| /* |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <limits.h> |
| #include <assert.h> |
| #include <sys/mman.h> |
| |
| #include "anv_private.h" |
| |
| #include "common/intel_aux_map.h" |
| #include "util/anon_file.h" |
| #include "util/futex.h" |
| |
| #ifdef HAVE_VALGRIND |
| #define VG_NOACCESS_READ(__ptr) ({ \ |
| VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \ |
| __typeof(*(__ptr)) __val = *(__ptr); \ |
| VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\ |
| __val; \ |
| }) |
| #define VG_NOACCESS_WRITE(__ptr, __val) ({ \ |
| VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \ |
| *(__ptr) = (__val); \ |
| VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \ |
| }) |
| #else |
| #define VG_NOACCESS_READ(__ptr) (*(__ptr)) |
| #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val)) |
| #endif |
| |
| #ifndef MAP_POPULATE |
| #define MAP_POPULATE 0 |
| #endif |
| |
| /* Design goals: |
| * |
| * - Lock free (except when resizing underlying bos) |
| * |
| * - Constant time allocation with typically only one atomic |
| * |
| * - Multiple allocation sizes without fragmentation |
| * |
| * - Can grow while keeping addresses and offset of contents stable |
| * |
| * - All allocations within one bo so we can point one of the |
| * STATE_BASE_ADDRESS pointers at it. |
| * |
| * The overall design is a two-level allocator: top level is a fixed size, big |
| * block (8k) allocator, which operates out of a bo. Allocation is done by |
| * either pulling a block from the free list or growing the used range of the |
| * bo. Growing the range may run out of space in the bo which we then need to |
| * grow. Growing the bo is tricky in a multi-threaded, lockless environment: |
| * we need to keep all pointers and contents in the old map valid. GEM bos in |
| * general can't grow, but we use a trick: we create a memfd and use ftruncate |
| * to grow it as necessary. We mmap the new size and then create a gem bo for |
| * it using the new gem userptr ioctl. Without heavy-handed locking around |
| * our allocation fast-path, there isn't really a way to munmap the old mmap, |
| * so we just keep it around until garbage collection time. While the block |
| * allocator is lockless for normal operations, we block other threads trying |
| * to allocate while we're growing the map. It shouldn't happen often, and |
| * growing is fast anyway. |
| * |
| * At the next level we can use various sub-allocators. The state pool is a |
| * pool of smaller, fixed size objects, which operates much like the block |
| * pool. It uses a free list for freeing objects, but when it runs out of |
| * space it just allocates a new block from the block pool. This allocator is |
| * intended for longer lived state objects such as SURFACE_STATE and most |
| * other persistent state objects in the API. We may need to track more info |
| * with these object and a pointer back to the CPU object (eg VkImage). In |
| * those cases we just allocate a slightly bigger object and put the extra |
| * state after the GPU state object. |
| * |
| * The state stream allocator works similar to how the i965 DRI driver streams |
| * all its state. Even with Vulkan, we need to emit transient state (whether |
| * surface state base or dynamic state base), and for that we can just get a |
| * block and fill it up. These cases are local to a command buffer and the |
| * sub-allocator need not be thread safe. The streaming allocator gets a new |
| * block when it runs out of space and chains them together so they can be |
| * easily freed. |
| */ |
| |
| /* Allocations are always at least 64 byte aligned, so 1 is an invalid value. |
| * We use it to indicate the free list is empty. */ |
| #define EMPTY UINT32_MAX |
| |
| /* On FreeBSD PAGE_SIZE is already defined in |
| * /usr/include/machine/param.h that is indirectly |
| * included here. |
| */ |
| #ifndef PAGE_SIZE |
| #define PAGE_SIZE 4096 |
| #endif |
| |
| static inline uint32_t |
| ilog2_round_up(uint32_t value) |
| { |
| assert(value != 0); |
| return 32 - __builtin_clz(value - 1); |
| } |
| |
| static inline uint32_t |
| round_to_power_of_two(uint32_t value) |
| { |
| return 1 << ilog2_round_up(value); |
| } |
| |
| struct anv_state_table_cleanup { |
| void *map; |
| size_t size; |
| }; |
| |
| #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0}) |
| #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry)) |
| |
| static VkResult |
| anv_state_table_expand_range(struct anv_state_table *table, uint32_t size); |
| |
| VkResult |
| anv_state_table_init(struct anv_state_table *table, |
| struct anv_device *device, |
| uint32_t initial_entries) |
| { |
| VkResult result; |
| |
| table->device = device; |
| |
| /* Just make it 2GB up-front. The Linux kernel won't actually back it |
| * with pages until we either map and fault on one of them or we use |
| * userptr and send a chunk of it off to the GPU. |
| */ |
| table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table"); |
| if (table->fd == -1) |
| return vk_error(device, VK_ERROR_INITIALIZATION_FAILED); |
| |
| if (!u_vector_init(&table->cleanups, 8, |
| sizeof(struct anv_state_table_cleanup))) { |
| result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); |
| goto fail_fd; |
| } |
| |
| table->state.next = 0; |
| table->state.end = 0; |
| table->size = 0; |
| |
| uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE; |
| result = anv_state_table_expand_range(table, initial_size); |
| if (result != VK_SUCCESS) |
| goto fail_cleanups; |
| |
| return VK_SUCCESS; |
| |
| fail_cleanups: |
| u_vector_finish(&table->cleanups); |
| fail_fd: |
| close(table->fd); |
| |
| return result; |
| } |
| |
| static VkResult |
| anv_state_table_expand_range(struct anv_state_table *table, uint32_t size) |
| { |
| void *map; |
| struct anv_state_table_cleanup *cleanup; |
| |
| /* Assert that we only ever grow the pool */ |
| assert(size >= table->state.end); |
| |
| /* Make sure that we don't go outside the bounds of the memfd */ |
| if (size > BLOCK_POOL_MEMFD_SIZE) |
| return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| cleanup = u_vector_add(&table->cleanups); |
| if (!cleanup) |
| return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| *cleanup = ANV_STATE_TABLE_CLEANUP_INIT; |
| |
| /* Just leak the old map until we destroy the pool. We can't munmap it |
| * without races or imposing locking on the block allocate fast path. On |
| * the whole the leaked maps adds up to less than the size of the |
| * current map. MAP_POPULATE seems like the right thing to do, but we |
| * should try to get some numbers. |
| */ |
| map = mmap(NULL, size, PROT_READ | PROT_WRITE, |
| MAP_SHARED | MAP_POPULATE, table->fd, 0); |
| if (map == MAP_FAILED) { |
| return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY, |
| "mmap failed: %m"); |
| } |
| |
| cleanup->map = map; |
| cleanup->size = size; |
| |
| table->map = map; |
| table->size = size; |
| |
| return VK_SUCCESS; |
| } |
| |
| static VkResult |
| anv_state_table_grow(struct anv_state_table *table) |
| { |
| VkResult result = VK_SUCCESS; |
| |
| uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE, |
| PAGE_SIZE); |
| uint32_t old_size = table->size; |
| |
| /* The block pool is always initialized to a nonzero size and this function |
| * is always called after initialization. |
| */ |
| assert(old_size > 0); |
| |
| uint32_t required = MAX2(used, old_size); |
| if (used * 2 <= required) { |
| /* If we're in this case then this isn't the firsta allocation and we |
| * already have enough space on both sides to hold double what we |
| * have allocated. There's nothing for us to do. |
| */ |
| goto done; |
| } |
| |
| uint32_t size = old_size * 2; |
| while (size < required) |
| size *= 2; |
| |
| assert(size > table->size); |
| |
| result = anv_state_table_expand_range(table, size); |
| |
| done: |
| return result; |
| } |
| |
| void |
| anv_state_table_finish(struct anv_state_table *table) |
| { |
| struct anv_state_table_cleanup *cleanup; |
| |
| u_vector_foreach(cleanup, &table->cleanups) { |
| if (cleanup->map) |
| munmap(cleanup->map, cleanup->size); |
| } |
| |
| u_vector_finish(&table->cleanups); |
| |
| close(table->fd); |
| } |
| |
| VkResult |
| anv_state_table_add(struct anv_state_table *table, uint32_t *idx, |
| uint32_t count) |
| { |
| struct anv_block_state state, old, new; |
| VkResult result; |
| |
| assert(idx); |
| |
| while(1) { |
| state.u64 = __sync_fetch_and_add(&table->state.u64, count); |
| if (state.next + count <= state.end) { |
| assert(table->map); |
| struct anv_free_entry *entry = &table->map[state.next]; |
| for (int i = 0; i < count; i++) { |
| entry[i].state.idx = state.next + i; |
| } |
| *idx = state.next; |
| return VK_SUCCESS; |
| } else if (state.next <= state.end) { |
| /* We allocated the first block outside the pool so we have to grow |
| * the pool. pool_state->next acts a mutex: threads who try to |
| * allocate now will get block indexes above the current limit and |
| * hit futex_wait below. |
| */ |
| new.next = state.next + count; |
| do { |
| result = anv_state_table_grow(table); |
| if (result != VK_SUCCESS) |
| return result; |
| new.end = table->size / ANV_STATE_ENTRY_SIZE; |
| } while (new.end < new.next); |
| |
| old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64); |
| if (old.next != state.next) |
| futex_wake(&table->state.end, INT_MAX); |
| } else { |
| futex_wait(&table->state.end, state.end, NULL); |
| continue; |
| } |
| } |
| } |
| |
| void |
| anv_free_list_push(union anv_free_list *list, |
| struct anv_state_table *table, |
| uint32_t first, uint32_t count) |
| { |
| union anv_free_list current, old, new; |
| uint32_t last = first; |
| |
| for (uint32_t i = 1; i < count; i++, last++) |
| table->map[last].next = last + 1; |
| |
| old.u64 = list->u64; |
| do { |
| current = old; |
| table->map[last].next = current.offset; |
| new.offset = first; |
| new.count = current.count + 1; |
| old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); |
| } while (old.u64 != current.u64); |
| } |
| |
| struct anv_state * |
| anv_free_list_pop(union anv_free_list *list, |
| struct anv_state_table *table) |
| { |
| union anv_free_list current, new, old; |
| |
| current.u64 = list->u64; |
| while (current.offset != EMPTY) { |
| __sync_synchronize(); |
| new.offset = table->map[current.offset].next; |
| new.count = current.count + 1; |
| old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); |
| if (old.u64 == current.u64) { |
| struct anv_free_entry *entry = &table->map[current.offset]; |
| return &entry->state; |
| } |
| current = old; |
| } |
| |
| return NULL; |
| } |
| |
| static VkResult |
| anv_block_pool_expand_range(struct anv_block_pool *pool, uint32_t size); |
| |
| VkResult |
| anv_block_pool_init(struct anv_block_pool *pool, |
| struct anv_device *device, |
| const char *name, |
| uint64_t start_address, |
| uint32_t initial_size) |
| { |
| VkResult result; |
| |
| if (device->info->verx10 >= 125) { |
| /* Make sure VMA addresses are 2MiB aligned for the block pool */ |
| assert(anv_is_aligned(start_address, 2 * 1024 * 1024)); |
| assert(anv_is_aligned(initial_size, 2 * 1024 * 1024)); |
| } |
| |
| pool->name = name; |
| pool->device = device; |
| pool->nbos = 0; |
| pool->size = 0; |
| pool->start_address = intel_canonical_address(start_address); |
| |
| pool->bo = NULL; |
| |
| pool->state.next = 0; |
| pool->state.end = 0; |
| |
| result = anv_block_pool_expand_range(pool, initial_size); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| /* Make the entire pool available in the front of the pool. If back |
| * allocation needs to use this space, the "ends" will be re-arranged. |
| */ |
| pool->state.end = pool->size; |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_block_pool_finish(struct anv_block_pool *pool) |
| { |
| anv_block_pool_foreach_bo(bo, pool) { |
| assert(bo->refcount == 1); |
| anv_device_release_bo(pool->device, bo); |
| } |
| } |
| |
| static VkResult |
| anv_block_pool_expand_range(struct anv_block_pool *pool, uint32_t size) |
| { |
| /* Assert that we only ever grow the pool */ |
| assert(size >= pool->state.end); |
| |
| /* For state pool BOs we have to be a bit careful about where we place them |
| * in the GTT. There are two documented workarounds for state base address |
| * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset |
| * which state that those two base addresses do not support 48-bit |
| * addresses and need to be placed in the bottom 32-bit range. |
| * Unfortunately, this is not quite accurate. |
| * |
| * The real problem is that we always set the size of our state pools in |
| * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most |
| * likely significantly smaller. We do this because we do not no at the |
| * time we emit STATE_BASE_ADDRESS whether or not we will need to expand |
| * the pool during command buffer building so we don't actually have a |
| * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS |
| * overflows 48 bits, the GPU appears to treat all accesses to the buffer |
| * as being out of bounds and returns zero. For dynamic state, this |
| * usually just leads to rendering corruptions, but shaders that are all |
| * zero hang the GPU immediately. |
| * |
| * The easiest solution to do is exactly what the bogus workarounds say to |
| * do: restrict these buffers to 32-bit addresses. We could also pin the |
| * BO to some particular location of our choosing, but that's significantly |
| * more work than just not setting a flag. So, we explicitly DO NOT set |
| * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the |
| * hard work for us. When using softpin, we're in control and the fixed |
| * addresses we choose are fine for base addresses. |
| */ |
| enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE; |
| |
| uint32_t new_bo_size = size - pool->size; |
| struct anv_bo *new_bo = NULL; |
| VkResult result = anv_device_alloc_bo(pool->device, |
| pool->name, |
| new_bo_size, |
| bo_alloc_flags | |
| ANV_BO_ALLOC_FIXED_ADDRESS | |
| ANV_BO_ALLOC_MAPPED | |
| ANV_BO_ALLOC_SNOOPED, |
| pool->start_address + pool->size, |
| &new_bo); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| pool->bos[pool->nbos++] = new_bo; |
| |
| /* This pointer will always point to the first BO in the list */ |
| pool->bo = pool->bos[0]; |
| |
| assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS); |
| pool->size = size; |
| |
| return VK_SUCCESS; |
| } |
| |
| /** Returns current memory map of the block pool. |
| * |
| * The returned pointer points to the map for the memory at the specified |
| * offset. The offset parameter is relative to the "center" of the block pool |
| * rather than the start of the block pool BO map. |
| */ |
| void* |
| anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size) |
| { |
| struct anv_bo *bo = NULL; |
| int32_t bo_offset = 0; |
| anv_block_pool_foreach_bo(iter_bo, pool) { |
| if (offset < bo_offset + iter_bo->size) { |
| bo = iter_bo; |
| break; |
| } |
| bo_offset += iter_bo->size; |
| } |
| assert(bo != NULL); |
| assert(offset >= bo_offset); |
| assert((offset - bo_offset) + size <= bo->size); |
| |
| return bo->map + (offset - bo_offset); |
| } |
| |
| /** Grows and re-centers the block pool. |
| * |
| * We grow the block pool in one or both directions in such a way that the |
| * following conditions are met: |
| * |
| * 1) The size of the entire pool is always a power of two. |
| * |
| * 2) The pool only grows on both ends. Neither end can get |
| * shortened. |
| * |
| * 3) At the end of the allocation, we have about twice as much space |
| * allocated for each end as we have used. This way the pool doesn't |
| * grow too far in one direction or the other. |
| * |
| * 4) We have enough space allocated for at least one more block in |
| * whichever side `state` points to. |
| * |
| * 5) The center of the pool is always aligned to both the block_size of |
| * the pool and a 4K CPU page. |
| */ |
| static uint32_t |
| anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state, |
| uint32_t contiguous_size) |
| { |
| VkResult result = VK_SUCCESS; |
| |
| pthread_mutex_lock(&pool->device->mutex); |
| |
| assert(state == &pool->state); |
| |
| /* Gather a little usage information on the pool. Since we may have |
| * threads waiting in queue to get some storage while we resize, it's |
| * actually possible that total_used will be larger than old_size. In |
| * particular, block_pool_alloc() increments state->next prior to |
| * calling block_pool_grow, so this ensures that we get enough space for |
| * which ever side tries to grow the pool. |
| * |
| * We align to a page size because it makes it easier to do our |
| * calculations later in such a way that we state page-aigned. |
| */ |
| uint32_t total_used = align_u32(pool->state.next, PAGE_SIZE); |
| |
| uint32_t old_size = pool->size; |
| |
| /* The block pool is always initialized to a nonzero size and this function |
| * is always called after initialization. |
| */ |
| assert(old_size > 0); |
| |
| /* total_used may actually be smaller than the actual requirement because |
| * they are based on the next pointers which are updated prior to calling |
| * this function. |
| */ |
| uint32_t required = MAX2(total_used, old_size); |
| |
| /* With softpin, the pool is made up of a bunch of buffers with separate |
| * maps. Make sure we have enough contiguous space that we can get a |
| * properly contiguous map for the next chunk. |
| */ |
| required = MAX2(required, old_size + contiguous_size); |
| |
| if (total_used * 2 > required) { |
| uint32_t size = old_size * 2; |
| while (size < required) |
| size *= 2; |
| |
| assert(size > pool->size); |
| |
| result = anv_block_pool_expand_range(pool, size); |
| } |
| |
| pthread_mutex_unlock(&pool->device->mutex); |
| |
| if (result != VK_SUCCESS) |
| return 0; |
| |
| /* Return the appropriate new size. This function never actually |
| * updates state->next. Instead, we let the caller do that because it |
| * needs to do so in order to maintain its concurrency model. |
| */ |
| return pool->size; |
| } |
| |
| static uint32_t |
| anv_block_pool_alloc_new(struct anv_block_pool *pool, |
| struct anv_block_state *pool_state, |
| uint32_t block_size, uint32_t *padding) |
| { |
| struct anv_block_state state, old, new; |
| |
| /* Most allocations won't generate any padding */ |
| if (padding) |
| *padding = 0; |
| |
| while (1) { |
| state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size); |
| if (state.next + block_size <= state.end) { |
| return state.next; |
| } else if (state.next <= state.end) { |
| if (state.next < state.end) { |
| /* We need to grow the block pool, but still have some leftover |
| * space that can't be used by that particular allocation. So we |
| * add that as a "padding", and return it. |
| */ |
| uint32_t leftover = state.end - state.next; |
| |
| /* If there is some leftover space in the pool, the caller must |
| * deal with it. |
| */ |
| assert(leftover == 0 || padding); |
| if (padding) |
| *padding = leftover; |
| state.next += leftover; |
| } |
| |
| /* We allocated the first block outside the pool so we have to grow |
| * the pool. pool_state->next acts a mutex: threads who try to |
| * allocate now will get block indexes above the current limit and |
| * hit futex_wait below. |
| */ |
| new.next = state.next + block_size; |
| do { |
| new.end = anv_block_pool_grow(pool, pool_state, block_size); |
| } while (new.end < new.next); |
| |
| old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64); |
| if (old.next != state.next) |
| futex_wake(&pool_state->end, INT_MAX); |
| return state.next; |
| } else { |
| futex_wait(&pool_state->end, state.end, NULL); |
| continue; |
| } |
| } |
| } |
| |
| int32_t |
| anv_block_pool_alloc(struct anv_block_pool *pool, |
| uint32_t block_size, uint32_t *padding) |
| { |
| uint32_t offset; |
| |
| offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding); |
| |
| return offset; |
| } |
| |
| VkResult |
| anv_state_pool_init(struct anv_state_pool *pool, |
| struct anv_device *device, |
| const char *name, |
| uint64_t base_address, |
| int32_t start_offset, |
| uint32_t block_size) |
| { |
| /* We don't want to ever see signed overflow */ |
| assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE); |
| |
| uint32_t initial_size = block_size * 16; |
| if (device->info->verx10 >= 125) |
| initial_size = MAX2(initial_size, 2 * 1024 * 1024); |
| |
| VkResult result = anv_block_pool_init(&pool->block_pool, device, name, |
| base_address + start_offset, |
| initial_size); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| pool->start_offset = start_offset; |
| |
| result = anv_state_table_init(&pool->table, device, 64); |
| if (result != VK_SUCCESS) { |
| anv_block_pool_finish(&pool->block_pool); |
| return result; |
| } |
| |
| assert(util_is_power_of_two_or_zero(block_size)); |
| pool->block_size = block_size; |
| for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) { |
| pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY; |
| pool->buckets[i].block.next = 0; |
| pool->buckets[i].block.end = 0; |
| } |
| VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_state_pool_finish(struct anv_state_pool *pool) |
| { |
| VG(VALGRIND_DESTROY_MEMPOOL(pool)); |
| anv_state_table_finish(&pool->table); |
| anv_block_pool_finish(&pool->block_pool); |
| } |
| |
| static uint32_t |
| anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool, |
| struct anv_block_pool *block_pool, |
| uint32_t state_size, |
| uint32_t block_size, |
| uint32_t *padding) |
| { |
| struct anv_block_state block, old, new; |
| uint32_t offset; |
| |
| /* We don't always use anv_block_pool_alloc(), which would set *padding to |
| * zero for us. So if we have a pointer to padding, we must zero it out |
| * ourselves here, to make sure we always return some sensible value. |
| */ |
| if (padding) |
| *padding = 0; |
| |
| /* If our state is large, we don't need any sub-allocation from a block. |
| * Instead, we just grab whole (potentially large) blocks. |
| */ |
| if (state_size >= block_size) |
| return anv_block_pool_alloc(block_pool, state_size, padding); |
| |
| restart: |
| block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size); |
| |
| if (block.next < block.end) { |
| return block.next; |
| } else if (block.next == block.end) { |
| offset = anv_block_pool_alloc(block_pool, block_size, padding); |
| new.next = offset + state_size; |
| new.end = offset + block_size; |
| old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64); |
| if (old.next != block.next) |
| futex_wake(&pool->block.end, INT_MAX); |
| return offset; |
| } else { |
| futex_wait(&pool->block.end, block.end, NULL); |
| goto restart; |
| } |
| } |
| |
| static uint32_t |
| anv_state_pool_get_bucket(uint32_t size) |
| { |
| unsigned size_log2 = ilog2_round_up(size); |
| assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2); |
| if (size_log2 < ANV_MIN_STATE_SIZE_LOG2) |
| size_log2 = ANV_MIN_STATE_SIZE_LOG2; |
| return size_log2 - ANV_MIN_STATE_SIZE_LOG2; |
| } |
| |
| static uint32_t |
| anv_state_pool_get_bucket_size(uint32_t bucket) |
| { |
| uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2; |
| return 1 << size_log2; |
| } |
| |
| /** Helper to push a chunk into the state table. |
| * |
| * It creates 'count' entries into the state table and update their sizes, |
| * offsets and maps, also pushing them as "free" states. |
| */ |
| static void |
| anv_state_pool_return_blocks(struct anv_state_pool *pool, |
| uint32_t chunk_offset, uint32_t count, |
| uint32_t block_size) |
| { |
| /* Disallow returning 0 chunks */ |
| assert(count != 0); |
| |
| /* Make sure we always return chunks aligned to the block_size */ |
| assert(chunk_offset % block_size == 0); |
| |
| uint32_t st_idx; |
| UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count); |
| assert(result == VK_SUCCESS); |
| for (int i = 0; i < count; i++) { |
| /* update states that were added back to the state table */ |
| struct anv_state *state_i = anv_state_table_get(&pool->table, |
| st_idx + i); |
| state_i->alloc_size = block_size; |
| state_i->offset = pool->start_offset + chunk_offset + block_size * i; |
| state_i->map = anv_block_pool_map(&pool->block_pool, |
| state_i->offset, |
| state_i->alloc_size); |
| } |
| |
| uint32_t block_bucket = anv_state_pool_get_bucket(block_size); |
| anv_free_list_push(&pool->buckets[block_bucket].free_list, |
| &pool->table, st_idx, count); |
| } |
| |
| /** Returns a chunk of memory back to the state pool. |
| * |
| * Do a two-level split. If chunk_size is bigger than divisor |
| * (pool->block_size), we return as many divisor sized blocks as we can, from |
| * the end of the chunk. |
| * |
| * The remaining is then split into smaller blocks (starting at small_size if |
| * it is non-zero), with larger blocks always being taken from the end of the |
| * chunk. |
| */ |
| static void |
| anv_state_pool_return_chunk(struct anv_state_pool *pool, |
| uint32_t chunk_offset, uint32_t chunk_size, |
| uint32_t small_size) |
| { |
| uint32_t divisor = pool->block_size; |
| uint32_t nblocks = chunk_size / divisor; |
| uint32_t rest = chunk_size - nblocks * divisor; |
| |
| if (nblocks > 0) { |
| /* First return divisor aligned and sized chunks. We start returning |
| * larger blocks from the end of the chunk, since they should already be |
| * aligned to divisor. Also anv_state_pool_return_blocks() only accepts |
| * aligned chunks. |
| */ |
| uint32_t offset = chunk_offset + rest; |
| anv_state_pool_return_blocks(pool, offset, nblocks, divisor); |
| } |
| |
| chunk_size = rest; |
| divisor /= 2; |
| |
| if (small_size > 0 && small_size < divisor) |
| divisor = small_size; |
| |
| uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2; |
| |
| /* Just as before, return larger divisor aligned blocks from the end of the |
| * chunk first. |
| */ |
| while (chunk_size > 0 && divisor >= min_size) { |
| nblocks = chunk_size / divisor; |
| rest = chunk_size - nblocks * divisor; |
| if (nblocks > 0) { |
| anv_state_pool_return_blocks(pool, chunk_offset + rest, |
| nblocks, divisor); |
| chunk_size = rest; |
| } |
| divisor /= 2; |
| } |
| } |
| |
| static struct anv_state |
| anv_state_pool_alloc_no_vg(struct anv_state_pool *pool, |
| uint32_t size, uint32_t align) |
| { |
| uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align)); |
| |
| struct anv_state *state; |
| uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket); |
| int32_t offset; |
| |
| /* Try free list first. */ |
| state = anv_free_list_pop(&pool->buckets[bucket].free_list, |
| &pool->table); |
| if (state) { |
| assert(state->offset >= pool->start_offset); |
| goto done; |
| } |
| |
| /* Try to grab a chunk from some larger bucket and split it up */ |
| for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) { |
| state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table); |
| if (state) { |
| unsigned chunk_size = anv_state_pool_get_bucket_size(b); |
| int32_t chunk_offset = state->offset; |
| |
| /* First lets update the state we got to its new size. offset and map |
| * remain the same. |
| */ |
| state->alloc_size = alloc_size; |
| |
| /* Now return the unused part of the chunk back to the pool as free |
| * blocks |
| * |
| * There are a couple of options as to what we do with it: |
| * |
| * 1) We could fully split the chunk into state.alloc_size sized |
| * pieces. However, this would mean that allocating a 16B |
| * state could potentially split a 2MB chunk into 512K smaller |
| * chunks. This would lead to unnecessary fragmentation. |
| * |
| * 2) The classic "buddy allocator" method would have us split the |
| * chunk in half and return one half. Then we would split the |
| * remaining half in half and return one half, and repeat as |
| * needed until we get down to the size we want. However, if |
| * you are allocating a bunch of the same size state (which is |
| * the common case), this means that every other allocation has |
| * to go up a level and every fourth goes up two levels, etc. |
| * This is not nearly as efficient as it could be if we did a |
| * little more work up-front. |
| * |
| * 3) Split the difference between (1) and (2) by doing a |
| * two-level split. If it's bigger than some fixed block_size, |
| * we split it into block_size sized chunks and return all but |
| * one of them. Then we split what remains into |
| * state.alloc_size sized chunks and return them. |
| * |
| * We choose something close to option (3), which is implemented with |
| * anv_state_pool_return_chunk(). That is done by returning the |
| * remaining of the chunk, with alloc_size as a hint of the size that |
| * we want the smaller chunk split into. |
| */ |
| anv_state_pool_return_chunk(pool, chunk_offset + alloc_size, |
| chunk_size - alloc_size, alloc_size); |
| goto done; |
| } |
| } |
| |
| uint32_t padding; |
| offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket], |
| &pool->block_pool, |
| alloc_size, |
| pool->block_size, |
| &padding); |
| /* Every time we allocate a new state, add it to the state pool */ |
| uint32_t idx = 0; |
| UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1); |
| assert(result == VK_SUCCESS); |
| |
| state = anv_state_table_get(&pool->table, idx); |
| state->offset = pool->start_offset + offset; |
| state->alloc_size = alloc_size; |
| state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size); |
| |
| if (padding > 0) { |
| uint32_t return_offset = offset - padding; |
| anv_state_pool_return_chunk(pool, return_offset, padding, 0); |
| } |
| |
| done: |
| return *state; |
| } |
| |
| struct anv_state |
| anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align) |
| { |
| if (size == 0) |
| return ANV_STATE_NULL; |
| |
| struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align); |
| VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size)); |
| return state; |
| } |
| |
| static void |
| anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state) |
| { |
| assert(util_is_power_of_two_or_zero(state.alloc_size)); |
| unsigned bucket = anv_state_pool_get_bucket(state.alloc_size); |
| |
| assert(state.offset >= pool->start_offset); |
| |
| anv_free_list_push(&pool->buckets[bucket].free_list, |
| &pool->table, state.idx, 1); |
| } |
| |
| void |
| anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state) |
| { |
| if (state.alloc_size == 0) |
| return; |
| |
| VG(VALGRIND_MEMPOOL_FREE(pool, state.map)); |
| anv_state_pool_free_no_vg(pool, state); |
| } |
| |
| struct anv_state_stream_block { |
| struct anv_state block; |
| |
| /* The next block */ |
| struct anv_state_stream_block *next; |
| |
| #ifdef HAVE_VALGRIND |
| /* A pointer to the first user-allocated thing in this block. This is |
| * what valgrind sees as the start of the block. |
| */ |
| void *_vg_ptr; |
| #endif |
| }; |
| |
| /* The state stream allocator is a one-shot, single threaded allocator for |
| * variable sized blocks. We use it for allocating dynamic state. |
| */ |
| void |
| anv_state_stream_init(struct anv_state_stream *stream, |
| struct anv_state_pool *state_pool, |
| uint32_t block_size) |
| { |
| stream->state_pool = state_pool; |
| stream->block_size = block_size; |
| |
| stream->block = ANV_STATE_NULL; |
| |
| /* Ensure that next + whatever > block_size. This way the first call to |
| * state_stream_alloc fetches a new block. |
| */ |
| stream->next = block_size; |
| |
| util_dynarray_init(&stream->all_blocks, NULL); |
| |
| VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false)); |
| } |
| |
| void |
| anv_state_stream_finish(struct anv_state_stream *stream) |
| { |
| util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) { |
| VG(VALGRIND_MEMPOOL_FREE(stream, block->map)); |
| VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size)); |
| anv_state_pool_free_no_vg(stream->state_pool, *block); |
| } |
| util_dynarray_fini(&stream->all_blocks); |
| |
| VG(VALGRIND_DESTROY_MEMPOOL(stream)); |
| } |
| |
| struct anv_state |
| anv_state_stream_alloc(struct anv_state_stream *stream, |
| uint32_t size, uint32_t alignment) |
| { |
| if (size == 0) |
| return ANV_STATE_NULL; |
| |
| assert(alignment <= PAGE_SIZE); |
| |
| uint32_t offset = align_u32(stream->next, alignment); |
| if (offset + size > stream->block.alloc_size) { |
| uint32_t block_size = stream->block_size; |
| if (block_size < size) |
| block_size = round_to_power_of_two(size); |
| |
| stream->block = anv_state_pool_alloc_no_vg(stream->state_pool, |
| block_size, PAGE_SIZE); |
| util_dynarray_append(&stream->all_blocks, |
| struct anv_state, stream->block); |
| VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size)); |
| |
| /* Reset back to the start */ |
| stream->next = offset = 0; |
| assert(offset + size <= stream->block.alloc_size); |
| } |
| const bool new_block = stream->next == 0; |
| |
| struct anv_state state = stream->block; |
| state.offset += offset; |
| state.alloc_size = size; |
| state.map += offset; |
| |
| stream->next = offset + size; |
| |
| if (new_block) { |
| assert(state.map == stream->block.map); |
| VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size)); |
| } else { |
| /* This only updates the mempool. The newly allocated chunk is still |
| * marked as NOACCESS. */ |
| VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map, |
| stream->next)); |
| /* Mark the newly allocated chunk as undefined */ |
| VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size)); |
| } |
| |
| return state; |
| } |
| |
| void |
| anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool, |
| struct anv_state_pool *parent, |
| uint32_t count, uint32_t size, uint32_t alignment) |
| { |
| pool->pool = parent; |
| pool->reserved_blocks = ANV_FREE_LIST_EMPTY; |
| pool->count = count; |
| |
| for (unsigned i = 0; i < count; i++) { |
| struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment); |
| anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1); |
| } |
| } |
| |
| void |
| anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool) |
| { |
| struct anv_state *state; |
| |
| while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) { |
| anv_state_pool_free(pool->pool, *state); |
| pool->count--; |
| } |
| assert(pool->count == 0); |
| } |
| |
| struct anv_state |
| anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool) |
| { |
| return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table); |
| } |
| |
| void |
| anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool, |
| struct anv_state state) |
| { |
| anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1); |
| } |
| |
| void |
| anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device, |
| const char *name) |
| { |
| pool->name = name; |
| pool->device = device; |
| for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) { |
| util_sparse_array_free_list_init(&pool->free_list[i], |
| &device->bo_cache.bo_map, 0, |
| offsetof(struct anv_bo, free_index)); |
| } |
| |
| VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); |
| } |
| |
| void |
| anv_bo_pool_finish(struct anv_bo_pool *pool) |
| { |
| for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) { |
| while (1) { |
| struct anv_bo *bo = |
| util_sparse_array_free_list_pop_elem(&pool->free_list[i]); |
| if (bo == NULL) |
| break; |
| |
| /* anv_device_release_bo is going to "free" it */ |
| VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1)); |
| anv_device_release_bo(pool->device, bo); |
| } |
| } |
| |
| VG(VALGRIND_DESTROY_MEMPOOL(pool)); |
| } |
| |
| VkResult |
| anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size, |
| struct anv_bo **bo_out) |
| { |
| const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size); |
| const unsigned pow2_size = 1 << size_log2; |
| const unsigned bucket = size_log2 - 12; |
| assert(bucket < ARRAY_SIZE(pool->free_list)); |
| |
| struct anv_bo *bo = |
| util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]); |
| if (bo != NULL) { |
| VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size)); |
| *bo_out = bo; |
| return VK_SUCCESS; |
| } |
| |
| VkResult result = anv_device_alloc_bo(pool->device, |
| pool->name, |
| pow2_size, |
| ANV_BO_ALLOC_MAPPED | |
| ANV_BO_ALLOC_SNOOPED | |
| ANV_BO_ALLOC_CAPTURE, |
| 0 /* explicit_address */, |
| &bo); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| /* We want it to look like it came from this pool */ |
| VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0)); |
| VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size)); |
| |
| *bo_out = bo; |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo) |
| { |
| VG(VALGRIND_MEMPOOL_FREE(pool, bo->map)); |
| |
| assert(util_is_power_of_two_or_zero(bo->size)); |
| const unsigned size_log2 = ilog2_round_up(bo->size); |
| const unsigned bucket = size_log2 - 12; |
| assert(bucket < ARRAY_SIZE(pool->free_list)); |
| |
| assert(util_sparse_array_get(&pool->device->bo_cache.bo_map, |
| bo->gem_handle) == bo); |
| util_sparse_array_free_list_push(&pool->free_list[bucket], |
| &bo->gem_handle, 1); |
| } |
| |
| // Scratch pool |
| |
| void |
| anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool) |
| { |
| memset(pool, 0, sizeof(*pool)); |
| } |
| |
| void |
| anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool) |
| { |
| for (unsigned s = 0; s < ARRAY_SIZE(pool->bos[0]); s++) { |
| for (unsigned i = 0; i < 16; i++) { |
| if (pool->bos[i][s] != NULL) |
| anv_device_release_bo(device, pool->bos[i][s]); |
| } |
| } |
| |
| for (unsigned i = 0; i < 16; i++) { |
| if (pool->surf_states[i].map != NULL) { |
| anv_state_pool_free(&device->surface_state_pool, |
| pool->surf_states[i]); |
| } |
| } |
| } |
| |
| struct anv_bo * |
| anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool, |
| gl_shader_stage stage, unsigned per_thread_scratch) |
| { |
| if (per_thread_scratch == 0) |
| return NULL; |
| |
| unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048); |
| assert(scratch_size_log2 < 16); |
| |
| assert(stage < ARRAY_SIZE(pool->bos)); |
| |
| const struct intel_device_info *devinfo = device->info; |
| |
| /* On GFX version 12.5, scratch access changed to a surface-based model. |
| * Instead of each shader type having its own layout based on IDs passed |
| * from the relevant fixed-function unit, all scratch access is based on |
| * thread IDs like it always has been for compute. |
| */ |
| if (devinfo->verx10 >= 125) |
| stage = MESA_SHADER_COMPUTE; |
| |
| struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]); |
| |
| if (bo != NULL) |
| return bo; |
| |
| assert(stage < ARRAY_SIZE(devinfo->max_scratch_ids)); |
| uint32_t size = per_thread_scratch * devinfo->max_scratch_ids[stage]; |
| |
| /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they |
| * are still relative to the general state base address. When we emit |
| * STATE_BASE_ADDRESS, we set general state base address to 0 and the size |
| * to the maximum (1 page under 4GB). This allows us to just place the |
| * scratch buffers anywhere we wish in the bottom 32 bits of address space |
| * and just set the scratch base pointer in 3DSTATE_*S using a relocation. |
| * However, in order to do so, we need to ensure that the kernel does not |
| * place the scratch BO above the 32-bit boundary. |
| * |
| * NOTE: Technically, it can't go "anywhere" because the top page is off |
| * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the |
| * kernel allocates space using |
| * |
| * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); |
| * |
| * so nothing will ever touch the top page. |
| */ |
| const enum anv_bo_alloc_flags alloc_flags = |
| devinfo->verx10 < 125 ? ANV_BO_ALLOC_32BIT_ADDRESS : 0; |
| VkResult result = anv_device_alloc_bo(device, "scratch", size, |
| alloc_flags, |
| 0 /* explicit_address */, |
| &bo); |
| if (result != VK_SUCCESS) |
| return NULL; /* TODO */ |
| |
| struct anv_bo *current_bo = |
| p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo); |
| if (current_bo) { |
| anv_device_release_bo(device, bo); |
| return current_bo; |
| } else { |
| return bo; |
| } |
| } |
| |
| uint32_t |
| anv_scratch_pool_get_surf(struct anv_device *device, |
| struct anv_scratch_pool *pool, |
| unsigned per_thread_scratch) |
| { |
| if (per_thread_scratch == 0) |
| return 0; |
| |
| unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048); |
| assert(scratch_size_log2 < 16); |
| |
| uint32_t surf = p_atomic_read(&pool->surfs[scratch_size_log2]); |
| if (surf > 0) |
| return surf; |
| |
| struct anv_bo *bo = |
| anv_scratch_pool_alloc(device, pool, MESA_SHADER_COMPUTE, |
| per_thread_scratch); |
| struct anv_address addr = { .bo = bo }; |
| |
| struct anv_state state = |
| anv_state_pool_alloc(&device->surface_state_pool, |
| device->isl_dev.ss.size, 64); |
| |
| isl_buffer_fill_state(&device->isl_dev, state.map, |
| .address = anv_address_physical(addr), |
| .size_B = bo->size, |
| .mocs = anv_mocs(device, bo, 0), |
| .format = ISL_FORMAT_RAW, |
| .swizzle = ISL_SWIZZLE_IDENTITY, |
| .stride_B = per_thread_scratch, |
| .is_scratch = true); |
| |
| uint32_t current = p_atomic_cmpxchg(&pool->surfs[scratch_size_log2], |
| 0, state.offset); |
| if (current) { |
| anv_state_pool_free(&device->surface_state_pool, state); |
| return current; |
| } else { |
| pool->surf_states[scratch_size_log2] = state; |
| return state.offset; |
| } |
| } |
| |
| VkResult |
| anv_bo_cache_init(struct anv_bo_cache *cache, struct anv_device *device) |
| { |
| util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024); |
| |
| if (pthread_mutex_init(&cache->mutex, NULL)) { |
| util_sparse_array_finish(&cache->bo_map); |
| return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY, |
| "pthread_mutex_init failed: %m"); |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_bo_cache_finish(struct anv_bo_cache *cache) |
| { |
| util_sparse_array_finish(&cache->bo_map); |
| pthread_mutex_destroy(&cache->mutex); |
| } |
| |
| #define ANV_BO_CACHE_SUPPORTED_FLAGS \ |
| (EXEC_OBJECT_WRITE | \ |
| EXEC_OBJECT_ASYNC | \ |
| EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \ |
| EXEC_OBJECT_PINNED | \ |
| EXEC_OBJECT_CAPTURE) |
| |
| static uint32_t |
| anv_bo_alloc_flags_to_bo_flags(struct anv_device *device, |
| enum anv_bo_alloc_flags alloc_flags) |
| { |
| struct anv_physical_device *pdevice = device->physical; |
| |
| uint64_t bo_flags = EXEC_OBJECT_PINNED; |
| |
| if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) && |
| pdevice->supports_48bit_addresses) |
| bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; |
| |
| if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture) |
| bo_flags |= EXEC_OBJECT_CAPTURE; |
| |
| if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) { |
| assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC); |
| bo_flags |= EXEC_OBJECT_WRITE; |
| } |
| |
| if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async) |
| bo_flags |= EXEC_OBJECT_ASYNC; |
| |
| return bo_flags; |
| } |
| |
| static void |
| anv_bo_finish(struct anv_device *device, struct anv_bo *bo) |
| { |
| if (bo->offset != 0 && !bo->has_fixed_address) |
| anv_vma_free(device, bo->offset, bo->size + bo->_ccs_size); |
| |
| if (bo->map && !bo->from_host_ptr) |
| anv_device_unmap_bo(device, bo, bo->map, bo->size); |
| |
| assert(bo->gem_handle != 0); |
| anv_gem_close(device, bo->gem_handle); |
| } |
| |
| static VkResult |
| anv_bo_vma_alloc_or_close(struct anv_device *device, |
| struct anv_bo *bo, |
| enum anv_bo_alloc_flags alloc_flags, |
| uint64_t explicit_address) |
| { |
| assert(explicit_address == intel_48b_address(explicit_address)); |
| |
| uint32_t align = 4096; |
| |
| /* Gen12 CCS surface addresses need to be 64K aligned. */ |
| if (device->info->ver >= 12 && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) |
| align = 64 * 1024; |
| |
| /* For XeHP, lmem and smem cannot share a single PDE, which means they |
| * can't live in the same 2MiB aligned region. |
| */ |
| if (device->info->verx10 >= 125) |
| align = 2 * 1024 * 1024; |
| |
| if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) { |
| bo->has_fixed_address = true; |
| bo->offset = explicit_address; |
| } else { |
| bo->offset = anv_vma_alloc(device, bo->size + bo->_ccs_size, |
| align, alloc_flags, explicit_address); |
| if (bo->offset == 0) { |
| anv_bo_finish(device, bo); |
| return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY, |
| "failed to allocate virtual address for BO"); |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult |
| anv_device_alloc_bo(struct anv_device *device, |
| const char *name, |
| uint64_t size, |
| enum anv_bo_alloc_flags alloc_flags, |
| uint64_t explicit_address, |
| struct anv_bo **bo_out) |
| { |
| if (!device->physical->has_implicit_ccs) |
| assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)); |
| |
| const uint32_t bo_flags = |
| anv_bo_alloc_flags_to_bo_flags(device, alloc_flags); |
| assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); |
| |
| /* The kernel is going to give us whole pages anyway */ |
| size = align_u64(size, 4096); |
| |
| uint64_t ccs_size = 0; |
| if (device->info->has_aux_map && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) { |
| /* Align the size up to the next multiple of 64K so we don't have any |
| * AUX-TT entries pointing from a 64K page to itself. |
| */ |
| size = align_u64(size, 64 * 1024); |
| |
| /* See anv_bo::_ccs_size */ |
| ccs_size = align_u64(DIV_ROUND_UP(size, INTEL_AUX_MAP_GFX12_CCS_SCALE), 4096); |
| } |
| |
| uint32_t gem_handle; |
| |
| /* If we have vram size, we have multiple memory regions and should choose |
| * one of them. |
| */ |
| if (anv_physical_device_has_vram(device->physical)) { |
| struct drm_i915_gem_memory_class_instance regions[2]; |
| uint32_t nregions = 0; |
| |
| /* This always try to put the object in local memory. Here |
| * vram_non_mappable & vram_mappable actually are the same region. |
| */ |
| if (alloc_flags & ANV_BO_ALLOC_NO_LOCAL_MEM) |
| regions[nregions++] = device->physical->sys.region; |
| else |
| regions[nregions++] = device->physical->vram_non_mappable.region; |
| |
| /* If the buffer is mapped on the host, add the system memory region. |
| * This ensures that if the buffer cannot live in mappable local memory, |
| * it can be spilled to system memory. |
| */ |
| uint32_t flags = 0; |
| if (!(alloc_flags & ANV_BO_ALLOC_NO_LOCAL_MEM) && |
| ((alloc_flags & ANV_BO_ALLOC_MAPPED) || |
| (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE))) { |
| regions[nregions++] = device->physical->sys.region; |
| if (device->physical->vram_non_mappable.size > 0) |
| flags |= I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS; |
| } |
| |
| gem_handle = anv_gem_create_regions(device, size + ccs_size, |
| flags, nregions, regions); |
| } else { |
| gem_handle = anv_gem_create(device, size + ccs_size); |
| } |
| |
| if (gem_handle == 0) |
| return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); |
| |
| struct anv_bo new_bo = { |
| .name = name, |
| .gem_handle = gem_handle, |
| .refcount = 1, |
| .offset = -1, |
| .size = size, |
| ._ccs_size = ccs_size, |
| .flags = bo_flags, |
| .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL), |
| .has_client_visible_address = |
| (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0, |
| .has_implicit_ccs = ccs_size > 0 || |
| (device->info->verx10 >= 125 && !(alloc_flags & ANV_BO_ALLOC_NO_LOCAL_MEM)), |
| }; |
| |
| if (alloc_flags & ANV_BO_ALLOC_MAPPED) { |
| VkResult result = anv_device_map_bo(device, &new_bo, 0, size, |
| 0 /* gem_flags */, &new_bo.map); |
| if (unlikely(result != VK_SUCCESS)) { |
| anv_gem_close(device, new_bo.gem_handle); |
| return result; |
| } |
| } |
| |
| if (alloc_flags & ANV_BO_ALLOC_SNOOPED) { |
| assert(alloc_flags & ANV_BO_ALLOC_MAPPED); |
| /* We don't want to change these defaults if it's going to be shared |
| * with another process. |
| */ |
| assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL)); |
| |
| /* Regular objects are created I915_CACHING_CACHED on LLC platforms and |
| * I915_CACHING_NONE on non-LLC platforms. For many internal state |
| * objects, we'd rather take the snooping overhead than risk forgetting |
| * a CLFLUSH somewhere. Userptr objects are always created as |
| * I915_CACHING_CACHED, which on non-LLC means snooped so there's no |
| * need to do this there. |
| */ |
| if (!device->info->has_llc) { |
| anv_gem_set_caching(device, new_bo.gem_handle, |
| I915_CACHING_CACHED); |
| } |
| } |
| |
| VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo, |
| alloc_flags, |
| explicit_address); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (new_bo._ccs_size > 0) { |
| assert(device->info->has_aux_map); |
| intel_aux_map_add_mapping(device->aux_map_ctx, |
| intel_canonical_address(new_bo.offset), |
| intel_canonical_address(new_bo.offset + new_bo.size), |
| new_bo.size, 0 /* format_bits */); |
| } |
| |
| assert(new_bo.gem_handle); |
| |
| /* If we just got this gem_handle from anv_bo_init_new then we know no one |
| * else is touching this BO at the moment so we don't need to lock here. |
| */ |
| struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle); |
| *bo = new_bo; |
| |
| *bo_out = bo; |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult |
| anv_device_map_bo(struct anv_device *device, |
| struct anv_bo *bo, |
| uint64_t offset, |
| size_t size, |
| uint32_t gem_flags, |
| void **map_out) |
| { |
| assert(!bo->from_host_ptr); |
| assert(size > 0); |
| |
| void *map = anv_gem_mmap(device, bo->gem_handle, offset, size, gem_flags); |
| if (unlikely(map == MAP_FAILED)) |
| return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m"); |
| |
| assert(map != NULL); |
| |
| if (map_out) |
| *map_out = map; |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_device_unmap_bo(struct anv_device *device, |
| struct anv_bo *bo, |
| void *map, size_t map_size) |
| { |
| assert(!bo->from_host_ptr); |
| |
| anv_gem_munmap(device, map, map_size); |
| } |
| |
| VkResult |
| anv_device_import_bo_from_host_ptr(struct anv_device *device, |
| void *host_ptr, uint32_t size, |
| enum anv_bo_alloc_flags alloc_flags, |
| uint64_t client_address, |
| struct anv_bo **bo_out) |
| { |
| assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED | |
| ANV_BO_ALLOC_SNOOPED | |
| ANV_BO_ALLOC_FIXED_ADDRESS))); |
| |
| assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS) || |
| (device->physical->has_implicit_ccs && device->info->has_aux_map)); |
| |
| struct anv_bo_cache *cache = &device->bo_cache; |
| const uint32_t bo_flags = |
| anv_bo_alloc_flags_to_bo_flags(device, alloc_flags); |
| assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); |
| |
| uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size); |
| if (!gem_handle) |
| return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE); |
| |
| pthread_mutex_lock(&cache->mutex); |
| |
| struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle); |
| if (bo->refcount > 0) { |
| /* VK_EXT_external_memory_host doesn't require handling importing the |
| * same pointer twice at the same time, but we don't get in the way. If |
| * kernel gives us the same gem_handle, only succeed if the flags match. |
| */ |
| assert(bo->gem_handle == gem_handle); |
| if (bo_flags != bo->flags) { |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, |
| "same host pointer imported two different ways"); |
| } |
| |
| if (bo->has_client_visible_address != |
| ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) { |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, |
| "The same BO was imported with and without buffer " |
| "device address"); |
| } |
| |
| if (client_address && client_address != intel_48b_address(bo->offset)) { |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, |
| "The same BO was imported at two different " |
| "addresses"); |
| } |
| |
| __sync_fetch_and_add(&bo->refcount, 1); |
| } else { |
| struct anv_bo new_bo = { |
| .name = "host-ptr", |
| .gem_handle = gem_handle, |
| .refcount = 1, |
| .offset = -1, |
| .size = size, |
| .map = host_ptr, |
| .flags = bo_flags, |
| .is_external = true, |
| .from_host_ptr = true, |
| .has_client_visible_address = |
| (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0, |
| }; |
| |
| VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo, |
| alloc_flags, |
| client_address); |
| if (result != VK_SUCCESS) { |
| pthread_mutex_unlock(&cache->mutex); |
| return result; |
| } |
| |
| *bo = new_bo; |
| } |
| |
| pthread_mutex_unlock(&cache->mutex); |
| *bo_out = bo; |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult |
| anv_device_import_bo(struct anv_device *device, |
| int fd, |
| enum anv_bo_alloc_flags alloc_flags, |
| uint64_t client_address, |
| struct anv_bo **bo_out) |
| { |
| assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED | |
| ANV_BO_ALLOC_SNOOPED | |
| ANV_BO_ALLOC_FIXED_ADDRESS))); |
| |
| assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS) || |
| (device->physical->has_implicit_ccs && device->info->has_aux_map)); |
| |
| struct anv_bo_cache *cache = &device->bo_cache; |
| const uint32_t bo_flags = |
| anv_bo_alloc_flags_to_bo_flags(device, alloc_flags); |
| assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); |
| |
| pthread_mutex_lock(&cache->mutex); |
| |
| uint32_t gem_handle = anv_gem_fd_to_handle(device, fd); |
| if (!gem_handle) { |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE); |
| } |
| |
| struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle); |
| if (bo->refcount > 0) { |
| /* We have to be careful how we combine flags so that it makes sense. |
| * Really, though, if we get to this case and it actually matters, the |
| * client has imported a BO twice in different ways and they get what |
| * they have coming. |
| */ |
| uint64_t new_flags = 0; |
| new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE; |
| new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC; |
| new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS; |
| new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED; |
| new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE; |
| |
| /* It's theoretically possible for a BO to get imported such that it's |
| * both pinned and not pinned. The only way this can happen is if it |
| * gets imported as both a semaphore and a memory object and that would |
| * be an application error. Just fail out in that case. |
| */ |
| if ((bo->flags & EXEC_OBJECT_PINNED) != |
| (bo_flags & EXEC_OBJECT_PINNED)) { |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, |
| "The same BO was imported two different ways"); |
| } |
| |
| /* It's also theoretically possible that someone could export a BO from |
| * one heap and import it into another or to import the same BO into two |
| * different heaps. If this happens, we could potentially end up both |
| * allowing and disallowing 48-bit addresses. There's not much we can |
| * do about it if we're pinning so we just throw an error and hope no |
| * app is actually that stupid. |
| */ |
| if ((new_flags & EXEC_OBJECT_PINNED) && |
| (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) != |
| (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) { |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, |
| "The same BO was imported on two different heaps"); |
| } |
| |
| if (bo->has_client_visible_address != |
| ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) { |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, |
| "The same BO was imported with and without buffer " |
| "device address"); |
| } |
| |
| if (client_address && client_address != intel_48b_address(bo->offset)) { |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, |
| "The same BO was imported at two different " |
| "addresses"); |
| } |
| |
| bo->flags = new_flags; |
| |
| __sync_fetch_and_add(&bo->refcount, 1); |
| } else { |
| off_t size = lseek(fd, 0, SEEK_END); |
| if (size == (off_t)-1) { |
| anv_gem_close(device, gem_handle); |
| pthread_mutex_unlock(&cache->mutex); |
| return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE); |
| } |
| |
| struct anv_bo new_bo = { |
| .name = "imported", |
| .gem_handle = gem_handle, |
| .refcount = 1, |
| .offset = -1, |
| .size = size, |
| .flags = bo_flags, |
| .is_external = true, |
| .has_client_visible_address = |
| (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0, |
| }; |
| |
| assert(new_bo._ccs_size == 0); |
| VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo, |
| alloc_flags, |
| client_address); |
| if (result != VK_SUCCESS) { |
| pthread_mutex_unlock(&cache->mutex); |
| return result; |
| } |
| |
| *bo = new_bo; |
| } |
| |
| pthread_mutex_unlock(&cache->mutex); |
| *bo_out = bo; |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult |
| anv_device_export_bo(struct anv_device *device, |
| struct anv_bo *bo, int *fd_out) |
| { |
| assert(anv_device_lookup_bo(device, bo->gem_handle) == bo); |
| |
| /* This BO must have been flagged external in order for us to be able |
| * to export it. This is done based on external options passed into |
| * anv_AllocateMemory. |
| */ |
| assert(bo->is_external); |
| |
| int fd = anv_gem_handle_to_fd(device, bo->gem_handle); |
| if (fd < 0) |
| return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS); |
| |
| *fd_out = fd; |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult |
| anv_device_get_bo_tiling(struct anv_device *device, |
| struct anv_bo *bo, |
| enum isl_tiling *tiling_out) |
| { |
| int i915_tiling = anv_gem_get_tiling(device, bo->gem_handle); |
| if (i915_tiling < 0) { |
| return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, |
| "failed to get BO tiling: %m"); |
| } |
| |
| *tiling_out = isl_tiling_from_i915_tiling(i915_tiling); |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult |
| anv_device_set_bo_tiling(struct anv_device *device, |
| struct anv_bo *bo, |
| uint32_t row_pitch_B, |
| enum isl_tiling tiling) |
| { |
| int ret = anv_gem_set_tiling(device, bo->gem_handle, row_pitch_B, |
| isl_tiling_to_i915_tiling(tiling)); |
| if (ret) { |
| return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY, |
| "failed to set BO tiling: %m"); |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static bool |
| atomic_dec_not_one(uint32_t *counter) |
| { |
| uint32_t old, val; |
| |
| val = *counter; |
| while (1) { |
| if (val == 1) |
| return false; |
| |
| old = __sync_val_compare_and_swap(counter, val, val - 1); |
| if (old == val) |
| return true; |
| |
| val = old; |
| } |
| } |
| |
| void |
| anv_device_release_bo(struct anv_device *device, |
| struct anv_bo *bo) |
| { |
| struct anv_bo_cache *cache = &device->bo_cache; |
| assert(anv_device_lookup_bo(device, bo->gem_handle) == bo); |
| |
| /* Try to decrement the counter but don't go below one. If this succeeds |
| * then the refcount has been decremented and we are not the last |
| * reference. |
| */ |
| if (atomic_dec_not_one(&bo->refcount)) |
| return; |
| |
| pthread_mutex_lock(&cache->mutex); |
| |
| /* We are probably the last reference since our attempt to decrement above |
| * failed. However, we can't actually know until we are inside the mutex. |
| * Otherwise, someone could import the BO between the decrement and our |
| * taking the mutex. |
| */ |
| if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) { |
| /* Turns out we're not the last reference. Unlock and bail. */ |
| pthread_mutex_unlock(&cache->mutex); |
| return; |
| } |
| assert(bo->refcount == 0); |
| |
| if (bo->_ccs_size > 0) { |
| assert(device->physical->has_implicit_ccs); |
| assert(device->info->has_aux_map); |
| assert(bo->has_implicit_ccs); |
| intel_aux_map_unmap_range(device->aux_map_ctx, |
| intel_canonical_address(bo->offset), |
| bo->size); |
| } |
| |
| /* Memset the BO just in case. The refcount being zero should be enough to |
| * prevent someone from assuming the data is valid but it's safer to just |
| * stomp to zero just in case. We explicitly do this *before* we actually |
| * close the GEM handle to ensure that if anyone allocates something and |
| * gets the same GEM handle, the memset has already happen and won't stomp |
| * all over any data they may write in this BO. |
| */ |
| struct anv_bo old_bo = *bo; |
| |
| memset(bo, 0, sizeof(*bo)); |
| |
| anv_bo_finish(device, &old_bo); |
| |
| /* Don't unlock until we've actually closed the BO. The whole point of |
| * the BO cache is to ensure that we correctly handle races with creating |
| * and releasing GEM handles and we don't want to let someone import the BO |
| * again between mutex unlock and closing the GEM handle. |
| */ |
| pthread_mutex_unlock(&cache->mutex); |
| } |