blob: 747d1a0cdcce5e929984a34ce794f406e718ce1b [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include "vtn_private.h"
#include "nir/nir_vla.h"
#include "nir/nir_control_flow.h"
#include "nir/nir_constant_expressions.h"
#include "nir/nir_deref.h"
#include "spirv_info.h"
#include "util/format/u_format.h"
#include "util/u_math.h"
#include <stdio.h>
void
vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
size_t spirv_offset, const char *message)
{
if (b->options->debug.func) {
b->options->debug.func(b->options->debug.private_data,
level, spirv_offset, message);
}
#ifndef NDEBUG
if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
fprintf(stderr, "%s\n", message);
#endif
}
void
vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
size_t spirv_offset, const char *fmt, ...)
{
va_list args;
char *msg;
va_start(args, fmt);
msg = ralloc_vasprintf(NULL, fmt, args);
va_end(args);
vtn_log(b, level, spirv_offset, msg);
ralloc_free(msg);
}
static void
vtn_log_err(struct vtn_builder *b,
enum nir_spirv_debug_level level, const char *prefix,
const char *file, unsigned line,
const char *fmt, va_list args)
{
char *msg;
msg = ralloc_strdup(NULL, prefix);
#ifndef NDEBUG
ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
#endif
ralloc_asprintf_append(&msg, " ");
ralloc_vasprintf_append(&msg, fmt, args);
ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
b->spirv_offset);
if (b->file) {
ralloc_asprintf_append(&msg,
"\n in SPIR-V source file %s, line %d, col %d",
b->file, b->line, b->col);
}
vtn_log(b, level, b->spirv_offset, msg);
ralloc_free(msg);
}
static void
vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
{
static int idx = 0;
char filename[1024];
int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
path, prefix, idx++);
if (len < 0 || len >= sizeof(filename))
return;
FILE *f = fopen(filename, "w");
if (f == NULL)
return;
fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
fclose(f);
vtn_info("SPIR-V shader dumped to %s", filename);
}
void
_vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
file, line, fmt, args);
va_end(args);
}
void
_vtn_err(struct vtn_builder *b, const char *file, unsigned line,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
file, line, fmt, args);
va_end(args);
}
void
_vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
file, line, fmt, args);
va_end(args);
const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
if (dump_path)
vtn_dump_shader(b, dump_path, "fail");
longjmp(b->fail_jump, 1);
}
static struct vtn_ssa_value *
vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
{
struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
val->type = glsl_get_bare_type(type);
if (glsl_type_is_vector_or_scalar(type)) {
unsigned num_components = glsl_get_vector_elements(val->type);
unsigned bit_size = glsl_get_bit_size(val->type);
val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
} else {
unsigned elems = glsl_get_length(val->type);
val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
if (glsl_type_is_array_or_matrix(type)) {
const struct glsl_type *elem_type = glsl_get_array_element(type);
for (unsigned i = 0; i < elems; i++)
val->elems[i] = vtn_undef_ssa_value(b, elem_type);
} else {
vtn_assert(glsl_type_is_struct_or_ifc(type));
for (unsigned i = 0; i < elems; i++) {
const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
val->elems[i] = vtn_undef_ssa_value(b, elem_type);
}
}
}
return val;
}
static struct vtn_ssa_value *
vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
const struct glsl_type *type)
{
struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
if (entry)
return entry->data;
struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
val->type = glsl_get_bare_type(type);
if (glsl_type_is_vector_or_scalar(type)) {
unsigned num_components = glsl_get_vector_elements(val->type);
unsigned bit_size = glsl_get_bit_size(type);
nir_load_const_instr *load =
nir_load_const_instr_create(b->shader, num_components, bit_size);
memcpy(load->value, constant->values,
sizeof(nir_const_value) * num_components);
nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
val->def = &load->def;
} else {
unsigned elems = glsl_get_length(val->type);
val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
if (glsl_type_is_array_or_matrix(type)) {
const struct glsl_type *elem_type = glsl_get_array_element(type);
for (unsigned i = 0; i < elems; i++) {
val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
elem_type);
}
} else {
vtn_assert(glsl_type_is_struct_or_ifc(type));
for (unsigned i = 0; i < elems; i++) {
const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
elem_type);
}
}
}
return val;
}
struct vtn_ssa_value *
vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
{
struct vtn_value *val = vtn_untyped_value(b, value_id);
switch (val->value_type) {
case vtn_value_type_undef:
return vtn_undef_ssa_value(b, val->type->type);
case vtn_value_type_constant:
return vtn_const_ssa_value(b, val->constant, val->type->type);
case vtn_value_type_ssa:
return val->ssa;
case vtn_value_type_pointer:
vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
struct vtn_ssa_value *ssa =
vtn_create_ssa_value(b, val->pointer->ptr_type->type);
ssa->def = vtn_pointer_to_ssa(b, val->pointer);
return ssa;
default:
vtn_fail("Invalid type for an SSA value");
}
}
struct vtn_value *
vtn_push_ssa_value(struct vtn_builder *b, uint32_t value_id,
struct vtn_ssa_value *ssa)
{
struct vtn_type *type = vtn_get_value_type(b, value_id);
/* See vtn_create_ssa_value */
vtn_fail_if(ssa->type != glsl_get_bare_type(type->type),
"Type mismatch for SPIR-V SSA value");
struct vtn_value *val;
if (type->base_type == vtn_base_type_pointer) {
val = vtn_push_pointer(b, value_id, vtn_pointer_from_ssa(b, ssa->def, type));
} else {
/* Don't trip the value_type_ssa check in vtn_push_value */
val = vtn_push_value(b, value_id, vtn_value_type_invalid);
val->value_type = vtn_value_type_ssa;
val->ssa = ssa;
}
return val;
}
nir_ssa_def *
vtn_get_nir_ssa(struct vtn_builder *b, uint32_t value_id)
{
struct vtn_ssa_value *ssa = vtn_ssa_value(b, value_id);
vtn_fail_if(!glsl_type_is_vector_or_scalar(ssa->type),
"Expected a vector or scalar type");
return ssa->def;
}
struct vtn_value *
vtn_push_nir_ssa(struct vtn_builder *b, uint32_t value_id, nir_ssa_def *def)
{
/* Types for all SPIR-V SSA values are set as part of a pre-pass so the
* type will be valid by the time we get here.
*/
struct vtn_type *type = vtn_get_value_type(b, value_id);
vtn_fail_if(def->num_components != glsl_get_vector_elements(type->type) ||
def->bit_size != glsl_get_bit_size(type->type),
"Mismatch between NIR and SPIR-V type.");
struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
ssa->def = def;
return vtn_push_ssa_value(b, value_id, ssa);
}
static nir_deref_instr *
vtn_get_image(struct vtn_builder *b, uint32_t value_id)
{
struct vtn_type *type = vtn_get_value_type(b, value_id);
vtn_assert(type->base_type == vtn_base_type_image);
return nir_build_deref_cast(&b->nb, vtn_get_nir_ssa(b, value_id),
nir_var_uniform, type->glsl_image, 0);
}
static void
vtn_push_image(struct vtn_builder *b, uint32_t value_id,
nir_deref_instr *deref)
{
struct vtn_type *type = vtn_get_value_type(b, value_id);
vtn_assert(type->base_type == vtn_base_type_image);
vtn_push_nir_ssa(b, value_id, &deref->dest.ssa);
}
static nir_deref_instr *
vtn_get_sampler(struct vtn_builder *b, uint32_t value_id)
{
struct vtn_type *type = vtn_get_value_type(b, value_id);
vtn_assert(type->base_type == vtn_base_type_sampler);
return nir_build_deref_cast(&b->nb, vtn_get_nir_ssa(b, value_id),
nir_var_uniform, glsl_bare_sampler_type(), 0);
}
nir_ssa_def *
vtn_sampled_image_to_nir_ssa(struct vtn_builder *b,
struct vtn_sampled_image si)
{
return nir_vec2(&b->nb, &si.image->dest.ssa, &si.sampler->dest.ssa);
}
static void
vtn_push_sampled_image(struct vtn_builder *b, uint32_t value_id,
struct vtn_sampled_image si)
{
struct vtn_type *type = vtn_get_value_type(b, value_id);
vtn_assert(type->base_type == vtn_base_type_sampled_image);
vtn_push_nir_ssa(b, value_id, vtn_sampled_image_to_nir_ssa(b, si));
}
static struct vtn_sampled_image
vtn_get_sampled_image(struct vtn_builder *b, uint32_t value_id)
{
struct vtn_type *type = vtn_get_value_type(b, value_id);
vtn_assert(type->base_type == vtn_base_type_sampled_image);
nir_ssa_def *si_vec2 = vtn_get_nir_ssa(b, value_id);
struct vtn_sampled_image si = { NULL, };
si.image = nir_build_deref_cast(&b->nb, nir_channel(&b->nb, si_vec2, 0),
nir_var_uniform,
type->image->glsl_image, 0);
si.sampler = nir_build_deref_cast(&b->nb, nir_channel(&b->nb, si_vec2, 1),
nir_var_uniform,
glsl_bare_sampler_type(), 0);
return si;
}
static char *
vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
unsigned word_count, unsigned *words_used)
{
char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
if (words_used) {
/* Ammount of space taken by the string (including the null) */
unsigned len = strlen(dup) + 1;
*words_used = DIV_ROUND_UP(len, sizeof(*words));
}
return dup;
}
const uint32_t *
vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
const uint32_t *end, vtn_instruction_handler handler)
{
b->file = NULL;
b->line = -1;
b->col = -1;
const uint32_t *w = start;
while (w < end) {
SpvOp opcode = w[0] & SpvOpCodeMask;
unsigned count = w[0] >> SpvWordCountShift;
vtn_assert(count >= 1 && w + count <= end);
b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
switch (opcode) {
case SpvOpNop:
break; /* Do nothing */
case SpvOpLine:
b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
b->line = w[2];
b->col = w[3];
break;
case SpvOpNoLine:
b->file = NULL;
b->line = -1;
b->col = -1;
break;
default:
if (!handler(b, opcode, w, count))
return w;
break;
}
w += count;
}
b->spirv_offset = 0;
b->file = NULL;
b->line = -1;
b->col = -1;
assert(w == end);
return w;
}
static bool
vtn_handle_non_semantic_instruction(struct vtn_builder *b, SpvOp ext_opcode,
const uint32_t *w, unsigned count)
{
/* Do nothing. */
return true;
}
static void
vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
const char *ext = (const char *)&w[2];
switch (opcode) {
case SpvOpExtInstImport: {
struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
if (strcmp(ext, "GLSL.std.450") == 0) {
val->ext_handler = vtn_handle_glsl450_instruction;
} else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
&& (b->options && b->options->caps.amd_gcn_shader)) {
val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
} else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
&& (b->options && b->options->caps.amd_shader_ballot)) {
val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
} else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
&& (b->options && b->options->caps.amd_trinary_minmax)) {
val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
} else if ((strcmp(ext, "SPV_AMD_shader_explicit_vertex_parameter") == 0)
&& (b->options && b->options->caps.amd_shader_explicit_vertex_parameter)) {
val->ext_handler = vtn_handle_amd_shader_explicit_vertex_parameter_instruction;
} else if (strcmp(ext, "OpenCL.std") == 0) {
val->ext_handler = vtn_handle_opencl_instruction;
} else if (strstr(ext, "NonSemantic.") == ext) {
val->ext_handler = vtn_handle_non_semantic_instruction;
} else {
vtn_fail("Unsupported extension: %s", ext);
}
break;
}
case SpvOpExtInst: {
struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
bool handled = val->ext_handler(b, w[4], w, count);
vtn_assert(handled);
break;
}
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
}
static void
_foreach_decoration_helper(struct vtn_builder *b,
struct vtn_value *base_value,
int parent_member,
struct vtn_value *value,
vtn_decoration_foreach_cb cb, void *data)
{
for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
int member;
if (dec->scope == VTN_DEC_DECORATION) {
member = parent_member;
} else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
vtn_fail_if(value->value_type != vtn_value_type_type ||
value->type->base_type != vtn_base_type_struct,
"OpMemberDecorate and OpGroupMemberDecorate are only "
"allowed on OpTypeStruct");
/* This means we haven't recursed yet */
assert(value == base_value);
member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
vtn_fail_if(member >= base_value->type->length,
"OpMemberDecorate specifies member %d but the "
"OpTypeStruct has only %u members",
member, base_value->type->length);
} else {
/* Not a decoration */
assert(dec->scope == VTN_DEC_EXECUTION_MODE);
continue;
}
if (dec->group) {
assert(dec->group->value_type == vtn_value_type_decoration_group);
_foreach_decoration_helper(b, base_value, member, dec->group,
cb, data);
} else {
cb(b, base_value, member, dec, data);
}
}
}
/** Iterates (recursively if needed) over all of the decorations on a value
*
* This function iterates over all of the decorations applied to a given
* value. If it encounters a decoration group, it recurses into the group
* and iterates over all of those decorations as well.
*/
void
vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
vtn_decoration_foreach_cb cb, void *data)
{
_foreach_decoration_helper(b, value, -1, value, cb, data);
}
void
vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
vtn_execution_mode_foreach_cb cb, void *data)
{
for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
if (dec->scope != VTN_DEC_EXECUTION_MODE)
continue;
assert(dec->group == NULL);
cb(b, value, dec, data);
}
}
void
vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
const uint32_t *w_end = w + count;
const uint32_t target = w[1];
w += 2;
switch (opcode) {
case SpvOpDecorationGroup:
vtn_push_value(b, target, vtn_value_type_decoration_group);
break;
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpMemberDecorate:
case SpvOpDecorateString:
case SpvOpMemberDecorateString:
case SpvOpExecutionMode:
case SpvOpExecutionModeId: {
struct vtn_value *val = vtn_untyped_value(b, target);
struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
switch (opcode) {
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpDecorateString:
dec->scope = VTN_DEC_DECORATION;
break;
case SpvOpMemberDecorate:
case SpvOpMemberDecorateString:
dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
"Member argument of OpMemberDecorate too large");
break;
case SpvOpExecutionMode:
case SpvOpExecutionModeId:
dec->scope = VTN_DEC_EXECUTION_MODE;
break;
default:
unreachable("Invalid decoration opcode");
}
dec->decoration = *(w++);
dec->operands = w;
/* Link into the list */
dec->next = val->decoration;
val->decoration = dec;
break;
}
case SpvOpGroupMemberDecorate:
case SpvOpGroupDecorate: {
struct vtn_value *group =
vtn_value(b, target, vtn_value_type_decoration_group);
for (; w < w_end; w++) {
struct vtn_value *val = vtn_untyped_value(b, *w);
struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
dec->group = group;
if (opcode == SpvOpGroupDecorate) {
dec->scope = VTN_DEC_DECORATION;
} else {
dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
vtn_fail_if(dec->scope < 0, /* Check for overflow */
"Member argument of OpGroupMemberDecorate too large");
}
/* Link into the list */
dec->next = val->decoration;
val->decoration = dec;
}
break;
}
default:
unreachable("Unhandled opcode");
}
}
struct member_decoration_ctx {
unsigned num_fields;
struct glsl_struct_field *fields;
struct vtn_type *type;
};
/**
* Returns true if the given type contains a struct decorated Block or
* BufferBlock
*/
bool
vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
{
switch (type->base_type) {
case vtn_base_type_array:
return vtn_type_contains_block(b, type->array_element);
case vtn_base_type_struct:
if (type->block || type->buffer_block)
return true;
for (unsigned i = 0; i < type->length; i++) {
if (vtn_type_contains_block(b, type->members[i]))
return true;
}
return false;
default:
return false;
}
}
/** Returns true if two types are "compatible", i.e. you can do an OpLoad,
* OpStore, or OpCopyMemory between them without breaking anything.
* Technically, the SPIR-V rules require the exact same type ID but this lets
* us internally be a bit looser.
*/
bool
vtn_types_compatible(struct vtn_builder *b,
struct vtn_type *t1, struct vtn_type *t2)
{
if (t1->id == t2->id)
return true;
if (t1->base_type != t2->base_type)
return false;
switch (t1->base_type) {
case vtn_base_type_void:
case vtn_base_type_scalar:
case vtn_base_type_vector:
case vtn_base_type_matrix:
case vtn_base_type_image:
case vtn_base_type_sampler:
case vtn_base_type_sampled_image:
return t1->type == t2->type;
case vtn_base_type_array:
return t1->length == t2->length &&
vtn_types_compatible(b, t1->array_element, t2->array_element);
case vtn_base_type_pointer:
return vtn_types_compatible(b, t1->deref, t2->deref);
case vtn_base_type_struct:
if (t1->length != t2->length)
return false;
for (unsigned i = 0; i < t1->length; i++) {
if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
return false;
}
return true;
case vtn_base_type_function:
/* This case shouldn't get hit since you can't copy around function
* types. Just require them to be identical.
*/
return false;
}
vtn_fail("Invalid base type");
}
struct vtn_type *
vtn_type_without_array(struct vtn_type *type)
{
while (type->base_type == vtn_base_type_array)
type = type->array_element;
return type;
}
/* does a shallow copy of a vtn_type */
static struct vtn_type *
vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
{
struct vtn_type *dest = ralloc(b, struct vtn_type);
*dest = *src;
switch (src->base_type) {
case vtn_base_type_void:
case vtn_base_type_scalar:
case vtn_base_type_vector:
case vtn_base_type_matrix:
case vtn_base_type_array:
case vtn_base_type_pointer:
case vtn_base_type_image:
case vtn_base_type_sampler:
case vtn_base_type_sampled_image:
/* Nothing more to do */
break;
case vtn_base_type_struct:
dest->members = ralloc_array(b, struct vtn_type *, src->length);
memcpy(dest->members, src->members,
src->length * sizeof(src->members[0]));
dest->offsets = ralloc_array(b, unsigned, src->length);
memcpy(dest->offsets, src->offsets,
src->length * sizeof(src->offsets[0]));
break;
case vtn_base_type_function:
dest->params = ralloc_array(b, struct vtn_type *, src->length);
memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
break;
}
return dest;
}
static const struct glsl_type *
wrap_type_in_array(const struct glsl_type *type,
const struct glsl_type *array_type)
{
if (!glsl_type_is_array(array_type))
return type;
const struct glsl_type *elem_type =
wrap_type_in_array(type, glsl_get_array_element(array_type));
return glsl_array_type(elem_type, glsl_get_length(array_type),
glsl_get_explicit_stride(array_type));
}
static bool
vtn_type_needs_explicit_layout(struct vtn_builder *b, enum vtn_variable_mode mode)
{
/* For OpenCL we never want to strip the info from the types, and it makes
* type comparisons easier in later stages.
*/
if (b->options->environment == NIR_SPIRV_OPENCL)
return true;
switch (mode) {
case vtn_variable_mode_input:
case vtn_variable_mode_output:
/* Layout decorations kept because we need offsets for XFB arrays of
* blocks.
*/
return b->shader->info.has_transform_feedback_varyings;
case vtn_variable_mode_ssbo:
case vtn_variable_mode_phys_ssbo:
case vtn_variable_mode_ubo:
return true;
default:
return false;
}
}
const struct glsl_type *
vtn_type_get_nir_type(struct vtn_builder *b, struct vtn_type *type,
enum vtn_variable_mode mode)
{
if (mode == vtn_variable_mode_atomic_counter) {
vtn_fail_if(glsl_without_array(type->type) != glsl_uint_type(),
"Variables in the AtomicCounter storage class should be "
"(possibly arrays of arrays of) uint.");
return wrap_type_in_array(glsl_atomic_uint_type(), type->type);
}
if (mode == vtn_variable_mode_uniform) {
switch (type->base_type) {
case vtn_base_type_array: {
const struct glsl_type *elem_type =
vtn_type_get_nir_type(b, type->array_element, mode);
return glsl_array_type(elem_type, type->length,
glsl_get_explicit_stride(type->type));
}
case vtn_base_type_struct: {
bool need_new_struct = false;
const uint32_t num_fields = type->length;
NIR_VLA(struct glsl_struct_field, fields, num_fields);
for (unsigned i = 0; i < num_fields; i++) {
fields[i] = *glsl_get_struct_field_data(type->type, i);
const struct glsl_type *field_nir_type =
vtn_type_get_nir_type(b, type->members[i], mode);
if (fields[i].type != field_nir_type) {
fields[i].type = field_nir_type;
need_new_struct = true;
}
}
if (need_new_struct) {
if (glsl_type_is_interface(type->type)) {
return glsl_interface_type(fields, num_fields,
/* packing */ 0, false,
glsl_get_type_name(type->type));
} else {
return glsl_struct_type(fields, num_fields,
glsl_get_type_name(type->type),
glsl_struct_type_is_packed(type->type));
}
} else {
/* No changes, just pass it on */
return type->type;
}
}
case vtn_base_type_image:
return type->glsl_image;
case vtn_base_type_sampler:
return glsl_bare_sampler_type();
case vtn_base_type_sampled_image:
return type->image->glsl_image;
default:
return type->type;
}
}
/* Layout decorations are allowed but ignored in certain conditions,
* to allow SPIR-V generators perform type deduplication. Discard
* unnecessary ones when passing to NIR.
*/
if (!vtn_type_needs_explicit_layout(b, mode))
return glsl_get_bare_type(type->type);
return type->type;
}
static struct vtn_type *
mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
{
type->members[member] = vtn_type_copy(b, type->members[member]);
type = type->members[member];
/* We may have an array of matrices.... Oh, joy! */
while (glsl_type_is_array(type->type)) {
type->array_element = vtn_type_copy(b, type->array_element);
type = type->array_element;
}
vtn_assert(glsl_type_is_matrix(type->type));
return type;
}
static void
vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
int member, enum gl_access_qualifier access)
{
type->members[member] = vtn_type_copy(b, type->members[member]);
type = type->members[member];
type->access |= access;
}
static void
array_stride_decoration_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_ctx)
{
struct vtn_type *type = val->type;
if (dec->decoration == SpvDecorationArrayStride) {
if (vtn_type_contains_block(b, type)) {
vtn_warn("The ArrayStride decoration cannot be applied to an array "
"type which contains a structure type decorated Block "
"or BufferBlock");
/* Ignore the decoration */
} else {
vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
type->stride = dec->operands[0];
}
}
}
static void
struct_member_decoration_cb(struct vtn_builder *b,
UNUSED struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_ctx)
{
struct member_decoration_ctx *ctx = void_ctx;
if (member < 0)
return;
assert(member < ctx->num_fields);
switch (dec->decoration) {
case SpvDecorationRelaxedPrecision:
case SpvDecorationUniform:
case SpvDecorationUniformId:
break; /* FIXME: Do nothing with this for now. */
case SpvDecorationNonWritable:
vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
break;
case SpvDecorationNonReadable:
vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
break;
case SpvDecorationVolatile:
vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
break;
case SpvDecorationCoherent:
vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
break;
case SpvDecorationNoPerspective:
ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
break;
case SpvDecorationFlat:
ctx->fields[member].interpolation = INTERP_MODE_FLAT;
break;
case SpvDecorationExplicitInterpAMD:
ctx->fields[member].interpolation = INTERP_MODE_EXPLICIT;
break;
case SpvDecorationCentroid:
ctx->fields[member].centroid = true;
break;
case SpvDecorationSample:
ctx->fields[member].sample = true;
break;
case SpvDecorationStream:
/* This is handled later by var_decoration_cb in vtn_variables.c */
break;
case SpvDecorationLocation:
ctx->fields[member].location = dec->operands[0];
break;
case SpvDecorationComponent:
break; /* FIXME: What should we do with these? */
case SpvDecorationBuiltIn:
ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
ctx->type->members[member]->is_builtin = true;
ctx->type->members[member]->builtin = dec->operands[0];
ctx->type->builtin_block = true;
break;
case SpvDecorationOffset:
ctx->type->offsets[member] = dec->operands[0];
ctx->fields[member].offset = dec->operands[0];
break;
case SpvDecorationMatrixStride:
/* Handled as a second pass */
break;
case SpvDecorationColMajor:
break; /* Nothing to do here. Column-major is the default. */
case SpvDecorationRowMajor:
mutable_matrix_member(b, ctx->type, member)->row_major = true;
break;
case SpvDecorationPatch:
break;
case SpvDecorationSpecId:
case SpvDecorationBlock:
case SpvDecorationBufferBlock:
case SpvDecorationArrayStride:
case SpvDecorationGLSLShared:
case SpvDecorationGLSLPacked:
case SpvDecorationInvariant:
case SpvDecorationRestrict:
case SpvDecorationAliased:
case SpvDecorationConstant:
case SpvDecorationIndex:
case SpvDecorationBinding:
case SpvDecorationDescriptorSet:
case SpvDecorationLinkageAttributes:
case SpvDecorationNoContraction:
case SpvDecorationInputAttachmentIndex:
vtn_warn("Decoration not allowed on struct members: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationXfbBuffer:
case SpvDecorationXfbStride:
/* This is handled later by var_decoration_cb in vtn_variables.c */
break;
case SpvDecorationCPacked:
if (b->shader->info.stage != MESA_SHADER_KERNEL)
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
else
ctx->type->packed = true;
break;
case SpvDecorationSaturatedConversion:
case SpvDecorationFuncParamAttr:
case SpvDecorationFPRoundingMode:
case SpvDecorationFPFastMathMode:
case SpvDecorationAlignment:
if (b->shader->info.stage != MESA_SHADER_KERNEL) {
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
}
break;
case SpvDecorationUserSemantic:
case SpvDecorationUserTypeGOOGLE:
/* User semantic decorations can safely be ignored by the driver. */
break;
default:
vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
}
}
/** Chases the array type all the way down to the tail and rewrites the
* glsl_types to be based off the tail's glsl_type.
*/
static void
vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
{
if (type->base_type != vtn_base_type_array)
return;
vtn_array_type_rewrite_glsl_type(type->array_element);
type->type = glsl_array_type(type->array_element->type,
type->length, type->stride);
}
/* Matrix strides are handled as a separate pass because we need to know
* whether the matrix is row-major or not first.
*/
static void
struct_member_matrix_stride_cb(struct vtn_builder *b,
UNUSED struct vtn_value *val, int member,
const struct vtn_decoration *dec,
void *void_ctx)
{
if (dec->decoration != SpvDecorationMatrixStride)
return;
vtn_fail_if(member < 0,
"The MatrixStride decoration is only allowed on members "
"of OpTypeStruct");
vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
struct member_decoration_ctx *ctx = void_ctx;
struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
if (mat_type->row_major) {
mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
mat_type->stride = mat_type->array_element->stride;
mat_type->array_element->stride = dec->operands[0];
mat_type->type = glsl_explicit_matrix_type(mat_type->type,
dec->operands[0], true);
mat_type->array_element->type = glsl_get_column_type(mat_type->type);
} else {
vtn_assert(mat_type->array_element->stride > 0);
mat_type->stride = dec->operands[0];
mat_type->type = glsl_explicit_matrix_type(mat_type->type,
dec->operands[0], false);
}
/* Now that we've replaced the glsl_type with a properly strided matrix
* type, rewrite the member type so that it's an array of the proper kind
* of glsl_type.
*/
vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
ctx->fields[member].type = ctx->type->members[member]->type;
}
static void
struct_block_decoration_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *ctx)
{
if (member != -1)
return;
struct vtn_type *type = val->type;
if (dec->decoration == SpvDecorationBlock)
type->block = true;
else if (dec->decoration == SpvDecorationBufferBlock)
type->buffer_block = true;
}
static void
type_decoration_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec, UNUSED void *ctx)
{
struct vtn_type *type = val->type;
if (member != -1) {
/* This should have been handled by OpTypeStruct */
assert(val->type->base_type == vtn_base_type_struct);
assert(member >= 0 && member < val->type->length);
return;
}
switch (dec->decoration) {
case SpvDecorationArrayStride:
vtn_assert(type->base_type == vtn_base_type_array ||
type->base_type == vtn_base_type_pointer);
break;
case SpvDecorationBlock:
vtn_assert(type->base_type == vtn_base_type_struct);
vtn_assert(type->block);
break;
case SpvDecorationBufferBlock:
vtn_assert(type->base_type == vtn_base_type_struct);
vtn_assert(type->buffer_block);
break;
case SpvDecorationGLSLShared:
case SpvDecorationGLSLPacked:
/* Ignore these, since we get explicit offsets anyways */
break;
case SpvDecorationRowMajor:
case SpvDecorationColMajor:
case SpvDecorationMatrixStride:
case SpvDecorationBuiltIn:
case SpvDecorationNoPerspective:
case SpvDecorationFlat:
case SpvDecorationPatch:
case SpvDecorationCentroid:
case SpvDecorationSample:
case SpvDecorationExplicitInterpAMD:
case SpvDecorationVolatile:
case SpvDecorationCoherent:
case SpvDecorationNonWritable:
case SpvDecorationNonReadable:
case SpvDecorationUniform:
case SpvDecorationUniformId:
case SpvDecorationLocation:
case SpvDecorationComponent:
case SpvDecorationOffset:
case SpvDecorationXfbBuffer:
case SpvDecorationXfbStride:
case SpvDecorationUserSemantic:
vtn_warn("Decoration only allowed for struct members: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationStream:
/* We don't need to do anything here, as stream is filled up when
* aplying the decoration to a variable, just check that if it is not a
* struct member, it should be a struct.
*/
vtn_assert(type->base_type == vtn_base_type_struct);
break;
case SpvDecorationRelaxedPrecision:
case SpvDecorationSpecId:
case SpvDecorationInvariant:
case SpvDecorationRestrict:
case SpvDecorationAliased:
case SpvDecorationConstant:
case SpvDecorationIndex:
case SpvDecorationBinding:
case SpvDecorationDescriptorSet:
case SpvDecorationLinkageAttributes:
case SpvDecorationNoContraction:
case SpvDecorationInputAttachmentIndex:
vtn_warn("Decoration not allowed on types: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationCPacked:
if (b->shader->info.stage != MESA_SHADER_KERNEL)
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
else
type->packed = true;
break;
case SpvDecorationSaturatedConversion:
case SpvDecorationFuncParamAttr:
case SpvDecorationFPRoundingMode:
case SpvDecorationFPFastMathMode:
case SpvDecorationAlignment:
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationUserTypeGOOGLE:
/* User semantic decorations can safely be ignored by the driver. */
break;
default:
vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
}
}
static unsigned
translate_image_format(struct vtn_builder *b, SpvImageFormat format)
{
switch (format) {
case SpvImageFormatUnknown: return PIPE_FORMAT_NONE;
case SpvImageFormatRgba32f: return PIPE_FORMAT_R32G32B32A32_FLOAT;
case SpvImageFormatRgba16f: return PIPE_FORMAT_R16G16B16A16_FLOAT;
case SpvImageFormatR32f: return PIPE_FORMAT_R32_FLOAT;
case SpvImageFormatRgba8: return PIPE_FORMAT_R8G8B8A8_UNORM;
case SpvImageFormatRgba8Snorm: return PIPE_FORMAT_R8G8B8A8_SNORM;
case SpvImageFormatRg32f: return PIPE_FORMAT_R32G32_FLOAT;
case SpvImageFormatRg16f: return PIPE_FORMAT_R16G16_FLOAT;
case SpvImageFormatR11fG11fB10f: return PIPE_FORMAT_R11G11B10_FLOAT;
case SpvImageFormatR16f: return PIPE_FORMAT_R16_FLOAT;
case SpvImageFormatRgba16: return PIPE_FORMAT_R16G16B16A16_UNORM;
case SpvImageFormatRgb10A2: return PIPE_FORMAT_R10G10B10A2_UNORM;
case SpvImageFormatRg16: return PIPE_FORMAT_R16G16_UNORM;
case SpvImageFormatRg8: return PIPE_FORMAT_R8G8_UNORM;
case SpvImageFormatR16: return PIPE_FORMAT_R16_UNORM;
case SpvImageFormatR8: return PIPE_FORMAT_R8_UNORM;
case SpvImageFormatRgba16Snorm: return PIPE_FORMAT_R16G16B16A16_SNORM;
case SpvImageFormatRg16Snorm: return PIPE_FORMAT_R16G16_SNORM;
case SpvImageFormatRg8Snorm: return PIPE_FORMAT_R8G8_SNORM;
case SpvImageFormatR16Snorm: return PIPE_FORMAT_R16_SNORM;
case SpvImageFormatR8Snorm: return PIPE_FORMAT_R8_SNORM;
case SpvImageFormatRgba32i: return PIPE_FORMAT_R32G32B32A32_SINT;
case SpvImageFormatRgba16i: return PIPE_FORMAT_R16G16B16A16_SINT;
case SpvImageFormatRgba8i: return PIPE_FORMAT_R8G8B8A8_SINT;
case SpvImageFormatR32i: return PIPE_FORMAT_R32_SINT;
case SpvImageFormatRg32i: return PIPE_FORMAT_R32G32_SINT;
case SpvImageFormatRg16i: return PIPE_FORMAT_R16G16_SINT;
case SpvImageFormatRg8i: return PIPE_FORMAT_R8G8_SINT;
case SpvImageFormatR16i: return PIPE_FORMAT_R16_SINT;
case SpvImageFormatR8i: return PIPE_FORMAT_R8_SINT;
case SpvImageFormatRgba32ui: return PIPE_FORMAT_R32G32B32A32_UINT;
case SpvImageFormatRgba16ui: return PIPE_FORMAT_R16G16B16A16_UINT;
case SpvImageFormatRgba8ui: return PIPE_FORMAT_R8G8B8A8_UINT;
case SpvImageFormatR32ui: return PIPE_FORMAT_R32_UINT;
case SpvImageFormatRgb10a2ui: return PIPE_FORMAT_R10G10B10A2_UINT;
case SpvImageFormatRg32ui: return PIPE_FORMAT_R32G32_UINT;
case SpvImageFormatRg16ui: return PIPE_FORMAT_R16G16_UINT;
case SpvImageFormatRg8ui: return PIPE_FORMAT_R8G8_UINT;
case SpvImageFormatR16ui: return PIPE_FORMAT_R16_UINT;
case SpvImageFormatR8ui: return PIPE_FORMAT_R8_UINT;
default:
vtn_fail("Invalid image format: %s (%u)",
spirv_imageformat_to_string(format), format);
}
}
static void
vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_value *val = NULL;
/* In order to properly handle forward declarations, we have to defer
* allocation for pointer types.
*/
if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
val = vtn_push_value(b, w[1], vtn_value_type_type);
vtn_fail_if(val->type != NULL,
"Only pointers can have forward declarations");
val->type = rzalloc(b, struct vtn_type);
val->type->id = w[1];
}
switch (opcode) {
case SpvOpTypeVoid:
val->type->base_type = vtn_base_type_void;
val->type->type = glsl_void_type();
break;
case SpvOpTypeBool:
val->type->base_type = vtn_base_type_scalar;
val->type->type = glsl_bool_type();
val->type->length = 1;
break;
case SpvOpTypeInt: {
int bit_size = w[2];
const bool signedness = w[3];
val->type->base_type = vtn_base_type_scalar;
switch (bit_size) {
case 64:
val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
break;
case 32:
val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
break;
case 16:
val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
break;
case 8:
val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
break;
default:
vtn_fail("Invalid int bit size: %u", bit_size);
}
val->type->length = 1;
break;
}
case SpvOpTypeFloat: {
int bit_size = w[2];
val->type->base_type = vtn_base_type_scalar;
switch (bit_size) {
case 16:
val->type->type = glsl_float16_t_type();
break;
case 32:
val->type->type = glsl_float_type();
break;
case 64:
val->type->type = glsl_double_type();
break;
default:
vtn_fail("Invalid float bit size: %u", bit_size);
}
val->type->length = 1;
break;
}
case SpvOpTypeVector: {
struct vtn_type *base = vtn_get_type(b, w[2]);
unsigned elems = w[3];
vtn_fail_if(base->base_type != vtn_base_type_scalar,
"Base type for OpTypeVector must be a scalar");
vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
"Invalid component count for OpTypeVector");
val->type->base_type = vtn_base_type_vector;
val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
val->type->length = elems;
val->type->stride = glsl_type_is_boolean(val->type->type)
? 4 : glsl_get_bit_size(base->type) / 8;
val->type->array_element = base;
break;
}
case SpvOpTypeMatrix: {
struct vtn_type *base = vtn_get_type(b, w[2]);
unsigned columns = w[3];
vtn_fail_if(base->base_type != vtn_base_type_vector,
"Base type for OpTypeMatrix must be a vector");
vtn_fail_if(columns < 2 || columns > 4,
"Invalid column count for OpTypeMatrix");
val->type->base_type = vtn_base_type_matrix;
val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
glsl_get_vector_elements(base->type),
columns);
vtn_fail_if(glsl_type_is_error(val->type->type),
"Unsupported base type for OpTypeMatrix");
assert(!glsl_type_is_error(val->type->type));
val->type->length = columns;
val->type->array_element = base;
val->type->row_major = false;
val->type->stride = 0;
break;
}
case SpvOpTypeRuntimeArray:
case SpvOpTypeArray: {
struct vtn_type *array_element = vtn_get_type(b, w[2]);
if (opcode == SpvOpTypeRuntimeArray) {
/* A length of 0 is used to denote unsized arrays */
val->type->length = 0;
} else {
val->type->length = vtn_constant_uint(b, w[3]);
}
val->type->base_type = vtn_base_type_array;
val->type->array_element = array_element;
if (b->shader->info.stage == MESA_SHADER_KERNEL)
val->type->stride = glsl_get_cl_size(array_element->type);
vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
val->type->type = glsl_array_type(array_element->type, val->type->length,
val->type->stride);
break;
}
case SpvOpTypeStruct: {
unsigned num_fields = count - 2;
val->type->base_type = vtn_base_type_struct;
val->type->length = num_fields;
val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
val->type->offsets = ralloc_array(b, unsigned, num_fields);
val->type->packed = false;
NIR_VLA(struct glsl_struct_field, fields, count);
for (unsigned i = 0; i < num_fields; i++) {
val->type->members[i] = vtn_get_type(b, w[i + 2]);
fields[i] = (struct glsl_struct_field) {
.type = val->type->members[i]->type,
.name = ralloc_asprintf(b, "field%d", i),
.location = -1,
.offset = -1,
};
}
if (b->shader->info.stage == MESA_SHADER_KERNEL) {
unsigned offset = 0;
for (unsigned i = 0; i < num_fields; i++) {
offset = align(offset, glsl_get_cl_alignment(fields[i].type));
fields[i].offset = offset;
offset += glsl_get_cl_size(fields[i].type);
}
}
struct member_decoration_ctx ctx = {
.num_fields = num_fields,
.fields = fields,
.type = val->type
};
vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
const char *name = val->name;
if (val->type->block || val->type->buffer_block) {
/* Packing will be ignored since types coming from SPIR-V are
* explicitly laid out.
*/
val->type->type = glsl_interface_type(fields, num_fields,
/* packing */ 0, false,
name ? name : "block");
} else {
val->type->type = glsl_struct_type(fields, num_fields,
name ? name : "struct", false);
}
break;
}
case SpvOpTypeFunction: {
val->type->base_type = vtn_base_type_function;
val->type->type = NULL;
val->type->return_type = vtn_get_type(b, w[2]);
const unsigned num_params = count - 3;
val->type->length = num_params;
val->type->params = ralloc_array(b, struct vtn_type *, num_params);
for (unsigned i = 0; i < count - 3; i++) {
val->type->params[i] = vtn_get_type(b, w[i + 3]);
}
break;
}
case SpvOpTypePointer:
case SpvOpTypeForwardPointer: {
/* We can't blindly push the value because it might be a forward
* declaration.
*/
val = vtn_untyped_value(b, w[1]);
SpvStorageClass storage_class = w[2];
if (val->value_type == vtn_value_type_invalid) {
val->value_type = vtn_value_type_type;
val->type = rzalloc(b, struct vtn_type);
val->type->id = w[1];
val->type->base_type = vtn_base_type_pointer;
val->type->storage_class = storage_class;
/* These can actually be stored to nir_variables and used as SSA
* values so they need a real glsl_type.
*/
enum vtn_variable_mode mode = vtn_storage_class_to_mode(
b, storage_class, NULL, NULL);
val->type->type = nir_address_format_to_glsl_type(
vtn_mode_to_address_format(b, mode));
} else {
vtn_fail_if(val->type->storage_class != storage_class,
"The storage classes of an OpTypePointer and any "
"OpTypeForwardPointers that provide forward "
"declarations of it must match.");
}
if (opcode == SpvOpTypePointer) {
vtn_fail_if(val->type->deref != NULL,
"While OpTypeForwardPointer can be used to provide a "
"forward declaration of a pointer, OpTypePointer can "
"only be used once for a given id.");
val->type->deref = vtn_get_type(b, w[3]);
/* Only certain storage classes use ArrayStride. The others (in
* particular Workgroup) are expected to be laid out by the driver.
*/
switch (storage_class) {
case SpvStorageClassUniform:
case SpvStorageClassPushConstant:
case SpvStorageClassStorageBuffer:
case SpvStorageClassPhysicalStorageBuffer:
vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
break;
default:
/* Nothing to do. */
break;
}
if (b->physical_ptrs) {
switch (storage_class) {
case SpvStorageClassFunction:
case SpvStorageClassWorkgroup:
case SpvStorageClassCrossWorkgroup:
case SpvStorageClassUniformConstant:
val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
glsl_get_cl_alignment(val->type->deref->type));
break;
default:
break;
}
}
}
break;
}
case SpvOpTypeImage: {
val->type->base_type = vtn_base_type_image;
/* Images are represented in NIR as a scalar SSA value that is the
* result of a deref instruction. An OpLoad on an OpTypeImage pointer
* from UniformConstant memory just takes the NIR deref from the pointer
* and turns it into an SSA value.
*/
val->type->type = nir_address_format_to_glsl_type(
vtn_mode_to_address_format(b, vtn_variable_mode_function));
const struct vtn_type *sampled_type = vtn_get_type(b, w[2]);
vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
glsl_get_bit_size(sampled_type->type) != 32,
"Sampled type of OpTypeImage must be a 32-bit scalar");
enum glsl_sampler_dim dim;
switch ((SpvDim)w[3]) {
case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
default:
vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
spirv_dim_to_string((SpvDim)w[3]), w[3]);
}
/* w[4]: as per Vulkan spec "Validation Rules within a Module",
* The “Depth” operand of OpTypeImage is ignored.
*/
bool is_array = w[5];
bool multisampled = w[6];
unsigned sampled = w[7];
SpvImageFormat format = w[8];
if (count > 9)
val->type->access_qualifier = w[9];
else
val->type->access_qualifier = SpvAccessQualifierReadWrite;
if (multisampled) {
if (dim == GLSL_SAMPLER_DIM_2D)
dim = GLSL_SAMPLER_DIM_MS;
else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
else
vtn_fail("Unsupported multisampled image type");
}
val->type->image_format = translate_image_format(b, format);
enum glsl_base_type sampled_base_type =
glsl_get_base_type(sampled_type->type);
if (sampled == 1) {
val->type->glsl_image = glsl_sampler_type(dim, false, is_array,
sampled_base_type);
} else if (sampled == 2) {
val->type->glsl_image = glsl_image_type(dim, is_array,
sampled_base_type);
} else {
vtn_fail("We need to know if the image will be sampled");
}
break;
}
case SpvOpTypeSampledImage: {
val->type->base_type = vtn_base_type_sampled_image;
val->type->image = vtn_get_type(b, w[2]);
/* Sampled images are represented NIR as a vec2 SSA value where each
* component is the result of a deref instruction. The first component
* is the image and the second is the sampler. An OpLoad on an
* OpTypeSampledImage pointer from UniformConstant memory just takes
* the NIR deref from the pointer and duplicates it to both vector
* components.
*/
nir_address_format addr_format =
vtn_mode_to_address_format(b, vtn_variable_mode_function);
assert(nir_address_format_num_components(addr_format) == 1);
unsigned bit_size = nir_address_format_bit_size(addr_format);
assert(bit_size == 32 || bit_size == 64);
enum glsl_base_type base_type =
bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64;
val->type->type = glsl_vector_type(base_type, 2);
break;
}
case SpvOpTypeSampler:
val->type->base_type = vtn_base_type_sampler;
/* Samplers are represented in NIR as a scalar SSA value that is the
* result of a deref instruction. An OpLoad on an OpTypeSampler pointer
* from UniformConstant memory just takes the NIR deref from the pointer
* and turns it into an SSA value.
*/
val->type->type = nir_address_format_to_glsl_type(
vtn_mode_to_address_format(b, vtn_variable_mode_function));
break;
case SpvOpTypeOpaque:
case SpvOpTypeEvent:
case SpvOpTypeDeviceEvent:
case SpvOpTypeReserveId:
case SpvOpTypeQueue:
case SpvOpTypePipe:
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
if (val->type->base_type == vtn_base_type_struct &&
(val->type->block || val->type->buffer_block)) {
for (unsigned i = 0; i < val->type->length; i++) {
vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
"Block and BufferBlock decorations cannot decorate a "
"structure type that is nested at any level inside "
"another structure type decorated with Block or "
"BufferBlock.");
}
}
}
static nir_constant *
vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
{
nir_constant *c = rzalloc(b, nir_constant);
switch (type->base_type) {
case vtn_base_type_scalar:
case vtn_base_type_vector:
/* Nothing to do here. It's already initialized to zero */
break;
case vtn_base_type_pointer: {
enum vtn_variable_mode mode = vtn_storage_class_to_mode(
b, type->storage_class, type->deref, NULL);
nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
const nir_const_value *null_value = nir_address_format_null_value(addr_format);
memcpy(c->values, null_value,
sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
break;
}
case vtn_base_type_void:
case vtn_base_type_image:
case vtn_base_type_sampler:
case vtn_base_type_sampled_image:
case vtn_base_type_function:
/* For those we have to return something but it doesn't matter what. */
break;
case vtn_base_type_matrix:
case vtn_base_type_array:
vtn_assert(type->length > 0);
c->num_elements = type->length;
c->elements = ralloc_array(b, nir_constant *, c->num_elements);
c->elements[0] = vtn_null_constant(b, type->array_element);
for (unsigned i = 1; i < c->num_elements; i++)
c->elements[i] = c->elements[0];
break;
case vtn_base_type_struct:
c->num_elements = type->length;
c->elements = ralloc_array(b, nir_constant *, c->num_elements);
for (unsigned i = 0; i < c->num_elements; i++)
c->elements[i] = vtn_null_constant(b, type->members[i]);
break;
default:
vtn_fail("Invalid type for null constant");
}
return c;
}
static void
spec_constant_decoration_cb(struct vtn_builder *b, UNUSED struct vtn_value *val,
ASSERTED int member,
const struct vtn_decoration *dec, void *data)
{
vtn_assert(member == -1);
if (dec->decoration != SpvDecorationSpecId)
return;
nir_const_value *value = data;
for (unsigned i = 0; i < b->num_specializations; i++) {
if (b->specializations[i].id == dec->operands[0]) {
*value = b->specializations[i].value;
return;
}
}
}
static void
handle_workgroup_size_decoration_cb(struct vtn_builder *b,
struct vtn_value *val,
ASSERTED int member,
const struct vtn_decoration *dec,
UNUSED void *data)
{
vtn_assert(member == -1);
if (dec->decoration != SpvDecorationBuiltIn ||
dec->operands[0] != SpvBuiltInWorkgroupSize)
return;
vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
b->workgroup_size_builtin = val;
}
static void
vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
val->constant = rzalloc(b, nir_constant);
switch (opcode) {
case SpvOpConstantTrue:
case SpvOpConstantFalse:
case SpvOpSpecConstantTrue:
case SpvOpSpecConstantFalse: {
vtn_fail_if(val->type->type != glsl_bool_type(),
"Result type of %s must be OpTypeBool",
spirv_op_to_string(opcode));
bool bval = (opcode == SpvOpConstantTrue ||
opcode == SpvOpSpecConstantTrue);
nir_const_value u32val = nir_const_value_for_uint(bval, 32);
if (opcode == SpvOpSpecConstantTrue ||
opcode == SpvOpSpecConstantFalse)
vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &u32val);
val->constant->values[0].b = u32val.u32 != 0;
break;
}
case SpvOpConstant:
case SpvOpSpecConstant: {
vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
"Result type of %s must be a scalar",
spirv_op_to_string(opcode));
int bit_size = glsl_get_bit_size(val->type->type);
switch (bit_size) {
case 64:
val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
break;
case 32:
val->constant->values[0].u32 = w[3];
break;
case 16:
val->constant->values[0].u16 = w[3];
break;
case 8:
val->constant->values[0].u8 = w[3];
break;
default:
vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
}
if (opcode == SpvOpSpecConstant)
vtn_foreach_decoration(b, val, spec_constant_decoration_cb,
&val->constant->values[0]);
break;
}
case SpvOpSpecConstantComposite:
case SpvOpConstantComposite: {
unsigned elem_count = count - 3;
vtn_fail_if(elem_count != val->type->length,
"%s has %u constituents, expected %u",
spirv_op_to_string(opcode), elem_count, val->type->length);
nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
for (unsigned i = 0; i < elem_count; i++) {
struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
if (val->value_type == vtn_value_type_constant) {
elems[i] = val->constant;
} else {
vtn_fail_if(val->value_type != vtn_value_type_undef,
"only constants or undefs allowed for "
"SpvOpConstantComposite");
/* to make it easier, just insert a NULL constant for now */
elems[i] = vtn_null_constant(b, val->type);
}
}
switch (val->type->base_type) {
case vtn_base_type_vector: {
assert(glsl_type_is_vector(val->type->type));
for (unsigned i = 0; i < elem_count; i++)
val->constant->values[i] = elems[i]->values[0];
break;
}
case vtn_base_type_matrix:
case vtn_base_type_struct:
case vtn_base_type_array:
ralloc_steal(val->constant, elems);
val->constant->num_elements = elem_count;
val->constant->elements = elems;
break;
default:
vtn_fail("Result type of %s must be a composite type",
spirv_op_to_string(opcode));
}
break;
}
case SpvOpSpecConstantOp: {
nir_const_value u32op = nir_const_value_for_uint(w[3], 32);
vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &u32op);
SpvOp opcode = u32op.u32;
switch (opcode) {
case SpvOpVectorShuffle: {
struct vtn_value *v0 = &b->values[w[4]];
struct vtn_value *v1 = &b->values[w[5]];
vtn_assert(v0->value_type == vtn_value_type_constant ||
v0->value_type == vtn_value_type_undef);
vtn_assert(v1->value_type == vtn_value_type_constant ||
v1->value_type == vtn_value_type_undef);
unsigned len0 = glsl_get_vector_elements(v0->type->type);
unsigned len1 = glsl_get_vector_elements(v1->type->type);
vtn_assert(len0 + len1 < 16);
unsigned bit_size = glsl_get_bit_size(val->type->type);
unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
(void)bit_size0; (void)bit_size1;
nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
if (v0->value_type == vtn_value_type_constant) {
for (unsigned i = 0; i < len0; i++)
combined[i] = v0->constant->values[i];
}
if (v1->value_type == vtn_value_type_constant) {
for (unsigned i = 0; i < len1; i++)
combined[len0 + i] = v1->constant->values[i];
}
for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
uint32_t comp = w[i + 6];
if (comp == (uint32_t)-1) {
/* If component is not used, set the value to a known constant
* to detect if it is wrongly used.
*/
val->constant->values[j] = undef;
} else {
vtn_fail_if(comp >= len0 + len1,
"All Component literals must either be FFFFFFFF "
"or in [0, N - 1] (inclusive).");
val->constant->values[j] = combined[comp];
}
}
break;
}
case SpvOpCompositeExtract:
case SpvOpCompositeInsert: {
struct vtn_value *comp;
unsigned deref_start;
struct nir_constant **c;
if (opcode == SpvOpCompositeExtract) {
comp = vtn_value(b, w[4], vtn_value_type_constant);
deref_start = 5;
c = &comp->constant;
} else {
comp = vtn_value(b, w[5], vtn_value_type_constant);
deref_start = 6;
val->constant = nir_constant_clone(comp->constant,
(nir_variable *)b);
c = &val->constant;
}
int elem = -1;
const struct vtn_type *type = comp->type;
for (unsigned i = deref_start; i < count; i++) {
vtn_fail_if(w[i] > type->length,
"%uth index of %s is %u but the type has only "
"%u elements", i - deref_start,
spirv_op_to_string(opcode), w[i], type->length);
switch (type->base_type) {
case vtn_base_type_vector:
elem = w[i];
type = type->array_element;
break;
case vtn_base_type_matrix:
case vtn_base_type_array:
c = &(*c)->elements[w[i]];
type = type->array_element;
break;
case vtn_base_type_struct:
c = &(*c)->elements[w[i]];
type = type->members[w[i]];
break;
default:
vtn_fail("%s must only index into composite types",
spirv_op_to_string(opcode));
}
}
if (opcode == SpvOpCompositeExtract) {
if (elem == -1) {
val->constant = *c;
} else {
unsigned num_components = type->length;
for (unsigned i = 0; i < num_components; i++)
val->constant->values[i] = (*c)->values[elem + i];
}
} else {
struct vtn_value *insert =
vtn_value(b, w[4], vtn_value_type_constant);
vtn_assert(insert->type == type);
if (elem == -1) {
*c = insert->constant;
} else {
unsigned num_components = type->length;
for (unsigned i = 0; i < num_components; i++)
(*c)->values[elem + i] = insert->constant->values[i];
}
}
break;
}
default: {
bool swap;
nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
nir_alu_type src_alu_type = dst_alu_type;
unsigned num_components = glsl_get_vector_elements(val->type->type);
unsigned bit_size;
vtn_assert(count <= 7);
switch (opcode) {
case SpvOpSConvert:
case SpvOpFConvert:
case SpvOpUConvert:
/* We have a source in a conversion */
src_alu_type =
nir_get_nir_type_for_glsl_type(vtn_get_value_type(b, w[4])->type);
/* We use the bitsize of the conversion source to evaluate the opcode later */
bit_size = glsl_get_bit_size(vtn_get_value_type(b, w[4])->type);
break;
default:
bit_size = glsl_get_bit_size(val->type->type);
};
nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
nir_alu_type_get_type_size(src_alu_type),
nir_alu_type_get_type_size(dst_alu_type));
nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < count - 4; i++) {
struct vtn_value *src_val =
vtn_value(b, w[4 + i], vtn_value_type_constant);
/* If this is an unsized source, pull the bit size from the
* source; otherwise, we'll use the bit size from the destination.
*/
if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
bit_size = glsl_get_bit_size(src_val->type->type);
unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
nir_op_infos[op].input_sizes[i] :
num_components;
unsigned j = swap ? 1 - i : i;
for (unsigned c = 0; c < src_comps; c++)
src[j][c] = src_val->constant->values[c];
}
/* fix up fixed size sources */
switch (op) {
case nir_op_ishl:
case nir_op_ishr:
case nir_op_ushr: {
if (bit_size == 32)
break;
for (unsigned i = 0; i < num_components; ++i) {
switch (bit_size) {
case 64: src[1][i].u32 = src[1][i].u64; break;
case 16: src[1][i].u32 = src[1][i].u16; break;
case 8: src[1][i].u32 = src[1][i].u8; break;
}
}
break;
}
default:
break;
}
nir_const_value *srcs[3] = {
src[0], src[1], src[2],
};
nir_eval_const_opcode(op, val->constant->values,
num_components, bit_size, srcs,
b->shader->info.float_controls_execution_mode);
break;
} /* default */
}
break;
}
case SpvOpConstantNull:
val->constant = vtn_null_constant(b, val->type);
break;
case SpvOpConstantSampler:
vtn_fail("OpConstantSampler requires Kernel Capability");
break;
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
/* Now that we have the value, update the workgroup size if needed */
vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
}
SpvMemorySemanticsMask
vtn_storage_class_to_memory_semantics(SpvStorageClass sc)
{
switch (sc) {
case SpvStorageClassStorageBuffer:
case SpvStorageClassPhysicalStorageBuffer:
return SpvMemorySemanticsUniformMemoryMask;
case SpvStorageClassWorkgroup:
return SpvMemorySemanticsWorkgroupMemoryMask;
default:
return SpvMemorySemanticsMaskNone;
}
}
static void
vtn_split_barrier_semantics(struct vtn_builder *b,
SpvMemorySemanticsMask semantics,
SpvMemorySemanticsMask *before,
SpvMemorySemanticsMask *after)
{
/* For memory semantics embedded in operations, we split them into up to
* two barriers, to be added before and after the operation. This is less
* strict than if we propagated until the final backend stage, but still
* result in correct execution.
*
* A further improvement could be pipe this information (and use!) into the
* next compiler layers, at the expense of making the handling of barriers
* more complicated.
*/
*before = SpvMemorySemanticsMaskNone;
*after = SpvMemorySemanticsMaskNone;
SpvMemorySemanticsMask order_semantics =
semantics & (SpvMemorySemanticsAcquireMask |
SpvMemorySemanticsReleaseMask |
SpvMemorySemanticsAcquireReleaseMask |
SpvMemorySemanticsSequentiallyConsistentMask);
if (util_bitcount(order_semantics) > 1) {
/* Old GLSLang versions incorrectly set all the ordering bits. This was
* fixed in c51287d744fb6e7e9ccc09f6f8451e6c64b1dad6 of glslang repo,
* and it is in GLSLang since revision "SPIRV99.1321" (from Jul-2016).
*/
vtn_warn("Multiple memory ordering semantics specified, "
"assuming AcquireRelease.");
order_semantics = SpvMemorySemanticsAcquireReleaseMask;
}
const SpvMemorySemanticsMask av_vis_semantics =
semantics & (SpvMemorySemanticsMakeAvailableMask |
SpvMemorySemanticsMakeVisibleMask);
const SpvMemorySemanticsMask storage_semantics =
semantics & (SpvMemorySemanticsUniformMemoryMask |
SpvMemorySemanticsSubgroupMemoryMask |
SpvMemorySemanticsWorkgroupMemoryMask |
SpvMemorySemanticsCrossWorkgroupMemoryMask |
SpvMemorySemanticsAtomicCounterMemoryMask |
SpvMemorySemanticsImageMemoryMask |
SpvMemorySemanticsOutputMemoryMask);
const SpvMemorySemanticsMask other_semantics =
semantics & ~(order_semantics | av_vis_semantics | storage_semantics);
if (other_semantics)
vtn_warn("Ignoring unhandled memory semantics: %u\n", other_semantics);
/* SequentiallyConsistent is treated as AcquireRelease. */
/* The RELEASE barrier happens BEFORE the operation, and it is usually
* associated with a Store. All the write operations with a matching
* semantics will not be reordered after the Store.
*/
if (order_semantics & (SpvMemorySemanticsReleaseMask |
SpvMemorySemanticsAcquireReleaseMask |
SpvMemorySemanticsSequentiallyConsistentMask)) {
*before |= SpvMemorySemanticsReleaseMask | storage_semantics;
}
/* The ACQUIRE barrier happens AFTER the operation, and it is usually
* associated with a Load. All the operations with a matching semantics
* will not be reordered before the Load.
*/
if (order_semantics & (SpvMemorySemanticsAcquireMask |
SpvMemorySemanticsAcquireReleaseMask |
SpvMemorySemanticsSequentiallyConsistentMask)) {
*after |= SpvMemorySemanticsAcquireMask | storage_semantics;
}
if (av_vis_semantics & SpvMemorySemanticsMakeVisibleMask)
*before |= SpvMemorySemanticsMakeVisibleMask | storage_semantics;
if (av_vis_semantics & SpvMemorySemanticsMakeAvailableMask)
*after |= SpvMemorySemanticsMakeAvailableMask | storage_semantics;
}
static nir_memory_semantics
vtn_mem_semantics_to_nir_mem_semantics(struct vtn_builder *b,
SpvMemorySemanticsMask semantics)
{
nir_memory_semantics nir_semantics = 0;
SpvMemorySemanticsMask order_semantics =
semantics & (SpvMemorySemanticsAcquireMask |
SpvMemorySemanticsReleaseMask |
SpvMemorySemanticsAcquireReleaseMask |
SpvMemorySemanticsSequentiallyConsistentMask);
if (util_bitcount(order_semantics) > 1) {
/* Old GLSLang versions incorrectly set all the ordering bits. This was
* fixed in c51287d744fb6e7e9ccc09f6f8451e6c64b1dad6 of glslang repo,
* and it is in GLSLang since revision "SPIRV99.1321" (from Jul-2016).
*/
vtn_warn("Multiple memory ordering semantics bits specified, "
"assuming AcquireRelease.");
order_semantics = SpvMemorySemanticsAcquireReleaseMask;
}
switch (order_semantics) {
case 0:
/* Not an ordering barrier. */
break;
case SpvMemorySemanticsAcquireMask:
nir_semantics = NIR_MEMORY_ACQUIRE;
break;
case SpvMemorySemanticsReleaseMask:
nir_semantics = NIR_MEMORY_RELEASE;
break;
case SpvMemorySemanticsSequentiallyConsistentMask:
/* Fall through. Treated as AcquireRelease in Vulkan. */
case SpvMemorySemanticsAcquireReleaseMask:
nir_semantics = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE;
break;
default:
unreachable("Invalid memory order semantics");
}
if (semantics & SpvMemorySemanticsMakeAvailableMask) {
vtn_fail_if(!b->options->caps.vk_memory_model,
"To use MakeAvailable memory semantics the VulkanMemoryModel "
"capability must be declared.");
nir_semantics |= NIR_MEMORY_MAKE_AVAILABLE;
}
if (semantics & SpvMemorySemanticsMakeVisibleMask) {
vtn_fail_if(!b->options->caps.vk_memory_model,
"To use MakeVisible memory semantics the VulkanMemoryModel "
"capability must be declared.");
nir_semantics |= NIR_MEMORY_MAKE_VISIBLE;
}
return nir_semantics;
}
static nir_variable_mode
vtn_mem_sematics_to_nir_var_modes(struct vtn_builder *b,
SpvMemorySemanticsMask semantics)
{
/* Vulkan Environment for SPIR-V says "SubgroupMemory, CrossWorkgroupMemory,
* and AtomicCounterMemory are ignored".
*/
semantics &= ~(SpvMemorySemanticsSubgroupMemoryMask |
SpvMemorySemanticsCrossWorkgroupMemoryMask |
SpvMemorySemanticsAtomicCounterMemoryMask);
/* TODO: Consider adding nir_var_mem_image mode to NIR so it can be used
* for SpvMemorySemanticsImageMemoryMask.
*/
nir_variable_mode modes = 0;
if (semantics & (SpvMemorySemanticsUniformMemoryMask |
SpvMemorySemanticsImageMemoryMask)) {
modes |= nir_var_uniform |
nir_var_mem_ubo |
nir_var_mem_ssbo |
nir_var_mem_global;
}
if (semantics & SpvMemorySemanticsWorkgroupMemoryMask)
modes |= nir_var_mem_shared;
if (semantics & SpvMemorySemanticsOutputMemoryMask) {
modes |= nir_var_shader_out;
}
return modes;
}
static nir_scope
vtn_scope_to_nir_scope(struct vtn_builder *b, SpvScope scope)
{
nir_scope nir_scope;
switch (scope) {
case SpvScopeDevice:
vtn_fail_if(b->options->caps.vk_memory_model &&
!b->options->caps.vk_memory_model_device_scope,
"If the Vulkan memory model is declared and any instruction "
"uses Device scope, the VulkanMemoryModelDeviceScope "
"capability must be declared.");
nir_scope = NIR_SCOPE_DEVICE;
break;
case SpvScopeQueueFamily:
vtn_fail_if(!b->options->caps.vk_memory_model,
"To use Queue Family scope, the VulkanMemoryModel capability "
"must be declared.");
nir_scope = NIR_SCOPE_QUEUE_FAMILY;
break;
case SpvScopeWorkgroup:
nir_scope = NIR_SCOPE_WORKGROUP;
break;
case SpvScopeSubgroup:
nir_scope = NIR_SCOPE_SUBGROUP;
break;
case SpvScopeInvocation:
nir_scope = NIR_SCOPE_INVOCATION;
break;
default:
vtn_fail("Invalid memory scope");
}
return nir_scope;
}
static void
vtn_emit_scoped_control_barrier(struct vtn_builder *b, SpvScope exec_scope,
SpvScope mem_scope,
SpvMemorySemanticsMask semantics)
{
nir_memory_semantics nir_semantics =
vtn_mem_semantics_to_nir_mem_semantics(b, semantics);
nir_variable_mode modes = vtn_mem_sematics_to_nir_var_modes(b, semantics);
nir_scope nir_exec_scope = vtn_scope_to_nir_scope(b, exec_scope);
/* Memory semantics is optional for OpControlBarrier. */
nir_scope nir_mem_scope;
if (nir_semantics == 0 || modes == 0)
nir_mem_scope = NIR_SCOPE_NONE;
else
nir_mem_scope = vtn_scope_to_nir_scope(b, mem_scope);
nir_scoped_barrier(&b->nb, nir_exec_scope, nir_mem_scope, nir_semantics, modes);
}
static void
vtn_emit_scoped_memory_barrier(struct vtn_builder *b, SpvScope scope,
SpvMemorySemanticsMask semantics)
{
nir_variable_mode modes = vtn_mem_sematics_to_nir_var_modes(b, semantics);
nir_memory_semantics nir_semantics =
vtn_mem_semantics_to_nir_mem_semantics(b, semantics);
/* No barrier to add. */
if (nir_semantics == 0 || modes == 0)
return;
nir_scope nir_mem_scope = vtn_scope_to_nir_scope(b, scope);
nir_scoped_barrier(&b->nb, NIR_SCOPE_NONE, nir_mem_scope, nir_semantics, modes);
}
struct vtn_ssa_value *
vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
{
/* Always use bare types for SSA values for a couple of reasons:
*
* 1. Code which emits deref chains should never listen to the explicit
* layout information on the SSA value if any exists. If we've
* accidentally been relying on this, we want to find those bugs.
*
* 2. We want to be able to quickly check that an SSA value being assigned
* to a SPIR-V value has the right type. Using bare types everywhere
* ensures that we can pointer-compare.
*/
struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
val->type = glsl_get_bare_type(type);
if (!glsl_type_is_vector_or_scalar(type)) {
unsigned elems = glsl_get_length(val->type);
val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
if (glsl_type_is_array_or_matrix(type)) {
const struct glsl_type *elem_type = glsl_get_array_element(type);
for (unsigned i = 0; i < elems; i++)
val->elems[i] = vtn_create_ssa_value(b, elem_type);
} else {
vtn_assert(glsl_type_is_struct_or_ifc(type));
for (unsigned i = 0; i < elems; i++) {
const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
val->elems[i] = vtn_create_ssa_value(b, elem_type);
}
}
}
return val;
}
static nir_tex_src
vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
{
nir_tex_src src;
src.src = nir_src_for_ssa(vtn_get_nir_ssa(b, index));
src.src_type = type;
return src;
}
static uint32_t
image_operand_arg(struct vtn_builder *b, const uint32_t *w, uint32_t count,
uint32_t mask_idx, SpvImageOperandsMask op)
{
static const SpvImageOperandsMask ops_with_arg =
SpvImageOperandsBiasMask |
SpvImageOperandsLodMask |
SpvImageOperandsGradMask |
SpvImageOperandsConstOffsetMask |
SpvImageOperandsOffsetMask |
SpvImageOperandsConstOffsetsMask |
SpvImageOperandsSampleMask |
SpvImageOperandsMinLodMask |
SpvImageOperandsMakeTexelAvailableMask |
SpvImageOperandsMakeTexelVisibleMask;
assert(util_bitcount(op) == 1);
assert(w[mask_idx] & op);
assert(op & ops_with_arg);
uint32_t idx = util_bitcount(w[mask_idx] & (op - 1) & ops_with_arg) + 1;
/* Adjust indices for operands with two arguments. */
static const SpvImageOperandsMask ops_with_two_args =
SpvImageOperandsGradMask;
idx += util_bitcount(w[mask_idx] & (op - 1) & ops_with_two_args);
idx += mask_idx;
vtn_fail_if(idx + (op & ops_with_two_args ? 1 : 0) >= count,
"Image op claims to have %s but does not enough "
"following operands", spirv_imageoperands_to_string(op));
return idx;
}
static void
non_uniform_decoration_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_ctx)
{
enum gl_access_qualifier *access = void_ctx;
switch (dec->decoration) {
case SpvDecorationNonUniformEXT:
*access |= ACCESS_NON_UNIFORM;
break;
default:
break;
}
}
static void
vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_type *ret_type = vtn_get_type(b, w[1]);
if (opcode == SpvOpSampledImage) {
struct vtn_sampled_image si = {
.image = vtn_get_image(b, w[3]),
.sampler = vtn_get_sampler(b, w[4]),
};
vtn_push_sampled_image(b, w[2], si);
return;
} else if (opcode == SpvOpImage) {
struct vtn_sampled_image si = vtn_get_sampled_image(b, w[3]);
vtn_push_image(b, w[2], si.image);
return;
}
nir_deref_instr *image = NULL, *sampler = NULL;
struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
if (sampled_val->type->base_type == vtn_base_type_sampled_image) {
struct vtn_sampled_image si = vtn_get_sampled_image(b, w[3]);
image = si.image;
sampler = si.sampler;
} else {
image = vtn_get_image(b, w[3]);
}
const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image->type);
const bool is_array = glsl_sampler_type_is_array(image->type);
nir_alu_type dest_type = nir_type_invalid;
/* Figure out the base texture operation */
nir_texop texop;
switch (opcode) {
case SpvOpImageSampleImplicitLod:
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
texop = nir_texop_tex;
break;
case SpvOpImageSampleExplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
texop = nir_texop_txl;
break;
case SpvOpImageFetch:
if (sampler_dim == GLSL_SAMPLER_DIM_MS) {
texop = nir_texop_txf_ms;
} else {
texop = nir_texop_txf;
}
break;
case SpvOpImageGather:
case SpvOpImageDrefGather:
texop = nir_texop_tg4;
break;
case SpvOpImageQuerySizeLod:
case SpvOpImageQuerySize:
texop = nir_texop_txs;
dest_type = nir_type_int;
break;
case SpvOpImageQueryLod:
texop = nir_texop_lod;
dest_type = nir_type_float;
break;
case SpvOpImageQueryLevels:
texop = nir_texop_query_levels;
dest_type = nir_type_int;
break;
case SpvOpImageQuerySamples:
texop = nir_texop_texture_samples;
dest_type = nir_type_int;
break;
case SpvOpFragmentFetchAMD:
texop = nir_texop_fragment_fetch;
break;
case SpvOpFragmentMaskFetchAMD:
texop = nir_texop_fragment_mask_fetch;
break;
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
nir_tex_src srcs[10]; /* 10 should be enough */
nir_tex_src *p = srcs;
p->src = nir_src_for_ssa(&image->dest.ssa);
p->src_type = nir_tex_src_texture_deref;
p++;
switch (texop) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_txl:
case nir_texop_txd:
case nir_texop_tg4:
case nir_texop_lod:
vtn_fail_if(sampler == NULL,
"%s requires an image of type OpTypeSampledImage",
spirv_op_to_string(opcode));
p->src = nir_src_for_ssa(&sampler->dest.ssa);
p->src_type = nir_tex_src_sampler_deref;
p++;
break;
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txs:
case nir_texop_query_levels:
case nir_texop_texture_samples:
case nir_texop_samples_identical:
case nir_texop_fragment_fetch:
case nir_texop_fragment_mask_fetch:
/* These don't */
break;
case nir_texop_txf_ms_fb:
vtn_fail("unexpected nir_texop_txf_ms_fb");
break;
case nir_texop_txf_ms_mcs:
vtn_fail("unexpected nir_texop_txf_ms_mcs");
case nir_texop_tex_prefetch:
vtn_fail("unexpected nir_texop_tex_prefetch");
}
unsigned idx = 4;
struct nir_ssa_def *coord;
unsigned coord_components;
switch (opcode) {
case SpvOpImageSampleImplicitLod:
case SpvOpImageSampleExplicitLod:
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
case SpvOpImageFetch:
case SpvOpImageGather:
case SpvOpImageDrefGather:
case SpvOpImageQueryLod:
case SpvOpFragmentFetchAMD:
case SpvOpFragmentMaskFetchAMD: {
/* All these types have the coordinate as their first real argument */
coord_components = glsl_get_sampler_dim_coordinate_components(sampler_dim);
if (is_array && texop != nir_texop_lod)
coord_components++;
coord = vtn_get_nir_ssa(b, w[idx++]);
p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
(1 << coord_components) - 1));
p->src_type = nir_tex_src_coord;
p++;
break;
}
default:
coord = NULL;
coord_components = 0;
break;
}
switch (opcode) {
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
/* These have the projector as the last coordinate component */
p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
p->src_type = nir_tex_src_projector;
p++;
break;
default:
break;
}
bool is_shadow = false;
unsigned gather_component = 0;
switch (opcode) {
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
case SpvOpImageDrefGather:
/* These all have an explicit depth value as their next source */
is_shadow = true;
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
break;
case SpvOpImageGather:
/* This has a component as its next source */
gather_component = vtn_constant_uint(b, w[idx++]);
break;
default:
break;
}
/* For OpImageQuerySizeLod, we always have an LOD */
if (opcode == SpvOpImageQuerySizeLod)
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
/* For OpFragmentFetchAMD, we always have a multisample index */
if (opcode == SpvOpFragmentFetchAMD)
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
/* Now we need to handle some number of optional arguments */
struct vtn_value *gather_offsets = NULL;
if (idx < count) {
uint32_t operands = w[idx];
if (operands & SpvImageOperandsBiasMask) {
vtn_assert(texop == nir_texop_tex ||
texop == nir_texop_tg4);
if (texop == nir_texop_tex)
texop = nir_texop_txb;
uint32_t arg = image_operand_arg(b, w, count, idx,
SpvImageOperandsBiasMask);
(*p++) = vtn_tex_src(b, w[arg], nir_tex_src_bias);
}
if (operands & SpvImageOperandsLodMask) {
vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
texop == nir_texop_txs || texop == nir_texop_tg4);
uint32_t arg = image_operand_arg(b, w, count, idx,
SpvImageOperandsLodMask);
(*p++) = vtn_tex_src(b, w[arg], nir_tex_src_lod);
}
if (operands & SpvImageOperandsGradMask) {
vtn_assert(texop == nir_texop_txl);
texop = nir_texop_txd;
uint32_t arg = image_operand_arg(b, w, count, idx,
SpvImageOperandsGradMask);
(*p++) = vtn_tex_src(b, w[arg], nir_tex_src_ddx);
(*p++) = vtn_tex_src(b, w[arg + 1], nir_tex_src_ddy);
}
vtn_fail_if(util_bitcount(operands & (SpvImageOperandsConstOffsetsMask |
SpvImageOperandsOffsetMask |
SpvImageOperandsConstOffsetMask)) > 1,
"At most one of the ConstOffset, Offset, and ConstOffsets "
"image operands can be used on a given instruction.");
if (operands & SpvImageOperandsOffsetMask) {
uint32_t arg = image_operand_arg(b, w, count, idx,
SpvImageOperandsOffsetMask);
(*p++) = vtn_tex_src(b, w[arg], nir_tex_src_offset);
}
if (operands & SpvImageOperandsConstOffsetMask) {
uint32_t arg = image_operand_arg(b, w, count, idx,
SpvImageOperandsConstOffsetMask);
(*p++) = vtn_tex_src(b, w[arg], nir_tex_src_offset);
}
if (operands & SpvImageOperandsConstOffsetsMask) {
vtn_assert(texop == nir_texop_tg4);
uint32_t arg = image_operand_arg(b, w, count, idx,
SpvImageOperandsConstOffsetsMask);
gather_offsets = vtn_value(b, w[arg], vtn_value_type_constant);
}
if (operands & SpvImageOperandsSampleMask) {
vtn_assert(texop == nir_texop_txf_ms);
uint32_t arg = image_operand_arg(b, w, count, idx,
SpvImageOperandsSampleMask);
texop = nir_texop_txf_ms;
(*p++) = vtn_tex_src(b, w[arg], nir_tex_src_ms_index);
}
if (operands & SpvImageOperandsMinLodMask) {
vtn_assert(texop == nir_texop_tex ||
texop == nir_texop_txb ||
texop == nir_texop_txd);
uint32_t arg = image_operand_arg(b, w, count, idx,
SpvImageOperandsMinLodMask);
(*p++) = vtn_tex_src(b, w[arg], nir_tex_src_min_lod);
}
}
nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
instr->op = texop;
memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
instr->coord_components = coord_components;
instr->sampler_dim = sampler_dim;
instr->is_array = is_array;
instr->is_shadow = is_shadow;
instr->is_new_style_shadow =
is_shadow && glsl_get_components(ret_type->type) == 1;
instr->component = gather_component;
/* The Vulkan spec says:
*
* "If an instruction loads from or stores to a resource (including
* atomics and image instructions) and the resource descriptor being
* accessed is not dynamically uniform, then the operand corresponding
* to that resource (e.g. the pointer or sampled image operand) must be
* decorated with NonUniform."
*
* It's very careful to specify that the exact operand must be decorated
* NonUniform. The SPIR-V parser is not expected to chase through long
* chains to find the NonUniform decoration. It's either right there or we
* can assume it doesn't exist.
*/
enum gl_access_qualifier access = 0;
vtn_foreach_decoration(b, sampled_val, non_uniform_decoration_cb, &access);
if (image && (access & ACCESS_NON_UNIFORM))
instr->texture_non_uniform = true;
if (sampler && (access & ACCESS_NON_UNIFORM))
instr->sampler_non_uniform = true;
/* for non-query ops, get dest_type from sampler type */
if (dest_type == nir_type_invalid) {
switch (glsl_get_sampler_result_type(image->type)) {
case GLSL_TYPE_FLOAT: dest_type = nir_type_float; break;
case GLSL_TYPE_INT: dest_type = nir_type_int; break;
case GLSL_TYPE_UINT: dest_type = nir_type_uint; break;
case GLSL_TYPE_BOOL: dest_type = nir_type_bool; break;
default:
vtn_fail("Invalid base type for sampler result");
}
}
instr->dest_type = dest_type;
nir_ssa_dest_init(&instr->instr, &instr->dest,
nir_tex_instr_dest_size(instr), 32, NULL);
vtn_assert(glsl_get_vector_elements(ret_type->type) ==
nir_tex_instr_dest_size(instr));
if (gather_offsets) {
vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
gather_offsets->type->length != 4,
"ConstOffsets must be an array of size four of vectors "
"of two integer components");
struct vtn_type *vec_type = gather_offsets->type->array_element;
vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
vec_type->length != 2 ||
!glsl_type_is_integer(vec_type->type),
"ConstOffsets must be an array of size four of vectors "
"of two integer components");
unsigned bit_size = glsl_get_bit_size(vec_type->type);
for (uint32_t i = 0; i < 4; i++) {
const nir_const_value *cvec =
gather_offsets->constant->elements[i]->values;
for (uint32_t j = 0; j < 2; j++) {
switch (bit_size) {
case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
default:
vtn_fail("Unsupported bit size: %u", bit_size);
}
}
}
}
nir_builder_instr_insert(&b->nb, &instr->instr);
vtn_push_nir_ssa(b, w[2], &instr->dest.ssa);
}
static void
fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, nir_src *src)
{
switch (opcode) {
case SpvOpAtomicIIncrement:
src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
break;
case SpvOpAtomicIDecrement:
src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
break;
case SpvOpAtomicISub:
src[0] =
nir_src_for_ssa(nir_ineg(&b->nb, vtn_get_nir_ssa(b, w[6])));
break;
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
src[0] = nir_src_for_ssa(vtn_get_nir_ssa(b, w[8]));
src[1] = nir_src_for_ssa(vtn_get_nir_ssa(b, w[7]));
break;
case SpvOpAtomicExchange:
case SpvOpAtomicIAdd:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFAddEXT:
src[0] = nir_src_for_ssa(vtn_get_nir_ssa(b, w[6]));
break;
default:
vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
}
}
static nir_ssa_def *
get_image_coord(struct vtn_builder *b, uint32_t value)
{
nir_ssa_def *coord = vtn_get_nir_ssa(b, value);
/* The image_load_store intrinsics assume a 4-dim coordinate */
unsigned swizzle[4];
for (unsigned i = 0; i < 4; i++)
swizzle[i] = MIN2(i, coord->num_components - 1);
return nir_swizzle(&b->nb, coord, swizzle, 4);
}
static nir_ssa_def *
expand_to_vec4(nir_builder *b, nir_ssa_def *value)
{
if (value->num_components == 4)
return value;
unsigned swiz[4];
for (unsigned i = 0; i < 4; i++)
swiz[i] = i < value->num_components ? i : 0;
return nir_swizzle(b, value, swiz, 4);
}
static void
vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
/* Just get this one out of the way */
if (opcode == SpvOpImageTexelPointer) {
struct vtn_value *val =
vtn_push_value(b, w[2], vtn_value_type_image_pointer);
val->image = ralloc(b, struct vtn_image_pointer);
val->image->image = vtn_nir_deref(b, w[3]);
val->image->coord = get_image_coord(b, w[4]);
val->image->sample = vtn_get_nir_ssa(b, w[5]);
val->image->lod = nir_imm_int(&b->nb, 0);
return;
}
struct vtn_image_pointer image;
SpvScope scope = SpvScopeInvocation;
SpvMemorySemanticsMask semantics = 0;
enum gl_access_qualifier access = 0;
struct vtn_value *res_val;
switch (opcode) {
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicLoad:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFAddEXT:
res_val = vtn_value(b, w[3], vtn_value_type_image_pointer);
image = *res_val->image;
scope = vtn_constant_uint(b, w[4]);
semantics = vtn_constant_uint(b, w[5]);
access |= ACCESS_COHERENT;
break;
case SpvOpAtomicStore:
res_val = vtn_value(b, w[1], vtn_value_type_image_pointer);
image = *res_val->image;
scope = vtn_constant_uint(b, w[2]);
semantics = vtn_constant_uint(b, w[3]);
access |= ACCESS_COHERENT;
break;
case SpvOpImageQuerySize:
res_val = vtn_untyped_value(b, w[3]);
image.image = vtn_get_image(b, w[3]);
image.coord = NULL;
image.sample = NULL;
image.lod = NULL;
break;
case SpvOpImageRead: {
res_val = vtn_untyped_value(b, w[3]);
image.image = vtn_get_image(b, w[3]);
image.coord = get_image_coord(b, w[4]);
const SpvImageOperandsMask operands =
count > 5 ? w[5] : SpvImageOperandsMaskNone;
if (operands & SpvImageOperandsSampleMask) {
uint32_t arg = image_operand_arg(b, w, count, 5,
SpvImageOperandsSampleMask);
image.sample = vtn_get_nir_ssa(b, w[arg]);
} else {
image.sample = nir_ssa_undef(&b->nb, 1, 32);
}
if (operands & SpvImageOperandsMakeTexelVisibleMask) {
vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
"MakeTexelVisible requires NonPrivateTexel to also be set.");
uint32_t arg = image_operand_arg(b, w, count, 5,
SpvImageOperandsMakeTexelVisibleMask);
semantics = SpvMemorySemanticsMakeVisibleMask;
scope = vtn_constant_uint(b, w[arg]);
}
if (operands & SpvImageOperandsLodMask) {
uint32_t arg = image_operand_arg(b, w, count, 5,
SpvImageOperandsLodMask);
image.lod = vtn_get_nir_ssa(b, w[arg]);
} else {
image.lod = nir_imm_int(&b->nb, 0);
}
/* TODO: Volatile. */
break;
}
case SpvOpImageWrite: {
res_val = vtn_untyped_value(b, w[1]);
image.image = vtn_get_image(b, w[1]);
image.coord = get_image_coord(b, w[2]);
/* texel = w[3] */
const SpvImageOperandsMask operands =
count > 4 ? w[4] : SpvImageOperandsMaskNone;
if (operands & SpvImageOperandsSampleMask) {
uint32_t arg = image_operand_arg(b, w, count, 4,
SpvImageOperandsSampleMask);
image.sample = vtn_get_nir_ssa(b, w[arg]);
} else {
image.sample = nir_ssa_undef(&b->nb, 1, 32);
}
if (operands & SpvImageOperandsMakeTexelAvailableMask) {
vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
"MakeTexelAvailable requires NonPrivateTexel to also be set.");
uint32_t arg = image_operand_arg(b, w, count, 4,
SpvImageOperandsMakeTexelAvailableMask);
semantics = SpvMemorySemanticsMakeAvailableMask;
scope = vtn_constant_uint(b, w[arg]);
}
if (operands & SpvImageOperandsLodMask) {
uint32_t arg = image_operand_arg(b, w, count, 4,
SpvImageOperandsLodMask);
image.lod = vtn_get_nir_ssa(b, w[arg]);
} else {
image.lod = nir_imm_int(&b->nb, 0);
}
/* TODO: Volatile. */
break;
}
default:
vtn_fail_with_opcode("Invalid image opcode", opcode);
}
nir_intrinsic_op op;
switch (opcode) {
#define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
OP(ImageQuerySize, size)
OP(ImageRead, load)
OP(ImageWrite, store)
OP(AtomicLoad, load)
OP(AtomicStore, store)
OP(AtomicExchange, atomic_exchange)
OP(AtomicCompareExchange, atomic_comp_swap)
OP(AtomicCompareExchangeWeak, atomic_comp_swap)
OP(AtomicIIncrement, atomic_add)
OP(AtomicIDecrement, atomic_add)
OP(AtomicIAdd, atomic_add)
OP(AtomicISub, atomic_add)
OP(AtomicSMin, atomic_imin)
OP(AtomicUMin, atomic_umin)
OP(AtomicSMax, atomic_imax)
OP(AtomicUMax, atomic_umax)
OP(AtomicAnd, atomic_and)
OP(AtomicOr, atomic_or)
OP(AtomicXor, atomic_xor)
OP(AtomicFAddEXT, atomic_fadd)
#undef OP
default:
vtn_fail_with_opcode("Invalid image opcode", opcode);
}
nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
intrin->src[0] = nir_src_for_ssa(&image.image->dest.ssa);
/* ImageQuerySize doesn't take any extra parameters */
if (opcode != SpvOpImageQuerySize) {
/* The image coordinate is always 4 components but we may not have that
* many. Swizzle to compensate.
*/
intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
intrin->src[2] = nir_src_for_ssa(image.sample);
}
/* The Vulkan spec says:
*
* "If an instruction loads from or stores to a resource (including
* atomics and image instructions) and the resource descriptor being
* accessed is not dynamically uniform, then the operand corresponding
* to that resource (e.g. the pointer or sampled image operand) must be
* decorated with NonUniform."
*
* It's very careful to specify that the exact operand must be decorated
* NonUniform. The SPIR-V parser is not expected to chase through long
* chains to find the NonUniform decoration. It's either right there or we
* can assume it doesn't exist.
*/
vtn_foreach_decoration(b, res_val, non_uniform_decoration_cb, &access);
nir_intrinsic_set_access(intrin, access);
switch (opcode) {
case SpvOpAtomicLoad:
case SpvOpImageQuerySize:
case SpvOpImageRead:
if (opcode == SpvOpImageRead || opcode == SpvOpAtomicLoad) {
/* Only OpImageRead can support a lod parameter if
* SPV_AMD_shader_image_load_store_lod is used but the current NIR
* intrinsics definition for atomics requires us to set it for
* OpAtomicLoad.
*/
intrin->src[3] = nir_src_for_ssa(image.lod);
}
break;
case SpvOpAtomicStore:
case SpvOpImageWrite: {
const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
nir_ssa_def *value = vtn_get_nir_ssa(b, value_id);
/* nir_intrinsic_image_deref_store always takes a vec4 value */
assert(op == nir_intrinsic_image_deref_store);
intrin->num_components = 4;
intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
/* Only OpImageWrite can support a lod parameter if
* SPV_AMD_shader_image_load_store_lod is used but the current NIR
* intrinsics definition for atomics requires us to set it for
* OpAtomicStore.
*/
intrin->src[4] = nir_src_for_ssa(image.lod);
break;
}
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicExchange:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFAddEXT:
fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
break;
default:
vtn_fail_with_opcode("Invalid image opcode", opcode);
}
/* Image operations implicitly have the Image storage memory semantics. */
semantics |= SpvMemorySemanticsImageMemoryMask;
SpvMemorySemanticsMask before_semantics;
SpvMemorySemanticsMask after_semantics;
vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
if (before_semantics)
vtn_emit_memory_barrier(b, scope, before_semantics);
if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
struct vtn_type *type = vtn_get_type(b, w[1]);
unsigned dest_components = glsl_get_vector_elements(type->type);
if (nir_intrinsic_infos[op].dest_components == 0)
intrin->num_components = dest_components;
nir_ssa_dest_init(&intrin->instr, &intrin->dest,
nir_intrinsic_dest_components(intrin), 32, NULL);
nir_builder_instr_insert(&b->nb, &intrin->instr);
nir_ssa_def *result = &intrin->dest.ssa;
if (nir_intrinsic_dest_components(intrin) != dest_components)
result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
vtn_push_nir_ssa(b, w[2], result);
} else {
nir_builder_instr_insert(&b->nb, &intrin->instr);
}
if (after_semantics)
vtn_emit_memory_barrier(b, scope, after_semantics);
}
static nir_intrinsic_op
get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
{
switch (opcode) {
case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
#define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
OP(AtomicExchange, atomic_exchange)
OP(AtomicCompareExchange, atomic_comp_swap)
OP(AtomicCompareExchangeWeak, atomic_comp_swap)
OP(AtomicIIncrement, atomic_add)
OP(AtomicIDecrement, atomic_add)
OP(AtomicIAdd, atomic_add)
OP(AtomicISub, atomic_add)
OP(AtomicSMin, atomic_imin)
OP(AtomicUMin, atomic_umin)
OP(AtomicSMax, atomic_imax)
OP(AtomicUMax, atomic_umax)
OP(AtomicAnd, atomic_and)
OP(AtomicOr, atomic_or)
OP(AtomicXor, atomic_xor)
OP(AtomicFAddEXT, atomic_fadd)
#undef OP
default:
vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
}
}
static nir_intrinsic_op
get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
{
switch (opcode) {
#define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
OP(AtomicLoad, read_deref)
OP(AtomicExchange, exchange)
OP(AtomicCompareExchange, comp_swap)
OP(AtomicCompareExchangeWeak, comp_swap)
OP(AtomicIIncrement, inc_deref)
OP(AtomicIDecrement, post_dec_deref)
OP(AtomicIAdd, add_deref)
OP(AtomicISub, add_deref)
OP(AtomicUMin, min_deref)
OP(AtomicUMax, max_deref)
OP(AtomicAnd, and_deref)
OP(AtomicOr, or_deref)
OP(AtomicXor, xor_deref)
#undef OP
default:
/* We left the following out: AtomicStore, AtomicSMin and
* AtomicSmax. Right now there are not nir intrinsics for them. At this
* moment Atomic Counter support is needed for ARB_spirv support, so is
* only need to support GLSL Atomic Counters that are uints and don't
* allow direct storage.
*/
vtn_fail("Invalid uniform atomic");
}
}
static nir_intrinsic_op
get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
{
switch (opcode) {
case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
case SpvOpAtomicStore: return nir_intrinsic_store_deref;
#define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
OP(AtomicExchange, atomic_exchange)
OP(AtomicCompareExchange, atomic_comp_swap)
OP(AtomicCompareExchangeWeak, atomic_comp_swap)
OP(AtomicIIncrement, atomic_add)
OP(AtomicIDecrement, atomic_add)
OP(AtomicIAdd, atomic_add)
OP(AtomicISub, atomic_add)
OP(AtomicSMin, atomic_imin)
OP(AtomicUMin, atomic_umin)
OP(AtomicSMax, atomic_imax)
OP(AtomicUMax, atomic_umax)
OP(AtomicAnd, atomic_and)
OP(AtomicOr, atomic_or)
OP(AtomicXor, atomic_xor)
OP(AtomicFAddEXT, atomic_fadd)
#undef OP
default:
vtn_fail_with_opcode("Invalid shared atomic", opcode);
}
}
/*
* Handles shared atomics, ssbo atomics and atomic counters.
*/
static void
vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, UNUSED unsigned count)
{
struct vtn_pointer *ptr;
nir_intrinsic_instr *atomic;
SpvScope scope = SpvScopeInvocation;
SpvMemorySemanticsMask semantics = 0;
switch (opcode) {
case SpvOpAtomicLoad:
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFAddEXT:
ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
scope = vtn_constant_uint(b, w[4]);
semantics = vtn_constant_uint(b, w[5]);
break;
case SpvOpAtomicStore:
ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
scope = vtn_constant_uint(b, w[2]);
semantics = vtn_constant_uint(b, w[3]);
break;
default:
vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
}
/* uniform as "atomic counter uniform" */
if (ptr->mode == vtn_variable_mode_atomic_counter) {
nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
atomic = nir_intrinsic_instr_create(b->nb.shader, op);
atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
/* SSBO needs to initialize index/offset. In this case we don't need to,
* as that info is already stored on the ptr->var->var nir_variable (see
* vtn_create_variable)
*/
switch (opcode) {
case SpvOpAtomicLoad:
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
/* Nothing: we don't need to call fill_common_atomic_sources here, as
* atomic counter uniforms doesn't have sources
*/
break;
default:
unreachable("Invalid SPIR-V atomic");
}
} else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
nir_ssa_def *offset, *index;
offset = vtn_pointer_to_offset(b, ptr, &index);
assert(ptr->mode == vtn_variable_mode_ssbo);
nir_intrinsic_op op = get_ssbo_nir_atomic_op(b, opcode);
atomic = nir_intrinsic_instr_create(b->nb.shader, op);
nir_intrinsic_set_access(atomic, ACCESS_COHERENT);
int src = 0;
switch (opcode) {
case SpvOpAtomicLoad:
atomic->num_components = glsl_get_vector_elements(ptr->type->type);
nir_intrinsic_set_align(atomic, 4, 0);
if (ptr->mode == vtn_variable_mode_ssbo)
atomic->src[src++] = nir_src_for_ssa(index);
atomic->src[src++] = nir_src_for_ssa(offset);
break;
case SpvOpAtomicStore:
atomic->num_components = glsl_get_vector_elements(ptr->type->type);
nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
nir_intrinsic_set_align(atomic, 4, 0);
atomic->src[src++] = nir_src_for_ssa(vtn_get_nir_ssa(b, w[4]));
if (ptr->mode == vtn_variable_mode_ssbo)
atomic->src[src++] = nir_src_for_ssa(index);
atomic->src[src++] = nir_src_for_ssa(offset);
break;
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFAddEXT:
if (ptr->mode == vtn_variable_mode_ssbo)
atomic->src[src++] = nir_src_for_ssa(index);
atomic->src[src++] = nir_src_for_ssa(offset);
fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
break;
default:
vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
}
} else {
nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
const struct glsl_type *deref_type = deref->type;
nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
atomic = nir_intrinsic_instr_create(b->nb.shader, op);
atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
if (ptr->mode != vtn_variable_mode_workgroup)
nir_intrinsic_set_access(atomic, ACCESS_COHERENT);
switch (opcode) {
case SpvOpAtomicLoad:
atomic->num_components = glsl_get_vector_elements(deref_type);
break;
case SpvOpAtomicStore:
atomic->num_components = glsl_get_vector_elements(deref_type);
nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
atomic->src[1] = nir_src_for_ssa(vtn_get_nir_ssa(b, w[4]));
break;
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFAddEXT:
fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
break;
default:
vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
}
}
/* Atomic ordering operations will implicitly apply to the atomic operation
* storage class, so include that too.
*/
semantics |= vtn_storage_class_to_memory_semantics(ptr->ptr_type->storage_class);
SpvMemorySemanticsMask before_semantics;
SpvMemorySemanticsMask after_semantics;
vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
if (before_semantics)
vtn_emit_memory_barrier(b, scope, before_semantics);
if (opcode != SpvOpAtomicStore) {
struct vtn_type *type = vtn_get_type(b, w[1]);
nir_ssa_dest_init(&atomic->instr, &atomic->dest,
glsl_get_vector_elements(type->type),
glsl_get_bit_size(type->type), NULL);
vtn_push_nir_ssa(b, w[2], &atomic->dest.ssa);
}
nir_builder_instr_insert(&b->nb, &atomic->instr);
if (after_semantics)
vtn_emit_memory_barrier(b, scope, after_semantics);
}
static nir_alu_instr *
create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
{
nir_op op = nir_op_vec(num_components);
nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
bit_size, NULL);
vec->dest.write_mask = (1 << num_components) - 1;
return vec;
}
struct vtn_ssa_value *
vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
{
if (src->transposed)
return src->transposed;
struct vtn_ssa_value *dest =
vtn_create_ssa_value(b, glsl_transposed_type(src->type));
for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
glsl_get_bit_size(src->type));
if (glsl_type_is_vector_or_scalar(src->type)) {
vec->src[0].src = nir_src_for_ssa(src->def);
vec->src[0].swizzle[0] = i;
} else {
for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
vec->src[j].swizzle[0] = i;
}
}
nir_builder_instr_insert(&b->nb, &vec->instr);
dest->elems[i]->def = &vec->dest.dest.ssa;
}
dest->transposed = src;
return dest;
}
static nir_ssa_def *
vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
nir_ssa_def *src0, nir_ssa_def *src1,
const uint32_t *indices)
{
nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
for (unsigned i = 0; i < num_components; i++) {
uint32_t index = indices[i];
if (index == 0xffffffff) {
vec->src[i].src =
nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
} else if (index < src0->num_components) {
vec->src[i].src = nir_src_for_ssa(src0);
vec->src[i].swizzle[0] = index;
} else {
vec->src[i].src = nir_src_for_ssa(src1);
vec->src[i].swizzle[0] = index - src0->num_components;
}
}
nir_builder_instr_insert(&b->nb, &vec->instr);
return &vec->dest.dest.ssa;
}
/*
* Concatentates a number of vectors/scalars together to produce a vector
*/
static nir_ssa_def *
vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
unsigned num_srcs, nir_ssa_def **srcs)
{
nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
/* From the SPIR-V 1.1 spec for OpCompositeConstruct:
*
* "When constructing a vector, there must be at least two Constituent
* operands."
*/
vtn_assert(num_srcs >= 2);
unsigned dest_idx = 0;
for (unsigned i = 0; i < num_srcs; i++) {
nir_ssa_def *src = srcs[i];
vtn_assert(dest_idx + src->num_components <= num_components);
for (unsigned j = 0; j < src->num_components; j++) {
vec->src[dest_idx].src = nir_src_for_ssa(src);
vec->src[dest_idx].swizzle[0] = j;
dest_idx++;
}
}
/* From the SPIR-V 1.1 spec for OpCompositeConstruct:
*
* "When constructing a vector, the total number of components in all
* the operands must equal the number of components in Result Type."
*/
vtn_assert(dest_idx == num_components);
nir_builder_instr_insert(&b->nb, &vec->instr);
return &vec->dest.dest.ssa;
}
static struct vtn_ssa_value *
vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
{
struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
dest->type = src->type;
if (glsl_type_is_vector_or_scalar(src->type)) {
dest->def = src->def;
} else {
unsigned elems = glsl_get_length(src->type);
dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
for (unsigned i = 0; i < elems; i++)
dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
}
return dest;
}
static struct vtn_ssa_value *
vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
struct vtn_ssa_value *insert, const uint32_t *indices,
unsigned num_indices)
{
struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
struct vtn_ssa_value *cur = dest;
unsigned i;
for (i = 0; i < num_indices - 1; i++) {
/* If we got a vector here, that means the next index will be trying to
* dereference a scalar.
*/
vtn_fail_if(glsl_type_is_vector_or_scalar(cur->type),
"OpCompositeInsert has too many indices.");
vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
"All indices in an OpCompositeInsert must be in-bounds");
cur = cur->elems[indices[i]];
}
if (glsl_type_is_vector_or_scalar(cur->type)) {
vtn_fail_if(indices[i] >= glsl_get_vector_elements(cur->type),
"All indices in an OpCompositeInsert must be in-bounds");
/* According to the SPIR-V spec, OpCompositeInsert may work down to
* the component granularity. In that case, the last index will be
* the index to insert the scalar into the vector.
*/
cur->def = nir_vector_insert_imm(&b->nb, cur->def, insert->def, indices[i]);
} else {
vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
"All indices in an OpCompositeInsert must be in-bounds");
cur->elems[indices[i]] = insert;
}
return dest;
}
static struct vtn_ssa_value *
vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
const uint32_t *indices, unsigned num_indices)
{
struct vtn_ssa_value *cur = src;
for (unsigned i = 0; i < num_indices; i++) {
if (glsl_type_is_vector_or_scalar(cur->type)) {
vtn_assert(i == num_indices - 1);
vtn_fail_if(indices[i] >= glsl_get_vector_elements(cur->type),
"All indices in an OpCompositeExtract must be in-bounds");
/* According to the SPIR-V spec, OpCompositeExtract may work down to
* the component granularity. The last index will be the index of the
* vector to extract.
*/
const struct glsl_type *scalar_type =
glsl_scalar_type(glsl_get_base_type(cur->type));
struct vtn_ssa_value *ret = vtn_create_ssa_value(b, scalar_type);
ret->def = nir_channel(&b->nb, cur->def, indices[i]);
return ret;
} else {
vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
"All indices in an OpCompositeExtract must be in-bounds");
cur = cur->elems[indices[i]];
}
}
return cur;
}
static void
vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_type *type = vtn_get_type(b, w[1]);
struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
switch (opcode) {
case SpvOpVectorExtractDynamic:
ssa->def = nir_vector_extract(&b->nb, vtn_get_nir_ssa(b, w[3]),
vtn_get_nir_ssa(b, w[4]));
break;
case SpvOpVectorInsertDynamic:
ssa->def = nir_vector_insert(&b->nb, vtn_get_nir_ssa(b, w[3]),
vtn_get_nir_ssa(b, w[4]),
vtn_get_nir_ssa(b, w[5]));
break;
case SpvOpVectorShuffle:
ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type->type),
vtn_get_nir_ssa(b, w[3]),
vtn_get_nir_ssa(b, w[4]),
w + 5);
break;
case SpvOpCompositeConstruct: {
unsigned elems = count - 3;
assume(elems >= 1);
if (glsl_type_is_vector_or_scalar(type->type)) {
nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < elems; i++)
srcs[i] = vtn_get_nir_ssa(b, w[3 + i]);
ssa->def =
vtn_vector_construct(b, glsl_get_vector_elements(type->type),
elems, srcs);
} else {
ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
for (unsigned i = 0; i < elems; i++)
ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
}
break;
}
case SpvOpCompositeExtract:
ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
w + 4, count - 4);
break;
case SpvOpCompositeInsert:
ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
vtn_ssa_value(b, w[3]),
w + 5, count - 5);
break;
case SpvOpCopyLogical:
ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
break;
case SpvOpCopyObject:
vtn_copy_value(b, w[3], w[2]);
return;
default:
vtn_fail_with_opcode("unknown composite operation", opcode);
}
vtn_push_ssa_value(b, w[2], ssa);
}
static void
vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
{
nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
nir_builder_instr_insert(&b->nb, &intrin->instr);
}
void
vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
SpvMemorySemanticsMask semantics)
{
if (b->shader->options->use_scoped_barrier) {
vtn_emit_scoped_memory_barrier(b, scope, semantics);
return;
}
static const SpvMemorySemanticsMask all_memory_semantics =
SpvMemorySemanticsUniformMemoryMask |
SpvMemorySemanticsWorkgroupMemoryMask |
SpvMemorySemanticsAtomicCounterMemoryMask |
SpvMemorySemanticsImageMemoryMask |
SpvMemorySemanticsOutputMemoryMask;
/* If we're not actually doing a memory barrier, bail */
if (!(semantics & all_memory_semantics))
return;
/* GL and Vulkan don't have these */
vtn_assert(scope != SpvScopeCrossDevice);
if (scope == SpvScopeSubgroup)
return; /* Nothing to do here */
if (scope == SpvScopeWorkgroup) {
vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
return;
}
/* There's only two scopes thing left */
vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
/* Map the GLSL memoryBarrier() construct and any barriers with more than one
* semantic to the corresponding NIR one.
*/
if (util_bitcount(semantics & all_memory_semantics) > 1) {
vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
if (semantics & SpvMemorySemanticsOutputMemoryMask) {
/* GLSL memoryBarrier() (and the corresponding NIR one) doesn't include
* TCS outputs, so we have to emit it's own intrinsic for that. We
* then need to emit another memory_barrier to prevent moving
* non-output operations to before the tcs_patch barrier.
*/
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_tcs_patch);
vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
}
return;
}
/* Issue a more specific barrier */
switch (semantics & all_memory_semantics) {
case SpvMemorySemanticsUniformMemoryMask:
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
break;
case SpvMemorySemanticsWorkgroupMemoryMask:
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
break;
case SpvMemorySemanticsAtomicCounterMemoryMask:
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
break;
case SpvMemorySemanticsImageMemoryMask:
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
break;
case SpvMemorySemanticsOutputMemoryMask:
if (b->nb.shader->info.stage == MESA_SHADER_TESS_CTRL)
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_tcs_patch);
break;
default:
break;
}
}
static void
vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, UNUSED unsigned count)
{
switch (opcode) {
case SpvOpEmitVertex:
case SpvOpEmitStreamVertex:
case SpvOpEndPrimitive:
case SpvOpEndStreamPrimitive: {
nir_intrinsic_op intrinsic_op;
switch (opcode) {
case SpvOpEmitVertex:
case SpvOpEmitStreamVertex:
intrinsic_op = nir_intrinsic_emit_vertex;
break;
case SpvOpEndPrimitive:
case SpvOpEndStreamPrimitive:
intrinsic_op = nir_intrinsic_end_primitive;
break;
default:
unreachable("Invalid opcode");
}
nir_intrinsic_instr *intrin =
nir_intrinsic_instr_create(b->shader, intrinsic_op);
switch (opcode) {
case SpvOpEmitStreamVertex:
case SpvOpEndStreamPrimitive: {
unsigned stream = vtn_constant_uint(b, w[1]);
nir_intrinsic_set_stream_id(intrin, stream);
break;
}
default:
break;
}
nir_builder_instr_insert(&b->nb, &intrin->instr);
break;
}
case SpvOpMemoryBarrier: {
SpvScope scope = vtn_constant_uint(b, w[1]);
SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
vtn_emit_memory_barrier(b, scope, semantics);
return;
}
case SpvOpControlBarrier: {
SpvScope execution_scope = vtn_constant_uint(b, w[1]);
SpvScope memory_scope = vtn_constant_uint(b, w[2]);
SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
/* GLSLang, prior to commit 8297936dd6eb3, emitted OpControlBarrier with
* memory semantics of None for GLSL barrier().
* And before that, prior to c3f1cdfa, emitted the OpControlBarrier with
* Device instead of Workgroup for execution scope.
*/
if (b->wa_glslang_cs_barrier &&
b->nb.shader->info.stage == MESA_SHADER_COMPUTE &&
(execution_scope == SpvScopeWorkgroup ||
execution_scope == SpvScopeDevice) &&
memory_semantics == SpvMemorySemanticsMaskNone) {
execution_scope = SpvScopeWorkgroup;
memory_scope = SpvScopeWorkgroup;
memory_semantics = SpvMemorySemanticsAcquireReleaseMask |
SpvMemorySemanticsWorkgroupMemoryMask;
}
/* From the SPIR-V spec:
*
* "When used with the TessellationControl execution model, it also
* implicitly synchronizes the Output Storage Class: Writes to Output
* variables performed by any invocation executed prior to a
* OpControlBarrier will be visible to any other invocation after
* return from that OpControlBarrier."
*/
if (b->nb.shader->info.stage == MESA_SHADER_TESS_CTRL) {
memory_semantics &= ~(SpvMemorySemanticsAcquireMask |
SpvMemorySemanticsReleaseMask |
SpvMemorySemanticsAcquireReleaseMask |
SpvMemorySemanticsSequentiallyConsistentMask);
memory_semantics |= SpvMemorySemanticsAcquireReleaseMask |
SpvMemorySemanticsOutputMemoryMask;
}
if (b->shader->options->use_scoped_barrier) {
vtn_emit_scoped_control_barrier(b, execution_scope, memory_scope,
memory_semantics);
} else {
vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
if (execution_scope == SpvScopeWorkgroup)
vtn_emit_barrier(b, nir_intrinsic_control_barrier);
}
break;
}
default:
unreachable("unknown barrier instruction");
}
}
static unsigned
gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
SpvExecutionMode mode)
{
switch (mode) {
case SpvExecutionModeInputPoints:
case SpvExecutionModeOutputPoints:
return 0; /* GL_POINTS */
case SpvExecutionModeInputLines:
return 1; /* GL_LINES */
case SpvExecutionModeInputLinesAdjacency:
return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
case SpvExecutionModeTriangles:
return 4; /* GL_TRIANGLES */
case SpvExecutionModeInputTrianglesAdjacency:
return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
case SpvExecutionModeQuads:
return 7; /* GL_QUADS */
case SpvExecutionModeIsolines:
return 0x8E7A; /* GL_ISOLINES */
case SpvExecutionModeOutputLineStrip:
return 3; /* GL_LINE_STRIP */
case SpvExecutionModeOutputTriangleStrip:
return 5; /* GL_TRIANGLE_STRIP */
default:
vtn_fail("Invalid primitive type: %s (%u)",
spirv_executionmode_to_string(mode), mode);
}
}
static unsigned
vertices_in_from_spv_execution_mode(struct vtn_builder *b,
SpvExecutionMode mode)
{
switch (mode) {
case SpvExecutionModeInputPoints:
return 1;
case SpvExecutionModeInputLines:
return 2;
case SpvExecutionModeInputLinesAdjacency:
return 4;
case SpvExecutionModeTriangles:
return 3;
case SpvExecutionModeInputTrianglesAdjacency:
return 6;
default:
vtn_fail("Invalid GS input mode: %s (%u)",
spirv_executionmode_to_string(mode), mode);
}
}
static gl_shader_stage
stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
{
switch (model) {
case SpvExecutionModelVertex:
return MESA_SHADER_VERTEX;
case SpvExecutionModelTessellationControl:
return MESA_SHADER_TESS_CTRL;
case SpvExecutionModelTessellationEvaluation:
return MESA_SHADER_TESS_EVAL;
case SpvExecutionModelGeometry:
return MESA_SHADER_GEOMETRY;
case SpvExecutionModelFragment:
return MESA_SHADER_FRAGMENT;
case SpvExecutionModelGLCompute:
return MESA_SHADER_COMPUTE;
case SpvExecutionModelKernel:
return MESA_SHADER_KERNEL;
default:
vtn_fail("Unsupported execution model: %s (%u)",
spirv_executionmodel_to_string(model), model);
}
}
#define spv_check_supported(name, cap) do { \
if (!(b->options && b->options->caps.name)) \
vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
spirv_capability_to_string(cap), cap); \
} while(0)
void
vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
unsigned count)
{
struct vtn_value *entry_point = &b->values[w[2]];
/* Let this be a name label regardless */
unsigned name_words;
entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
stage_for_execution_model(b, w[1]) != b->entry_point_stage)
return;
vtn_assert(b->entry_point == NULL);
b->entry_point = entry_point;
}
static bool
vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpSource: {
const char *lang;
switch (w[1]) {
default:
case SpvSourceLanguageUnknown: lang = "unknown"; break;
case SpvSourceLanguageESSL: lang = "ESSL"; break;
case SpvSourceLanguageGLSL: lang = "GLSL"; break;
case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
case SpvSourceLanguageHLSL: lang = "HLSL"; break;
}
uint32_t version = w[2];
const char *file =
(count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
break;
}
case SpvOpSourceExtension:
case SpvOpSourceContinued:
case SpvOpExtension:
case SpvOpModuleProcessed:
/* Unhandled, but these are for debug so that's ok. */
break;
case SpvOpCapability: {
SpvCapability cap = w[1];
switch (cap) {
case SpvCapabilityMatrix:
case SpvCapabilityShader:
case SpvCapabilityGeometry:
case SpvCapabilityGeometryPointSize:
case SpvCapabilityUniformBufferArrayDynamicIndexing:
case SpvCapabilitySampledImageArrayDynamicIndexing:
case SpvCapabilityStorageBufferArrayDynamicIndexing:
case SpvCapabilityStorageImageArrayDynamicIndexing:
case SpvCapabilityImageRect:
case SpvCapabilitySampledRect:
case SpvCapabilitySampled1D:
case SpvCapabilityImage1D:
case SpvCapabilitySampledCubeArray:
case SpvCapabilityImageCubeArray:
case SpvCapabilitySampledBuffer:
case SpvCapabilityImageBuffer:
case SpvCapabilityImageQuery:
case SpvCapabilityDerivativeControl:
case SpvCapabilityInterpolationFunction:
case SpvCapabilityMultiViewport:
case SpvCapabilitySampleRateShading:
case SpvCapabilityClipDistance:
case SpvCapabilityCullDistance:
case SpvCapabilityInputAttachment:
case SpvCapabilityImageGatherExtended:
case SpvCapabilityStorageImageExtendedFormats:
case SpvCapabilityVector16:
break;
case SpvCapabilityLinkage:
case SpvCapabilityFloat16Buffer:
case SpvCapabilitySparseResidency:
vtn_warn("Unsupported SPIR-V capability: %s",
spirv_capability_to_string(cap));
break;
case SpvCapabilityMinLod:
spv_check_supported(min_lod, cap);
break;
case SpvCapabilityAtomicStorage:
spv_check_supported(atomic_storage, cap);
break;
case SpvCapabilityFloat64:
spv_check_supported(float64, cap);
break;
case SpvCapabilityInt64:
spv_check_supported(int64, cap);
break;
case SpvCapabilityInt16:
spv_check_supported(int16, cap);
break;
case SpvCapabilityInt8:
spv_check_supported(int8, cap);
break;
case SpvCapabilityTransformFeedback:
spv_check_supported(transform_feedback, cap);
break;
case SpvCapabilityGeometryStreams:
spv_check_supported(geometry_streams, cap);
break;
case SpvCapabilityInt64Atomics:
spv_check_supported(int64_atomics, cap);
break;
case SpvCapabilityStorageImageMultisample:
spv_check_supported(storage_image_ms, cap);
break;
case SpvCapabilityAddresses:
spv_check_supported(address, cap);
break;
case SpvCapabilityKernel:
spv_check_supported(kernel, cap);
break;
case SpvCapabilityImageBasic:
case SpvCapabilityImageReadWrite:
case SpvCapabilityImageMipmap:
case SpvCapabilityPipes:
case SpvCapabilityDeviceEnqueue:
case SpvCapabilityLiteralSampler:
case SpvCapabilityGenericPointer:
vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
spirv_capability_to_string(cap));
break;
case SpvCapabilityImageMSArray:
spv_check_supported(image_ms_array, cap);
break;
case SpvCapabilityTessellation:
case SpvCapabilityTessellationPointSize:
spv_check_supported(tessellation, cap);
break;
case SpvCapabilityDrawParameters:
spv_check_supported(draw_parameters, cap);
break;
case SpvCapabilityStorageImageReadWithoutFormat:
spv_check_supported(image_read_without_format, cap);
break;
case SpvCapabilityStorageImageWriteWithoutFormat:
spv_check_supported(image_write_without_format, cap);
break;
case SpvCapabilityDeviceGroup:
spv_check_supported(device_group, cap);
break;
case SpvCapabilityMultiView:
spv_check_supported(multiview, cap);
break;
case SpvCapabilityGroupNonUniform:
spv_check_supported(subgroup_basic, cap);
break;
case SpvCapabilitySubgroupVoteKHR:
case SpvCapabilityGroupNonUniformVote:
spv_check_supported(subgroup_vote, cap);
break;
case SpvCapabilitySubgroupBallotKHR:
case SpvCapabilityGroupNonUniformBallot:
spv_check_supported(subgroup_ballot, cap);
break;
case SpvCapabilityGroupNonUniformShuffle:
case SpvCapabilityGroupNonUniformShuffleRelative:
spv_check_supported(subgroup_shuffle, cap);
break;
case SpvCapabilityGroupNonUniformQuad:
spv_check_supported(subgroup_quad, cap);
break;
case SpvCapabilityGroupNonUniformArithmetic:
case SpvCapabilityGroupNonUniformClustered:
spv_check_supported(subgroup_arithmetic, cap);
break;
case SpvCapabilityGroups:
spv_check_supported(amd_shader_ballot, cap);
break;
case SpvCapabilityVariablePointersStorageBuffer:
case SpvCapabilityVariablePointers:
spv_check_supported(variable_pointers, cap);
b->variable_pointers = true;
break;
case SpvCapabilityStorageUniformBufferBlock16:
case SpvCapabilityStorageUniform16:
case SpvCapabilityStoragePushConstant16:
case SpvCapabilityStorageInputOutput16:
spv_check_supported(storage_16bit, cap);
break;
case SpvCapabilityShaderLayer:
case SpvCapabilityShaderViewportIndex:
case SpvCapabilityShaderViewportIndexLayerEXT:
spv_check_supported(shader_viewport_index_layer, cap);
break;
case SpvCapabilityStorageBuffer8BitAccess:
case SpvCapabilityUniformAndStorageBuffer8BitAccess:
case SpvCapabilityStoragePushConstant8:
spv_check_supported(storage_8bit, cap);
break;
case SpvCapabilityShaderNonUniformEXT:
spv_check_supported(descriptor_indexing, cap);
break;
case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
spv_check_supported(descriptor_array_dynamic_indexing, cap);
break;
case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
spv_check_supported(descriptor_array_non_uniform_indexing, cap);
break;
case SpvCapabilityRuntimeDescriptorArrayEXT:
spv_check_supported(runtime_descriptor_array, cap);
break;
case SpvCapabilityStencilExportEXT:
spv_check_supported(stencil_export, cap);
break;
case SpvCapabilitySampleMaskPostDepthCoverage:
spv_check_supported(post_depth_coverage, cap);
break;
case SpvCapabilityDenormFlushToZero:
case SpvCapabilityDenormPreserve:
case SpvCapabilitySignedZeroInfNanPreserve:
case SpvCapabilityRoundingModeRTE:
case SpvCapabilityRoundingModeRTZ:
spv_check_supported(float_controls, cap);
break;
case SpvCapabilityPhysicalStorageBufferAddresses:
spv_check_supported(physical_storage_buffer_address, cap);
break;
case SpvCapabilityComputeDerivativeGroupQuadsNV:
case SpvCapabilityComputeDerivativeGroupLinearNV:
spv_check_supported(derivative_group, cap);
break;
case SpvCapabilityFloat16:
spv_check_supported(float16, cap);
break;
case SpvCapabilityFragmentShaderSampleInterlockEXT:
spv_check_supported(fragment_shader_sample_interlock, cap);
break;
case SpvCapabilityFragmentShaderPixelInterlockEXT:
spv_check_supported(fragment_shader_pixel_interlock, cap);
break;
case SpvCapabilityDemoteToHelperInvocationEXT:
spv_check_supported(demote_to_helper_invocation, cap);
break;
case SpvCapabilityShaderClockKHR:
spv_check_supported(shader_clock, cap);
break;
case SpvCapabilityVulkanMemoryModel:
spv_check_supported(vk_memory_model, cap);
break;
case SpvCapabilityVulkanMemoryModelDeviceScope:
spv_check_supported(vk_memory_model_device_scope, cap);
break;
case SpvCapabilityImageReadWriteLodAMD:
spv_check_supported(amd_image_read_write_lod, cap);
break;
case SpvCapabilityIntegerFunctions2INTEL:
spv_check_supported(integer_functions2, cap);
break;
case SpvCapabilityFragmentMaskAMD:
spv_check_supported(amd_fragment_mask, cap);
break;
case SpvCapabilityImageGatherBiasLodAMD:
spv_check_supported(amd_image_gather_bias_lod, cap);
break;
case SpvCapabilityAtomicFloat32AddEXT:
spv_check_supported(float32_atomic_add, cap);
break;
case SpvCapabilityAtomicFloat64AddEXT:
spv_check_supported(float64_atomic_add, cap);
break;
default:
vtn_fail("Unhandled capability: %s (%u)",
spirv_capability_to_string(cap), cap);
}
break;
}
case SpvOpExtInstImport:
vtn_handle_extension(b, opcode, w, count);
break;
case SpvOpMemoryModel:
switch (w[1]) {
case SpvAddressingModelPhysical32:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
"AddressingModelPhysical32 only supported for kernels");
b->shader->info.cs.ptr_size = 32;
b->physical_ptrs = true;
b->options->shared_addr_format = nir_address_format_32bit_global;
b->options->global_addr_format = nir_address_format_32bit_global;
b->options->temp_addr_format = nir_address_format_32bit_global;
break;
case SpvAddressingModelPhysical64:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
"AddressingModelPhysical64 only supported for kernels");
b->shader->info.cs.ptr_size = 64;
b->physical_ptrs = true;
b->options->shared_addr_format = nir_address_format_64bit_global;
b->options->global_addr_format = nir_address_format_64bit_global;
b->options->temp_addr_format = nir_address_format_64bit_global;
break;
case SpvAddressingModelLogical:
vtn_fail_if(b->shader->info.stage == MESA_SHADER_KERNEL,
"AddressingModelLogical only supported for shaders");
b->physical_ptrs = false;
break;
case SpvAddressingModelPhysicalStorageBuffer64:
vtn_fail_if(!b->options ||
!b->options->caps.physical_storage_buffer_address,
"AddressingModelPhysicalStorageBuffer64 not supported");
break;
default:
vtn_fail("Unknown addressing model: %s (%u)",
spirv_addressingmodel_to_string(w[1]), w[1]);
break;
}
b->mem_model = w[2];
switch (w[2]) {
case SpvMemoryModelSimple:
case SpvMemoryModelGLSL450:
case SpvMemoryModelOpenCL:
break;
case SpvMemoryModelVulkan:
vtn_fail_if(!b->options->caps.vk_memory_model,
"Vulkan memory model is unsupported by this driver");
break;
default:
vtn_fail("Unsupported memory model: %s",
spirv_memorymodel_to_string(w[2]));
break;
}
break;
case SpvOpEntryPoint:
vtn_handle_entry_point(b, w, count);
break;
case SpvOpString:
vtn_push_value(b, w[1], vtn_value_type_string)->str =
vtn_string_literal(b, &w[2], count - 2, NULL);
break;
case SpvOpName:
b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
break;
case SpvOpMemberName:
/* TODO */
break;
case SpvOpExecutionMode:
case SpvOpExecutionModeId:
case SpvOpDecorationGroup:
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpMemberDecorate:
case SpvOpGroupDecorate:
case SpvOpGroupMemberDecorate:
case SpvOpDecorateString:
case SpvOpMemberDecorateString:
vtn_handle_decoration(b, opcode, w, count);
break;
case SpvOpExtInst: {
struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
if (val->ext_handler == vtn_handle_non_semantic_instruction) {
/* NonSemantic extended instructions are acceptable in preamble. */
vtn_handle_non_semantic_instruction(b, w[4], w, count);
return true;
} else {
return false; /* End of preamble. */
}
}
default:
return false; /* End of preamble */
}
return true;
}
static void
vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
const struct vtn_decoration *mode, UNUSED void *data)
{
vtn_assert(b->entry_point == entry_point);
switch(mode->exec_mode) {
case SpvExecutionModeOriginUpperLeft:
case SpvExecutionModeOriginLowerLeft:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.origin_upper_left =
(mode->exec_mode == SpvExecutionModeOriginUpperLeft);
break;
case SpvExecutionModeEarlyFragmentTests:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.early_fragment_tests = true;
break;
case SpvExecutionModePostDepthCoverage:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.post_depth_coverage = true;
break;
case SpvExecutionModeInvocations:
vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
break;
case SpvExecutionModeDepthReplacing:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
break;
case SpvExecutionModeDepthGreater:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
break;
case SpvExecutionModeDepthLess:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
break;
case SpvExecutionModeDepthUnchanged:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
break;
case SpvExecutionModeLocalSize:
vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
b->shader->info.cs.local_size[0] = mode->operands[0];
b->shader->info.cs.local_size[1] = mode->operands[1];
b->shader->info.cs.local_size[2] = mode->operands[2];
break;
case SpvExecutionModeLocalSizeHint:
break; /* Nothing to do with this */
case SpvExecutionModeOutputVertices:
if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
b->shader->info.tess.tcs_vertices_out = mode->operands[0];
} else {
vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
b->shader->info.gs.vertices_out = mode->operands[0];
}
break;
case SpvExecutionModeInputPoints:
case SpvExecutionModeInputLines:
case SpvExecutionModeInputLinesAdjacency:
case SpvExecutionModeTriangles:
case SpvExecutionModeInputTrianglesAdjacency:
case SpvExecutionModeQuads:
case SpvExecutionModeIsolines:
if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
b->shader->info.tess.primitive_mode =
gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
} else {
vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
b->shader->info.gs.vertices_in =
vertices_in_from_spv_execution_mode(b, mode->exec_mode);
b->shader->info.gs.input_primitive =
gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
}
break;
case SpvExecutionModeOutputPoints:
case SpvExecutionModeOutputLineStrip:
case SpvExecutionModeOutputTriangleStrip:
vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
b->shader->info.gs.output_primitive =
gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
break;
case SpvExecutionModeSpacingEqual:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
break;
case SpvExecutionModeSpacingFractionalEven:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
break;
case SpvExecutionModeSpacingFractionalOdd:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
break;
case SpvExecutionModeVertexOrderCw:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.ccw = false;
break;
case SpvExecutionModeVertexOrderCcw:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.ccw = true;
break;
case SpvExecutionModePointMode:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.point_mode = true;
break;
case SpvExecutionModePixelCenterInteger:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.pixel_center_integer = true;
break;
case SpvExecutionModeXfb:
b->shader->info.has_transform_feedback_varyings = true;
break;
case SpvExecutionModeVecTypeHint:
break; /* OpenCL */
case SpvExecutionModeContractionOff:
if (b->shader->info.stage != MESA_SHADER_KERNEL)
vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
spirv_executionmode_to_string(mode->exec_mode));
else
b->exact = true;
break;
case SpvExecutionModeStencilRefReplacingEXT:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
break;
case SpvExecutionModeDerivativeGroupQuadsNV:
vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
break;
case SpvExecutionModeDerivativeGroupLinearNV:
vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
break;
case SpvExecutionModePixelInterlockOrderedEXT:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.pixel_interlock_ordered = true;
break;
case SpvExecutionModePixelInterlockUnorderedEXT:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.pixel_interlock_unordered = true;
break;
case SpvExecutionModeSampleInterlockOrderedEXT:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.sample_interlock_ordered = true;
break;
case SpvExecutionModeSampleInterlockUnorderedEXT:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.sample_interlock_unordered = true;
break;
case SpvExecutionModeDenormPreserve:
case SpvExecutionModeDenormFlushToZero:
case SpvExecutionModeSignedZeroInfNanPreserve:
case SpvExecutionModeRoundingModeRTE:
case SpvExecutionModeRoundingModeRTZ: {
unsigned execution_mode = 0;
switch (mode->exec_mode) {
case SpvExecutionModeDenormPreserve:
switch (mode->operands[0]) {
case 16: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP16; break;
case 32: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP32; break;
case 64: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP64; break;
default: vtn_fail("Floating point type not supported");
}
break;
case SpvExecutionModeDenormFlushToZero:
switch (mode->operands[0]) {
case 16: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16; break;
case 32: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; break;
case 64: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64; break;
default: vtn_fail("Floating point type not supported");
}
break;
case SpvExecutionModeSignedZeroInfNanPreserve:
switch (mode->operands[0]) {
case 16: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16; break;
case 32: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; break;
case 64: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64; break;
default: vtn_fail("Floating point type not supported");
}
break;
case SpvExecutionModeRoundingModeRTE:
switch (mode->operands[0]) {
case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16; break;
case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32; break;
case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64; break;
default: vtn_fail("Floating point type not supported");
}
break;
case SpvExecutionModeRoundingModeRTZ:
switch (mode->operands[0]) {
case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16; break;
case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32; break;
case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64; break;
default: vtn_fail("Floating point type not supported");
}
break;
default:
break;
}
b->shader->info.float_controls_execution_mode |= execution_mode;
break;
}
case SpvExecutionModeLocalSizeId:
case SpvExecutionModeLocalSizeHintId:
/* Handled later by vtn_handle_execution_mode_id(). */
break;
default:
vtn_fail("Unhandled execution mode: %s (%u)",
spirv_executionmode_to_string(mode->exec_mode),
mode->exec_mode);
}
}
static void
vtn_handle_execution_mode_id(struct vtn_builder *b, struct vtn_value *entry_point,
const struct vtn_decoration *mode, UNUSED void *data)
{
vtn_assert(b->entry_point == entry_point);
switch (mode->exec_mode) {
case SpvExecutionModeLocalSizeId:
b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
break;
case SpvExecutionModeLocalSizeHintId:
/* Nothing to do with this hint. */
break;
default:
/* Nothing to do. Literal execution modes already handled by
* vtn_handle_execution_mode(). */
break;
}
}
static bool
vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
vtn_set_instruction_result_type(b, opcode, w, count);
switch (opcode) {
case SpvOpSource:
case SpvOpSourceContinued:
case SpvOpSourceExtension:
case SpvOpExtension:
case SpvOpCapability:
case SpvOpExtInstImport:
case SpvOpMemoryModel:
case SpvOpEntryPoint:
case SpvOpExecutionMode:
case SpvOpString:
case SpvOpName:
case SpvOpMemberName:
case SpvOpDecorationGroup:
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpMemberDecorate:
case SpvOpGroupDecorate:
case SpvOpGroupMemberDecorate:
case SpvOpDecorateString:
case SpvOpMemberDecorateString:
vtn_fail("Invalid opcode types and variables section");
break;
case SpvOpTypeVoid:
case SpvOpTypeBool:
case SpvOpTypeInt:
case SpvOpTypeFloat:
case SpvOpTypeVector:
case SpvOpTypeMatrix:
case SpvOpTypeImage:
case SpvOpTypeSampler:
case SpvOpTypeSampledImage:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
case SpvOpTypeStruct:
case SpvOpTypeOpaque:
case SpvOpTypePointer:
case SpvOpTypeForwardPointer:
case SpvOpTypeFunction:
case SpvOpTypeEvent:
case SpvOpTypeDeviceEvent:
case SpvOpTypeReserveId:
case SpvOpTypeQueue:
case SpvOpTypePipe:
vtn_handle_type(b, opcode, w, count);
break;
case SpvOpConstantTrue:
case SpvOpConstantFalse:
case SpvOpConstant:
case SpvOpConstantComposite:
case SpvOpConstantSampler:
case SpvOpConstantNull:
case SpvOpSpecConstantTrue:
case SpvOpSpecConstantFalse:
case SpvOpSpecConstant:
case SpvOpSpecConstantComposite:
case SpvOpSpecConstantOp:
vtn_handle_constant(b, opcode, w, count);
break;
case SpvOpUndef:
case SpvOpVariable:
vtn_handle_variables(b, opcode, w, count);
break;
case SpvOpExtInst: {
struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
/* NonSemantic extended instructions are acceptable in preamble, others
* will indicate the end of preamble.
*/
return val->ext_handler == vtn_handle_non_semantic_instruction;
}
default:
return false; /* End of preamble */
}
return true;
}
static struct vtn_ssa_value *
vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
{
struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
dest->type = src1->type;
if (glsl_type_is_vector_or_scalar(src1->type)) {
dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
} else {
unsigned elems = glsl_get_length(src1->type);
dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
for (unsigned i = 0; i < elems; i++) {
dest->elems[i] = vtn_nir_select(b, src0,
src1->elems[i], src2->elems[i]);
}
}
return dest;
}
static void
vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
/* Handle OpSelect up-front here because it needs to be able to handle
* pointers and not just regular vectors and scalars.
*/
struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
vtn_fail_if(obj1_val->type != res_val->type ||
obj2_val->type != res_val->type,
"Object types must match the result type in OpSelect");
vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
cond_val->type->base_type != vtn_base_type_vector) ||
!glsl_type_is_boolean(cond_val->type->type),
"OpSelect must have either a vector of booleans or "
"a boolean as Condition type");
vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
(res_val->type->base_type != vtn_base_type_vector ||
res_val->type->length != cond_val->type->length),
"When Condition type in OpSelect is a vector, the Result "
"type must be a vector of the same length");
switch (res_val->type->base_type) {
case vtn_base_type_scalar:
case vtn_base_type_vector:
case vtn_base_type_matrix:
case vtn_base_type_array:
case vtn_base_type_struct:
/* OK. */
break;
case vtn_base_type_pointer:
/* We need to have actual storage for pointer types. */
vtn_fail_if(res_val->type->type == NULL,
"Invalid pointer result type for OpSelect");
break;
default:
vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
}
vtn_push_ssa_value(b, w[2],
vtn_nir_select(b, vtn_ssa_value(b, w[3]),
vtn_ssa_value(b, w[4]),
vtn_ssa_value(b, w[5])));
}
static void
vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_type *type1 = vtn_get_value_type(b, w[3]);
struct vtn_type *type2 = vtn_get_value_type(b, w[4]);
vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
type2->base_type != vtn_base_type_pointer,
"%s operands must have pointer types",
spirv_op_to_string(opcode));
vtn_fail_if(type1->storage_class != type2->storage_class,
"%s operands must have the same storage class",
spirv_op_to_string(opcode));
struct vtn_type *vtn_type = vtn_get_type(b, w[1]);
const struct glsl_type *type = vtn_type->type;
nir_address_format addr_format = vtn_mode_to_address_format(
b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
nir_ssa_def *def;
switch (opcode) {
case SpvOpPtrDiff: {
/* OpPtrDiff returns the difference in number of elements (not byte offset). */
unsigned elem_size, elem_align;
glsl_get_natural_size_align_bytes(type1->deref->type,
&elem_size, &elem_align);
def = nir_build_addr_isub(&b->nb,
vtn_get_nir_ssa(b, w[3]),
vtn_get_nir_ssa(b, w[4]),
addr_format);
def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
break;
}
case SpvOpPtrEqual:
case SpvOpPtrNotEqual: {
def = nir_build_addr_ieq(&b->nb,
vtn_get_nir_ssa(b, w[3]),
vtn_get_nir_ssa(b, w[4]),
addr_format);
if (opcode == SpvOpPtrNotEqual)
def = nir_inot(&b->nb, def);
break;
}
default:
unreachable("Invalid ptr operation");
}
vtn_push_nir_ssa(b, w[2], def);
}
static bool
vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpLabel:
break;
case SpvOpLoopMerge:
case SpvOpSelectionMerge:
/* This is handled by cfg pre-pass and walk_blocks */
break;
case SpvOpUndef: {
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
val->type = vtn_get_type(b, w[1]);
break;
}
case SpvOpExtInst:
vtn_handle_extension(b, opcode, w, count);
break;
case SpvOpVariable:
case SpvOpLoad:
case SpvOpStore:
case SpvOpCopyMemory:
case SpvOpCopyMemorySized:
case SpvOpAccessChain:
case SpvOpPtrAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpInBoundsPtrAccessChain:
case SpvOpArrayLength:
case SpvOpConvertPtrToU:
case SpvOpConvertUToPtr:
vtn_handle_variables(b, opcode, w, count);
break;
case SpvOpFunctionCall:
vtn_handle_function_call(b, opcode, w, count);
break;
case SpvOpSampledImage:
case SpvOpImage:
case SpvOpImageSampleImplicitLod:
case SpvOpImageSampleExplicitLod:
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
case SpvOpImageFetch:
case SpvOpImageGather:
case SpvOpImageDrefGather:
case SpvOpImageQuerySizeLod:
case SpvOpImageQueryLod:
case SpvOpImageQueryLevels:
case SpvOpImageQuerySamples:
vtn_handle_texture(b, opcode, w, count);
break;
case SpvOpImageRead:
case SpvOpImageWrite:
case SpvOpImageTexelPointer:
vtn_handle_image(b, opcode, w, count);
break;
case SpvOpImageQuerySize: {
struct vtn_type *image_type = vtn_get_value_type(b, w[3]);
vtn_assert(image_type->base_type == vtn_base_type_image);
if (glsl_type_is_image(image_type->glsl_image)) {
vtn_handle_image(b, opcode, w, count);
} else {
vtn_assert(glsl_type_is_sampler(image_type->glsl_image));
vtn_handle_texture(b, opcode, w, count);
}
break;
}
case SpvOpFragmentMaskFetchAMD:
case SpvOpFragmentFetchAMD:
vtn_handle_texture(b, opcode, w, count);
break;
case SpvOpAtomicLoad:
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
case SpvOpAtomicFAddEXT: {
struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
if (pointer->value_type == vtn_value_type_image_pointer) {
vtn_handle_image(b, opcode, w, count);
} else {
vtn_assert(pointer->value_type == vtn_value_type_pointer);
vtn_handle_atomics(b, opcode, w, count);
}
break;
}
case SpvOpAtomicStore: {
struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
if (pointer->value_type == vtn_value_type_image_pointer) {
vtn_handle_image(b, opcode, w, count);
} else {
vtn_assert(pointer->value_type == vtn_value_type_pointer);
vtn_handle_atomics(b, opcode, w, count);
}
break;
}
case SpvOpSelect:
vtn_handle_select(b, opcode, w, count);
break;
case SpvOpSNegate:
case SpvOpFNegate:
case SpvOpNot:
case SpvOpAny:
case SpvOpAll:
case SpvOpConvertFToU:
case SpvOpConvertFToS:
case SpvOpConvertSToF:
case SpvOpConvertUToF:
case SpvOpUConvert:
case SpvOpSConvert:
case SpvOpFConvert:
case SpvOpQuantizeToF16:
case SpvOpPtrCastToGeneric:
case SpvOpGenericCastToPtr:
case SpvOpIsNan:
case SpvOpIsInf:
case SpvOpIsFinite:
case SpvOpIsNormal:
case SpvOpSignBitSet:
case SpvOpLessOrGreater:
case SpvOpOrdered:
case SpvOpUnordered:
case SpvOpIAdd:
case SpvOpFAdd:
case SpvOpISub:
case SpvOpFSub:
case SpvOpIMul:
case SpvOpFMul:
case SpvOpUDiv:
case SpvOpSDiv:
case SpvOpFDiv:
case SpvOpUMod:
case SpvOpSRem:
case SpvOpSMod:
case SpvOpFRem:
case SpvOpFMod:
case SpvOpVectorTimesScalar:
case SpvOpDot:
case SpvOpIAddCarry:
case SpvOpISubBorrow:
case SpvOpUMulExtended:
case SpvOpSMulExtended:
case SpvOpShiftRightLogical:
case SpvOpShiftRightArithmetic:
case SpvOpShiftLeftLogical:
case SpvOpLogicalEqual:
case SpvOpLogicalNotEqual:
case SpvOpLogicalOr:
case SpvOpLogicalAnd:
case SpvOpLogicalNot:
case SpvOpBitwiseOr:
case SpvOpBitwiseXor:
case SpvOpBitwiseAnd:
case SpvOpIEqual:
case SpvOpFOrdEqual:
case SpvOpFUnordEqual:
case SpvOpINotEqual:
case SpvOpFOrdNotEqual:
case SpvOpFUnordNotEqual:
case SpvOpULessThan:
case SpvOpSLessThan:
case SpvOpFOrdLessThan:
case SpvOpFUnordLessThan:
case SpvOpUGreaterThan:
case SpvOpSGreaterThan:
case SpvOpFOrdGreaterThan:
case SpvOpFUnordGreaterThan:
case SpvOpULessThanEqual:
case SpvOpSLessThanEqual:
case SpvOpFOrdLessThanEqual:
case SpvOpFUnordLessThanEqual:
case SpvOpUGreaterThanEqual:
case SpvOpSGreaterThanEqual:
case SpvOpFOrdGreaterThanEqual:
case SpvOpFUnordGreaterThanEqual:
case SpvOpDPdx:
case SpvOpDPdy:
case SpvOpFwidth:
case SpvOpDPdxFine:
case SpvOpDPdyFine:
case SpvOpFwidthFine:
case SpvOpDPdxCoarse:
case SpvOpDPdyCoarse:
case SpvOpFwidthCoarse:
case SpvOpBitFieldInsert:
case SpvOpBitFieldSExtract:
case SpvOpBitFieldUExtract:
case SpvOpBitReverse:
case SpvOpBitCount:
case SpvOpTranspose:
case SpvOpOuterProduct:
case SpvOpMatrixTimesScalar:
case SpvOpVectorTimesMatrix:
case SpvOpMatrixTimesVector:
case SpvOpMatrixTimesMatrix:
case SpvOpUCountLeadingZerosINTEL:
case SpvOpUCountTrailingZerosINTEL:
case SpvOpAbsISubINTEL:
case SpvOpAbsUSubINTEL:
case SpvOpIAddSatINTEL:
case SpvOpUAddSatINTEL:
case SpvOpIAverageINTEL:
case SpvOpUAverageINTEL:
case SpvOpIAverageRoundedINTEL:
case SpvOpUAverageRoundedINTEL:
case SpvOpISubSatINTEL:
case SpvOpUSubSatINTEL:
case SpvOpIMul32x16INTEL:
case SpvOpUMul32x16INTEL:
vtn_handle_alu(b, opcode, w, count);
break;
case SpvOpBitcast:
vtn_handle_bitcast(b, w, count);
break;
case SpvOpVectorExtractDynamic:
case SpvOpVectorInsertDynamic:
case SpvOpVectorShuffle:
case SpvOpCompositeConstruct:
case SpvOpCompositeExtract:
case SpvOpCompositeInsert:
case SpvOpCopyLogical:
case SpvOpCopyObject:
vtn_handle_composite(b, opcode, w, count);
break;
case SpvOpEmitVertex:
case SpvOpEndPrimitive:
case SpvOpEmitStreamVertex:
case SpvOpEndStreamPrimitive:
case SpvOpControlBarrier:
case SpvOpMemoryBarrier:
vtn_handle_barrier(b, opcode, w, count);
break;
case SpvOpGroupNonUniformElect:
case SpvOpGroupNonUniformAll:
case SpvOpGroupNonUniformAny:
case SpvOpGroupNonUniformAllEqual:
case SpvOpGroupNonUniformBroadcast:
case SpvOpGroupNonUniformBroadcastFirst:
case SpvOpGroupNonUniformBallot:
case SpvOpGroupNonUniformInverseBallot:
case SpvOpGroupNonUniformBallotBitExtract:
case SpvOpGroupNonUniformBallotBitCount:
case SpvOpGroupNonUniformBallotFindLSB:
case SpvOpGroupNonUniformBallotFindMSB:
case SpvOpGroupNonUniformShuffle:
case SpvOpGroupNonUniformShuffleXor:
case SpvOpGroupNonUniformShuffleUp:
case SpvOpGroupNonUniformShuffleDown:
case SpvOpGroupNonUniformIAdd:
case SpvOpGroupNonUniformFAdd:
case SpvOpGroupNonUniformIMul:
case SpvOpGroupNonUniformFMul:
case SpvOpGroupNonUniformSMin:
case SpvOpGroupNonUniformUMin:
case SpvOpGroupNonUniformFMin:
case SpvOpGroupNonUniformSMax:
case SpvOpGroupNonUniformUMax:
case SpvOpGroupNonUniformFMax:
case SpvOpGroupNonUniformBitwiseAnd:
case SpvOpGroupNonUniformBitwiseOr:
case SpvOpGroupNonUniformBitwiseXor:
case SpvOpGroupNonUniformLogicalAnd:
case SpvOpGroupNonUniformLogicalOr:
case SpvOpGroupNonUniformLogicalXor:
case SpvOpGroupNonUniformQuadBroadcast:
case SpvOpGroupNonUniformQuadSwap:
case SpvOpGroupAll:
case SpvOpGroupAny:
case SpvOpGroupBroadcast:
case SpvOpGroupIAdd:
case SpvOpGroupFAdd:
case SpvOpGroupFMin:
case SpvOpGroupUMin:
case SpvOpGroupSMin:
case SpvOpGroupFMax:
case SpvOpGroupUMax:
case SpvOpGroupSMax:
case SpvOpSubgroupBallotKHR:
case SpvOpSubgroupFirstInvocationKHR:
case SpvOpSubgroupReadInvocationKHR:
case SpvOpSubgroupAllKHR:
case SpvOpSubgroupAnyKHR:
case SpvOpSubgroupAllEqualKHR:
case SpvOpGroupIAddNonUniformAMD:
case SpvOpGroupFAddNonUniformAMD:
case SpvOpGroupFMinNonUniformAMD:
case SpvOpGroupUMinNonUniformAMD:
case SpvOpGroupSMinNonUniformAMD:
case SpvOpGroupFMaxNonUniformAMD:
case SpvOpGroupUMaxNonUniformAMD:
case SpvOpGroupSMaxNonUniformAMD:
vtn_handle_subgroup(b, opcode, w, count);
break;
case SpvOpPtrDiff:
case SpvOpPtrEqual:
case SpvOpPtrNotEqual:
vtn_handle_ptr(b, opcode, w, count);
break;
case SpvOpBeginInvocationInterlockEXT:
vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
break;
case SpvOpEndInvocationInterlockEXT:
vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
break;
case SpvOpDemoteToHelperInvocationEXT: {
nir_intrinsic_instr *intrin =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_demote);
nir_builder_instr_insert(&b->nb, &intrin->instr);
break;
}
case SpvOpIsHelperInvocationEXT: {
nir_intrinsic_instr *intrin =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_is_helper_invocation);
nir_ssa_dest_init(&intrin->instr, &intrin->dest, 1, 1, NULL);
nir_builder_instr_insert(&b->nb, &intrin->instr);
vtn_push_nir_ssa(b, w[2], &intrin->dest.ssa);
break;
}
case SpvOpReadClockKHR: {
SpvScope scope = vtn_constant_uint(b, w[3]);
nir_scope nir_scope;
switch (scope) {
case SpvScopeDevice:
nir_scope = NIR_SCOPE_DEVICE;
break;
case SpvScopeSubgroup:
nir_scope = NIR_SCOPE_SUBGROUP;
break;
default:
vtn_fail("invalid read clock scope");
}
/* Operation supports two result types: uvec2 and uint64_t. The NIR
* intrinsic gives uvec2, so pack the result for the other case.
*/
nir_intrinsic_instr *intrin =
nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_shader_clock);
nir_ssa_dest_init(&intrin->instr, &intrin->dest, 2, 32, NULL);
nir_intrinsic_set_memory_scope(intrin, nir_scope);
nir_builder_instr_insert(&b->nb, &intrin->instr);
struct vtn_type *type = vtn_get_type(b, w[1]);
const struct glsl_type *dest_type = type->type;
nir_ssa_def *result;
if (glsl_type_is_vector(dest_type)) {
assert(dest_type == glsl_vector_type(GLSL_TYPE_UINT, 2));
result = &intrin->dest.ssa;
} else {
assert(glsl_type_is_scalar(dest_type));
assert(glsl_get_base_type(dest_type) == GLSL_TYPE_UINT64);
result = nir_pack_64_2x32(&b->nb, &intrin->dest.ssa);
}
vtn_push_nir_ssa(b, w[2], result);
break;
}
case SpvOpLifetimeStart:
case SpvOpLifetimeStop:
break;
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
return true;
}
struct vtn_builder*
vtn_create_builder(const uint32_t *words, size_t word_count,
gl_shader_stage stage, const char *entry_point_name,
const struct spirv_to_nir_options *options)
{
/* Initialize the vtn_builder object */
struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
struct spirv_to_nir_options *dup_options =
ralloc(b, struct spirv_to_nir_options);
*dup_options = *options;
b->spirv = words;
b->spirv_word_count = word_count;
b->file = NULL;
b->line = -1;
b->col = -1;
list_inithead(&b->functions);
b->entry_point_stage = stage;
b->entry_point_name = entry_point_name;
b->options = dup_options;
/*
* Handle the SPIR-V header (first 5 dwords).
* Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
*/
if (word_count <= 5)
goto fail;
if (words[0] != SpvMagicNumber) {
vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
goto fail;
}
if (words[1] < 0x10000) {
vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
goto fail;
}
uint16_t generator_id = words[2] >> 16;
uint16_t generator_version = words[2];
/* In GLSLang commit 8297936dd6eb3, their handling of barrier() was fixed
* to provide correct memory semantics on compute shader barrier()
* commands. Prior to that, we need to fix them up ourselves. This
* GLSLang fix caused them to bump to generator version 3.
*/
b->wa_glslang_cs_barrier = (generator_id == 8 && generator_version < 3);
/* words[2] == generator magic */
unsigned value_id_bound = words[3];
if (words[4] != 0) {
vtn_err("words[4] was %u, want 0", words[4]);
goto fail;
}
b->value_id_bound = value_id_bound;
b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
return b;
fail:
ralloc_free(b);
return NULL;
}
static nir_function *
vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
nir_function *entry_point)
{
vtn_assert(entry_point == b->entry_point->func->impl->function);
vtn_fail_if(!entry_point->name, "entry points are required to have a name");
const char *func_name =
ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
/* we shouldn't have any inputs yet */
vtn_assert(!entry_point->shader->num_inputs);
vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
nir_function *main_entry_point = nir_function_create(b->shader, func_name);
main_entry_point->impl = nir_function_impl_create(main_entry_point);
nir_builder_init(&b->nb, main_entry_point->impl);
b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
b->func_param_idx = 0;
nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
for (unsigned i = 0; i < entry_point->num_params; ++i) {
struct vtn_type *param_type = b->entry_point->func->type->params[i];
/* consider all pointers to function memory to be parameters passed
* by value
*/
bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
param_type->storage_class == SpvStorageClassFunction;
/* input variable */
nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
in_var->data.mode = nir_var_shader_in;
in_var->data.read_only = true;
in_var->data.location = i;
if (is_by_val)
in_var->type = param_type->deref->type;
else
in_var->type = param_type->type;
nir_shader_add_variable(b->nb.shader, in_var);
b->nb.shader->num_inputs++;
/* we have to copy the entire variable into function memory */
if (is_by_val) {
nir_variable *copy_var =
nir_local_variable_create(main_entry_point->impl, in_var->type,
"copy_in");
nir_copy_var(&b->nb, copy_var, in_var);
call->params[i] =
nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
} else {
call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
}
}
nir_builder_instr_insert(&b->nb, &call->instr);
return main_entry_point;
}
nir_shader *
spirv_to_nir(const uint32_t *words, size_t word_count,
struct nir_spirv_specialization *spec, unsigned num_spec,
gl_shader_stage stage, const char *entry_point_name,
const struct spirv_to_nir_options *options,
const nir_shader_compiler_options *nir_options)
{
const uint32_t *word_end = words + word_count;
struct vtn_builder *b = vtn_create_builder(words, word_count,
stage, entry_point_name,
options);
if (b == NULL)
return NULL;
/* See also _vtn_fail() */
if (setjmp(b->fail_jump)) {
ralloc_free(b);
return NULL;
}
/* Skip the SPIR-V header, handled at vtn_create_builder */
words+= 5;
b->shader = nir_shader_create(b, stage, nir_options, NULL);
/* Handle all the preamble instructions */
words = vtn_foreach_instruction(b, words, word_end,
vtn_handle_preamble_instruction);
if (b->entry_point == NULL) {
vtn_fail("Entry point not found");
ralloc_free(b);
return NULL;
}
/* Set shader info defaults */
if (stage == MESA_SHADER_GEOMETRY)
b->shader->info.gs.invocations = 1;
/* Parse execution modes. */
vtn_foreach_execution_mode(b, b->entry_point,
vtn_handle_execution_mode, NULL);
b->specializations = spec;
b->num_specializations = num_spec;
/* Handle all variable, type, and constant instructions */
words = vtn_foreach_instruction(b, words, word_end,
vtn_handle_variable_or_type_instruction);
/* Parse execution modes that depend on IDs. Must happen after we have
* constants parsed.
*/
vtn_foreach_execution_mode(b, b->entry_point,
vtn_handle_execution_mode_id, NULL);
if (b->workgroup_size_builtin) {
vtn_assert(b->workgroup_size_builtin->type->type ==
glsl_vector_type(GLSL_TYPE_UINT, 3));
nir_const_value *const_size =
b->workgroup_size_builtin->constant->values;
b->shader->info.cs.local_size[0] = const_size[0].u32;
b->shader->info.cs.local_size[1] = const_size[1].u32;
b->shader->info.cs.local_size[2] = const_size[2].u32;
}
/* Set types on all vtn_values */
vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
vtn_build_cfg(b, words, word_end);
assert(b->entry_point->value_type == vtn_value_type_function);
b->entry_point->func->referenced = true;
bool progress;
do {
progress = false;
vtn_foreach_cf_node(node, &b->functions) {
struct vtn_function *func = vtn_cf_node_as_function(node);
if (func->referenced && !func->emitted) {
b->const_table = _mesa_pointer_hash_table_create(b);
vtn_function_emit(b, func, vtn_handle_body_instruction);
progress = true;
}
}
} while (progress);
vtn_assert(b->entry_point->value_type == vtn_value_type_function);
nir_function *entry_point = b->entry_point->func->impl->function;
vtn_assert(entry_point);
/* post process entry_points with input params */
if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
/* structurize the CFG */
nir_lower_goto_ifs(b->shader);
entry_point->is_entrypoint = true;
/* When multiple shader stages exist in the same SPIR-V module, we
* generate input and output variables for every stage, in the same
* NIR program. These dead variables can be invalid NIR. For example,
* TCS outputs must be per-vertex arrays (or decorated 'patch'), while
* VS output variables wouldn't be.
*
* To ensure we have valid NIR, we eliminate any dead inputs and outputs
* right away. In order to do so, we must lower any constant initializers
* on outputs so nir_remove_dead_variables sees that they're written to.
*/
nir_lower_variable_initializers(b->shader, nir_var_shader_out);
nir_remove_dead_variables(b->shader,
nir_var_shader_in | nir_var_shader_out, NULL);
/* We sometimes generate bogus derefs that, while never used, give the
* validator a bit of heartburn. Run dead code to get rid of them.
*/
nir_opt_dce(b->shader);
/* Unparent the shader from the vtn_builder before we delete the builder */
ralloc_steal(NULL, b->shader);
nir_shader *shader = b->shader;
ralloc_free(b);
return shader;
}