blob: 1689f7b9d98300d0c5dc9c256fd2c8007e7c8554 [file] [log] [blame]
/**************************************************************************
*
* Copyright 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "util/u_threaded_context.h"
#include "util/u_cpu_detect.h"
#include "util/format/u_format.h"
#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
/* 0 = disabled, 1 = assertions, 2 = printfs */
#define TC_DEBUG 0
#if TC_DEBUG >= 1
#define tc_assert assert
#else
#define tc_assert(x)
#endif
#if TC_DEBUG >= 2
#define tc_printf printf
#define tc_asprintf asprintf
#define tc_strcmp strcmp
#else
#define tc_printf(...)
#define tc_asprintf(...) 0
#define tc_strcmp(...) 0
#endif
#define TC_SENTINEL 0x5ca1ab1e
enum tc_call_id {
#define CALL(name) TC_CALL_##name,
#include "u_threaded_context_calls.h"
#undef CALL
TC_NUM_CALLS,
};
typedef void (*tc_execute)(struct pipe_context *pipe, union tc_payload *payload);
static const tc_execute execute_func[TC_NUM_CALLS];
static void
tc_batch_check(UNUSED struct tc_batch *batch)
{
tc_assert(batch->sentinel == TC_SENTINEL);
tc_assert(batch->num_total_call_slots <= TC_CALLS_PER_BATCH);
}
static void
tc_debug_check(struct threaded_context *tc)
{
for (unsigned i = 0; i < TC_MAX_BATCHES; i++) {
tc_batch_check(&tc->batch_slots[i]);
tc_assert(tc->batch_slots[i].pipe == tc->pipe);
}
}
static void
tc_batch_execute(void *job, UNUSED int thread_index)
{
struct tc_batch *batch = job;
struct pipe_context *pipe = batch->pipe;
struct tc_call *last = &batch->call[batch->num_total_call_slots];
tc_batch_check(batch);
assert(!batch->token);
for (struct tc_call *iter = batch->call; iter != last;
iter += iter->num_call_slots) {
tc_assert(iter->sentinel == TC_SENTINEL);
execute_func[iter->call_id](pipe, &iter->payload);
}
tc_batch_check(batch);
batch->num_total_call_slots = 0;
}
static void
tc_batch_flush(struct threaded_context *tc)
{
struct tc_batch *next = &tc->batch_slots[tc->next];
tc_assert(next->num_total_call_slots != 0);
tc_batch_check(next);
tc_debug_check(tc);
tc->bytes_mapped_estimate = 0;
p_atomic_add(&tc->num_offloaded_slots, next->num_total_call_slots);
if (next->token) {
next->token->tc = NULL;
tc_unflushed_batch_token_reference(&next->token, NULL);
}
util_queue_add_job(&tc->queue, next, &next->fence, tc_batch_execute,
NULL, 0);
tc->last = tc->next;
tc->next = (tc->next + 1) % TC_MAX_BATCHES;
}
/* This is the function that adds variable-sized calls into the current
* batch. It also flushes the batch if there is not enough space there.
* All other higher-level "add" functions use it.
*/
static union tc_payload *
tc_add_sized_call(struct threaded_context *tc, enum tc_call_id id,
unsigned payload_size)
{
struct tc_batch *next = &tc->batch_slots[tc->next];
unsigned total_size = offsetof(struct tc_call, payload) + payload_size;
unsigned num_call_slots = DIV_ROUND_UP(total_size, sizeof(struct tc_call));
tc_debug_check(tc);
if (unlikely(next->num_total_call_slots + num_call_slots > TC_CALLS_PER_BATCH)) {
tc_batch_flush(tc);
next = &tc->batch_slots[tc->next];
tc_assert(next->num_total_call_slots == 0);
}
tc_assert(util_queue_fence_is_signalled(&next->fence));
struct tc_call *call = &next->call[next->num_total_call_slots];
next->num_total_call_slots += num_call_slots;
call->sentinel = TC_SENTINEL;
call->call_id = id;
call->num_call_slots = num_call_slots;
tc_debug_check(tc);
return &call->payload;
}
#define tc_add_struct_typed_call(tc, execute, type) \
((struct type*)tc_add_sized_call(tc, execute, sizeof(struct type)))
#define tc_add_slot_based_call(tc, execute, type, num_slots) \
((struct type*)tc_add_sized_call(tc, execute, \
sizeof(struct type) + \
sizeof(((struct type*)NULL)->slot[0]) * \
(num_slots)))
static union tc_payload *
tc_add_small_call(struct threaded_context *tc, enum tc_call_id id)
{
return tc_add_sized_call(tc, id, 0);
}
static bool
tc_is_sync(struct threaded_context *tc)
{
struct tc_batch *last = &tc->batch_slots[tc->last];
struct tc_batch *next = &tc->batch_slots[tc->next];
return util_queue_fence_is_signalled(&last->fence) &&
!next->num_total_call_slots;
}
static void
_tc_sync(struct threaded_context *tc, UNUSED const char *info, UNUSED const char *func)
{
struct tc_batch *last = &tc->batch_slots[tc->last];
struct tc_batch *next = &tc->batch_slots[tc->next];
bool synced = false;
tc_debug_check(tc);
/* Only wait for queued calls... */
if (!util_queue_fence_is_signalled(&last->fence)) {
util_queue_fence_wait(&last->fence);
synced = true;
}
tc_debug_check(tc);
if (next->token) {
next->token->tc = NULL;
tc_unflushed_batch_token_reference(&next->token, NULL);
}
/* .. and execute unflushed calls directly. */
if (next->num_total_call_slots) {
p_atomic_add(&tc->num_direct_slots, next->num_total_call_slots);
tc->bytes_mapped_estimate = 0;
tc_batch_execute(next, 0);
synced = true;
}
if (synced) {
p_atomic_inc(&tc->num_syncs);
if (tc_strcmp(func, "tc_destroy") != 0) {
tc_printf("sync %s %s\n", func, info);
}
}
tc_debug_check(tc);
}
#define tc_sync(tc) _tc_sync(tc, "", __func__)
#define tc_sync_msg(tc, info) _tc_sync(tc, info, __func__)
/**
* Call this from fence_finish for same-context fence waits of deferred fences
* that haven't been flushed yet.
*
* The passed pipe_context must be the one passed to pipe_screen::fence_finish,
* i.e., the wrapped one.
*/
void
threaded_context_flush(struct pipe_context *_pipe,
struct tc_unflushed_batch_token *token,
bool prefer_async)
{
struct threaded_context *tc = threaded_context(_pipe);
/* This is called from the gallium frontend / application thread. */
if (token->tc && token->tc == tc) {
struct tc_batch *last = &tc->batch_slots[tc->last];
/* Prefer to do the flush in the driver thread if it is already
* running. That should be better for cache locality.
*/
if (prefer_async || !util_queue_fence_is_signalled(&last->fence))
tc_batch_flush(tc);
else
tc_sync(token->tc);
}
}
static void
tc_set_resource_reference(struct pipe_resource **dst, struct pipe_resource *src)
{
*dst = NULL;
pipe_resource_reference(dst, src);
}
void
threaded_resource_init(struct pipe_resource *res)
{
struct threaded_resource *tres = threaded_resource(res);
tres->latest = &tres->b;
util_range_init(&tres->valid_buffer_range);
tres->base_valid_buffer_range = &tres->valid_buffer_range;
tres->is_shared = false;
tres->is_user_ptr = false;
}
void
threaded_resource_deinit(struct pipe_resource *res)
{
struct threaded_resource *tres = threaded_resource(res);
if (tres->latest != &tres->b)
pipe_resource_reference(&tres->latest, NULL);
util_range_destroy(&tres->valid_buffer_range);
}
struct pipe_context *
threaded_context_unwrap_sync(struct pipe_context *pipe)
{
if (!pipe || !pipe->priv)
return pipe;
tc_sync(threaded_context(pipe));
return (struct pipe_context*)pipe->priv;
}
/********************************************************************
* simple functions
*/
#define TC_FUNC1(func, m_payload, qualifier, type, deref, deref2) \
static void \
tc_call_##func(struct pipe_context *pipe, union tc_payload *payload) \
{ \
pipe->func(pipe, deref2((type*)payload)); \
} \
\
static void \
tc_##func(struct pipe_context *_pipe, qualifier type deref param) \
{ \
struct threaded_context *tc = threaded_context(_pipe); \
type *p = (type*)tc_add_sized_call(tc, TC_CALL_##func, sizeof(type)); \
*p = deref(param); \
}
TC_FUNC1(set_active_query_state, flags, , bool, , *)
TC_FUNC1(set_blend_color, blend_color, const, struct pipe_blend_color, *, )
TC_FUNC1(set_stencil_ref, stencil_ref, const, struct pipe_stencil_ref, *, )
TC_FUNC1(set_clip_state, clip_state, const, struct pipe_clip_state, *, )
TC_FUNC1(set_sample_mask, sample_mask, , unsigned, , *)
TC_FUNC1(set_min_samples, min_samples, , unsigned, , *)
TC_FUNC1(set_polygon_stipple, polygon_stipple, const, struct pipe_poly_stipple, *, )
TC_FUNC1(texture_barrier, flags, , unsigned, , *)
TC_FUNC1(memory_barrier, flags, , unsigned, , *)
/********************************************************************
* queries
*/
static struct pipe_query *
tc_create_query(struct pipe_context *_pipe, unsigned query_type,
unsigned index)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
return pipe->create_query(pipe, query_type, index);
}
static struct pipe_query *
tc_create_batch_query(struct pipe_context *_pipe, unsigned num_queries,
unsigned *query_types)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
return pipe->create_batch_query(pipe, num_queries, query_types);
}
static void
tc_call_destroy_query(struct pipe_context *pipe, union tc_payload *payload)
{
struct threaded_query *tq = threaded_query(payload->query);
if (tq->head_unflushed.next)
list_del(&tq->head_unflushed);
pipe->destroy_query(pipe, payload->query);
}
static void
tc_destroy_query(struct pipe_context *_pipe, struct pipe_query *query)
{
struct threaded_context *tc = threaded_context(_pipe);
tc_add_small_call(tc, TC_CALL_destroy_query)->query = query;
}
static void
tc_call_begin_query(struct pipe_context *pipe, union tc_payload *payload)
{
pipe->begin_query(pipe, payload->query);
}
static bool
tc_begin_query(struct pipe_context *_pipe, struct pipe_query *query)
{
struct threaded_context *tc = threaded_context(_pipe);
union tc_payload *payload = tc_add_small_call(tc, TC_CALL_begin_query);
payload->query = query;
return true; /* we don't care about the return value for this call */
}
struct tc_end_query_payload {
struct threaded_context *tc;
struct pipe_query *query;
};
static void
tc_call_end_query(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_end_query_payload *p = (struct tc_end_query_payload *)payload;
struct threaded_query *tq = threaded_query(p->query);
if (!tq->head_unflushed.next)
list_add(&tq->head_unflushed, &p->tc->unflushed_queries);
pipe->end_query(pipe, p->query);
}
static bool
tc_end_query(struct pipe_context *_pipe, struct pipe_query *query)
{
struct threaded_context *tc = threaded_context(_pipe);
struct threaded_query *tq = threaded_query(query);
struct tc_end_query_payload *payload =
tc_add_struct_typed_call(tc, TC_CALL_end_query, tc_end_query_payload);
payload->tc = tc;
payload->query = query;
tq->flushed = false;
return true; /* we don't care about the return value for this call */
}
static bool
tc_get_query_result(struct pipe_context *_pipe,
struct pipe_query *query, bool wait,
union pipe_query_result *result)
{
struct threaded_context *tc = threaded_context(_pipe);
struct threaded_query *tq = threaded_query(query);
struct pipe_context *pipe = tc->pipe;
if (!tq->flushed)
tc_sync_msg(tc, wait ? "wait" : "nowait");
bool success = pipe->get_query_result(pipe, query, wait, result);
if (success) {
tq->flushed = true;
if (tq->head_unflushed.next) {
/* This is safe because it can only happen after we sync'd. */
list_del(&tq->head_unflushed);
}
}
return success;
}
struct tc_query_result_resource {
struct pipe_query *query;
bool wait;
enum pipe_query_value_type result_type;
int index;
struct pipe_resource *resource;
unsigned offset;
};
static void
tc_call_get_query_result_resource(struct pipe_context *pipe,
union tc_payload *payload)
{
struct tc_query_result_resource *p = (struct tc_query_result_resource *)payload;
pipe->get_query_result_resource(pipe, p->query, p->wait, p->result_type,
p->index, p->resource, p->offset);
pipe_resource_reference(&p->resource, NULL);
}
static void
tc_get_query_result_resource(struct pipe_context *_pipe,
struct pipe_query *query, bool wait,
enum pipe_query_value_type result_type, int index,
struct pipe_resource *resource, unsigned offset)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_query_result_resource *p =
tc_add_struct_typed_call(tc, TC_CALL_get_query_result_resource,
tc_query_result_resource);
p->query = query;
p->wait = wait;
p->result_type = result_type;
p->index = index;
tc_set_resource_reference(&p->resource, resource);
p->offset = offset;
}
struct tc_render_condition {
struct pipe_query *query;
bool condition;
unsigned mode;
};
static void
tc_call_render_condition(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_render_condition *p = (struct tc_render_condition *)payload;
pipe->render_condition(pipe, p->query, p->condition, p->mode);
}
static void
tc_render_condition(struct pipe_context *_pipe,
struct pipe_query *query, bool condition,
enum pipe_render_cond_flag mode)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_render_condition *p =
tc_add_struct_typed_call(tc, TC_CALL_render_condition, tc_render_condition);
p->query = query;
p->condition = condition;
p->mode = mode;
}
/********************************************************************
* constant (immutable) states
*/
#define TC_CSO_CREATE(name, sname) \
static void * \
tc_create_##name##_state(struct pipe_context *_pipe, \
const struct pipe_##sname##_state *state) \
{ \
struct pipe_context *pipe = threaded_context(_pipe)->pipe; \
return pipe->create_##name##_state(pipe, state); \
}
#define TC_CSO_BIND(name) TC_FUNC1(bind_##name##_state, cso, , void *, , *)
#define TC_CSO_DELETE(name) TC_FUNC1(delete_##name##_state, cso, , void *, , *)
#define TC_CSO_WHOLE2(name, sname) \
TC_CSO_CREATE(name, sname) \
TC_CSO_BIND(name) \
TC_CSO_DELETE(name)
#define TC_CSO_WHOLE(name) TC_CSO_WHOLE2(name, name)
TC_CSO_WHOLE(blend)
TC_CSO_WHOLE(rasterizer)
TC_CSO_WHOLE(depth_stencil_alpha)
TC_CSO_WHOLE(compute)
TC_CSO_WHOLE2(fs, shader)
TC_CSO_WHOLE2(vs, shader)
TC_CSO_WHOLE2(gs, shader)
TC_CSO_WHOLE2(tcs, shader)
TC_CSO_WHOLE2(tes, shader)
TC_CSO_CREATE(sampler, sampler)
TC_CSO_DELETE(sampler)
TC_CSO_BIND(vertex_elements)
TC_CSO_DELETE(vertex_elements)
static void *
tc_create_vertex_elements_state(struct pipe_context *_pipe, unsigned count,
const struct pipe_vertex_element *elems)
{
struct pipe_context *pipe = threaded_context(_pipe)->pipe;
return pipe->create_vertex_elements_state(pipe, count, elems);
}
struct tc_sampler_states {
ubyte shader, start, count;
void *slot[0]; /* more will be allocated if needed */
};
static void
tc_call_bind_sampler_states(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_sampler_states *p = (struct tc_sampler_states *)payload;
pipe->bind_sampler_states(pipe, p->shader, p->start, p->count, p->slot);
}
static void
tc_bind_sampler_states(struct pipe_context *_pipe,
enum pipe_shader_type shader,
unsigned start, unsigned count, void **states)
{
if (!count)
return;
struct threaded_context *tc = threaded_context(_pipe);
struct tc_sampler_states *p =
tc_add_slot_based_call(tc, TC_CALL_bind_sampler_states, tc_sampler_states, count);
p->shader = shader;
p->start = start;
p->count = count;
memcpy(p->slot, states, count * sizeof(states[0]));
}
/********************************************************************
* immediate states
*/
static void
tc_call_set_framebuffer_state(struct pipe_context *pipe, union tc_payload *payload)
{
struct pipe_framebuffer_state *p = (struct pipe_framebuffer_state *)payload;
pipe->set_framebuffer_state(pipe, p);
unsigned nr_cbufs = p->nr_cbufs;
for (unsigned i = 0; i < nr_cbufs; i++)
pipe_surface_reference(&p->cbufs[i], NULL);
pipe_surface_reference(&p->zsbuf, NULL);
}
static void
tc_set_framebuffer_state(struct pipe_context *_pipe,
const struct pipe_framebuffer_state *fb)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_framebuffer_state *p =
tc_add_struct_typed_call(tc, TC_CALL_set_framebuffer_state,
pipe_framebuffer_state);
unsigned nr_cbufs = fb->nr_cbufs;
p->width = fb->width;
p->height = fb->height;
p->samples = fb->samples;
p->layers = fb->layers;
p->nr_cbufs = nr_cbufs;
for (unsigned i = 0; i < nr_cbufs; i++) {
p->cbufs[i] = NULL;
pipe_surface_reference(&p->cbufs[i], fb->cbufs[i]);
}
p->zsbuf = NULL;
pipe_surface_reference(&p->zsbuf, fb->zsbuf);
}
static void
tc_call_set_tess_state(struct pipe_context *pipe, union tc_payload *payload)
{
float *p = (float*)payload;
pipe->set_tess_state(pipe, p, p + 4);
}
static void
tc_set_tess_state(struct pipe_context *_pipe,
const float default_outer_level[4],
const float default_inner_level[2])
{
struct threaded_context *tc = threaded_context(_pipe);
float *p = (float*)tc_add_sized_call(tc, TC_CALL_set_tess_state,
sizeof(float) * 6);
memcpy(p, default_outer_level, 4 * sizeof(float));
memcpy(p + 4, default_inner_level, 2 * sizeof(float));
}
struct tc_constant_buffer {
ubyte shader, index;
struct pipe_constant_buffer cb;
};
static void
tc_call_set_constant_buffer(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_constant_buffer *p = (struct tc_constant_buffer *)payload;
pipe->set_constant_buffer(pipe,
p->shader,
p->index,
&p->cb);
pipe_resource_reference(&p->cb.buffer, NULL);
}
static void
tc_set_constant_buffer(struct pipe_context *_pipe,
enum pipe_shader_type shader, uint index,
const struct pipe_constant_buffer *cb)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_resource *buffer = NULL;
unsigned offset;
/* This must be done before adding set_constant_buffer, because it could
* generate e.g. transfer_unmap and flush partially-uninitialized
* set_constant_buffer to the driver if it was done afterwards.
*/
if (cb && cb->user_buffer) {
u_upload_data(tc->base.const_uploader, 0, cb->buffer_size, 64,
cb->user_buffer, &offset, &buffer);
u_upload_unmap(tc->base.const_uploader);
}
struct tc_constant_buffer *p =
tc_add_struct_typed_call(tc, TC_CALL_set_constant_buffer,
tc_constant_buffer);
p->shader = shader;
p->index = index;
if (cb) {
if (cb->user_buffer) {
p->cb.buffer_size = cb->buffer_size;
p->cb.user_buffer = NULL;
p->cb.buffer_offset = offset;
p->cb.buffer = buffer;
} else {
tc_set_resource_reference(&p->cb.buffer,
cb->buffer);
memcpy(&p->cb, cb, sizeof(*cb));
}
} else {
memset(&p->cb, 0, sizeof(*cb));
}
}
struct tc_scissors {
ubyte start, count;
struct pipe_scissor_state slot[0]; /* more will be allocated if needed */
};
static void
tc_call_set_scissor_states(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_scissors *p = (struct tc_scissors *)payload;
pipe->set_scissor_states(pipe, p->start, p->count, p->slot);
}
static void
tc_set_scissor_states(struct pipe_context *_pipe,
unsigned start, unsigned count,
const struct pipe_scissor_state *states)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_scissors *p =
tc_add_slot_based_call(tc, TC_CALL_set_scissor_states, tc_scissors, count);
p->start = start;
p->count = count;
memcpy(&p->slot, states, count * sizeof(states[0]));
}
struct tc_viewports {
ubyte start, count;
struct pipe_viewport_state slot[0]; /* more will be allocated if needed */
};
static void
tc_call_set_viewport_states(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_viewports *p = (struct tc_viewports *)payload;
pipe->set_viewport_states(pipe, p->start, p->count, p->slot);
}
static void
tc_set_viewport_states(struct pipe_context *_pipe,
unsigned start, unsigned count,
const struct pipe_viewport_state *states)
{
if (!count)
return;
struct threaded_context *tc = threaded_context(_pipe);
struct tc_viewports *p =
tc_add_slot_based_call(tc, TC_CALL_set_viewport_states, tc_viewports, count);
p->start = start;
p->count = count;
memcpy(&p->slot, states, count * sizeof(states[0]));
}
struct tc_window_rects {
bool include;
ubyte count;
struct pipe_scissor_state slot[0]; /* more will be allocated if needed */
};
static void
tc_call_set_window_rectangles(struct pipe_context *pipe,
union tc_payload *payload)
{
struct tc_window_rects *p = (struct tc_window_rects *)payload;
pipe->set_window_rectangles(pipe, p->include, p->count, p->slot);
}
static void
tc_set_window_rectangles(struct pipe_context *_pipe, bool include,
unsigned count,
const struct pipe_scissor_state *rects)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_window_rects *p =
tc_add_slot_based_call(tc, TC_CALL_set_window_rectangles, tc_window_rects, count);
p->include = include;
p->count = count;
memcpy(p->slot, rects, count * sizeof(rects[0]));
}
struct tc_sampler_views {
ubyte shader, start, count;
struct pipe_sampler_view *slot[0]; /* more will be allocated if needed */
};
static void
tc_call_set_sampler_views(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_sampler_views *p = (struct tc_sampler_views *)payload;
unsigned count = p->count;
pipe->set_sampler_views(pipe, p->shader, p->start, p->count, p->slot);
for (unsigned i = 0; i < count; i++)
pipe_sampler_view_reference(&p->slot[i], NULL);
}
static void
tc_set_sampler_views(struct pipe_context *_pipe,
enum pipe_shader_type shader,
unsigned start, unsigned count,
struct pipe_sampler_view **views)
{
if (!count)
return;
struct threaded_context *tc = threaded_context(_pipe);
struct tc_sampler_views *p =
tc_add_slot_based_call(tc, TC_CALL_set_sampler_views, tc_sampler_views, count);
p->shader = shader;
p->start = start;
p->count = count;
if (views) {
for (unsigned i = 0; i < count; i++) {
p->slot[i] = NULL;
pipe_sampler_view_reference(&p->slot[i], views[i]);
}
} else {
memset(p->slot, 0, count * sizeof(views[0]));
}
}
struct tc_shader_images {
ubyte shader, start, count;
bool unbind;
struct pipe_image_view slot[0]; /* more will be allocated if needed */
};
static void
tc_call_set_shader_images(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_shader_images *p = (struct tc_shader_images *)payload;
unsigned count = p->count;
if (p->unbind) {
pipe->set_shader_images(pipe, p->shader, p->start, p->count, NULL);
return;
}
pipe->set_shader_images(pipe, p->shader, p->start, p->count, p->slot);
for (unsigned i = 0; i < count; i++)
pipe_resource_reference(&p->slot[i].resource, NULL);
}
static void
tc_set_shader_images(struct pipe_context *_pipe,
enum pipe_shader_type shader,
unsigned start, unsigned count,
const struct pipe_image_view *images)
{
if (!count)
return;
struct threaded_context *tc = threaded_context(_pipe);
struct tc_shader_images *p =
tc_add_slot_based_call(tc, TC_CALL_set_shader_images, tc_shader_images,
images ? count : 0);
p->shader = shader;
p->start = start;
p->count = count;
p->unbind = images == NULL;
if (images) {
for (unsigned i = 0; i < count; i++) {
tc_set_resource_reference(&p->slot[i].resource, images[i].resource);
if (images[i].access & PIPE_IMAGE_ACCESS_WRITE &&
images[i].resource &&
images[i].resource->target == PIPE_BUFFER) {
struct threaded_resource *tres =
threaded_resource(images[i].resource);
util_range_add(&tres->b, &tres->valid_buffer_range,
images[i].u.buf.offset,
images[i].u.buf.offset + images[i].u.buf.size);
}
}
memcpy(p->slot, images, count * sizeof(images[0]));
}
}
struct tc_shader_buffers {
ubyte shader, start, count;
bool unbind;
unsigned writable_bitmask;
struct pipe_shader_buffer slot[0]; /* more will be allocated if needed */
};
static void
tc_call_set_shader_buffers(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_shader_buffers *p = (struct tc_shader_buffers *)payload;
unsigned count = p->count;
if (p->unbind) {
pipe->set_shader_buffers(pipe, p->shader, p->start, p->count, NULL, 0);
return;
}
pipe->set_shader_buffers(pipe, p->shader, p->start, p->count, p->slot,
p->writable_bitmask);
for (unsigned i = 0; i < count; i++)
pipe_resource_reference(&p->slot[i].buffer, NULL);
}
static void
tc_set_shader_buffers(struct pipe_context *_pipe,
enum pipe_shader_type shader,
unsigned start, unsigned count,
const struct pipe_shader_buffer *buffers,
unsigned writable_bitmask)
{
if (!count)
return;
struct threaded_context *tc = threaded_context(_pipe);
struct tc_shader_buffers *p =
tc_add_slot_based_call(tc, TC_CALL_set_shader_buffers, tc_shader_buffers,
buffers ? count : 0);
p->shader = shader;
p->start = start;
p->count = count;
p->unbind = buffers == NULL;
p->writable_bitmask = writable_bitmask;
if (buffers) {
for (unsigned i = 0; i < count; i++) {
struct pipe_shader_buffer *dst = &p->slot[i];
const struct pipe_shader_buffer *src = buffers + i;
tc_set_resource_reference(&dst->buffer, src->buffer);
dst->buffer_offset = src->buffer_offset;
dst->buffer_size = src->buffer_size;
if (src->buffer) {
struct threaded_resource *tres = threaded_resource(src->buffer);
util_range_add(&tres->b, &tres->valid_buffer_range,
src->buffer_offset,
src->buffer_offset + src->buffer_size);
}
}
}
}
struct tc_vertex_buffers {
ubyte start, count;
bool unbind;
struct pipe_vertex_buffer slot[0]; /* more will be allocated if needed */
};
static void
tc_call_set_vertex_buffers(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_vertex_buffers *p = (struct tc_vertex_buffers *)payload;
unsigned count = p->count;
if (p->unbind) {
pipe->set_vertex_buffers(pipe, p->start, count, NULL);
return;
}
for (unsigned i = 0; i < count; i++)
tc_assert(!p->slot[i].is_user_buffer);
pipe->set_vertex_buffers(pipe, p->start, count, p->slot);
for (unsigned i = 0; i < count; i++)
pipe_resource_reference(&p->slot[i].buffer.resource, NULL);
}
static void
tc_set_vertex_buffers(struct pipe_context *_pipe,
unsigned start, unsigned count,
const struct pipe_vertex_buffer *buffers)
{
struct threaded_context *tc = threaded_context(_pipe);
if (!count)
return;
if (buffers) {
struct tc_vertex_buffers *p =
tc_add_slot_based_call(tc, TC_CALL_set_vertex_buffers, tc_vertex_buffers, count);
p->start = start;
p->count = count;
p->unbind = false;
for (unsigned i = 0; i < count; i++) {
struct pipe_vertex_buffer *dst = &p->slot[i];
const struct pipe_vertex_buffer *src = buffers + i;
tc_assert(!src->is_user_buffer);
dst->stride = src->stride;
dst->is_user_buffer = false;
tc_set_resource_reference(&dst->buffer.resource,
src->buffer.resource);
dst->buffer_offset = src->buffer_offset;
}
} else {
struct tc_vertex_buffers *p =
tc_add_slot_based_call(tc, TC_CALL_set_vertex_buffers, tc_vertex_buffers, 0);
p->start = start;
p->count = count;
p->unbind = true;
}
}
struct tc_stream_outputs {
unsigned count;
struct pipe_stream_output_target *targets[PIPE_MAX_SO_BUFFERS];
unsigned offsets[PIPE_MAX_SO_BUFFERS];
};
static void
tc_call_set_stream_output_targets(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_stream_outputs *p = (struct tc_stream_outputs *)payload;
unsigned count = p->count;
pipe->set_stream_output_targets(pipe, count, p->targets, p->offsets);
for (unsigned i = 0; i < count; i++)
pipe_so_target_reference(&p->targets[i], NULL);
}
static void
tc_set_stream_output_targets(struct pipe_context *_pipe,
unsigned count,
struct pipe_stream_output_target **tgs,
const unsigned *offsets)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_stream_outputs *p =
tc_add_struct_typed_call(tc, TC_CALL_set_stream_output_targets,
tc_stream_outputs);
for (unsigned i = 0; i < count; i++) {
p->targets[i] = NULL;
pipe_so_target_reference(&p->targets[i], tgs[i]);
}
p->count = count;
memcpy(p->offsets, offsets, count * sizeof(unsigned));
}
static void
tc_set_compute_resources(struct pipe_context *_pipe, unsigned start,
unsigned count, struct pipe_surface **resources)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->set_compute_resources(pipe, start, count, resources);
}
static void
tc_set_global_binding(struct pipe_context *_pipe, unsigned first,
unsigned count, struct pipe_resource **resources,
uint32_t **handles)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->set_global_binding(pipe, first, count, resources, handles);
}
/********************************************************************
* views
*/
static struct pipe_surface *
tc_create_surface(struct pipe_context *_pipe,
struct pipe_resource *resource,
const struct pipe_surface *surf_tmpl)
{
struct pipe_context *pipe = threaded_context(_pipe)->pipe;
struct pipe_surface *view =
pipe->create_surface(pipe, resource, surf_tmpl);
if (view)
view->context = _pipe;
return view;
}
static void
tc_surface_destroy(struct pipe_context *_pipe,
struct pipe_surface *surf)
{
struct pipe_context *pipe = threaded_context(_pipe)->pipe;
pipe->surface_destroy(pipe, surf);
}
static struct pipe_sampler_view *
tc_create_sampler_view(struct pipe_context *_pipe,
struct pipe_resource *resource,
const struct pipe_sampler_view *templ)
{
struct pipe_context *pipe = threaded_context(_pipe)->pipe;
struct pipe_sampler_view *view =
pipe->create_sampler_view(pipe, resource, templ);
if (view)
view->context = _pipe;
return view;
}
static void
tc_sampler_view_destroy(struct pipe_context *_pipe,
struct pipe_sampler_view *view)
{
struct pipe_context *pipe = threaded_context(_pipe)->pipe;
pipe->sampler_view_destroy(pipe, view);
}
static struct pipe_stream_output_target *
tc_create_stream_output_target(struct pipe_context *_pipe,
struct pipe_resource *res,
unsigned buffer_offset,
unsigned buffer_size)
{
struct pipe_context *pipe = threaded_context(_pipe)->pipe;
struct threaded_resource *tres = threaded_resource(res);
struct pipe_stream_output_target *view;
tc_sync(threaded_context(_pipe));
util_range_add(&tres->b, &tres->valid_buffer_range, buffer_offset,
buffer_offset + buffer_size);
view = pipe->create_stream_output_target(pipe, res, buffer_offset,
buffer_size);
if (view)
view->context = _pipe;
return view;
}
static void
tc_stream_output_target_destroy(struct pipe_context *_pipe,
struct pipe_stream_output_target *target)
{
struct pipe_context *pipe = threaded_context(_pipe)->pipe;
pipe->stream_output_target_destroy(pipe, target);
}
/********************************************************************
* bindless
*/
static uint64_t
tc_create_texture_handle(struct pipe_context *_pipe,
struct pipe_sampler_view *view,
const struct pipe_sampler_state *state)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
return pipe->create_texture_handle(pipe, view, state);
}
static void
tc_call_delete_texture_handle(struct pipe_context *pipe,
union tc_payload *payload)
{
pipe->delete_texture_handle(pipe, payload->handle);
}
static void
tc_delete_texture_handle(struct pipe_context *_pipe, uint64_t handle)
{
struct threaded_context *tc = threaded_context(_pipe);
union tc_payload *payload =
tc_add_small_call(tc, TC_CALL_delete_texture_handle);
payload->handle = handle;
}
struct tc_make_texture_handle_resident
{
uint64_t handle;
bool resident;
};
static void
tc_call_make_texture_handle_resident(struct pipe_context *pipe,
union tc_payload *payload)
{
struct tc_make_texture_handle_resident *p =
(struct tc_make_texture_handle_resident *)payload;
pipe->make_texture_handle_resident(pipe, p->handle, p->resident);
}
static void
tc_make_texture_handle_resident(struct pipe_context *_pipe, uint64_t handle,
bool resident)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_make_texture_handle_resident *p =
tc_add_struct_typed_call(tc, TC_CALL_make_texture_handle_resident,
tc_make_texture_handle_resident);
p->handle = handle;
p->resident = resident;
}
static uint64_t
tc_create_image_handle(struct pipe_context *_pipe,
const struct pipe_image_view *image)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
return pipe->create_image_handle(pipe, image);
}
static void
tc_call_delete_image_handle(struct pipe_context *pipe,
union tc_payload *payload)
{
pipe->delete_image_handle(pipe, payload->handle);
}
static void
tc_delete_image_handle(struct pipe_context *_pipe, uint64_t handle)
{
struct threaded_context *tc = threaded_context(_pipe);
union tc_payload *payload =
tc_add_small_call(tc, TC_CALL_delete_image_handle);
payload->handle = handle;
}
struct tc_make_image_handle_resident
{
uint64_t handle;
unsigned access;
bool resident;
};
static void
tc_call_make_image_handle_resident(struct pipe_context *pipe,
union tc_payload *payload)
{
struct tc_make_image_handle_resident *p =
(struct tc_make_image_handle_resident *)payload;
pipe->make_image_handle_resident(pipe, p->handle, p->access, p->resident);
}
static void
tc_make_image_handle_resident(struct pipe_context *_pipe, uint64_t handle,
unsigned access, bool resident)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_make_image_handle_resident *p =
tc_add_struct_typed_call(tc, TC_CALL_make_image_handle_resident,
tc_make_image_handle_resident);
p->handle = handle;
p->access = access;
p->resident = resident;
}
/********************************************************************
* transfer
*/
struct tc_replace_buffer_storage {
struct pipe_resource *dst;
struct pipe_resource *src;
tc_replace_buffer_storage_func func;
};
static void
tc_call_replace_buffer_storage(struct pipe_context *pipe,
union tc_payload *payload)
{
struct tc_replace_buffer_storage *p =
(struct tc_replace_buffer_storage *)payload;
p->func(pipe, p->dst, p->src);
pipe_resource_reference(&p->dst, NULL);
pipe_resource_reference(&p->src, NULL);
}
static bool
tc_invalidate_buffer(struct threaded_context *tc,
struct threaded_resource *tbuf)
{
/* We can't check if the buffer is idle, so we invalidate it
* unconditionally. */
struct pipe_screen *screen = tc->base.screen;
struct pipe_resource *new_buf;
/* Shared, pinned, and sparse buffers can't be reallocated. */
if (tbuf->is_shared ||
tbuf->is_user_ptr ||
tbuf->b.flags & PIPE_RESOURCE_FLAG_SPARSE)
return false;
/* Allocate a new one. */
new_buf = screen->resource_create(screen, &tbuf->b);
if (!new_buf)
return false;
/* Replace the "latest" pointer. */
if (tbuf->latest != &tbuf->b)
pipe_resource_reference(&tbuf->latest, NULL);
tbuf->latest = new_buf;
util_range_set_empty(&tbuf->valid_buffer_range);
/* The valid range should point to the original buffer. */
threaded_resource(new_buf)->base_valid_buffer_range =
&tbuf->valid_buffer_range;
/* Enqueue storage replacement of the original buffer. */
struct tc_replace_buffer_storage *p =
tc_add_struct_typed_call(tc, TC_CALL_replace_buffer_storage,
tc_replace_buffer_storage);
p->func = tc->replace_buffer_storage;
tc_set_resource_reference(&p->dst, &tbuf->b);
tc_set_resource_reference(&p->src, new_buf);
return true;
}
static unsigned
tc_improve_map_buffer_flags(struct threaded_context *tc,
struct threaded_resource *tres, unsigned usage,
unsigned offset, unsigned size)
{
/* Never invalidate inside the driver and never infer "unsynchronized". */
unsigned tc_flags = TC_TRANSFER_MAP_NO_INVALIDATE |
TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED;
/* Prevent a reentry. */
if (usage & tc_flags)
return usage;
/* Use the staging upload if it's preferred. */
if (usage & (PIPE_MAP_DISCARD_RANGE |
PIPE_MAP_DISCARD_WHOLE_RESOURCE) &&
!(usage & PIPE_MAP_PERSISTENT) &&
/* Try not to decrement the counter if it's not positive. Still racy,
* but it makes it harder to wrap the counter from INT_MIN to INT_MAX. */
tres->max_forced_staging_uploads > 0 &&
p_atomic_dec_return(&tres->max_forced_staging_uploads) >= 0) {
usage &= ~(PIPE_MAP_DISCARD_WHOLE_RESOURCE |
PIPE_MAP_UNSYNCHRONIZED);
return usage | tc_flags | PIPE_MAP_DISCARD_RANGE;
}
/* Sparse buffers can't be mapped directly and can't be reallocated
* (fully invalidated). That may just be a radeonsi limitation, but
* the threaded context must obey it with radeonsi.
*/
if (tres->b.flags & PIPE_RESOURCE_FLAG_SPARSE) {
/* We can use DISCARD_RANGE instead of full discard. This is the only
* fast path for sparse buffers that doesn't need thread synchronization.
*/
if (usage & PIPE_MAP_DISCARD_WHOLE_RESOURCE)
usage |= PIPE_MAP_DISCARD_RANGE;
/* Allow DISCARD_WHOLE_RESOURCE and infering UNSYNCHRONIZED in drivers.
* The threaded context doesn't do unsychronized mappings and invalida-
* tions of sparse buffers, therefore a correct driver behavior won't
* result in an incorrect behavior with the threaded context.
*/
return usage;
}
usage |= tc_flags;
/* Handle CPU reads trivially. */
if (usage & PIPE_MAP_READ) {
if (usage & PIPE_MAP_UNSYNCHRONIZED)
usage |= TC_TRANSFER_MAP_THREADED_UNSYNC; /* don't sync */
/* Drivers aren't allowed to do buffer invalidations. */
return usage & ~PIPE_MAP_DISCARD_WHOLE_RESOURCE;
}
/* See if the buffer range being mapped has never been initialized,
* in which case it can be mapped unsynchronized. */
if (!(usage & PIPE_MAP_UNSYNCHRONIZED) &&
!tres->is_shared &&
!util_ranges_intersect(&tres->valid_buffer_range, offset, offset + size))
usage |= PIPE_MAP_UNSYNCHRONIZED;
if (!(usage & PIPE_MAP_UNSYNCHRONIZED)) {
/* If discarding the entire range, discard the whole resource instead. */
if (usage & PIPE_MAP_DISCARD_RANGE &&
offset == 0 && size == tres->b.width0)
usage |= PIPE_MAP_DISCARD_WHOLE_RESOURCE;
/* Discard the whole resource if needed. */
if (usage & PIPE_MAP_DISCARD_WHOLE_RESOURCE) {
if (tc_invalidate_buffer(tc, tres))
usage |= PIPE_MAP_UNSYNCHRONIZED;
else
usage |= PIPE_MAP_DISCARD_RANGE; /* fallback */
}
}
/* We won't need this flag anymore. */
/* TODO: We might not need TC_TRANSFER_MAP_NO_INVALIDATE with this. */
usage &= ~PIPE_MAP_DISCARD_WHOLE_RESOURCE;
/* GL_AMD_pinned_memory and persistent mappings can't use staging
* buffers. */
if (usage & (PIPE_MAP_UNSYNCHRONIZED |
PIPE_MAP_PERSISTENT) ||
tres->is_user_ptr)
usage &= ~PIPE_MAP_DISCARD_RANGE;
/* Unsychronized buffer mappings don't have to synchronize the thread. */
if (usage & PIPE_MAP_UNSYNCHRONIZED) {
usage &= ~PIPE_MAP_DISCARD_RANGE;
usage |= TC_TRANSFER_MAP_THREADED_UNSYNC; /* notify the driver */
}
return usage;
}
static void *
tc_transfer_map(struct pipe_context *_pipe,
struct pipe_resource *resource, unsigned level,
unsigned usage, const struct pipe_box *box,
struct pipe_transfer **transfer)
{
struct threaded_context *tc = threaded_context(_pipe);
struct threaded_resource *tres = threaded_resource(resource);
struct pipe_context *pipe = tc->pipe;
if (resource->target == PIPE_BUFFER) {
usage = tc_improve_map_buffer_flags(tc, tres, usage, box->x, box->width);
/* Do a staging transfer within the threaded context. The driver should
* only get resource_copy_region.
*/
if (usage & PIPE_MAP_DISCARD_RANGE) {
struct threaded_transfer *ttrans = slab_alloc(&tc->pool_transfers);
uint8_t *map;
ttrans->staging = NULL;
u_upload_alloc(tc->base.stream_uploader, 0,
box->width + (box->x % tc->map_buffer_alignment),
64, &ttrans->offset, &ttrans->staging, (void**)&map);
if (!map) {
slab_free(&tc->pool_transfers, ttrans);
return NULL;
}
tc_set_resource_reference(&ttrans->b.resource, resource);
ttrans->b.level = 0;
ttrans->b.usage = usage;
ttrans->b.box = *box;
ttrans->b.stride = 0;
ttrans->b.layer_stride = 0;
*transfer = &ttrans->b;
return map + (box->x % tc->map_buffer_alignment);
}
}
/* Unsychronized buffer mappings don't have to synchronize the thread. */
if (!(usage & TC_TRANSFER_MAP_THREADED_UNSYNC))
tc_sync_msg(tc, resource->target != PIPE_BUFFER ? " texture" :
usage & PIPE_MAP_DISCARD_RANGE ? " discard_range" :
usage & PIPE_MAP_READ ? " read" : " ??");
tc->bytes_mapped_estimate += box->width;
return pipe->transfer_map(pipe, tres->latest ? tres->latest : resource,
level, usage, box, transfer);
}
struct tc_transfer_flush_region {
struct pipe_transfer *transfer;
struct pipe_box box;
};
static void
tc_call_transfer_flush_region(struct pipe_context *pipe,
union tc_payload *payload)
{
struct tc_transfer_flush_region *p =
(struct tc_transfer_flush_region *)payload;
pipe->transfer_flush_region(pipe, p->transfer, &p->box);
}
struct tc_resource_copy_region {
struct pipe_resource *dst;
unsigned dst_level;
unsigned dstx, dsty, dstz;
struct pipe_resource *src;
unsigned src_level;
struct pipe_box src_box;
};
static void
tc_resource_copy_region(struct pipe_context *_pipe,
struct pipe_resource *dst, unsigned dst_level,
unsigned dstx, unsigned dsty, unsigned dstz,
struct pipe_resource *src, unsigned src_level,
const struct pipe_box *src_box);
static void
tc_buffer_do_flush_region(struct threaded_context *tc,
struct threaded_transfer *ttrans,
const struct pipe_box *box)
{
struct threaded_resource *tres = threaded_resource(ttrans->b.resource);
if (ttrans->staging) {
struct pipe_box src_box;
u_box_1d(ttrans->offset + ttrans->b.box.x % tc->map_buffer_alignment +
(box->x - ttrans->b.box.x),
box->width, &src_box);
/* Copy the staging buffer into the original one. */
tc_resource_copy_region(&tc->base, ttrans->b.resource, 0, box->x, 0, 0,
ttrans->staging, 0, &src_box);
}
util_range_add(&tres->b, tres->base_valid_buffer_range,
box->x, box->x + box->width);
}
static void
tc_transfer_flush_region(struct pipe_context *_pipe,
struct pipe_transfer *transfer,
const struct pipe_box *rel_box)
{
struct threaded_context *tc = threaded_context(_pipe);
struct threaded_transfer *ttrans = threaded_transfer(transfer);
struct threaded_resource *tres = threaded_resource(transfer->resource);
unsigned required_usage = PIPE_MAP_WRITE |
PIPE_MAP_FLUSH_EXPLICIT;
if (tres->b.target == PIPE_BUFFER) {
if ((transfer->usage & required_usage) == required_usage) {
struct pipe_box box;
u_box_1d(transfer->box.x + rel_box->x, rel_box->width, &box);
tc_buffer_do_flush_region(tc, ttrans, &box);
}
/* Staging transfers don't send the call to the driver. */
if (ttrans->staging)
return;
}
struct tc_transfer_flush_region *p =
tc_add_struct_typed_call(tc, TC_CALL_transfer_flush_region,
tc_transfer_flush_region);
p->transfer = transfer;
p->box = *rel_box;
}
static void
tc_call_transfer_unmap(struct pipe_context *pipe, union tc_payload *payload)
{
pipe->transfer_unmap(pipe, payload->transfer);
}
static void
tc_flush(struct pipe_context *_pipe, struct pipe_fence_handle **fence,
unsigned flags);
static void
tc_transfer_unmap(struct pipe_context *_pipe, struct pipe_transfer *transfer)
{
struct threaded_context *tc = threaded_context(_pipe);
struct threaded_transfer *ttrans = threaded_transfer(transfer);
struct threaded_resource *tres = threaded_resource(transfer->resource);
/* PIPE_MAP_THREAD_SAFE is only valid with UNSYNCHRONIZED. It can be
* called from any thread and bypasses all multithreaded queues.
*/
if (transfer->usage & PIPE_MAP_THREAD_SAFE) {
assert(transfer->usage & PIPE_MAP_UNSYNCHRONIZED);
assert(!(transfer->usage & (PIPE_MAP_FLUSH_EXPLICIT |
PIPE_MAP_DISCARD_RANGE)));
struct pipe_context *pipe = tc->pipe;
pipe->transfer_unmap(pipe, transfer);
util_range_add(&tres->b, tres->base_valid_buffer_range,
transfer->box.x, transfer->box.x + transfer->box.width);
return;
}
if (tres->b.target == PIPE_BUFFER) {
if (transfer->usage & PIPE_MAP_WRITE &&
!(transfer->usage & PIPE_MAP_FLUSH_EXPLICIT))
tc_buffer_do_flush_region(tc, ttrans, &transfer->box);
/* Staging transfers don't send the call to the driver. */
if (ttrans->staging) {
pipe_resource_reference(&ttrans->staging, NULL);
pipe_resource_reference(&ttrans->b.resource, NULL);
slab_free(&tc->pool_transfers, ttrans);
return;
}
}
tc_add_small_call(tc, TC_CALL_transfer_unmap)->transfer = transfer;
/* tc_transfer_map directly maps the buffers, but tc_transfer_unmap
* defers the unmap operation to the batch execution.
* bytes_mapped_estimate is an estimation of the map/unmap bytes delta
* and if it goes over an optional limit the current batch is flushed,
* to reclaim some RAM. */
if (!ttrans->staging && tc->bytes_mapped_limit &&
tc->bytes_mapped_estimate > tc->bytes_mapped_limit) {
tc_flush(_pipe, NULL, PIPE_FLUSH_ASYNC);
}
}
struct tc_buffer_subdata {
struct pipe_resource *resource;
unsigned usage, offset, size;
char slot[0]; /* more will be allocated if needed */
};
static void
tc_call_buffer_subdata(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_buffer_subdata *p = (struct tc_buffer_subdata *)payload;
pipe->buffer_subdata(pipe, p->resource, p->usage, p->offset, p->size,
p->slot);
pipe_resource_reference(&p->resource, NULL);
}
static void
tc_buffer_subdata(struct pipe_context *_pipe,
struct pipe_resource *resource,
unsigned usage, unsigned offset,
unsigned size, const void *data)
{
struct threaded_context *tc = threaded_context(_pipe);
struct threaded_resource *tres = threaded_resource(resource);
if (!size)
return;
usage |= PIPE_MAP_WRITE;
/* PIPE_MAP_DIRECTLY supresses implicit DISCARD_RANGE. */
if (!(usage & PIPE_MAP_DIRECTLY))
usage |= PIPE_MAP_DISCARD_RANGE;
usage = tc_improve_map_buffer_flags(tc, tres, usage, offset, size);
/* Unsychronized and big transfers should use transfer_map. Also handle
* full invalidations, because drivers aren't allowed to do them.
*/
if (usage & (PIPE_MAP_UNSYNCHRONIZED |
PIPE_MAP_DISCARD_WHOLE_RESOURCE) ||
size > TC_MAX_SUBDATA_BYTES) {
struct pipe_transfer *transfer;
struct pipe_box box;
uint8_t *map = NULL;
u_box_1d(offset, size, &box);
map = tc_transfer_map(_pipe, resource, 0, usage, &box, &transfer);
if (map) {
memcpy(map, data, size);
tc_transfer_unmap(_pipe, transfer);
}
return;
}
util_range_add(&tres->b, &tres->valid_buffer_range, offset, offset + size);
/* The upload is small. Enqueue it. */
struct tc_buffer_subdata *p =
tc_add_slot_based_call(tc, TC_CALL_buffer_subdata, tc_buffer_subdata, size);
tc_set_resource_reference(&p->resource, resource);
p->usage = usage;
p->offset = offset;
p->size = size;
memcpy(p->slot, data, size);
}
struct tc_texture_subdata {
struct pipe_resource *resource;
unsigned level, usage, stride, layer_stride;
struct pipe_box box;
char slot[0]; /* more will be allocated if needed */
};
static void
tc_call_texture_subdata(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_texture_subdata *p = (struct tc_texture_subdata *)payload;
pipe->texture_subdata(pipe, p->resource, p->level, p->usage, &p->box,
p->slot, p->stride, p->layer_stride);
pipe_resource_reference(&p->resource, NULL);
}
static void
tc_texture_subdata(struct pipe_context *_pipe,
struct pipe_resource *resource,
unsigned level, unsigned usage,
const struct pipe_box *box,
const void *data, unsigned stride,
unsigned layer_stride)
{
struct threaded_context *tc = threaded_context(_pipe);
unsigned size;
assert(box->height >= 1);
assert(box->depth >= 1);
size = (box->depth - 1) * layer_stride +
(box->height - 1) * stride +
box->width * util_format_get_blocksize(resource->format);
if (!size)
return;
/* Small uploads can be enqueued, big uploads must sync. */
if (size <= TC_MAX_SUBDATA_BYTES) {
struct tc_texture_subdata *p =
tc_add_slot_based_call(tc, TC_CALL_texture_subdata, tc_texture_subdata, size);
tc_set_resource_reference(&p->resource, resource);
p->level = level;
p->usage = usage;
p->box = *box;
p->stride = stride;
p->layer_stride = layer_stride;
memcpy(p->slot, data, size);
} else {
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->texture_subdata(pipe, resource, level, usage, box, data,
stride, layer_stride);
}
}
/********************************************************************
* miscellaneous
*/
#define TC_FUNC_SYNC_RET0(ret_type, func) \
static ret_type \
tc_##func(struct pipe_context *_pipe) \
{ \
struct threaded_context *tc = threaded_context(_pipe); \
struct pipe_context *pipe = tc->pipe; \
tc_sync(tc); \
return pipe->func(pipe); \
}
TC_FUNC_SYNC_RET0(enum pipe_reset_status, get_device_reset_status)
TC_FUNC_SYNC_RET0(uint64_t, get_timestamp)
static void
tc_get_sample_position(struct pipe_context *_pipe,
unsigned sample_count, unsigned sample_index,
float *out_value)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->get_sample_position(pipe, sample_count, sample_index,
out_value);
}
static void
tc_set_device_reset_callback(struct pipe_context *_pipe,
const struct pipe_device_reset_callback *cb)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->set_device_reset_callback(pipe, cb);
}
struct tc_string_marker {
int len;
char slot[0]; /* more will be allocated if needed */
};
static void
tc_call_emit_string_marker(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_string_marker *p = (struct tc_string_marker *)payload;
pipe->emit_string_marker(pipe, p->slot, p->len);
}
static void
tc_emit_string_marker(struct pipe_context *_pipe,
const char *string, int len)
{
struct threaded_context *tc = threaded_context(_pipe);
if (len <= TC_MAX_STRING_MARKER_BYTES) {
struct tc_string_marker *p =
tc_add_slot_based_call(tc, TC_CALL_emit_string_marker, tc_string_marker, len);
memcpy(p->slot, string, len);
p->len = len;
} else {
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->emit_string_marker(pipe, string, len);
}
}
static void
tc_dump_debug_state(struct pipe_context *_pipe, FILE *stream,
unsigned flags)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->dump_debug_state(pipe, stream, flags);
}
static void
tc_set_debug_callback(struct pipe_context *_pipe,
const struct pipe_debug_callback *cb)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
/* Drop all synchronous debug callbacks. Drivers are expected to be OK
* with this. shader-db will use an environment variable to disable
* the threaded context.
*/
if (cb && cb->debug_message && !cb->async)
return;
tc_sync(tc);
pipe->set_debug_callback(pipe, cb);
}
static void
tc_set_log_context(struct pipe_context *_pipe, struct u_log_context *log)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->set_log_context(pipe, log);
}
static void
tc_create_fence_fd(struct pipe_context *_pipe,
struct pipe_fence_handle **fence, int fd,
enum pipe_fd_type type)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->create_fence_fd(pipe, fence, fd, type);
}
static void
tc_call_fence_server_sync(struct pipe_context *pipe, union tc_payload *payload)
{
pipe->fence_server_sync(pipe, payload->fence);
pipe->screen->fence_reference(pipe->screen, &payload->fence, NULL);
}
static void
tc_fence_server_sync(struct pipe_context *_pipe,
struct pipe_fence_handle *fence)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_screen *screen = tc->pipe->screen;
union tc_payload *payload = tc_add_small_call(tc, TC_CALL_fence_server_sync);
payload->fence = NULL;
screen->fence_reference(screen, &payload->fence, fence);
}
static void
tc_call_fence_server_signal(struct pipe_context *pipe, union tc_payload *payload)
{
pipe->fence_server_signal(pipe, payload->fence);
pipe->screen->fence_reference(pipe->screen, &payload->fence, NULL);
}
static void
tc_fence_server_signal(struct pipe_context *_pipe,
struct pipe_fence_handle *fence)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_screen *screen = tc->pipe->screen;
union tc_payload *payload = tc_add_small_call(tc, TC_CALL_fence_server_signal);
payload->fence = NULL;
screen->fence_reference(screen, &payload->fence, fence);
}
static struct pipe_video_codec *
tc_create_video_codec(UNUSED struct pipe_context *_pipe,
UNUSED const struct pipe_video_codec *templ)
{
unreachable("Threaded context should not be enabled for video APIs");
return NULL;
}
static struct pipe_video_buffer *
tc_create_video_buffer(UNUSED struct pipe_context *_pipe,
UNUSED const struct pipe_video_buffer *templ)
{
unreachable("Threaded context should not be enabled for video APIs");
return NULL;
}
struct tc_context_param {
enum pipe_context_param param;
unsigned value;
};
static void
tc_call_set_context_param(struct pipe_context *pipe,
union tc_payload *payload)
{
struct tc_context_param *p = (struct tc_context_param*)payload;
if (pipe->set_context_param)
pipe->set_context_param(pipe, p->param, p->value);
}
static void
tc_set_context_param(struct pipe_context *_pipe,
enum pipe_context_param param,
unsigned value)
{
struct threaded_context *tc = threaded_context(_pipe);
if (param == PIPE_CONTEXT_PARAM_PIN_THREADS_TO_L3_CACHE) {
/* Pin the gallium thread as requested. */
util_pin_thread_to_L3(tc->queue.threads[0], value,
util_cpu_caps.cores_per_L3);
/* Execute this immediately (without enqueuing).
* It's required to be thread-safe.
*/
struct pipe_context *pipe = tc->pipe;
if (pipe->set_context_param)
pipe->set_context_param(pipe, param, value);
return;
}
if (tc->pipe->set_context_param) {
struct tc_context_param *payload =
tc_add_struct_typed_call(tc, TC_CALL_set_context_param,
tc_context_param);
payload->param = param;
payload->value = value;
}
}
/********************************************************************
* draw, launch, clear, blit, copy, flush
*/
struct tc_flush_payload {
struct threaded_context *tc;
struct pipe_fence_handle *fence;
unsigned flags;
};
static void
tc_flush_queries(struct threaded_context *tc)
{
struct threaded_query *tq, *tmp;
LIST_FOR_EACH_ENTRY_SAFE(tq, tmp, &tc->unflushed_queries, head_unflushed) {
list_del(&tq->head_unflushed);
/* Memory release semantics: due to a possible race with
* tc_get_query_result, we must ensure that the linked list changes
* are visible before setting tq->flushed.
*/
p_atomic_set(&tq->flushed, true);
}
}
static void
tc_call_flush(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_flush_payload *p = (struct tc_flush_payload *)payload;
struct pipe_screen *screen = pipe->screen;
pipe->flush(pipe, p->fence ? &p->fence : NULL, p->flags);
screen->fence_reference(screen, &p->fence, NULL);
if (!(p->flags & PIPE_FLUSH_DEFERRED))
tc_flush_queries(p->tc);
}
static void
tc_flush(struct pipe_context *_pipe, struct pipe_fence_handle **fence,
unsigned flags)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
struct pipe_screen *screen = pipe->screen;
bool async = flags & PIPE_FLUSH_DEFERRED;
if (flags & PIPE_FLUSH_ASYNC) {
struct tc_batch *last = &tc->batch_slots[tc->last];
/* Prefer to do the flush in the driver thread, but avoid the inter-thread
* communication overhead if the driver thread is currently idle and the
* caller is going to wait for the fence immediately anyway.
*/
if (!(util_queue_fence_is_signalled(&last->fence) &&
(flags & PIPE_FLUSH_HINT_FINISH)))
async = true;
}
if (async && tc->create_fence) {
if (fence) {
struct tc_batch *next = &tc->batch_slots[tc->next];
if (!next->token) {
next->token = malloc(sizeof(*next->token));
if (!next->token)
goto out_of_memory;
pipe_reference_init(&next->token->ref, 1);
next->token->tc = tc;
}
screen->fence_reference(screen, fence, tc->create_fence(pipe, next->token));
if (!*fence)
goto out_of_memory;
}
struct tc_flush_payload *p =
tc_add_struct_typed_call(tc, TC_CALL_flush, tc_flush_payload);
p->tc = tc;
p->fence = fence ? *fence : NULL;
p->flags = flags | TC_FLUSH_ASYNC;
if (!(flags & PIPE_FLUSH_DEFERRED))
tc_batch_flush(tc);
return;
}
out_of_memory:
tc_sync_msg(tc, flags & PIPE_FLUSH_END_OF_FRAME ? "end of frame" :
flags & PIPE_FLUSH_DEFERRED ? "deferred fence" : "normal");
if (!(flags & PIPE_FLUSH_DEFERRED))
tc_flush_queries(tc);
pipe->flush(pipe, fence, flags);
}
/* This is actually variable-sized, because indirect isn't allocated if it's
* not needed. */
struct tc_full_draw_info {
struct pipe_draw_info draw;
struct pipe_draw_indirect_info indirect;
};
static void
tc_call_draw_vbo(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_full_draw_info *info = (struct tc_full_draw_info*)payload;
pipe->draw_vbo(pipe, &info->draw);
pipe_so_target_reference(&info->draw.count_from_stream_output, NULL);
if (info->draw.index_size)
pipe_resource_reference(&info->draw.index.resource, NULL);
if (info->draw.indirect) {
pipe_resource_reference(&info->indirect.buffer, NULL);
pipe_resource_reference(&info->indirect.indirect_draw_count, NULL);
}
}
static struct tc_full_draw_info *
tc_add_draw_vbo(struct pipe_context *_pipe, bool indirect)
{
return (struct tc_full_draw_info*)
tc_add_sized_call(threaded_context(_pipe), TC_CALL_draw_vbo,
indirect ? sizeof(struct tc_full_draw_info) :
sizeof(struct pipe_draw_info));
}
static void
tc_draw_vbo(struct pipe_context *_pipe, const struct pipe_draw_info *info)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_draw_indirect_info *indirect = info->indirect;
unsigned index_size = info->index_size;
bool has_user_indices = info->has_user_indices;
if (index_size && has_user_indices) {
unsigned size = info->count * index_size;
struct pipe_resource *buffer = NULL;
unsigned offset;
tc_assert(!indirect);
/* This must be done before adding draw_vbo, because it could generate
* e.g. transfer_unmap and flush partially-uninitialized draw_vbo
* to the driver if it was done afterwards.
*/
u_upload_data(tc->base.stream_uploader, 0, size, 4,
(uint8_t*)info->index.user + info->start * index_size,
&offset, &buffer);
if (unlikely(!buffer))
return;
struct tc_full_draw_info *p = tc_add_draw_vbo(_pipe, false);
p->draw.count_from_stream_output = NULL;
pipe_so_target_reference(&p->draw.count_from_stream_output,
info->count_from_stream_output);
memcpy(&p->draw, info, sizeof(*info));
p->draw.has_user_indices = false;
p->draw.index.resource = buffer;
p->draw.start = offset >> util_logbase2(index_size);
} else {
/* Non-indexed call or indexed with a real index buffer. */
struct tc_full_draw_info *p = tc_add_draw_vbo(_pipe, indirect != NULL);
p->draw.count_from_stream_output = NULL;
pipe_so_target_reference(&p->draw.count_from_stream_output,
info->count_from_stream_output);
if (index_size) {
tc_set_resource_reference(&p->draw.index.resource,
info->index.resource);
}
memcpy(&p->draw, info, sizeof(*info));
if (indirect) {
tc_set_resource_reference(&p->draw.indirect->buffer, indirect->buffer);
tc_set_resource_reference(&p->indirect.indirect_draw_count,
indirect->indirect_draw_count);
memcpy(&p->indirect, indirect, sizeof(*indirect));
p->draw.indirect = &p->indirect;
}
}
}
static void
tc_call_launch_grid(struct pipe_context *pipe, union tc_payload *payload)
{
struct pipe_grid_info *p = (struct pipe_grid_info *)payload;
pipe->launch_grid(pipe, p);
pipe_resource_reference(&p->indirect, NULL);
}
static void
tc_launch_grid(struct pipe_context *_pipe,
const struct pipe_grid_info *info)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_grid_info *p = tc_add_struct_typed_call(tc, TC_CALL_launch_grid,
pipe_grid_info);
assert(info->input == NULL);
tc_set_resource_reference(&p->indirect, info->indirect);
memcpy(p, info, sizeof(*info));
}
static void
tc_call_resource_copy_region(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_resource_copy_region *p = (struct tc_resource_copy_region *)payload;
pipe->resource_copy_region(pipe, p->dst, p->dst_level, p->dstx, p->dsty,
p->dstz, p->src, p->src_level, &p->src_box);
pipe_resource_reference(&p->dst, NULL);
pipe_resource_reference(&p->src, NULL);
}
static void
tc_resource_copy_region(struct pipe_context *_pipe,
struct pipe_resource *dst, unsigned dst_level,
unsigned dstx, unsigned dsty, unsigned dstz,
struct pipe_resource *src, unsigned src_level,
const struct pipe_box *src_box)
{
struct threaded_context *tc = threaded_context(_pipe);
struct threaded_resource *tdst = threaded_resource(dst);
struct tc_resource_copy_region *p =
tc_add_struct_typed_call(tc, TC_CALL_resource_copy_region,
tc_resource_copy_region);
tc_set_resource_reference(&p->dst, dst);
p->dst_level = dst_level;
p->dstx = dstx;
p->dsty = dsty;
p->dstz = dstz;
tc_set_resource_reference(&p->src, src);
p->src_level = src_level;
p->src_box = *src_box;
if (dst->target == PIPE_BUFFER)
util_range_add(&tdst->b, &tdst->valid_buffer_range,
dstx, dstx + src_box->width);
}
static void
tc_call_blit(struct pipe_context *pipe, union tc_payload *payload)
{
struct pipe_blit_info *blit = (struct pipe_blit_info*)payload;
pipe->blit(pipe, blit);
pipe_resource_reference(&blit->dst.resource, NULL);
pipe_resource_reference(&blit->src.resource, NULL);
}
static void
tc_blit(struct pipe_context *_pipe, const struct pipe_blit_info *info)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_blit_info *blit =
tc_add_struct_typed_call(tc, TC_CALL_blit, pipe_blit_info);
tc_set_resource_reference(&blit->dst.resource, info->dst.resource);
tc_set_resource_reference(&blit->src.resource, info->src.resource);
memcpy(blit, info, sizeof(*info));
}
struct tc_generate_mipmap {
struct pipe_resource *res;
enum pipe_format format;
unsigned base_level;
unsigned last_level;
unsigned first_layer;
unsigned last_layer;
};
static void
tc_call_generate_mipmap(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_generate_mipmap *p = (struct tc_generate_mipmap *)payload;
ASSERTED bool result = pipe->generate_mipmap(pipe, p->res, p->format,
p->base_level,
p->last_level,
p->first_layer,
p->last_layer);
assert(result);
pipe_resource_reference(&p->res, NULL);
}
static bool
tc_generate_mipmap(struct pipe_context *_pipe,
struct pipe_resource *res,
enum pipe_format format,
unsigned base_level,
unsigned last_level,
unsigned first_layer,
unsigned last_layer)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
struct pipe_screen *screen = pipe->screen;
unsigned bind = PIPE_BIND_SAMPLER_VIEW;
if (util_format_is_depth_or_stencil(format))
bind = PIPE_BIND_DEPTH_STENCIL;
else
bind = PIPE_BIND_RENDER_TARGET;
if (!screen->is_format_supported(screen, format, res->target,
res->nr_samples, res->nr_storage_samples,
bind))
return false;
struct tc_generate_mipmap *p =
tc_add_struct_typed_call(tc, TC_CALL_generate_mipmap, tc_generate_mipmap);
tc_set_resource_reference(&p->res, res);
p->format = format;
p->base_level = base_level;
p->last_level = last_level;
p->first_layer = first_layer;
p->last_layer = last_layer;
return true;
}
static void
tc_call_flush_resource(struct pipe_context *pipe, union tc_payload *payload)
{
pipe->flush_resource(pipe, payload->resource);
pipe_resource_reference(&payload->resource, NULL);
}
static void
tc_flush_resource(struct pipe_context *_pipe,
struct pipe_resource *resource)
{
struct threaded_context *tc = threaded_context(_pipe);
union tc_payload *payload = tc_add_small_call(tc, TC_CALL_flush_resource);
tc_set_resource_reference(&payload->resource, resource);
}
static void
tc_call_invalidate_resource(struct pipe_context *pipe, union tc_payload *payload)
{
pipe->invalidate_resource(pipe, payload->resource);
pipe_resource_reference(&payload->resource, NULL);
}
static void
tc_invalidate_resource(struct pipe_context *_pipe,
struct pipe_resource *resource)
{
struct threaded_context *tc = threaded_context(_pipe);
if (resource->target == PIPE_BUFFER) {
tc_invalidate_buffer(tc, threaded_resource(resource));
return;
}
union tc_payload *payload = tc_add_small_call(tc, TC_CALL_invalidate_resource);
tc_set_resource_reference(&payload->resource, resource);
}
struct tc_clear {
unsigned buffers;
struct pipe_scissor_state scissor_state;
union pipe_color_union color;
double depth;
unsigned stencil;
bool scissor_state_set;
};
static void
tc_call_clear(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_clear *p = (struct tc_clear *)payload;
pipe->clear(pipe, p->buffers, p->scissor_state_set ? &p->scissor_state : NULL, &p->color, p->depth, p->stencil);
}
static void
tc_clear(struct pipe_context *_pipe, unsigned buffers, const struct pipe_scissor_state *scissor_state,
const union pipe_color_union *color, double depth,
unsigned stencil)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_clear *p = tc_add_struct_typed_call(tc, TC_CALL_clear, tc_clear);
p->buffers = buffers;
if (scissor_state)
p->scissor_state = *scissor_state;
p->scissor_state_set = !!scissor_state;
p->color = *color;
p->depth = depth;
p->stencil = stencil;
}
static void
tc_clear_render_target(struct pipe_context *_pipe,
struct pipe_surface *dst,
const union pipe_color_union *color,
unsigned dstx, unsigned dsty,
unsigned width, unsigned height,
bool render_condition_enabled)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->clear_render_target(pipe, dst, color, dstx, dsty, width, height,
render_condition_enabled);
}
static void
tc_clear_depth_stencil(struct pipe_context *_pipe,
struct pipe_surface *dst, unsigned clear_flags,
double depth, unsigned stencil, unsigned dstx,
unsigned dsty, unsigned width, unsigned height,
bool render_condition_enabled)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
tc_sync(tc);
pipe->clear_depth_stencil(pipe, dst, clear_flags, depth, stencil,
dstx, dsty, width, height,
render_condition_enabled);
}
struct tc_clear_buffer {
struct pipe_resource *res;
unsigned offset;
unsigned size;
char clear_value[16];
int clear_value_size;
};
static void
tc_call_clear_buffer(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_clear_buffer *p = (struct tc_clear_buffer *)payload;
pipe->clear_buffer(pipe, p->res, p->offset, p->size, p->clear_value,
p->clear_value_size);
pipe_resource_reference(&p->res, NULL);
}
static void
tc_clear_buffer(struct pipe_context *_pipe, struct pipe_resource *res,
unsigned offset, unsigned size,
const void *clear_value, int clear_value_size)
{
struct threaded_context *tc = threaded_context(_pipe);
struct threaded_resource *tres = threaded_resource(res);
struct tc_clear_buffer *p =
tc_add_struct_typed_call(tc, TC_CALL_clear_buffer, tc_clear_buffer);
tc_set_resource_reference(&p->res, res);
p->offset = offset;
p->size = size;
memcpy(p->clear_value, clear_value, clear_value_size);
p->clear_value_size = clear_value_size;
util_range_add(&tres->b, &tres->valid_buffer_range, offset, offset + size);
}
struct tc_clear_texture {
struct pipe_resource *res;
unsigned level;
struct pipe_box box;
char data[16];
};
static void
tc_call_clear_texture(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_clear_texture *p = (struct tc_clear_texture *)payload;
pipe->clear_texture(pipe, p->res, p->level, &p->box, p->data);
pipe_resource_reference(&p->res, NULL);
}
static void
tc_clear_texture(struct pipe_context *_pipe, struct pipe_resource *res,
unsigned level, const struct pipe_box *box, const void *data)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_clear_texture *p =
tc_add_struct_typed_call(tc, TC_CALL_clear_texture, tc_clear_texture);
tc_set_resource_reference(&p->res, res);
p->level = level;
p->box = *box;
memcpy(p->data, data,
util_format_get_blocksize(res->format));
}
struct tc_resource_commit {
struct pipe_resource *res;
unsigned level;
struct pipe_box box;
bool commit;
};
static void
tc_call_resource_commit(struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_resource_commit *p = (struct tc_resource_commit *)payload;
pipe->resource_commit(pipe, p->res, p->level, &p->box, p->commit);
pipe_resource_reference(&p->res, NULL);
}
static bool
tc_resource_commit(struct pipe_context *_pipe, struct pipe_resource *res,
unsigned level, struct pipe_box *box, bool commit)
{
struct threaded_context *tc = threaded_context(_pipe);
struct tc_resource_commit *p =
tc_add_struct_typed_call(tc, TC_CALL_resource_commit, tc_resource_commit);
tc_set_resource_reference(&p->res, res);
p->level = level;
p->box = *box;
p->commit = commit;
return true; /* we don't care about the return value for this call */
}
/********************************************************************
* callback
*/
struct tc_callback_payload {
void (*fn)(void *data);
void *data;
};
static void
tc_call_callback(UNUSED struct pipe_context *pipe, union tc_payload *payload)
{
struct tc_callback_payload *p = (struct tc_callback_payload *)payload;
p->fn(p->data);
}
static void
tc_callback(struct pipe_context *_pipe, void (*fn)(void *), void *data,
bool asap)
{
struct threaded_context *tc = threaded_context(_pipe);
if (asap && tc_is_sync(tc)) {
fn(data);
return;
}
struct tc_callback_payload *p =
tc_add_struct_typed_call(tc, TC_CALL_callback, tc_callback_payload);
p->fn = fn;
p->data = data;
}
/********************************************************************
* create & destroy
*/
static void
tc_destroy(struct pipe_context *_pipe)
{
struct threaded_context *tc = threaded_context(_pipe);
struct pipe_context *pipe = tc->pipe;
if (tc->base.const_uploader &&
tc->base.stream_uploader != tc->base.const_uploader)
u_upload_destroy(tc->base.const_uploader);
if (tc->base.stream_uploader)
u_upload_destroy(tc->base.stream_uploader);
tc_sync(tc);
if (util_queue_is_initialized(&tc->queue)) {
util_queue_destroy(&tc->queue);
for (unsigned i = 0; i < TC_MAX_BATCHES; i++) {
util_queue_fence_destroy(&tc->batch_slots[i].fence);
assert(!tc->batch_slots[i].token);
}
}
slab_destroy_child(&tc->pool_transfers);
assert(tc->batch_slots[tc->next].num_total_call_slots == 0);
pipe->destroy(pipe);
os_free_aligned(tc);
}
static const tc_execute execute_func[TC_NUM_CALLS] = {
#define CALL(name) tc_call_##name,
#include "u_threaded_context_calls.h"
#undef CALL
};
/**
* Wrap an existing pipe_context into a threaded_context.
*
* \param pipe pipe_context to wrap
* \param parent_transfer_pool parent slab pool set up for creating pipe_-
* transfer objects; the driver should have one
* in pipe_screen.
* \param replace_buffer callback for replacing a pipe_resource's storage
* with another pipe_resource's storage.
* \param out if successful, the threaded_context will be returned here in
* addition to the return value if "out" != NULL
*/
struct pipe_context *
threaded_context_create(struct pipe_context *pipe,
struct slab_parent_pool *parent_transfer_pool,
tc_replace_buffer_storage_func replace_buffer,
tc_create_fence_func create_fence,
struct threaded_context **out)
{
struct threaded_context *tc;
STATIC_ASSERT(sizeof(union tc_payload) <= 8);
STATIC_ASSERT(sizeof(struct tc_call) <= 16);
if (!pipe)
return NULL;
util_cpu_detect();
if (!debug_get_bool_option("GALLIUM_THREAD", util_cpu_caps.nr_cpus > 1))
return pipe;
tc = os_malloc_aligned(sizeof(struct threaded_context), 16);
if (!tc) {
pipe->destroy(pipe);
return NULL;
}
memset(tc, 0, sizeof(*tc));
assert((uintptr_t)tc % 16 == 0);
/* These should be static asserts, but they don't work with MSVC */
assert(offsetof(struct threaded_context, batch_slots) % 16 == 0);
assert(offsetof(struct threaded_context, batch_slots[0].call) % 16 == 0);
assert(offsetof(struct threaded_context, batch_slots[0].call[1]) % 16 == 0);
assert(offsetof(struct threaded_context, batch_slots[1].call) % 16 == 0);
/* The driver context isn't wrapped, so set its "priv" to NULL. */
pipe->priv = NULL;
tc->pipe = pipe;
tc->replace_buffer_storage = replace_buffer;
tc->create_fence = create_fence;
tc->map_buffer_alignment =
pipe->screen->get_param(pipe->screen, PIPE_CAP_MIN_MAP_BUFFER_ALIGNMENT);
tc->base.priv = pipe; /* priv points to the wrapped driver context */
tc->base.screen = pipe->screen;
tc->base.destroy = tc_destroy;
tc->base.callback = tc_callback;
tc->base.stream_uploader = u_upload_clone(&tc->base, pipe->stream_uploader);
if (pipe->stream_uploader == pipe->const_uploader)
tc->base.const_uploader = tc->base.stream_uploader;
else
tc->base.const_uploader = u_upload_clone(&tc->base, pipe->const_uploader);
if (!tc->base.stream_uploader || !tc->base.const_uploader)
goto fail;
/* The queue size is the number of batches "waiting". Batches are removed
* from the queue before being executed, so keep one tc_batch slot for that
* execution. Also, keep one unused slot for an unflushed batch.
*/
if (!util_queue_init(&tc->queue, "gdrv", TC_MAX_BATCHES - 2, 1, 0))
goto fail;
for (unsigned i = 0; i < TC_MAX_BATCHES; i++) {
tc->batch_slots[i].sentinel = TC_SENTINEL;
tc->batch_slots[i].pipe = pipe;
util_queue_fence_init(&tc->batch_slots[i].fence);
}
list_inithead(&tc->unflushed_queries);
slab_create_child(&tc->pool_transfers, parent_transfer_pool);
tc->base.set_context_param = tc_set_context_param; /* always set this */
#define CTX_INIT(_member) \
tc->base._member = tc->pipe->_member ? tc_##_member : NULL
CTX_INIT(flush);
CTX_INIT(draw_vbo);
CTX_INIT(launch_grid);
CTX_INIT(resource_copy_region);
CTX_INIT(blit);
CTX_INIT(clear);
CTX_INIT(clear_render_target);
CTX_INIT(clear_depth_stencil);
CTX_INIT(clear_buffer);
CTX_INIT(clear_texture);
CTX_INIT(flush_resource);
CTX_INIT(generate_mipmap);
CTX_INIT(render_condition);
CTX_INIT(create_query);
CTX_INIT(create_batch_query);
CTX_INIT(destroy_query);
CTX_INIT(begin_query);
CTX_INIT(end_query);
CTX_INIT(get_query_result);
CTX_INIT(get_query_result_resource);
CTX_INIT(set_active_query_state);
CTX_INIT(create_blend_state);
CTX_INIT(bind_blend_state);
CTX_INIT(delete_blend_state);
CTX_INIT(create_sampler_state);
CTX_INIT(bind_sampler_states);
CTX_INIT(delete_sampler_state);
CTX_INIT(create_rasterizer_state);
CTX_INIT(bind_rasterizer_state);
CTX_INIT(delete_rasterizer_state);
CTX_INIT(create_depth_stencil_alpha_state);
CTX_INIT(bind_depth_stencil_alpha_state);
CTX_INIT(delete_depth_stencil_alpha_state);
CTX_INIT(create_fs_state);
CTX_INIT(bind_fs_state);
CTX_INIT(delete_fs_state);
CTX_INIT(create_vs_state);
CTX_INIT(bind_vs_state);
CTX_INIT(delete_vs_state);
CTX_INIT(create_gs_state);
CTX_INIT(bind_gs_state);
CTX_INIT(delete_gs_state);
CTX_INIT(create_tcs_state);
CTX_INIT(bind_tcs_state);
CTX_INIT(delete_tcs_state);
CTX_INIT(create_tes_state);
CTX_INIT(bind_tes_state);
CTX_INIT(delete_tes_state);
CTX_INIT(create_compute_state);
CTX_INIT(bind_compute_state);
CTX_INIT(delete_compute_state);
CTX_INIT(create_vertex_elements_state);
CTX_INIT(bind_vertex_elements_state);
CTX_INIT(delete_vertex_elements_state);
CTX_INIT(set_blend_color);
CTX_INIT(set_stencil_ref);
CTX_INIT(set_sample_mask);
CTX_INIT(set_min_samples);
CTX_INIT(set_clip_state);
CTX_INIT(set_constant_buffer);
CTX_INIT(set_framebuffer_state);
CTX_INIT(set_polygon_stipple);
CTX_INIT(set_scissor_states);
CTX_INIT(set_viewport_states);
CTX_INIT(set_window_rectangles);
CTX_INIT(set_sampler_views);
CTX_INIT(set_tess_state);
CTX_INIT(set_shader_buffers);
CTX_INIT(set_shader_images);
CTX_INIT(set_vertex_buffers);
CTX_INIT(create_stream_output_target);
CTX_INIT(stream_output_target_destroy);
CTX_INIT(set_stream_output_targets);
CTX_INIT(create_sampler_view);
CTX_INIT(sampler_view_destroy);
CTX_INIT(create_surface);
CTX_INIT(surface_destroy);
CTX_INIT(transfer_map);
CTX_INIT(transfer_flush_region);
CTX_INIT(transfer_unmap);
CTX_INIT(buffer_subdata);
CTX_INIT(texture_subdata);
CTX_INIT(texture_barrier);
CTX_INIT(memory_barrier);
CTX_INIT(resource_commit);
CTX_INIT(create_video_codec);
CTX_INIT(create_video_buffer);
CTX_INIT(set_compute_resources);
CTX_INIT(set_global_binding);
CTX_INIT(get_sample_position);
CTX_INIT(invalidate_resource);
CTX_INIT(get_device_reset_status);
CTX_INIT(set_device_reset_callback);
CTX_INIT(dump_debug_state);
CTX_INIT(set_log_context);
CTX_INIT(emit_string_marker);
CTX_INIT(set_debug_callback);
CTX_INIT(create_fence_fd);
CTX_INIT(fence_server_sync);
CTX_INIT(fence_server_signal);
CTX_INIT(get_timestamp);
CTX_INIT(create_texture_handle);
CTX_INIT(delete_texture_handle);
CTX_INIT(make_texture_handle_resident);
CTX_INIT(create_image_handle);
CTX_INIT(delete_image_handle);
CTX_INIT(make_image_handle_resident);
#undef CTX_INIT
if (out)
*out = tc;
return &tc->base;
fail:
tc_destroy(&tc->base);
return NULL;
}