blob: 3984acc593cf1cd94b47c81450e54e1565ebbcd6 [file] [log] [blame]
/*
* Copyright © 2011 Marek Olšák <maraeo@gmail.com>
* Copyright © 2015 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
#include "amdgpu_cs.h"
#include "util/hash_table.h"
#include "util/os_time.h"
#include "util/u_hash_table.h"
#include "frontend/drm_driver.h"
#include "drm-uapi/amdgpu_drm.h"
#include <xf86drm.h>
#include <stdio.h>
#include <inttypes.h>
#ifndef AMDGPU_VA_RANGE_HIGH
#define AMDGPU_VA_RANGE_HIGH 0x2
#endif
/* Set to 1 for verbose output showing committed sparse buffer ranges. */
#define DEBUG_SPARSE_COMMITS 0
struct amdgpu_sparse_backing_chunk {
uint32_t begin, end;
};
static bool amdgpu_bo_wait(struct pb_buffer *_buf, uint64_t timeout,
enum radeon_bo_usage usage)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
struct amdgpu_winsys *ws = bo->ws;
int64_t abs_timeout;
if (timeout == 0) {
if (p_atomic_read(&bo->num_active_ioctls))
return false;
} else {
abs_timeout = os_time_get_absolute_timeout(timeout);
/* Wait if any ioctl is being submitted with this buffer. */
if (!os_wait_until_zero_abs_timeout(&bo->num_active_ioctls, abs_timeout))
return false;
}
if (bo->is_shared) {
/* We can't use user fences for shared buffers, because user fences
* are local to this process only. If we want to wait for all buffer
* uses in all processes, we have to use amdgpu_bo_wait_for_idle.
*/
bool buffer_busy = true;
int r;
r = amdgpu_bo_wait_for_idle(bo->bo, timeout, &buffer_busy);
if (r)
fprintf(stderr, "%s: amdgpu_bo_wait_for_idle failed %i\n", __func__,
r);
return !buffer_busy;
}
if (timeout == 0) {
unsigned idle_fences;
bool buffer_idle;
simple_mtx_lock(&ws->bo_fence_lock);
for (idle_fences = 0; idle_fences < bo->num_fences; ++idle_fences) {
if (!amdgpu_fence_wait(bo->fences[idle_fences], 0, false))
break;
}
/* Release the idle fences to avoid checking them again later. */
for (unsigned i = 0; i < idle_fences; ++i)
amdgpu_fence_reference(&bo->fences[i], NULL);
memmove(&bo->fences[0], &bo->fences[idle_fences],
(bo->num_fences - idle_fences) * sizeof(*bo->fences));
bo->num_fences -= idle_fences;
buffer_idle = !bo->num_fences;
simple_mtx_unlock(&ws->bo_fence_lock);
return buffer_idle;
} else {
bool buffer_idle = true;
simple_mtx_lock(&ws->bo_fence_lock);
while (bo->num_fences && buffer_idle) {
struct pipe_fence_handle *fence = NULL;
bool fence_idle = false;
amdgpu_fence_reference(&fence, bo->fences[0]);
/* Wait for the fence. */
simple_mtx_unlock(&ws->bo_fence_lock);
if (amdgpu_fence_wait(fence, abs_timeout, true))
fence_idle = true;
else
buffer_idle = false;
simple_mtx_lock(&ws->bo_fence_lock);
/* Release an idle fence to avoid checking it again later, keeping in
* mind that the fence array may have been modified by other threads.
*/
if (fence_idle && bo->num_fences && bo->fences[0] == fence) {
amdgpu_fence_reference(&bo->fences[0], NULL);
memmove(&bo->fences[0], &bo->fences[1],
(bo->num_fences - 1) * sizeof(*bo->fences));
bo->num_fences--;
}
amdgpu_fence_reference(&fence, NULL);
}
simple_mtx_unlock(&ws->bo_fence_lock);
return buffer_idle;
}
}
static enum radeon_bo_domain amdgpu_bo_get_initial_domain(
struct pb_buffer *buf)
{
return ((struct amdgpu_winsys_bo*)buf)->initial_domain;
}
static enum radeon_bo_flag amdgpu_bo_get_flags(
struct pb_buffer *buf)
{
return ((struct amdgpu_winsys_bo*)buf)->flags;
}
static void amdgpu_bo_remove_fences(struct amdgpu_winsys_bo *bo)
{
for (unsigned i = 0; i < bo->num_fences; ++i)
amdgpu_fence_reference(&bo->fences[i], NULL);
FREE(bo->fences);
bo->num_fences = 0;
bo->max_fences = 0;
}
void amdgpu_bo_destroy(struct pb_buffer *_buf)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
struct amdgpu_screen_winsys *sws_iter;
struct amdgpu_winsys *ws = bo->ws;
assert(bo->bo && "must not be called for slab entries");
if (!bo->is_user_ptr && bo->cpu_ptr) {
bo->cpu_ptr = NULL;
amdgpu_bo_unmap(&bo->base);
}
assert(bo->is_user_ptr || bo->u.real.map_count == 0);
if (ws->debug_all_bos) {
simple_mtx_lock(&ws->global_bo_list_lock);
list_del(&bo->u.real.global_list_item);
ws->num_buffers--;
simple_mtx_unlock(&ws->global_bo_list_lock);
}
/* Close all KMS handles retrieved for other DRM file descriptions */
simple_mtx_lock(&ws->sws_list_lock);
for (sws_iter = ws->sws_list; sws_iter; sws_iter = sws_iter->next) {
struct hash_entry *entry;
if (!sws_iter->kms_handles)
continue;
entry = _mesa_hash_table_search(sws_iter->kms_handles, bo);
if (entry) {
struct drm_gem_close args = { .handle = (uintptr_t)entry->data };
drmIoctl(sws_iter->fd, DRM_IOCTL_GEM_CLOSE, &args);
_mesa_hash_table_remove(sws_iter->kms_handles, entry);
}
}
simple_mtx_unlock(&ws->sws_list_lock);
simple_mtx_lock(&ws->bo_export_table_lock);
_mesa_hash_table_remove_key(ws->bo_export_table, bo->bo);
simple_mtx_unlock(&ws->bo_export_table_lock);
if (bo->initial_domain & RADEON_DOMAIN_VRAM_GTT) {
amdgpu_bo_va_op(bo->bo, 0, bo->base.size, bo->va, 0, AMDGPU_VA_OP_UNMAP);
amdgpu_va_range_free(bo->u.real.va_handle);
}
amdgpu_bo_free(bo->bo);
amdgpu_bo_remove_fences(bo);
if (bo->initial_domain & RADEON_DOMAIN_VRAM)
ws->allocated_vram -= align64(bo->base.size, ws->info.gart_page_size);
else if (bo->initial_domain & RADEON_DOMAIN_GTT)
ws->allocated_gtt -= align64(bo->base.size, ws->info.gart_page_size);
simple_mtx_destroy(&bo->lock);
FREE(bo);
}
static void amdgpu_bo_destroy_or_cache(struct pb_buffer *_buf)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
assert(bo->bo); /* slab buffers have a separate vtbl */
if (bo->u.real.use_reusable_pool)
pb_cache_add_buffer(&bo->u.real.cache_entry);
else
amdgpu_bo_destroy(_buf);
}
static void amdgpu_clean_up_buffer_managers(struct amdgpu_winsys *ws)
{
for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
pb_slabs_reclaim(&ws->bo_slabs[i]);
if (ws->secure)
pb_slabs_reclaim(&ws->bo_slabs_encrypted[i]);
}
pb_cache_release_all_buffers(&ws->bo_cache);
}
static bool amdgpu_bo_do_map(struct amdgpu_winsys_bo *bo, void **cpu)
{
assert(!bo->sparse && bo->bo && !bo->is_user_ptr);
int r = amdgpu_bo_cpu_map(bo->bo, cpu);
if (r) {
/* Clean up buffer managers and try again. */
amdgpu_clean_up_buffer_managers(bo->ws);
r = amdgpu_bo_cpu_map(bo->bo, cpu);
if (r)
return false;
}
if (p_atomic_inc_return(&bo->u.real.map_count) == 1) {
if (bo->initial_domain & RADEON_DOMAIN_VRAM)
bo->ws->mapped_vram += bo->base.size;
else if (bo->initial_domain & RADEON_DOMAIN_GTT)
bo->ws->mapped_gtt += bo->base.size;
bo->ws->num_mapped_buffers++;
}
return true;
}
void *amdgpu_bo_map(struct pb_buffer *buf,
struct radeon_cmdbuf *rcs,
enum pipe_transfer_usage usage)
{
struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
struct amdgpu_winsys_bo *real;
struct amdgpu_cs *cs = (struct amdgpu_cs*)rcs;
assert(!bo->sparse);
/* If it's not unsynchronized bo_map, flush CS if needed and then wait. */
if (!(usage & PIPE_MAP_UNSYNCHRONIZED)) {
/* DONTBLOCK doesn't make sense with UNSYNCHRONIZED. */
if (usage & PIPE_MAP_DONTBLOCK) {
if (!(usage & PIPE_MAP_WRITE)) {
/* Mapping for read.
*
* Since we are mapping for read, we don't need to wait
* if the GPU is using the buffer for read too
* (neither one is changing it).
*
* Only check whether the buffer is being used for write. */
if (cs && amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo,
RADEON_USAGE_WRITE)) {
cs->flush_cs(cs->flush_data,
RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
return NULL;
}
if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0,
RADEON_USAGE_WRITE)) {
return NULL;
}
} else {
if (cs && amdgpu_bo_is_referenced_by_cs(cs, bo)) {
cs->flush_cs(cs->flush_data,
RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
return NULL;
}
if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0,
RADEON_USAGE_READWRITE)) {
return NULL;
}
}
} else {
uint64_t time = os_time_get_nano();
if (!(usage & PIPE_MAP_WRITE)) {
/* Mapping for read.
*
* Since we are mapping for read, we don't need to wait
* if the GPU is using the buffer for read too
* (neither one is changing it).
*
* Only check whether the buffer is being used for write. */
if (cs) {
if (amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo,
RADEON_USAGE_WRITE)) {
cs->flush_cs(cs->flush_data,
RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL);
} else {
/* Try to avoid busy-waiting in amdgpu_bo_wait. */
if (p_atomic_read(&bo->num_active_ioctls))
amdgpu_cs_sync_flush(rcs);
}
}
amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE,
RADEON_USAGE_WRITE);
} else {
/* Mapping for write. */
if (cs) {
if (amdgpu_bo_is_referenced_by_cs(cs, bo)) {
cs->flush_cs(cs->flush_data,
RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL);
} else {
/* Try to avoid busy-waiting in amdgpu_bo_wait. */
if (p_atomic_read(&bo->num_active_ioctls))
amdgpu_cs_sync_flush(rcs);
}
}
amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE,
RADEON_USAGE_READWRITE);
}
bo->ws->buffer_wait_time += os_time_get_nano() - time;
}
}
/* Buffer synchronization has been checked, now actually map the buffer. */
void *cpu = NULL;
uint64_t offset = 0;
if (bo->bo) {
real = bo;
} else {
real = bo->u.slab.real;
offset = bo->va - real->va;
}
if (usage & RADEON_TRANSFER_TEMPORARY) {
if (real->is_user_ptr) {
cpu = real->cpu_ptr;
} else {
if (!amdgpu_bo_do_map(real, &cpu))
return NULL;
}
} else {
cpu = p_atomic_read(&real->cpu_ptr);
if (!cpu) {
simple_mtx_lock(&real->lock);
/* Must re-check due to the possibility of a race. Re-check need not
* be atomic thanks to the lock. */
cpu = real->cpu_ptr;
if (!cpu) {
if (!amdgpu_bo_do_map(real, &cpu)) {
simple_mtx_unlock(&real->lock);
return NULL;
}
p_atomic_set(&real->cpu_ptr, cpu);
}
simple_mtx_unlock(&real->lock);
}
}
return (uint8_t*)cpu + offset;
}
void amdgpu_bo_unmap(struct pb_buffer *buf)
{
struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
struct amdgpu_winsys_bo *real;
assert(!bo->sparse);
if (bo->is_user_ptr)
return;
real = bo->bo ? bo : bo->u.slab.real;
assert(real->u.real.map_count != 0 && "too many unmaps");
if (p_atomic_dec_zero(&real->u.real.map_count)) {
assert(!real->cpu_ptr &&
"too many unmaps or forgot RADEON_TRANSFER_TEMPORARY flag");
if (real->initial_domain & RADEON_DOMAIN_VRAM)
real->ws->mapped_vram -= real->base.size;
else if (real->initial_domain & RADEON_DOMAIN_GTT)
real->ws->mapped_gtt -= real->base.size;
real->ws->num_mapped_buffers--;
}
amdgpu_bo_cpu_unmap(real->bo);
}
static const struct pb_vtbl amdgpu_winsys_bo_vtbl = {
amdgpu_bo_destroy_or_cache
/* other functions are never called */
};
static void amdgpu_add_buffer_to_global_list(struct amdgpu_winsys_bo *bo)
{
struct amdgpu_winsys *ws = bo->ws;
assert(bo->bo);
if (ws->debug_all_bos) {
simple_mtx_lock(&ws->global_bo_list_lock);
list_addtail(&bo->u.real.global_list_item, &ws->global_bo_list);
ws->num_buffers++;
simple_mtx_unlock(&ws->global_bo_list_lock);
}
}
static uint64_t amdgpu_get_optimal_vm_alignment(struct amdgpu_winsys *ws,
uint64_t size, unsigned alignment)
{
uint64_t vm_alignment = alignment;
/* Increase the VM alignment for faster address translation. */
if (size >= ws->info.pte_fragment_size)
vm_alignment = MAX2(vm_alignment, ws->info.pte_fragment_size);
/* Gfx9: Increase the VM alignment to the most significant bit set
* in the size for faster address translation.
*/
if (ws->info.chip_class >= GFX9) {
unsigned msb = util_last_bit64(size); /* 0 = no bit is set */
uint64_t msb_alignment = msb ? 1ull << (msb - 1) : 0;
vm_alignment = MAX2(vm_alignment, msb_alignment);
}
return vm_alignment;
}
static struct amdgpu_winsys_bo *amdgpu_create_bo(struct amdgpu_winsys *ws,
uint64_t size,
unsigned alignment,
enum radeon_bo_domain initial_domain,
unsigned flags,
int heap)
{
struct amdgpu_bo_alloc_request request = {0};
amdgpu_bo_handle buf_handle;
uint64_t va = 0;
struct amdgpu_winsys_bo *bo;
amdgpu_va_handle va_handle = NULL;
int r;
/* VRAM or GTT must be specified, but not both at the same time. */
assert(util_bitcount(initial_domain & (RADEON_DOMAIN_VRAM_GTT |
RADEON_DOMAIN_GDS |
RADEON_DOMAIN_OA)) == 1);
bo = CALLOC_STRUCT(amdgpu_winsys_bo);
if (!bo) {
return NULL;
}
if (heap >= 0) {
pb_cache_init_entry(&ws->bo_cache, &bo->u.real.cache_entry, &bo->base,
heap);
}
request.alloc_size = size;
request.phys_alignment = alignment;
if (initial_domain & RADEON_DOMAIN_VRAM) {
request.preferred_heap |= AMDGPU_GEM_DOMAIN_VRAM;
/* Since VRAM and GTT have almost the same performance on APUs, we could
* just set GTT. However, in order to decrease GTT(RAM) usage, which is
* shared with the OS, allow VRAM placements too. The idea is not to use
* VRAM usefully, but to use it so that it's not unused and wasted.
*/
if (!ws->info.has_dedicated_vram)
request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT;
}
if (initial_domain & RADEON_DOMAIN_GTT)
request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT;
if (initial_domain & RADEON_DOMAIN_GDS)
request.preferred_heap |= AMDGPU_GEM_DOMAIN_GDS;
if (initial_domain & RADEON_DOMAIN_OA)
request.preferred_heap |= AMDGPU_GEM_DOMAIN_OA;
if (flags & RADEON_FLAG_NO_CPU_ACCESS)
request.flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
if (flags & RADEON_FLAG_GTT_WC)
request.flags |= AMDGPU_GEM_CREATE_CPU_GTT_USWC;
if (ws->zero_all_vram_allocs &&
(request.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM))
request.flags |= AMDGPU_GEM_CREATE_VRAM_CLEARED;
if ((flags & RADEON_FLAG_ENCRYPTED) && ws->secure)
request.flags |= AMDGPU_GEM_CREATE_ENCRYPTED;
r = amdgpu_bo_alloc(ws->dev, &request, &buf_handle);
if (r) {
fprintf(stderr, "amdgpu: Failed to allocate a buffer:\n");
fprintf(stderr, "amdgpu: size : %"PRIu64" bytes\n", size);
fprintf(stderr, "amdgpu: alignment : %u bytes\n", alignment);
fprintf(stderr, "amdgpu: domains : %u\n", initial_domain);
fprintf(stderr, "amdgpu: flags : %" PRIx64 "\n", request.flags);
goto error_bo_alloc;
}
if (initial_domain & RADEON_DOMAIN_VRAM_GTT) {
unsigned va_gap_size = ws->check_vm ? MAX2(4 * alignment, 64 * 1024) : 0;
r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
size + va_gap_size,
amdgpu_get_optimal_vm_alignment(ws, size, alignment),
0, &va, &va_handle,
(flags & RADEON_FLAG_32BIT ? AMDGPU_VA_RANGE_32_BIT : 0) |
AMDGPU_VA_RANGE_HIGH);
if (r)
goto error_va_alloc;
unsigned vm_flags = AMDGPU_VM_PAGE_READABLE |
AMDGPU_VM_PAGE_EXECUTABLE;
if (!(flags & RADEON_FLAG_READ_ONLY))
vm_flags |= AMDGPU_VM_PAGE_WRITEABLE;
if (flags & RADEON_FLAG_UNCACHED)
vm_flags |= AMDGPU_VM_MTYPE_UC;
r = amdgpu_bo_va_op_raw(ws->dev, buf_handle, 0, size, va, vm_flags,
AMDGPU_VA_OP_MAP);
if (r)
goto error_va_map;
}
simple_mtx_init(&bo->lock, mtx_plain);
pipe_reference_init(&bo->base.reference, 1);
bo->base.alignment = alignment;
bo->base.usage = 0;
bo->base.size = size;
bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
bo->ws = ws;
bo->bo = buf_handle;
bo->va = va;
bo->u.real.va_handle = va_handle;
bo->initial_domain = initial_domain;
bo->flags = flags;
bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
if (initial_domain & RADEON_DOMAIN_VRAM)
ws->allocated_vram += align64(size, ws->info.gart_page_size);
else if (initial_domain & RADEON_DOMAIN_GTT)
ws->allocated_gtt += align64(size, ws->info.gart_page_size);
amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
amdgpu_add_buffer_to_global_list(bo);
return bo;
error_va_map:
amdgpu_va_range_free(va_handle);
error_va_alloc:
amdgpu_bo_free(buf_handle);
error_bo_alloc:
FREE(bo);
return NULL;
}
bool amdgpu_bo_can_reclaim(struct pb_buffer *_buf)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
if (amdgpu_bo_is_referenced_by_any_cs(bo)) {
return false;
}
return amdgpu_bo_wait(_buf, 0, RADEON_USAGE_READWRITE);
}
bool amdgpu_bo_can_reclaim_slab(void *priv, struct pb_slab_entry *entry)
{
struct amdgpu_winsys_bo *bo = NULL; /* fix container_of */
bo = container_of(entry, bo, u.slab.entry);
return amdgpu_bo_can_reclaim(&bo->base);
}
static struct pb_slabs *get_slabs(struct amdgpu_winsys *ws, uint64_t size,
enum radeon_bo_flag flags)
{
struct pb_slabs *bo_slabs = ((flags & RADEON_FLAG_ENCRYPTED) && ws->secure) ?
ws->bo_slabs_encrypted : ws->bo_slabs;
/* Find the correct slab allocator for the given size. */
for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
struct pb_slabs *slabs = &bo_slabs[i];
if (size <= 1 << (slabs->min_order + slabs->num_orders - 1))
return slabs;
}
assert(0);
return NULL;
}
static void amdgpu_bo_slab_destroy(struct pb_buffer *_buf)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
assert(!bo->bo);
if (bo->flags & RADEON_FLAG_ENCRYPTED)
pb_slab_free(get_slabs(bo->ws,
bo->base.size,
RADEON_FLAG_ENCRYPTED), &bo->u.slab.entry);
else
pb_slab_free(get_slabs(bo->ws,
bo->base.size,
0), &bo->u.slab.entry);
}
static const struct pb_vtbl amdgpu_winsys_bo_slab_vtbl = {
amdgpu_bo_slab_destroy
/* other functions are never called */
};
static struct pb_slab *amdgpu_bo_slab_alloc(void *priv, unsigned heap,
unsigned entry_size,
unsigned group_index,
bool encrypted)
{
struct amdgpu_winsys *ws = priv;
struct amdgpu_slab *slab = CALLOC_STRUCT(amdgpu_slab);
enum radeon_bo_domain domains = radeon_domain_from_heap(heap);
enum radeon_bo_flag flags = radeon_flags_from_heap(heap);
uint32_t base_id;
unsigned slab_size = 0;
if (!slab)
return NULL;
if (encrypted)
flags |= RADEON_FLAG_ENCRYPTED;
struct pb_slabs *slabs = (flags & RADEON_FLAG_ENCRYPTED && ws->secure) ?
ws->bo_slabs_encrypted : ws->bo_slabs;
/* Determine the slab buffer size. */
for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
unsigned max_entry_size = 1 << (slabs[i].min_order + slabs[i].num_orders - 1);
if (entry_size <= max_entry_size) {
/* The slab size is twice the size of the largest possible entry. */
slab_size = max_entry_size * 2;
/* The largest slab should have the same size as the PTE fragment
* size to get faster address translation.
*/
if (i == NUM_SLAB_ALLOCATORS - 1 &&
slab_size < ws->info.pte_fragment_size)
slab_size = ws->info.pte_fragment_size;
break;
}
}
assert(slab_size != 0);
slab->buffer = amdgpu_winsys_bo(amdgpu_bo_create(ws,
slab_size, slab_size,
domains, flags));
if (!slab->buffer)
goto fail;
slab->base.num_entries = slab->buffer->base.size / entry_size;
slab->base.num_free = slab->base.num_entries;
slab->entries = CALLOC(slab->base.num_entries, sizeof(*slab->entries));
if (!slab->entries)
goto fail_buffer;
list_inithead(&slab->base.free);
base_id = __sync_fetch_and_add(&ws->next_bo_unique_id, slab->base.num_entries);
for (unsigned i = 0; i < slab->base.num_entries; ++i) {
struct amdgpu_winsys_bo *bo = &slab->entries[i];
simple_mtx_init(&bo->lock, mtx_plain);
bo->base.alignment = entry_size;
bo->base.usage = slab->buffer->base.usage;
bo->base.size = entry_size;
bo->base.vtbl = &amdgpu_winsys_bo_slab_vtbl;
bo->ws = ws;
bo->va = slab->buffer->va + i * entry_size;
bo->initial_domain = domains;
bo->unique_id = base_id + i;
bo->u.slab.entry.slab = &slab->base;
bo->u.slab.entry.group_index = group_index;
if (slab->buffer->bo) {
/* The slab is not suballocated. */
bo->u.slab.real = slab->buffer;
} else {
/* The slab is allocated out of a bigger slab. */
bo->u.slab.real = slab->buffer->u.slab.real;
assert(bo->u.slab.real->bo);
}
list_addtail(&bo->u.slab.entry.head, &slab->base.free);
}
return &slab->base;
fail_buffer:
amdgpu_winsys_bo_reference(&slab->buffer, NULL);
fail:
FREE(slab);
return NULL;
}
struct pb_slab *amdgpu_bo_slab_alloc_encrypted(void *priv, unsigned heap,
unsigned entry_size,
unsigned group_index)
{
return amdgpu_bo_slab_alloc(priv, heap, entry_size, group_index, true);
}
struct pb_slab *amdgpu_bo_slab_alloc_normal(void *priv, unsigned heap,
unsigned entry_size,
unsigned group_index)
{
return amdgpu_bo_slab_alloc(priv, heap, entry_size, group_index, false);
}
void amdgpu_bo_slab_free(void *priv, struct pb_slab *pslab)
{
struct amdgpu_slab *slab = amdgpu_slab(pslab);
for (unsigned i = 0; i < slab->base.num_entries; ++i) {
amdgpu_bo_remove_fences(&slab->entries[i]);
simple_mtx_destroy(&slab->entries[i].lock);
}
FREE(slab->entries);
amdgpu_winsys_bo_reference(&slab->buffer, NULL);
FREE(slab);
}
#if DEBUG_SPARSE_COMMITS
static void
sparse_dump(struct amdgpu_winsys_bo *bo, const char *func)
{
fprintf(stderr, "%s: %p (size=%"PRIu64", num_va_pages=%u) @ %s\n"
"Commitments:\n",
__func__, bo, bo->base.size, bo->u.sparse.num_va_pages, func);
struct amdgpu_sparse_backing *span_backing = NULL;
uint32_t span_first_backing_page = 0;
uint32_t span_first_va_page = 0;
uint32_t va_page = 0;
for (;;) {
struct amdgpu_sparse_backing *backing = 0;
uint32_t backing_page = 0;
if (va_page < bo->u.sparse.num_va_pages) {
backing = bo->u.sparse.commitments[va_page].backing;
backing_page = bo->u.sparse.commitments[va_page].page;
}
if (span_backing &&
(backing != span_backing ||
backing_page != span_first_backing_page + (va_page - span_first_va_page))) {
fprintf(stderr, " %u..%u: backing=%p:%u..%u\n",
span_first_va_page, va_page - 1, span_backing,
span_first_backing_page,
span_first_backing_page + (va_page - span_first_va_page) - 1);
span_backing = NULL;
}
if (va_page >= bo->u.sparse.num_va_pages)
break;
if (backing && !span_backing) {
span_backing = backing;
span_first_backing_page = backing_page;
span_first_va_page = va_page;
}
va_page++;
}
fprintf(stderr, "Backing:\n");
list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) {
fprintf(stderr, " %p (size=%"PRIu64")\n", backing, backing->bo->base.size);
for (unsigned i = 0; i < backing->num_chunks; ++i)
fprintf(stderr, " %u..%u\n", backing->chunks[i].begin, backing->chunks[i].end);
}
}
#endif
/*
* Attempt to allocate the given number of backing pages. Fewer pages may be
* allocated (depending on the fragmentation of existing backing buffers),
* which will be reflected by a change to *pnum_pages.
*/
static struct amdgpu_sparse_backing *
sparse_backing_alloc(struct amdgpu_winsys_bo *bo, uint32_t *pstart_page, uint32_t *pnum_pages)
{
struct amdgpu_sparse_backing *best_backing;
unsigned best_idx;
uint32_t best_num_pages;
best_backing = NULL;
best_idx = 0;
best_num_pages = 0;
/* This is a very simple and inefficient best-fit algorithm. */
list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) {
for (unsigned idx = 0; idx < backing->num_chunks; ++idx) {
uint32_t cur_num_pages = backing->chunks[idx].end - backing->chunks[idx].begin;
if ((best_num_pages < *pnum_pages && cur_num_pages > best_num_pages) ||
(best_num_pages > *pnum_pages && cur_num_pages < best_num_pages)) {
best_backing = backing;
best_idx = idx;
best_num_pages = cur_num_pages;
}
}
}
/* Allocate a new backing buffer if necessary. */
if (!best_backing) {
struct pb_buffer *buf;
uint64_t size;
uint32_t pages;
best_backing = CALLOC_STRUCT(amdgpu_sparse_backing);
if (!best_backing)
return NULL;
best_backing->max_chunks = 4;
best_backing->chunks = CALLOC(best_backing->max_chunks,
sizeof(*best_backing->chunks));
if (!best_backing->chunks) {
FREE(best_backing);
return NULL;
}
assert(bo->u.sparse.num_backing_pages < DIV_ROUND_UP(bo->base.size, RADEON_SPARSE_PAGE_SIZE));
size = MIN3(bo->base.size / 16,
8 * 1024 * 1024,
bo->base.size - (uint64_t)bo->u.sparse.num_backing_pages * RADEON_SPARSE_PAGE_SIZE);
size = MAX2(size, RADEON_SPARSE_PAGE_SIZE);
buf = amdgpu_bo_create(bo->ws, size, RADEON_SPARSE_PAGE_SIZE,
bo->initial_domain,
bo->u.sparse.flags | RADEON_FLAG_NO_SUBALLOC);
if (!buf) {
FREE(best_backing->chunks);
FREE(best_backing);
return NULL;
}
/* We might have gotten a bigger buffer than requested via caching. */
pages = buf->size / RADEON_SPARSE_PAGE_SIZE;
best_backing->bo = amdgpu_winsys_bo(buf);
best_backing->num_chunks = 1;
best_backing->chunks[0].begin = 0;
best_backing->chunks[0].end = pages;
list_add(&best_backing->list, &bo->u.sparse.backing);
bo->u.sparse.num_backing_pages += pages;
best_idx = 0;
best_num_pages = pages;
}
*pnum_pages = MIN2(*pnum_pages, best_num_pages);
*pstart_page = best_backing->chunks[best_idx].begin;
best_backing->chunks[best_idx].begin += *pnum_pages;
if (best_backing->chunks[best_idx].begin >= best_backing->chunks[best_idx].end) {
memmove(&best_backing->chunks[best_idx], &best_backing->chunks[best_idx + 1],
sizeof(*best_backing->chunks) * (best_backing->num_chunks - best_idx - 1));
best_backing->num_chunks--;
}
return best_backing;
}
static void
sparse_free_backing_buffer(struct amdgpu_winsys_bo *bo,
struct amdgpu_sparse_backing *backing)
{
struct amdgpu_winsys *ws = backing->bo->ws;
bo->u.sparse.num_backing_pages -= backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE;
simple_mtx_lock(&ws->bo_fence_lock);
amdgpu_add_fences(backing->bo, bo->num_fences, bo->fences);
simple_mtx_unlock(&ws->bo_fence_lock);
list_del(&backing->list);
amdgpu_winsys_bo_reference(&backing->bo, NULL);
FREE(backing->chunks);
FREE(backing);
}
/*
* Return a range of pages from the given backing buffer back into the
* free structure.
*/
static bool
sparse_backing_free(struct amdgpu_winsys_bo *bo,
struct amdgpu_sparse_backing *backing,
uint32_t start_page, uint32_t num_pages)
{
uint32_t end_page = start_page + num_pages;
unsigned low = 0;
unsigned high = backing->num_chunks;
/* Find the first chunk with begin >= start_page. */
while (low < high) {
unsigned mid = low + (high - low) / 2;
if (backing->chunks[mid].begin >= start_page)
high = mid;
else
low = mid + 1;
}
assert(low >= backing->num_chunks || end_page <= backing->chunks[low].begin);
assert(low == 0 || backing->chunks[low - 1].end <= start_page);
if (low > 0 && backing->chunks[low - 1].end == start_page) {
backing->chunks[low - 1].end = end_page;
if (low < backing->num_chunks && end_page == backing->chunks[low].begin) {
backing->chunks[low - 1].end = backing->chunks[low].end;
memmove(&backing->chunks[low], &backing->chunks[low + 1],
sizeof(*backing->chunks) * (backing->num_chunks - low - 1));
backing->num_chunks--;
}
} else if (low < backing->num_chunks && end_page == backing->chunks[low].begin) {
backing->chunks[low].begin = start_page;
} else {
if (backing->num_chunks >= backing->max_chunks) {
unsigned new_max_chunks = 2 * backing->max_chunks;
struct amdgpu_sparse_backing_chunk *new_chunks =
REALLOC(backing->chunks,
sizeof(*backing->chunks) * backing->max_chunks,
sizeof(*backing->chunks) * new_max_chunks);
if (!new_chunks)
return false;
backing->max_chunks = new_max_chunks;
backing->chunks = new_chunks;
}
memmove(&backing->chunks[low + 1], &backing->chunks[low],
sizeof(*backing->chunks) * (backing->num_chunks - low));
backing->chunks[low].begin = start_page;
backing->chunks[low].end = end_page;
backing->num_chunks++;
}
if (backing->num_chunks == 1 && backing->chunks[0].begin == 0 &&
backing->chunks[0].end == backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE)
sparse_free_backing_buffer(bo, backing);
return true;
}
static void amdgpu_bo_sparse_destroy(struct pb_buffer *_buf)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
int r;
assert(!bo->bo && bo->sparse);
r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0,
(uint64_t)bo->u.sparse.num_va_pages * RADEON_SPARSE_PAGE_SIZE,
bo->va, 0, AMDGPU_VA_OP_CLEAR);
if (r) {
fprintf(stderr, "amdgpu: clearing PRT VA region on destroy failed (%d)\n", r);
}
while (!list_is_empty(&bo->u.sparse.backing)) {
struct amdgpu_sparse_backing *dummy = NULL;
sparse_free_backing_buffer(bo,
container_of(bo->u.sparse.backing.next,
dummy, list));
}
amdgpu_va_range_free(bo->u.sparse.va_handle);
FREE(bo->u.sparse.commitments);
simple_mtx_destroy(&bo->lock);
FREE(bo);
}
static const struct pb_vtbl amdgpu_winsys_bo_sparse_vtbl = {
amdgpu_bo_sparse_destroy
/* other functions are never called */
};
static struct pb_buffer *
amdgpu_bo_sparse_create(struct amdgpu_winsys *ws, uint64_t size,
enum radeon_bo_domain domain,
enum radeon_bo_flag flags)
{
struct amdgpu_winsys_bo *bo;
uint64_t map_size;
uint64_t va_gap_size;
int r;
/* We use 32-bit page numbers; refuse to attempt allocating sparse buffers
* that exceed this limit. This is not really a restriction: we don't have
* that much virtual address space anyway.
*/
if (size > (uint64_t)INT32_MAX * RADEON_SPARSE_PAGE_SIZE)
return NULL;
bo = CALLOC_STRUCT(amdgpu_winsys_bo);
if (!bo)
return NULL;
simple_mtx_init(&bo->lock, mtx_plain);
pipe_reference_init(&bo->base.reference, 1);
bo->base.alignment = RADEON_SPARSE_PAGE_SIZE;
bo->base.size = size;
bo->base.vtbl = &amdgpu_winsys_bo_sparse_vtbl;
bo->ws = ws;
bo->initial_domain = domain;
bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
bo->sparse = true;
bo->u.sparse.flags = flags & ~RADEON_FLAG_SPARSE;
bo->u.sparse.num_va_pages = DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE);
bo->u.sparse.commitments = CALLOC(bo->u.sparse.num_va_pages,
sizeof(*bo->u.sparse.commitments));
if (!bo->u.sparse.commitments)
goto error_alloc_commitments;
list_inithead(&bo->u.sparse.backing);
/* For simplicity, we always map a multiple of the page size. */
map_size = align64(size, RADEON_SPARSE_PAGE_SIZE);
va_gap_size = ws->check_vm ? 4 * RADEON_SPARSE_PAGE_SIZE : 0;
r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
map_size + va_gap_size, RADEON_SPARSE_PAGE_SIZE,
0, &bo->va, &bo->u.sparse.va_handle,
AMDGPU_VA_RANGE_HIGH);
if (r)
goto error_va_alloc;
r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, size, bo->va,
AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_MAP);
if (r)
goto error_va_map;
return &bo->base;
error_va_map:
amdgpu_va_range_free(bo->u.sparse.va_handle);
error_va_alloc:
FREE(bo->u.sparse.commitments);
error_alloc_commitments:
simple_mtx_destroy(&bo->lock);
FREE(bo);
return NULL;
}
static bool
amdgpu_bo_sparse_commit(struct pb_buffer *buf, uint64_t offset, uint64_t size,
bool commit)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buf);
struct amdgpu_sparse_commitment *comm;
uint32_t va_page, end_va_page;
bool ok = true;
int r;
assert(bo->sparse);
assert(offset % RADEON_SPARSE_PAGE_SIZE == 0);
assert(offset <= bo->base.size);
assert(size <= bo->base.size - offset);
assert(size % RADEON_SPARSE_PAGE_SIZE == 0 || offset + size == bo->base.size);
comm = bo->u.sparse.commitments;
va_page = offset / RADEON_SPARSE_PAGE_SIZE;
end_va_page = va_page + DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE);
simple_mtx_lock(&bo->lock);
#if DEBUG_SPARSE_COMMITS
sparse_dump(bo, __func__);
#endif
if (commit) {
while (va_page < end_va_page) {
uint32_t span_va_page;
/* Skip pages that are already committed. */
if (comm[va_page].backing) {
va_page++;
continue;
}
/* Determine length of uncommitted span. */
span_va_page = va_page;
while (va_page < end_va_page && !comm[va_page].backing)
va_page++;
/* Fill the uncommitted span with chunks of backing memory. */
while (span_va_page < va_page) {
struct amdgpu_sparse_backing *backing;
uint32_t backing_start, backing_size;
backing_size = va_page - span_va_page;
backing = sparse_backing_alloc(bo, &backing_start, &backing_size);
if (!backing) {
ok = false;
goto out;
}
r = amdgpu_bo_va_op_raw(bo->ws->dev, backing->bo->bo,
(uint64_t)backing_start * RADEON_SPARSE_PAGE_SIZE,
(uint64_t)backing_size * RADEON_SPARSE_PAGE_SIZE,
bo->va + (uint64_t)span_va_page * RADEON_SPARSE_PAGE_SIZE,
AMDGPU_VM_PAGE_READABLE |
AMDGPU_VM_PAGE_WRITEABLE |
AMDGPU_VM_PAGE_EXECUTABLE,
AMDGPU_VA_OP_REPLACE);
if (r) {
ok = sparse_backing_free(bo, backing, backing_start, backing_size);
assert(ok && "sufficient memory should already be allocated");
ok = false;
goto out;
}
while (backing_size) {
comm[span_va_page].backing = backing;
comm[span_va_page].page = backing_start;
span_va_page++;
backing_start++;
backing_size--;
}
}
}
} else {
r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0,
(uint64_t)(end_va_page - va_page) * RADEON_SPARSE_PAGE_SIZE,
bo->va + (uint64_t)va_page * RADEON_SPARSE_PAGE_SIZE,
AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_REPLACE);
if (r) {
ok = false;
goto out;
}
while (va_page < end_va_page) {
struct amdgpu_sparse_backing *backing;
uint32_t backing_start;
uint32_t span_pages;
/* Skip pages that are already uncommitted. */
if (!comm[va_page].backing) {
va_page++;
continue;
}
/* Group contiguous spans of pages. */
backing = comm[va_page].backing;
backing_start = comm[va_page].page;
comm[va_page].backing = NULL;
span_pages = 1;
va_page++;
while (va_page < end_va_page &&
comm[va_page].backing == backing &&
comm[va_page].page == backing_start + span_pages) {
comm[va_page].backing = NULL;
va_page++;
span_pages++;
}
if (!sparse_backing_free(bo, backing, backing_start, span_pages)) {
/* Couldn't allocate tracking data structures, so we have to leak */
fprintf(stderr, "amdgpu: leaking PRT backing memory\n");
ok = false;
}
}
}
out:
simple_mtx_unlock(&bo->lock);
return ok;
}
static void amdgpu_buffer_get_metadata(struct pb_buffer *_buf,
struct radeon_bo_metadata *md,
struct radeon_surf *surf)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
struct amdgpu_bo_info info = {0};
int r;
assert(bo->bo && "must not be called for slab entries");
r = amdgpu_bo_query_info(bo->bo, &info);
if (r)
return;
ac_surface_set_bo_metadata(&bo->ws->info, surf, info.metadata.tiling_info,
&md->mode);
md->size_metadata = info.metadata.size_metadata;
memcpy(md->metadata, info.metadata.umd_metadata, sizeof(md->metadata));
}
static void amdgpu_buffer_set_metadata(struct pb_buffer *_buf,
struct radeon_bo_metadata *md,
struct radeon_surf *surf)
{
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
struct amdgpu_bo_metadata metadata = {0};
assert(bo->bo && "must not be called for slab entries");
ac_surface_get_bo_metadata(&bo->ws->info, surf, &metadata.tiling_info);
metadata.size_metadata = md->size_metadata;
memcpy(metadata.umd_metadata, md->metadata, sizeof(md->metadata));
amdgpu_bo_set_metadata(bo->bo, &metadata);
}
struct pb_buffer *
amdgpu_bo_create(struct amdgpu_winsys *ws,
uint64_t size,
unsigned alignment,
enum radeon_bo_domain domain,
enum radeon_bo_flag flags)
{
struct amdgpu_winsys_bo *bo;
int heap = -1;
if (domain & (RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA))
flags |= RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_SUBALLOC;
/* VRAM implies WC. This is not optional. */
assert(!(domain & RADEON_DOMAIN_VRAM) || flags & RADEON_FLAG_GTT_WC);
/* NO_CPU_ACCESS is not valid with GTT. */
assert(!(domain & RADEON_DOMAIN_GTT) || !(flags & RADEON_FLAG_NO_CPU_ACCESS));
/* Sparse buffers must have NO_CPU_ACCESS set. */
assert(!(flags & RADEON_FLAG_SPARSE) || flags & RADEON_FLAG_NO_CPU_ACCESS);
struct pb_slabs *slabs = (flags & RADEON_FLAG_ENCRYPTED && ws->secure) ?
ws->bo_slabs_encrypted : ws->bo_slabs;
struct pb_slabs *last_slab = &slabs[NUM_SLAB_ALLOCATORS - 1];
unsigned max_slab_entry_size = 1 << (last_slab->min_order + last_slab->num_orders - 1);
/* Sub-allocate small buffers from slabs. */
if (!(flags & (RADEON_FLAG_NO_SUBALLOC | RADEON_FLAG_SPARSE)) &&
size <= max_slab_entry_size &&
/* The alignment must be at most the size of the smallest slab entry or
* the next power of two. */
alignment <= MAX2(1 << slabs[0].min_order, util_next_power_of_two(size))) {
struct pb_slab_entry *entry;
int heap = radeon_get_heap_index(domain, flags);
if (heap < 0 || heap >= RADEON_MAX_SLAB_HEAPS)
goto no_slab;
struct pb_slabs *slabs = get_slabs(ws, size, flags);
entry = pb_slab_alloc(slabs, size, heap);
if (!entry) {
/* Clean up buffer managers and try again. */
amdgpu_clean_up_buffer_managers(ws);
entry = pb_slab_alloc(slabs, size, heap);
}
if (!entry)
return NULL;
bo = NULL;
bo = container_of(entry, bo, u.slab.entry);
pipe_reference_init(&bo->base.reference, 1);
return &bo->base;
}
no_slab:
if (flags & RADEON_FLAG_SPARSE) {
assert(RADEON_SPARSE_PAGE_SIZE % alignment == 0);
return amdgpu_bo_sparse_create(ws, size, domain, flags);
}
/* This flag is irrelevant for the cache. */
flags &= ~RADEON_FLAG_NO_SUBALLOC;
/* Align size to page size. This is the minimum alignment for normal
* BOs. Aligning this here helps the cached bufmgr. Especially small BOs,
* like constant/uniform buffers, can benefit from better and more reuse.
*/
if (domain & RADEON_DOMAIN_VRAM_GTT) {
size = align64(size, ws->info.gart_page_size);
alignment = align(alignment, ws->info.gart_page_size);
}
bool use_reusable_pool = flags & RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (use_reusable_pool) {
heap = radeon_get_heap_index(domain, flags & ~RADEON_FLAG_ENCRYPTED);
assert(heap >= 0 && heap < RADEON_MAX_CACHED_HEAPS);
/* Get a buffer from the cache. */
bo = (struct amdgpu_winsys_bo*)
pb_cache_reclaim_buffer(&ws->bo_cache, size, alignment, 0, heap);
if (bo)
return &bo->base;
}
/* Create a new one. */
bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap);
if (!bo) {
/* Clean up buffer managers and try again. */
amdgpu_clean_up_buffer_managers(ws);
bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap);
if (!bo)
return NULL;
}
bo->u.real.use_reusable_pool = use_reusable_pool;
return &bo->base;
}
static struct pb_buffer *
amdgpu_buffer_create(struct radeon_winsys *ws,
uint64_t size,
unsigned alignment,
enum radeon_bo_domain domain,
enum radeon_bo_flag flags)
{
struct pb_buffer * res = amdgpu_bo_create(amdgpu_winsys(ws), size, alignment, domain,
flags);
return res;
}
static struct pb_buffer *amdgpu_bo_from_handle(struct radeon_winsys *rws,
struct winsys_handle *whandle,
unsigned vm_alignment)
{
struct amdgpu_winsys *ws = amdgpu_winsys(rws);
struct amdgpu_winsys_bo *bo = NULL;
enum amdgpu_bo_handle_type type;
struct amdgpu_bo_import_result result = {0};
uint64_t va;
amdgpu_va_handle va_handle = NULL;
struct amdgpu_bo_info info = {0};
enum radeon_bo_domain initial = 0;
enum radeon_bo_flag flags = 0;
int r;
switch (whandle->type) {
case WINSYS_HANDLE_TYPE_SHARED:
type = amdgpu_bo_handle_type_gem_flink_name;
break;
case WINSYS_HANDLE_TYPE_FD:
type = amdgpu_bo_handle_type_dma_buf_fd;
break;
default:
return NULL;
}
r = amdgpu_bo_import(ws->dev, type, whandle->handle, &result);
if (r)
return NULL;
simple_mtx_lock(&ws->bo_export_table_lock);
bo = util_hash_table_get(ws->bo_export_table, result.buf_handle);
/* If the amdgpu_winsys_bo instance already exists, bump the reference
* counter and return it.
*/
if (bo) {
p_atomic_inc(&bo->base.reference.count);
simple_mtx_unlock(&ws->bo_export_table_lock);
/* Release the buffer handle, because we don't need it anymore.
* This function is returning an existing buffer, which has its own
* handle.
*/
amdgpu_bo_free(result.buf_handle);
return &bo->base;
}
/* Get initial domains. */
r = amdgpu_bo_query_info(result.buf_handle, &info);
if (r)
goto error;
r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
result.alloc_size,
amdgpu_get_optimal_vm_alignment(ws, result.alloc_size,
vm_alignment),
0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH);
if (r)
goto error;
bo = CALLOC_STRUCT(amdgpu_winsys_bo);
if (!bo)
goto error;
r = amdgpu_bo_va_op(result.buf_handle, 0, result.alloc_size, va, 0, AMDGPU_VA_OP_MAP);
if (r)
goto error;
if (info.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM)
initial |= RADEON_DOMAIN_VRAM;
if (info.preferred_heap & AMDGPU_GEM_DOMAIN_GTT)
initial |= RADEON_DOMAIN_GTT;
if (info.alloc_flags & AMDGPU_GEM_CREATE_NO_CPU_ACCESS)
flags |= RADEON_FLAG_NO_CPU_ACCESS;
if (info.alloc_flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
flags |= RADEON_FLAG_GTT_WC;
if (info.alloc_flags & AMDGPU_GEM_CREATE_ENCRYPTED)
flags |= RADEON_FLAG_ENCRYPTED;
/* Initialize the structure. */
simple_mtx_init(&bo->lock, mtx_plain);
pipe_reference_init(&bo->base.reference, 1);
bo->base.alignment = info.phys_alignment;
bo->bo = result.buf_handle;
bo->base.size = result.alloc_size;
bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
bo->ws = ws;
bo->va = va;
bo->u.real.va_handle = va_handle;
bo->initial_domain = initial;
bo->flags = flags;
bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
bo->is_shared = true;
if (bo->initial_domain & RADEON_DOMAIN_VRAM)
ws->allocated_vram += align64(bo->base.size, ws->info.gart_page_size);
else if (bo->initial_domain & RADEON_DOMAIN_GTT)
ws->allocated_gtt += align64(bo->base.size, ws->info.gart_page_size);
amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
amdgpu_add_buffer_to_global_list(bo);
_mesa_hash_table_insert(ws->bo_export_table, bo->bo, bo);
simple_mtx_unlock(&ws->bo_export_table_lock);
return &bo->base;
error:
simple_mtx_unlock(&ws->bo_export_table_lock);
if (bo)
FREE(bo);
if (va_handle)
amdgpu_va_range_free(va_handle);
amdgpu_bo_free(result.buf_handle);
return NULL;
}
static bool amdgpu_bo_get_handle(struct radeon_winsys *rws,
struct pb_buffer *buffer,
struct winsys_handle *whandle)
{
struct amdgpu_screen_winsys *sws = amdgpu_screen_winsys(rws);
struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buffer);
struct amdgpu_winsys *ws = bo->ws;
enum amdgpu_bo_handle_type type;
struct hash_entry *entry;
int r;
/* Don't allow exports of slab entries and sparse buffers. */
if (!bo->bo)
return false;
bo->u.real.use_reusable_pool = false;
switch (whandle->type) {
case WINSYS_HANDLE_TYPE_SHARED:
type = amdgpu_bo_handle_type_gem_flink_name;
break;
case WINSYS_HANDLE_TYPE_KMS:
if (sws->fd == ws->fd) {
whandle->handle = bo->u.real.kms_handle;
if (bo->is_shared)
return true;
goto hash_table_set;
}
simple_mtx_lock(&ws->sws_list_lock);
entry = _mesa_hash_table_search(sws->kms_handles, bo);
simple_mtx_unlock(&ws->sws_list_lock);
if (entry) {
whandle->handle = (uintptr_t)entry->data;
return true;
}
/* Fall through */
case WINSYS_HANDLE_TYPE_FD:
type = amdgpu_bo_handle_type_dma_buf_fd;
break;
default:
return false;
}
r = amdgpu_bo_export(bo->bo, type, &whandle->handle);
if (r)
return false;
if (whandle->type == WINSYS_HANDLE_TYPE_KMS) {
int dma_fd = whandle->handle;
r = drmPrimeFDToHandle(sws->fd, dma_fd, &whandle->handle);
close(dma_fd);
if (r)
return false;
simple_mtx_lock(&ws->sws_list_lock);
_mesa_hash_table_insert_pre_hashed(sws->kms_handles,
bo->u.real.kms_handle, bo,
(void*)(uintptr_t)whandle->handle);
simple_mtx_unlock(&ws->sws_list_lock);
}
hash_table_set:
simple_mtx_lock(&ws->bo_export_table_lock);
_mesa_hash_table_insert(ws->bo_export_table, bo->bo, bo);
simple_mtx_unlock(&ws->bo_export_table_lock);
bo->is_shared = true;
return true;
}
static struct pb_buffer *amdgpu_bo_from_ptr(struct radeon_winsys *rws,
void *pointer, uint64_t size)
{
struct amdgpu_winsys *ws = amdgpu_winsys(rws);
amdgpu_bo_handle buf_handle;
struct amdgpu_winsys_bo *bo;
uint64_t va;
amdgpu_va_handle va_handle;
/* Avoid failure when the size is not page aligned */
uint64_t aligned_size = align64(size, ws->info.gart_page_size);
bo = CALLOC_STRUCT(amdgpu_winsys_bo);
if (!bo)
return NULL;
if (amdgpu_create_bo_from_user_mem(ws->dev, pointer,
aligned_size, &buf_handle))
goto error;
if (amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
aligned_size,
amdgpu_get_optimal_vm_alignment(ws, aligned_size,
ws->info.gart_page_size),
0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH))
goto error_va_alloc;
if (amdgpu_bo_va_op(buf_handle, 0, aligned_size, va, 0, AMDGPU_VA_OP_MAP))
goto error_va_map;
/* Initialize it. */
bo->is_user_ptr = true;
pipe_reference_init(&bo->base.reference, 1);
simple_mtx_init(&bo->lock, mtx_plain);
bo->bo = buf_handle;
bo->base.alignment = 0;
bo->base.size = size;
bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
bo->ws = ws;
bo->cpu_ptr = pointer;
bo->va = va;
bo->u.real.va_handle = va_handle;
bo->initial_domain = RADEON_DOMAIN_GTT;
bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
ws->allocated_gtt += aligned_size;
amdgpu_add_buffer_to_global_list(bo);
amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
return (struct pb_buffer*)bo;
error_va_map:
amdgpu_va_range_free(va_handle);
error_va_alloc:
amdgpu_bo_free(buf_handle);
error:
FREE(bo);
return NULL;
}
static bool amdgpu_bo_is_user_ptr(struct pb_buffer *buf)
{
return ((struct amdgpu_winsys_bo*)buf)->is_user_ptr;
}
static bool amdgpu_bo_is_suballocated(struct pb_buffer *buf)
{
struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
return !bo->bo && !bo->sparse;
}
static uint64_t amdgpu_bo_get_va(struct pb_buffer *buf)
{
return ((struct amdgpu_winsys_bo*)buf)->va;
}
void amdgpu_bo_init_functions(struct amdgpu_screen_winsys *ws)
{
ws->base.buffer_set_metadata = amdgpu_buffer_set_metadata;
ws->base.buffer_get_metadata = amdgpu_buffer_get_metadata;
ws->base.buffer_map = amdgpu_bo_map;
ws->base.buffer_unmap = amdgpu_bo_unmap;
ws->base.buffer_wait = amdgpu_bo_wait;
ws->base.buffer_create = amdgpu_buffer_create;
ws->base.buffer_from_handle = amdgpu_bo_from_handle;
ws->base.buffer_from_ptr = amdgpu_bo_from_ptr;
ws->base.buffer_is_user_ptr = amdgpu_bo_is_user_ptr;
ws->base.buffer_is_suballocated = amdgpu_bo_is_suballocated;
ws->base.buffer_get_handle = amdgpu_bo_get_handle;
ws->base.buffer_commit = amdgpu_bo_sparse_commit;
ws->base.buffer_get_virtual_address = amdgpu_bo_get_va;
ws->base.buffer_get_initial_domain = amdgpu_bo_get_initial_domain;
ws->base.buffer_get_flags = amdgpu_bo_get_flags;
}