blob: ce9230bd64763a720fd4d2c5f316ed4d908f5c5a [file] [log] [blame]
/*
* Copyright 2013-2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include "si_build_pm4.h"
#include "util/os_time.h"
#include "util/u_memory.h"
#include "util/u_queue.h"
#include "util/u_upload_mgr.h"
#include <libsync.h>
struct si_fine_fence {
struct si_resource *buf;
unsigned offset;
};
struct si_multi_fence {
struct pipe_reference reference;
struct pipe_fence_handle *gfx;
struct pipe_fence_handle *sdma;
struct tc_unflushed_batch_token *tc_token;
struct util_queue_fence ready;
/* If the context wasn't flushed at fence creation, this is non-NULL. */
struct {
struct si_context *ctx;
unsigned ib_index;
} gfx_unflushed;
struct si_fine_fence fine;
};
/**
* Write an EOP event.
*
* \param event EVENT_TYPE_*
* \param event_flags Optional cache flush flags (TC)
* \param dst_sel MEM or TC_L2
* \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM
* \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
* \param buf Buffer
* \param va GPU address
* \param old_value Previous fence value (for a bug workaround)
* \param new_value Fence value to write for this event.
*/
void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event,
unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel,
struct si_resource *buf, uint64_t va, uint32_t new_fence,
unsigned query_type)
{
unsigned op = EVENT_TYPE(event) |
EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) |
event_flags;
unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel);
bool compute_ib = !ctx->has_graphics || cs == ctx->prim_discard_compute_cs;
if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) {
/* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
* counters) must immediately precede every timestamp event to
* prevent a GPU hang on GFX9.
*
* Occlusion queries don't need to do it here, because they
* always do ZPASS_DONE before the timestamp.
*/
if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
struct si_resource *scratch = ctx->eop_bug_scratch;
assert(16 * ctx->screen->info.num_render_backends <= scratch->b.b.width0);
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
radeon_emit(cs, scratch->gpu_address);
radeon_emit(cs, scratch->gpu_address >> 32);
radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
RADEON_PRIO_QUERY);
}
radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0));
radeon_emit(cs, op);
radeon_emit(cs, sel);
radeon_emit(cs, va); /* address lo */
radeon_emit(cs, va >> 32); /* address hi */
radeon_emit(cs, new_fence); /* immediate data lo */
radeon_emit(cs, 0); /* immediate data hi */
if (ctx->chip_class >= GFX9)
radeon_emit(cs, 0); /* unused */
} else {
if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) {
struct si_resource *scratch = ctx->eop_bug_scratch;
uint64_t va = scratch->gpu_address;
/* Two EOP events are required to make all engines go idle
* (and optional cache flushes executed) before the timestamp
* is written.
*/
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
radeon_emit(cs, op);
radeon_emit(cs, va);
radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
radeon_emit(cs, 0); /* immediate data */
radeon_emit(cs, 0); /* unused */
radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
RADEON_PRIO_QUERY);
}
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
radeon_emit(cs, op);
radeon_emit(cs, va);
radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
radeon_emit(cs, new_fence); /* immediate data */
radeon_emit(cs, 0); /* unused */
}
if (buf) {
radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
}
}
unsigned si_cp_write_fence_dwords(struct si_screen *screen)
{
unsigned dwords = 6;
if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8)
dwords *= 2;
return dwords;
}
void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref,
uint32_t mask, unsigned flags)
{
radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, ref); /* reference value */
radeon_emit(cs, mask); /* mask */
radeon_emit(cs, 4); /* poll interval */
}
static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence)
{
struct radeon_winsys *ws = sctx->ws;
if (sctx->sdma_cs)
ws->cs_add_fence_dependency(sctx->sdma_cs, fence, 0);
ws->cs_add_fence_dependency(sctx->gfx_cs, fence, 0);
}
static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence)
{
sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence);
}
static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst,
struct pipe_fence_handle *src)
{
struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
struct si_multi_fence **sdst = (struct si_multi_fence **)dst;
struct si_multi_fence *ssrc = (struct si_multi_fence *)src;
if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
ws->fence_reference(&(*sdst)->gfx, NULL);
ws->fence_reference(&(*sdst)->sdma, NULL);
tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
si_resource_reference(&(*sdst)->fine.buf, NULL);
FREE(*sdst);
}
*sdst = ssrc;
}
static struct si_multi_fence *si_create_multi_fence()
{
struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
if (!fence)
return NULL;
pipe_reference_init(&fence->reference, 1);
util_queue_fence_init(&fence->ready);
return fence;
}
struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
struct tc_unflushed_batch_token *tc_token)
{
struct si_multi_fence *fence = si_create_multi_fence();
if (!fence)
return NULL;
util_queue_fence_reset(&fence->ready);
tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
return (struct pipe_fence_handle *)fence;
}
static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine)
{
char *map =
rws->buffer_map(fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED);
if (!map)
return false;
uint32_t *fence = (uint32_t *)(map + fine->offset);
return *fence != 0;
}
static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags)
{
uint32_t *fence_ptr;
assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
/* Use cached system memory for the fence. */
u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset,
(struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
if (!fine->buf)
return;
*fence_ptr = 0;
if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
uint32_t value = 0x80000000;
si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value);
} else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
uint64_t fence_va = fine->buf->gpu_address + fine->offset;
radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
si_cp_release_mem(ctx, ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000,
PIPE_QUERY_GPU_FINISHED);
} else {
assert(false);
}
}
static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx,
struct pipe_fence_handle *fence, uint64_t timeout)
{
struct radeon_winsys *rws = ((struct si_screen *)screen)->ws;
struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
struct si_context *sctx;
int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
ctx = threaded_context_unwrap_sync(ctx);
sctx = (struct si_context *)(ctx ? ctx : NULL);
if (!util_queue_fence_is_signalled(&sfence->ready)) {
if (sfence->tc_token) {
/* Ensure that si_flush_from_st will be called for
* this fence, but only if we're in the API thread
* where the context is current.
*
* Note that the batch containing the flush may already
* be in flight in the driver thread, so the fence
* may not be ready yet when this call returns.
*/
threaded_context_flush(ctx, sfence->tc_token, timeout == 0);
}
if (!timeout)
return false;
if (timeout == PIPE_TIMEOUT_INFINITE) {
util_queue_fence_wait(&sfence->ready);
} else {
if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
return false;
}
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
int64_t time = os_time_get_nano();
timeout = abs_timeout > time ? abs_timeout - time : 0;
}
}
if (sfence->sdma) {
if (!rws->fence_wait(rws, sfence->sdma, timeout))
return false;
/* Recompute the timeout after waiting. */
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
int64_t time = os_time_get_nano();
timeout = abs_timeout > time ? abs_timeout - time : 0;
}
}
if (!sfence->gfx)
return true;
if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) {
rws->fence_reference(&sfence->gfx, NULL);
si_resource_reference(&sfence->fine.buf, NULL);
return true;
}
/* Flush the gfx IB if it hasn't been flushed yet. */
if (sctx && sfence->gfx_unflushed.ctx == sctx &&
sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
/* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
* spec says:
*
* "If the sync object being blocked upon will not be
* signaled in finite time (for example, by an associated
* fence command issued previously, but not yet flushed to
* the graphics pipeline), then ClientWaitSync may hang
* forever. To help prevent this behavior, if
* ClientWaitSync is called and all of the following are
* true:
*
* * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
* * sync is unsignaled when ClientWaitSync is called,
* * and the calls to ClientWaitSync and FenceSync were
* issued from the same context,
*
* then the GL will behave as if the equivalent of Flush
* were inserted immediately after the creation of sync."
*
* This means we need to flush for such fences even when we're
* not going to wait.
*/
si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
NULL);
sfence->gfx_unflushed.ctx = NULL;
if (!timeout)
return false;
/* Recompute the timeout after all that. */
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
int64_t time = os_time_get_nano();
timeout = abs_timeout > time ? abs_timeout - time : 0;
}
}
if (rws->fence_wait(rws, sfence->gfx, timeout))
return true;
/* Re-check in case the GPU is slow or hangs, but the commands before
* the fine-grained fence have completed. */
if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine))
return true;
return false;
}
static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd,
enum pipe_fd_type type)
{
struct si_screen *sscreen = (struct si_screen *)ctx->screen;
struct radeon_winsys *ws = sscreen->ws;
struct si_multi_fence *sfence;
*pfence = NULL;
sfence = si_create_multi_fence();
if (!sfence)
return;
switch (type) {
case PIPE_FD_TYPE_NATIVE_SYNC:
if (!sscreen->info.has_fence_to_handle)
goto finish;
sfence->gfx = ws->fence_import_sync_file(ws, fd);
break;
case PIPE_FD_TYPE_SYNCOBJ:
if (!sscreen->info.has_syncobj)
goto finish;
sfence->gfx = ws->fence_import_syncobj(ws, fd);
break;
default:
unreachable("bad fence fd type when importing");
}
finish:
if (!sfence->gfx) {
FREE(sfence);
return;
}
*pfence = (struct pipe_fence_handle *)sfence;
}
static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct radeon_winsys *ws = sscreen->ws;
struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
int gfx_fd = -1, sdma_fd = -1;
if (!sscreen->info.has_fence_to_handle)
return -1;
util_queue_fence_wait(&sfence->ready);
/* Deferred fences aren't supported. */
assert(!sfence->gfx_unflushed.ctx);
if (sfence->gfx_unflushed.ctx)
return -1;
if (sfence->sdma) {
sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma);
if (sdma_fd == -1)
return -1;
}
if (sfence->gfx) {
gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
if (gfx_fd == -1) {
if (sdma_fd != -1)
close(sdma_fd);
return -1;
}
}
/* If we don't have FDs at this point, it means we don't have fences
* either. */
if (sdma_fd == -1 && gfx_fd == -1)
return ws->export_signalled_sync_file(ws);
if (sdma_fd == -1)
return gfx_fd;
if (gfx_fd == -1)
return sdma_fd;
/* Get a fence that will be a combination of both fences. */
sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
close(sdma_fd);
return gfx_fd;
}
static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence,
unsigned flags)
{
struct pipe_screen *screen = ctx->screen;
struct si_context *sctx = (struct si_context *)ctx;
struct radeon_winsys *ws = sctx->ws;
struct pipe_fence_handle *gfx_fence = NULL;
struct pipe_fence_handle *sdma_fence = NULL;
bool deferred_fence = false;
struct si_fine_fence fine = {};
unsigned rflags = PIPE_FLUSH_ASYNC;
if (flags & PIPE_FLUSH_END_OF_FRAME)
rflags |= PIPE_FLUSH_END_OF_FRAME;
if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
assert(flags & PIPE_FLUSH_DEFERRED);
assert(fence);
si_fine_fence_set(sctx, &fine, flags);
}
/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
if (sctx->sdma_cs)
si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL);
if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
if (fence)
ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
if (!(flags & PIPE_FLUSH_DEFERRED))
ws->cs_sync_flush(sctx->gfx_cs);
} else {
/* Instead of flushing, create a deferred fence. Constraints:
* - the gallium frontend must allow a deferred flush.
* - the gallium frontend must request a fence.
* - fence_get_fd is not allowed.
* Thread safety in fence_finish must be ensured by the gallium frontend.
*/
if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) {
gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs);
deferred_fence = true;
} else {
si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
}
}
/* Both engines can signal out of order, so we need to keep both fences. */
if (fence) {
struct si_multi_fence *multi_fence;
if (flags & TC_FLUSH_ASYNC) {
multi_fence = (struct si_multi_fence *)*fence;
assert(multi_fence);
} else {
multi_fence = si_create_multi_fence();
if (!multi_fence) {
ws->fence_reference(&sdma_fence, NULL);
ws->fence_reference(&gfx_fence, NULL);
goto finish;
}
screen->fence_reference(screen, fence, NULL);
*fence = (struct pipe_fence_handle *)multi_fence;
}
/* If both fences are NULL, fence_finish will always return true. */
multi_fence->gfx = gfx_fence;
multi_fence->sdma = sdma_fence;
if (deferred_fence) {
multi_fence->gfx_unflushed.ctx = sctx;
multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
}
multi_fence->fine = fine;
fine.buf = NULL;
if (flags & TC_FLUSH_ASYNC) {
util_queue_fence_signal(&multi_fence->ready);
tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
}
}
assert(!fine.buf);
finish:
if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
if (sctx->sdma_cs)
ws->cs_sync_flush(sctx->sdma_cs);
ws->cs_sync_flush(sctx->gfx_cs);
}
}
static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
/* We should have at least one syncobj to signal */
assert(sfence->sdma || sfence->gfx);
if (sfence->sdma)
si_add_syncobj_signal(sctx, sfence->sdma);
if (sfence->gfx)
si_add_syncobj_signal(sctx, sfence->gfx);
/**
* The spec does not require a flush here. We insert a flush
* because syncobj based signals are not directly placed into
* the command stream. Instead the signal happens when the
* submission associated with the syncobj finishes execution.
*
* Therefore, we must make sure that we flush the pipe to avoid
* new work being emitted and getting executed before the signal
* operation.
*
* Set sctx->initial_gfx_cs_size to force IB submission even if
* it is empty.
*/
sctx->initial_gfx_cs_size = 0;
si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
}
static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
util_queue_fence_wait(&sfence->ready);
/* Unflushed fences from the same context are no-ops. */
if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx)
return;
/* All unflushed commands will not start execution before this fence
* dependency is signalled. That's fine. Flushing is very expensive
* if we get fence_server_sync after every draw call. (which happens
* with Android/SurfaceFlinger)
*
* In a nutshell, when CPU overhead is greater than GPU overhead,
* or when the time it takes to execute an IB on the GPU is less than
* the time it takes to create and submit that IB, flushing decreases
* performance. Therefore, DO NOT FLUSH.
*/
if (sfence->sdma)
si_add_fence_dependency(sctx, sfence->sdma);
if (sfence->gfx)
si_add_fence_dependency(sctx, sfence->gfx);
}
void si_init_fence_functions(struct si_context *ctx)
{
ctx->b.flush = si_flush_from_st;
ctx->b.create_fence_fd = si_create_fence_fd;
ctx->b.fence_server_sync = si_fence_server_sync;
ctx->b.fence_server_signal = si_fence_server_signal;
}
void si_init_screen_fence_functions(struct si_screen *screen)
{
screen->b.fence_finish = si_fence_finish;
screen->b.fence_reference = si_fence_reference;
screen->b.fence_get_fd = si_fence_get_fd;
}