace_back(BB.index);
}
}
}