| /* |
| * Copyright © 2018 Valve Corporation |
| * Copyright © 2018 Google |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "aco_instruction_selection.h" |
| |
| #include "aco_builder.h" |
| #include "aco_interface.h" |
| #include "aco_ir.h" |
| |
| #include "common/ac_nir.h" |
| #include "common/sid.h" |
| |
| #include "util/fast_idiv_by_const.h" |
| #include "util/memstream.h" |
| |
| #include <array> |
| #include <functional> |
| #include <map> |
| #include <numeric> |
| #include <stack> |
| #include <utility> |
| #include <vector> |
| |
| namespace aco { |
| namespace { |
| |
| #define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__) |
| |
| static void |
| _isel_err(isel_context* ctx, const char* file, unsigned line, const nir_instr* instr, |
| const char* msg) |
| { |
| char* out; |
| size_t outsize; |
| struct u_memstream mem; |
| u_memstream_open(&mem, &out, &outsize); |
| FILE* const memf = u_memstream_get(&mem); |
| |
| fprintf(memf, "%s: ", msg); |
| nir_print_instr(instr, memf); |
| u_memstream_close(&mem); |
| |
| _aco_err(ctx->program, file, line, out); |
| free(out); |
| } |
| |
| struct if_context { |
| Temp cond; |
| |
| bool divergent_old; |
| bool exec_potentially_empty_discard_old; |
| bool exec_potentially_empty_break_old; |
| bool had_divergent_discard_old; |
| bool had_divergent_discard_then; |
| uint16_t exec_potentially_empty_break_depth_old; |
| |
| unsigned BB_if_idx; |
| unsigned invert_idx; |
| bool uniform_has_then_branch; |
| bool then_branch_divergent; |
| Block BB_invert; |
| Block BB_endif; |
| }; |
| |
| struct loop_context { |
| Block loop_exit; |
| |
| unsigned header_idx_old; |
| Block* exit_old; |
| bool divergent_cont_old; |
| bool divergent_branch_old; |
| bool divergent_if_old; |
| }; |
| |
| static bool visit_cf_list(struct isel_context* ctx, struct exec_list* list); |
| |
| static void |
| add_logical_edge(unsigned pred_idx, Block* succ) |
| { |
| succ->logical_preds.emplace_back(pred_idx); |
| } |
| |
| static void |
| add_linear_edge(unsigned pred_idx, Block* succ) |
| { |
| succ->linear_preds.emplace_back(pred_idx); |
| } |
| |
| static void |
| add_edge(unsigned pred_idx, Block* succ) |
| { |
| add_logical_edge(pred_idx, succ); |
| add_linear_edge(pred_idx, succ); |
| } |
| |
| static void |
| append_logical_start(Block* b) |
| { |
| Builder(NULL, b).pseudo(aco_opcode::p_logical_start); |
| } |
| |
| static void |
| append_logical_end(Block* b) |
| { |
| Builder(NULL, b).pseudo(aco_opcode::p_logical_end); |
| } |
| |
| Temp |
| get_ssa_temp(struct isel_context* ctx, nir_def* def) |
| { |
| uint32_t id = ctx->first_temp_id + def->index; |
| return Temp(id, ctx->program->temp_rc[id]); |
| } |
| |
| Temp |
| emit_mbcnt(isel_context* ctx, Temp dst, Operand mask = Operand(), Operand base = Operand::zero()) |
| { |
| Builder bld(ctx->program, ctx->block); |
| assert(mask.isUndefined() || mask.isTemp() || (mask.isFixed() && mask.physReg() == exec)); |
| assert(mask.isUndefined() || mask.bytes() == bld.lm.bytes()); |
| |
| if (ctx->program->wave_size == 32) { |
| Operand mask_lo = mask.isUndefined() ? Operand::c32(-1u) : mask; |
| return bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, Definition(dst), mask_lo, base); |
| } |
| |
| Operand mask_lo = Operand::c32(-1u); |
| Operand mask_hi = Operand::c32(-1u); |
| |
| if (mask.isTemp()) { |
| RegClass rc = RegClass(mask.regClass().type(), 1); |
| Builder::Result mask_split = |
| bld.pseudo(aco_opcode::p_split_vector, bld.def(rc), bld.def(rc), mask); |
| mask_lo = Operand(mask_split.def(0).getTemp()); |
| mask_hi = Operand(mask_split.def(1).getTemp()); |
| } else if (mask.physReg() == exec) { |
| mask_lo = Operand(exec_lo, s1); |
| mask_hi = Operand(exec_hi, s1); |
| } |
| |
| Temp mbcnt_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), mask_lo, base); |
| |
| if (ctx->program->gfx_level <= GFX7) |
| return bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, Definition(dst), mask_hi, mbcnt_lo); |
| else |
| return bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, Definition(dst), mask_hi, mbcnt_lo); |
| } |
| |
| inline void |
| set_wqm(isel_context* ctx, bool enable_helpers = false) |
| { |
| if (ctx->program->stage == fragment_fs) { |
| ctx->wqm_block_idx = ctx->block->index; |
| ctx->wqm_instruction_idx = ctx->block->instructions.size(); |
| ctx->program->needs_wqm |= enable_helpers; |
| } |
| } |
| |
| static Temp |
| emit_bpermute(isel_context* ctx, Builder& bld, Temp index, Temp data) |
| { |
| if (index.regClass() == s1) |
| return bld.readlane(bld.def(s1), data, index); |
| |
| /* Avoid using shared VGPRs for shuffle on GFX10 when the shader consists |
| * of multiple binaries, because the VGPR use is not known when choosing |
| * which registers to use for the shared VGPRs. |
| */ |
| const bool avoid_shared_vgprs = |
| ctx->options->gfx_level >= GFX10 && ctx->options->gfx_level < GFX11 && |
| ctx->program->wave_size == 64 && |
| (ctx->program->info.has_epilog || ctx->program->info.merged_shader_compiled_separately || |
| ctx->stage == raytracing_cs); |
| |
| if (ctx->options->gfx_level <= GFX7 || avoid_shared_vgprs) { |
| /* GFX6-7: there is no bpermute instruction */ |
| Operand index_op(index); |
| Operand input_data(data); |
| index_op.setLateKill(true); |
| input_data.setLateKill(true); |
| |
| return bld.pseudo(aco_opcode::p_bpermute_readlane, bld.def(v1), bld.def(bld.lm), |
| bld.def(bld.lm, vcc), index_op, input_data); |
| } else if (ctx->options->gfx_level >= GFX10 && ctx->program->wave_size == 64) { |
| |
| /* GFX10 wave64 mode: emulate full-wave bpermute */ |
| Temp index_is_lo = |
| bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand::c32(31u), index); |
| Builder::Result index_is_lo_split = |
| bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo); |
| Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), |
| index_is_lo_split.def(1).getTemp()); |
| Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), |
| index_is_lo_split.def(0).getTemp(), index_is_lo_n1); |
| Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2u), index); |
| Operand input_data(data); |
| |
| index_x4.setLateKill(true); |
| input_data.setLateKill(true); |
| same_half.setLateKill(true); |
| |
| if (ctx->options->gfx_level <= GFX10_3) { |
| /* We need one pair of shared VGPRs: |
| * Note, that these have twice the allocation granularity of normal VGPRs |
| */ |
| ctx->program->config->num_shared_vgprs = 2 * ctx->program->dev.vgpr_alloc_granule; |
| |
| return bld.pseudo(aco_opcode::p_bpermute_shared_vgpr, bld.def(v1), bld.def(s2), |
| bld.def(s1, scc), index_x4, input_data, same_half); |
| } else { |
| return bld.pseudo(aco_opcode::p_bpermute_permlane, bld.def(v1), bld.def(s2), |
| bld.def(s1, scc), Operand(v1.as_linear()), index_x4, input_data, |
| same_half); |
| } |
| } else { |
| /* GFX8-9 or GFX10 wave32: bpermute works normally */ |
| Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2u), index); |
| return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data); |
| } |
| } |
| |
| static Temp |
| emit_masked_swizzle(isel_context* ctx, Builder& bld, Temp src, unsigned mask, bool allow_fi) |
| { |
| if (ctx->options->gfx_level >= GFX8) { |
| unsigned and_mask = mask & 0x1f; |
| unsigned or_mask = (mask >> 5) & 0x1f; |
| unsigned xor_mask = (mask >> 10) & 0x1f; |
| |
| /* Eliminate or_mask. */ |
| and_mask &= ~or_mask; |
| xor_mask ^= or_mask; |
| |
| uint16_t dpp_ctrl = 0xffff; |
| |
| /* DPP16 before DPP8 before v_permlane(x)16_b32 |
| * because DPP16 supports modifiers and v_permlane |
| * can't be folded into valu instructions. |
| */ |
| if ((and_mask & 0x1c) == 0x1c && xor_mask < 4) { |
| unsigned res[4]; |
| for (unsigned i = 0; i < 4; i++) |
| res[i] = ((i & and_mask) ^ xor_mask); |
| dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]); |
| } else if (and_mask == 0x1f && xor_mask == 8) { |
| dpp_ctrl = dpp_row_rr(8); |
| } else if (and_mask == 0x1f && xor_mask == 0xf) { |
| dpp_ctrl = dpp_row_mirror; |
| } else if (and_mask == 0x1f && xor_mask == 0x7) { |
| dpp_ctrl = dpp_row_half_mirror; |
| } else if (ctx->options->gfx_level >= GFX11 && and_mask == 0x10 && xor_mask < 0x10) { |
| dpp_ctrl = dpp_row_share(xor_mask); |
| } else if (ctx->options->gfx_level >= GFX11 && and_mask == 0x1f && xor_mask < 0x10) { |
| dpp_ctrl = dpp_row_xmask(xor_mask); |
| } else if (ctx->options->gfx_level >= GFX10 && (and_mask & 0x18) == 0x18 && xor_mask < 8) { |
| uint32_t lane_sel = 0; |
| for (unsigned i = 0; i < 8; i++) |
| lane_sel |= ((i & and_mask) ^ xor_mask) << (i * 3); |
| return bld.vop1_dpp8(aco_opcode::v_mov_b32, bld.def(v1), src, lane_sel, allow_fi); |
| } else if (ctx->options->gfx_level >= GFX10 && (and_mask & 0x10) == 0x10) { |
| uint64_t lane_mask = 0; |
| for (unsigned i = 0; i < 16; i++) |
| lane_mask |= uint64_t((i & and_mask) ^ (xor_mask & 0xf)) << i * 4; |
| aco_opcode opcode = |
| xor_mask & 0x10 ? aco_opcode::v_permlanex16_b32 : aco_opcode::v_permlane16_b32; |
| Temp op1 = bld.copy(bld.def(s1), Operand::c32(lane_mask & 0xffffffff)); |
| Temp op2 = bld.copy(bld.def(s1), Operand::c32(lane_mask >> 32)); |
| Builder::Result ret = bld.vop3(opcode, bld.def(v1), src, op1, op2); |
| ret->valu().opsel[0] = allow_fi; /* set FETCH_INACTIVE */ |
| ret->valu().opsel[1] = true; /* set BOUND_CTRL */ |
| return ret; |
| } |
| |
| if (dpp_ctrl != 0xffff) |
| return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl, 0xf, 0xf, true, |
| allow_fi); |
| } |
| |
| return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false); |
| } |
| |
| Temp |
| as_vgpr(Builder& bld, Temp val) |
| { |
| if (val.type() == RegType::sgpr) |
| return bld.copy(bld.def(RegType::vgpr, val.size()), val); |
| assert(val.type() == RegType::vgpr); |
| return val; |
| } |
| |
| Temp |
| as_vgpr(isel_context* ctx, Temp val) |
| { |
| Builder bld(ctx->program, ctx->block); |
| return as_vgpr(bld, val); |
| } |
| |
| void |
| emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand::c32(idx)); |
| } |
| |
| Temp |
| emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc) |
| { |
| /* no need to extract the whole vector */ |
| if (src.regClass() == dst_rc) { |
| assert(idx == 0); |
| return src; |
| } |
| |
| assert(src.bytes() > (idx * dst_rc.bytes())); |
| Builder bld(ctx->program, ctx->block); |
| auto it = ctx->allocated_vec.find(src.id()); |
| if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) { |
| if (it->second[idx].regClass() == dst_rc) { |
| return it->second[idx]; |
| } else { |
| assert(!dst_rc.is_subdword()); |
| assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr); |
| return bld.copy(bld.def(dst_rc), it->second[idx]); |
| } |
| } |
| |
| if (dst_rc.is_subdword()) |
| src = as_vgpr(ctx, src); |
| |
| if (src.bytes() == dst_rc.bytes()) { |
| assert(idx == 0); |
| return bld.copy(bld.def(dst_rc), src); |
| } else { |
| Temp dst = bld.tmp(dst_rc); |
| emit_extract_vector(ctx, src, idx, dst); |
| return dst; |
| } |
| } |
| |
| void |
| emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components) |
| { |
| if (num_components == 1) |
| return; |
| if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end()) |
| return; |
| RegClass rc; |
| if (num_components > vec_src.size()) { |
| if (vec_src.type() == RegType::sgpr) { |
| /* should still help get_alu_src() */ |
| emit_split_vector(ctx, vec_src, vec_src.size()); |
| return; |
| } |
| /* sub-dword split */ |
| rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword(); |
| } else { |
| rc = RegClass(vec_src.type(), vec_src.size() / num_components); |
| } |
| aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)}; |
| split->operands[0] = Operand(vec_src); |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems; |
| for (unsigned i = 0; i < num_components; i++) { |
| elems[i] = ctx->program->allocateTmp(rc); |
| split->definitions[i] = Definition(elems[i]); |
| } |
| ctx->block->instructions.emplace_back(std::move(split)); |
| ctx->allocated_vec.emplace(vec_src.id(), elems); |
| } |
| |
| /* This vector expansion uses a mask to determine which elements in the new vector |
| * come from the original vector. The other elements are undefined. */ |
| void |
| expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask, |
| bool zero_padding = false) |
| { |
| assert(vec_src.type() == RegType::vgpr); |
| Builder bld(ctx->program, ctx->block); |
| |
| if (dst.type() == RegType::sgpr && num_components > dst.size()) { |
| Temp tmp_dst = bld.tmp(RegClass::get(RegType::vgpr, 2 * num_components)); |
| expand_vector(ctx, vec_src, tmp_dst, num_components, mask, zero_padding); |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp_dst); |
| ctx->allocated_vec[dst.id()] = ctx->allocated_vec[tmp_dst.id()]; |
| return; |
| } |
| |
| emit_split_vector(ctx, vec_src, util_bitcount(mask)); |
| |
| if (vec_src == dst) |
| return; |
| |
| if (num_components == 1) { |
| if (dst.type() == RegType::sgpr) |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src); |
| else |
| bld.copy(Definition(dst), vec_src); |
| return; |
| } |
| |
| unsigned component_bytes = dst.bytes() / num_components; |
| RegClass src_rc = RegClass::get(RegType::vgpr, component_bytes); |
| RegClass dst_rc = RegClass::get(dst.type(), component_bytes); |
| assert(dst.type() == RegType::vgpr || !src_rc.is_subdword()); |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems; |
| |
| Temp padding = Temp(0, dst_rc); |
| if (zero_padding) |
| padding = bld.copy(bld.def(dst_rc), Operand::zero(component_bytes)); |
| |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; |
| vec->definitions[0] = Definition(dst); |
| unsigned k = 0; |
| for (unsigned i = 0; i < num_components; i++) { |
| if (mask & (1 << i)) { |
| Temp src = emit_extract_vector(ctx, vec_src, k++, src_rc); |
| if (dst.type() == RegType::sgpr) |
| src = bld.as_uniform(src); |
| vec->operands[i] = Operand(src); |
| elems[i] = src; |
| } else { |
| vec->operands[i] = Operand::zero(component_bytes); |
| elems[i] = padding; |
| } |
| } |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| ctx->allocated_vec.emplace(dst.id(), elems); |
| } |
| |
| /* adjust misaligned small bit size loads */ |
| void |
| byte_align_scalar(isel_context* ctx, Temp vec, Operand offset, Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Operand shift; |
| Temp select = Temp(); |
| if (offset.isConstant()) { |
| assert(offset.constantValue() && offset.constantValue() < 4); |
| shift = Operand::c32(offset.constantValue() * 8); |
| } else { |
| /* bit_offset = 8 * (offset & 0x3) */ |
| Temp tmp = |
| bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand::c32(3u)); |
| select = bld.tmp(s1); |
| shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, |
| Operand::c32(3u)); |
| } |
| |
| if (vec.size() == 1) { |
| bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift); |
| } else if (vec.size() == 2) { |
| Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2); |
| bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift); |
| if (tmp == dst) |
| emit_split_vector(ctx, dst, 2); |
| else |
| emit_extract_vector(ctx, tmp, 0, dst); |
| } else if (vec.size() == 3 || vec.size() == 4) { |
| Temp lo = bld.tmp(s2), hi; |
| if (vec.size() == 3) { |
| /* this can happen if we use VMEM for a uniform load */ |
| hi = bld.tmp(s1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec); |
| } else { |
| hi = bld.tmp(s2); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec); |
| hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand::zero()); |
| } |
| if (select != Temp()) |
| hi = |
| bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand::zero(), bld.scc(select)); |
| lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift); |
| Temp mid = bld.tmp(s1); |
| lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo); |
| hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift); |
| mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid); |
| emit_split_vector(ctx, dst, 2); |
| } |
| } |
| |
| void |
| byte_align_vector(isel_context* ctx, Temp vec, Operand offset, Temp dst, unsigned component_size) |
| { |
| Builder bld(ctx->program, ctx->block); |
| if (offset.isTemp()) { |
| Temp tmp[4] = {vec, vec, vec, vec}; |
| |
| if (vec.size() == 4) { |
| tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), |
| Definition(tmp[2]), Definition(tmp[3]), vec); |
| } else if (vec.size() == 3) { |
| tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), |
| Definition(tmp[2]), vec); |
| } else if (vec.size() == 2) { |
| tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1]; |
| bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec); |
| } |
| for (unsigned i = 0; i < dst.size(); i++) |
| tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset); |
| |
| vec = tmp[0]; |
| if (dst.size() == 2) |
| vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]); |
| |
| offset = Operand::zero(); |
| } |
| |
| unsigned num_components = vec.bytes() / component_size; |
| if (vec.regClass() == dst.regClass()) { |
| assert(offset.constantValue() == 0); |
| bld.copy(Definition(dst), vec); |
| emit_split_vector(ctx, dst, num_components); |
| return; |
| } |
| |
| emit_split_vector(ctx, vec, num_components); |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems; |
| RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword(); |
| |
| assert(offset.constantValue() % component_size == 0); |
| unsigned skip = offset.constantValue() / component_size; |
| for (unsigned i = skip; i < num_components; i++) |
| elems[i - skip] = emit_extract_vector(ctx, vec, i, rc); |
| |
| if (dst.type() == RegType::vgpr) { |
| /* if dst is vgpr - split the src and create a shrunk version according to the mask. */ |
| num_components = dst.bytes() / component_size; |
| aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; |
| for (unsigned i = 0; i < num_components; i++) |
| create_vec->operands[i] = Operand(elems[i]); |
| create_vec->definitions[0] = Definition(dst); |
| bld.insert(std::move(create_vec)); |
| |
| } else if (skip) { |
| /* if dst is sgpr - split the src, but move the original to sgpr. */ |
| vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec); |
| byte_align_scalar(ctx, vec, offset, dst); |
| } else { |
| assert(dst.size() == vec.size()); |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec); |
| } |
| |
| ctx->allocated_vec.emplace(dst.id(), elems); |
| } |
| |
| Temp |
| get_ssa_temp_tex(struct isel_context* ctx, nir_def* def, bool is_16bit) |
| { |
| RegClass rc = RegClass::get(RegType::vgpr, (is_16bit ? 2 : 4) * def->num_components); |
| Temp tmp = get_ssa_temp(ctx, def); |
| if (tmp.bytes() != rc.bytes()) |
| return emit_extract_vector(ctx, tmp, 0, rc); |
| else |
| return tmp; |
| } |
| |
| Temp |
| bool_to_vector_condition(isel_context* ctx, Temp val, Temp dst = Temp(0, s2)) |
| { |
| Builder bld(ctx->program, ctx->block); |
| if (!dst.id()) |
| dst = bld.tmp(bld.lm); |
| |
| assert(val.regClass() == s1); |
| assert(dst.regClass() == bld.lm); |
| |
| return bld.sop2(Builder::s_cselect, Definition(dst), Operand::c32(-1), Operand::zero(), |
| bld.scc(val)); |
| } |
| |
| Temp |
| bool_to_scalar_condition(isel_context* ctx, Temp val, Temp dst = Temp(0, s1)) |
| { |
| Builder bld(ctx->program, ctx->block); |
| if (!dst.id()) |
| dst = bld.tmp(s1); |
| |
| assert(val.regClass() == bld.lm); |
| assert(dst.regClass() == s1); |
| |
| /* if we're currently in WQM mode, ensure that the source is also computed in WQM */ |
| bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(dst)), val, Operand(exec, bld.lm)); |
| return dst; |
| } |
| |
| /** |
| * Copies the first src_bits of the input to the output Temp. Input bits at positions larger than |
| * src_bits and dst_bits are truncated. |
| * |
| * Sign extension may be applied using the sign_extend parameter. The position of the input sign |
| * bit is indicated by src_bits in this case. |
| * |
| * If dst.bytes() is larger than dst_bits/8, the value of the upper bits is undefined. |
| */ |
| Temp |
| convert_int(isel_context* ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, |
| bool sign_extend, Temp dst = Temp()) |
| { |
| assert(!(sign_extend && dst_bits < src_bits) && |
| "Shrinking integers is not supported for signed inputs"); |
| |
| if (!dst.id()) { |
| if (dst_bits % 32 == 0 || src.type() == RegType::sgpr) |
| dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u)); |
| else |
| dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword()); |
| } |
| |
| assert(src.type() == RegType::sgpr || src_bits == src.bytes() * 8); |
| assert(dst.type() == RegType::sgpr || dst_bits == dst.bytes() * 8); |
| |
| if (dst.bytes() == src.bytes() && dst_bits < src_bits) { |
| /* Copy the raw value, leaving an undefined value in the upper bits for |
| * the caller to handle appropriately */ |
| return bld.copy(Definition(dst), src); |
| } else if (dst.bytes() < src.bytes()) { |
| return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand::zero()); |
| } |
| |
| Temp tmp = dst; |
| if (dst_bits == 64) |
| tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1); |
| |
| if (tmp == src) { |
| } else if (src.regClass() == s1) { |
| assert(src_bits < 32); |
| bld.pseudo(aco_opcode::p_extract, Definition(tmp), bld.def(s1, scc), src, Operand::zero(), |
| Operand::c32(src_bits), Operand::c32((unsigned)sign_extend)); |
| } else { |
| assert(src_bits < 32); |
| bld.pseudo(aco_opcode::p_extract, Definition(tmp), src, Operand::zero(), |
| Operand::c32(src_bits), Operand::c32((unsigned)sign_extend)); |
| } |
| |
| if (dst_bits == 64) { |
| if (sign_extend && dst.regClass() == s2) { |
| Temp high = |
| bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand::c32(31u)); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high); |
| } else if (sign_extend && dst.regClass() == v2) { |
| Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand::c32(31u), tmp); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high); |
| } else { |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand::zero()); |
| } |
| } |
| |
| return dst; |
| } |
| |
| enum sgpr_extract_mode { |
| sgpr_extract_sext, |
| sgpr_extract_zext, |
| sgpr_extract_undef, |
| }; |
| |
| Temp |
| extract_8_16_bit_sgpr_element(isel_context* ctx, Temp dst, nir_alu_src* src, sgpr_extract_mode mode) |
| { |
| Temp vec = get_ssa_temp(ctx, src->src.ssa); |
| unsigned src_size = src->src.ssa->bit_size; |
| unsigned swizzle = src->swizzle[0]; |
| |
| if (vec.size() > 1) { |
| assert(src_size == 16); |
| vec = emit_extract_vector(ctx, vec, swizzle / 2, s1); |
| swizzle = swizzle & 1; |
| } |
| |
| Builder bld(ctx->program, ctx->block); |
| Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst; |
| |
| if (mode == sgpr_extract_undef && swizzle == 0) |
| bld.copy(Definition(tmp), vec); |
| else |
| bld.pseudo(aco_opcode::p_extract, Definition(tmp), bld.def(s1, scc), Operand(vec), |
| Operand::c32(swizzle), Operand::c32(src_size), |
| Operand::c32((mode == sgpr_extract_sext))); |
| |
| if (dst.regClass() == s2) |
| convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst); |
| |
| return dst; |
| } |
| |
| Temp |
| get_alu_src(struct isel_context* ctx, nir_alu_src src, unsigned size = 1) |
| { |
| if (src.src.ssa->num_components == 1 && size == 1) |
| return get_ssa_temp(ctx, src.src.ssa); |
| |
| Temp vec = get_ssa_temp(ctx, src.src.ssa); |
| unsigned elem_size = src.src.ssa->bit_size / 8u; |
| bool identity_swizzle = true; |
| |
| for (unsigned i = 0; identity_swizzle && i < size; i++) { |
| if (src.swizzle[i] != i) |
| identity_swizzle = false; |
| } |
| if (identity_swizzle) |
| return emit_extract_vector(ctx, vec, 0, RegClass::get(vec.type(), elem_size * size)); |
| |
| assert(elem_size > 0); |
| assert(vec.bytes() % elem_size == 0); |
| |
| if (elem_size < 4 && vec.type() == RegType::sgpr && size == 1) { |
| assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16); |
| return extract_8_16_bit_sgpr_element(ctx, ctx->program->allocateTmp(s1), &src, |
| sgpr_extract_undef); |
| } |
| |
| bool as_uniform = elem_size < 4 && vec.type() == RegType::sgpr; |
| if (as_uniform) |
| vec = as_vgpr(ctx, vec); |
| |
| RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() |
| : RegClass(vec.type(), elem_size / 4); |
| if (size == 1) { |
| return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc); |
| } else { |
| assert(size <= 4); |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems; |
| aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, size, 1)}; |
| for (unsigned i = 0; i < size; ++i) { |
| elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc); |
| vec_instr->operands[i] = Operand{elems[i]}; |
| } |
| Temp dst = ctx->program->allocateTmp(RegClass(vec.type(), elem_size * size / 4)); |
| vec_instr->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace_back(std::move(vec_instr)); |
| ctx->allocated_vec.emplace(dst.id(), elems); |
| return vec.type() == RegType::sgpr ? Builder(ctx->program, ctx->block).as_uniform(dst) : dst; |
| } |
| } |
| |
| Temp |
| get_alu_src_vop3p(struct isel_context* ctx, nir_alu_src src) |
| { |
| /* returns v2b or v1 for vop3p usage. |
| * The source expects exactly 2 16bit components |
| * which are within the same dword |
| */ |
| assert(src.src.ssa->bit_size == 16); |
| assert(src.swizzle[0] >> 1 == src.swizzle[1] >> 1); |
| |
| Temp tmp = get_ssa_temp(ctx, src.src.ssa); |
| if (tmp.size() == 1) |
| return tmp; |
| |
| /* the size is larger than 1 dword: check the swizzle */ |
| unsigned dword = src.swizzle[0] >> 1; |
| |
| /* extract a full dword if possible */ |
| if (tmp.bytes() >= (dword + 1) * 4) { |
| /* if the source is split into components, use p_create_vector */ |
| auto it = ctx->allocated_vec.find(tmp.id()); |
| if (it != ctx->allocated_vec.end()) { |
| unsigned index = dword << 1; |
| Builder bld(ctx->program, ctx->block); |
| if (it->second[index].regClass() == v2b) |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), it->second[index], |
| it->second[index + 1]); |
| } |
| return emit_extract_vector(ctx, tmp, dword, v1); |
| } else { |
| /* This must be a swizzled access to %a.zz where %a is v6b */ |
| assert(((src.swizzle[0] | src.swizzle[1]) & 1) == 0); |
| assert(tmp.regClass() == v6b && dword == 1); |
| return emit_extract_vector(ctx, tmp, dword * 2, v2b); |
| } |
| } |
| |
| uint32_t |
| get_alu_src_ub(isel_context* ctx, nir_alu_instr* instr, int src_idx) |
| { |
| nir_scalar scalar = nir_scalar{instr->src[src_idx].src.ssa, instr->src[src_idx].swizzle[0]}; |
| return nir_unsigned_upper_bound(ctx->shader, ctx->range_ht, scalar, &ctx->ub_config); |
| } |
| |
| Temp |
| convert_pointer_to_64_bit(isel_context* ctx, Temp ptr, bool non_uniform = false) |
| { |
| if (ptr.size() == 2) |
| return ptr; |
| Builder bld(ctx->program, ctx->block); |
| if (ptr.type() == RegType::vgpr && !non_uniform) |
| ptr = bld.as_uniform(ptr); |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(RegClass(ptr.type(), 2)), ptr, |
| Operand::c32((unsigned)ctx->options->address32_hi)); |
| } |
| |
| void |
| emit_sop2_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, |
| bool writes_scc, uint8_t uses_ub = 0) |
| { |
| aco_ptr<SOP2_instruction> sop2{ |
| create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)}; |
| sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0])); |
| sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1])); |
| sop2->definitions[0] = Definition(dst); |
| if (instr->no_unsigned_wrap) |
| sop2->definitions[0].setNUW(true); |
| if (writes_scc) |
| sop2->definitions[1] = Definition(ctx->program->allocateId(s1), scc, s1); |
| |
| for (int i = 0; i < 2; i++) { |
| if (uses_ub & (1 << i)) { |
| uint32_t src_ub = get_alu_src_ub(ctx, instr, i); |
| if (src_ub <= 0xffff) |
| sop2->operands[i].set16bit(true); |
| else if (src_ub <= 0xffffff) |
| sop2->operands[i].set24bit(true); |
| } |
| } |
| |
| ctx->block->instructions.emplace_back(std::move(sop2)); |
| } |
| |
| void |
| emit_vop2_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode opc, Temp dst, |
| bool commutative, bool swap_srcs = false, bool flush_denorms = false, |
| bool nuw = false, uint8_t uses_ub = 0) |
| { |
| Builder bld(ctx->program, ctx->block); |
| bld.is_precise = instr->exact; |
| |
| Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]); |
| Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]); |
| if (src1.type() == RegType::sgpr) { |
| if (commutative && src0.type() == RegType::vgpr) { |
| Temp t = src0; |
| src0 = src1; |
| src1 = t; |
| } else { |
| src1 = as_vgpr(ctx, src1); |
| } |
| } |
| |
| Operand op[2] = {Operand(src0), Operand(src1)}; |
| |
| for (int i = 0; i < 2; i++) { |
| if (uses_ub & (1 << i)) { |
| uint32_t src_ub = get_alu_src_ub(ctx, instr, swap_srcs ? !i : i); |
| if (src_ub <= 0xffff) |
| op[i].set16bit(true); |
| else if (src_ub <= 0xffffff) |
| op[i].set24bit(true); |
| } |
| } |
| |
| if (flush_denorms && ctx->program->gfx_level < GFX9) { |
| assert(dst.size() == 1); |
| Temp tmp = bld.vop2(opc, bld.def(v1), op[0], op[1]); |
| bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0x3f800000u), tmp); |
| } else { |
| if (nuw) { |
| bld.nuw().vop2(opc, Definition(dst), op[0], op[1]); |
| } else { |
| bld.vop2(opc, Definition(dst), op[0], op[1]); |
| } |
| } |
| } |
| |
| void |
| emit_vop2_instruction_logic64(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| bld.is_precise = instr->exact; |
| |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| |
| if (src1.type() == RegType::sgpr) { |
| assert(src0.type() == RegType::vgpr); |
| std::swap(src0, src1); |
| } |
| |
| Temp src00 = bld.tmp(src0.type(), 1); |
| Temp src01 = bld.tmp(src0.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); |
| Temp src10 = bld.tmp(v1); |
| Temp src11 = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); |
| Temp lo = bld.vop2(op, bld.def(v1), src00, src10); |
| Temp hi = bld.vop2(op, bld.def(v1), src01, src11); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); |
| } |
| |
| void |
| emit_vop3a_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, |
| bool flush_denorms = false, unsigned num_sources = 2, bool swap_srcs = false) |
| { |
| assert(num_sources == 2 || num_sources == 3); |
| Temp src[3] = {Temp(0, v1), Temp(0, v1), Temp(0, v1)}; |
| bool has_sgpr = false; |
| for (unsigned i = 0; i < num_sources; i++) { |
| src[i] = get_alu_src(ctx, instr->src[swap_srcs ? 1 - i : i]); |
| if (has_sgpr) |
| src[i] = as_vgpr(ctx, src[i]); |
| else |
| has_sgpr = src[i].type() == RegType::sgpr; |
| } |
| |
| Builder bld(ctx->program, ctx->block); |
| bld.is_precise = instr->exact; |
| if (flush_denorms && ctx->program->gfx_level < GFX9) { |
| Temp tmp; |
| if (num_sources == 3) |
| tmp = bld.vop3(op, bld.def(dst.regClass()), src[0], src[1], src[2]); |
| else |
| tmp = bld.vop3(op, bld.def(dst.regClass()), src[0], src[1]); |
| if (dst.size() == 1) |
| bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0x3f800000u), tmp); |
| else |
| bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand::c64(0x3FF0000000000000), tmp); |
| } else if (num_sources == 3) { |
| bld.vop3(op, Definition(dst), src[0], src[1], src[2]); |
| } else { |
| bld.vop3(op, Definition(dst), src[0], src[1]); |
| } |
| } |
| |
| Builder::Result |
| emit_vop3p_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, |
| bool swap_srcs = false) |
| { |
| Temp src0 = get_alu_src_vop3p(ctx, instr->src[swap_srcs]); |
| Temp src1 = get_alu_src_vop3p(ctx, instr->src[!swap_srcs]); |
| if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr) |
| src1 = as_vgpr(ctx, src1); |
| assert(instr->def.num_components == 2); |
| |
| /* swizzle to opsel: all swizzles are either 0 (x) or 1 (y) */ |
| unsigned opsel_lo = |
| (instr->src[!swap_srcs].swizzle[0] & 1) << 1 | (instr->src[swap_srcs].swizzle[0] & 1); |
| unsigned opsel_hi = |
| (instr->src[!swap_srcs].swizzle[1] & 1) << 1 | (instr->src[swap_srcs].swizzle[1] & 1); |
| |
| Builder bld(ctx->program, ctx->block); |
| bld.is_precise = instr->exact; |
| Builder::Result res = bld.vop3p(op, Definition(dst), src0, src1, opsel_lo, opsel_hi); |
| return res; |
| } |
| |
| void |
| emit_idot_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, bool clamp, |
| unsigned neg_lo = 0) |
| { |
| Temp src[3] = {Temp(0, v1), Temp(0, v1), Temp(0, v1)}; |
| bool has_sgpr = false; |
| for (unsigned i = 0; i < 3; i++) { |
| src[i] = get_alu_src(ctx, instr->src[i]); |
| if (has_sgpr) |
| src[i] = as_vgpr(ctx, src[i]); |
| else |
| has_sgpr = src[i].type() == RegType::sgpr; |
| } |
| |
| Builder bld(ctx->program, ctx->block); |
| bld.is_precise = instr->exact; |
| VALU_instruction& vop3p = |
| bld.vop3p(op, Definition(dst), src[0], src[1], src[2], 0x0, 0x7)->valu(); |
| vop3p.clamp = clamp; |
| vop3p.neg_lo = neg_lo; |
| } |
| |
| void |
| emit_vop1_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| bld.is_precise = instr->exact; |
| if (dst.type() == RegType::sgpr) |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), |
| bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0]))); |
| else |
| bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0])); |
| } |
| |
| void |
| emit_vopc_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst) |
| { |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| assert(src0.size() == src1.size()); |
| |
| aco_ptr<Instruction> vopc; |
| if (src1.type() == RegType::sgpr) { |
| if (src0.type() == RegType::vgpr) { |
| /* to swap the operands, we might also have to change the opcode */ |
| switch (op) { |
| case aco_opcode::v_cmp_lt_f16: op = aco_opcode::v_cmp_gt_f16; break; |
| case aco_opcode::v_cmp_ge_f16: op = aco_opcode::v_cmp_le_f16; break; |
| case aco_opcode::v_cmp_lt_i16: op = aco_opcode::v_cmp_gt_i16; break; |
| case aco_opcode::v_cmp_ge_i16: op = aco_opcode::v_cmp_le_i16; break; |
| case aco_opcode::v_cmp_lt_u16: op = aco_opcode::v_cmp_gt_u16; break; |
| case aco_opcode::v_cmp_ge_u16: op = aco_opcode::v_cmp_le_u16; break; |
| case aco_opcode::v_cmp_lt_f32: op = aco_opcode::v_cmp_gt_f32; break; |
| case aco_opcode::v_cmp_ge_f32: op = aco_opcode::v_cmp_le_f32; break; |
| case aco_opcode::v_cmp_lt_i32: op = aco_opcode::v_cmp_gt_i32; break; |
| case aco_opcode::v_cmp_ge_i32: op = aco_opcode::v_cmp_le_i32; break; |
| case aco_opcode::v_cmp_lt_u32: op = aco_opcode::v_cmp_gt_u32; break; |
| case aco_opcode::v_cmp_ge_u32: op = aco_opcode::v_cmp_le_u32; break; |
| case aco_opcode::v_cmp_lt_f64: op = aco_opcode::v_cmp_gt_f64; break; |
| case aco_opcode::v_cmp_ge_f64: op = aco_opcode::v_cmp_le_f64; break; |
| case aco_opcode::v_cmp_lt_i64: op = aco_opcode::v_cmp_gt_i64; break; |
| case aco_opcode::v_cmp_ge_i64: op = aco_opcode::v_cmp_le_i64; break; |
| case aco_opcode::v_cmp_lt_u64: op = aco_opcode::v_cmp_gt_u64; break; |
| case aco_opcode::v_cmp_ge_u64: op = aco_opcode::v_cmp_le_u64; break; |
| default: /* eq and ne are commutative */ break; |
| } |
| Temp t = src0; |
| src0 = src1; |
| src1 = t; |
| } else { |
| src1 = as_vgpr(ctx, src1); |
| } |
| } |
| |
| Builder bld(ctx->program, ctx->block); |
| bld.vopc(op, Definition(dst), src0, src1); |
| } |
| |
| void |
| emit_sopc_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst) |
| { |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| Builder bld(ctx->program, ctx->block); |
| |
| assert(dst.regClass() == bld.lm); |
| assert(src0.type() == RegType::sgpr); |
| assert(src1.type() == RegType::sgpr); |
| |
| /* Emit the SALU comparison instruction */ |
| Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1); |
| /* Turn the result into a per-lane bool */ |
| bool_to_vector_condition(ctx, cmp, dst); |
| } |
| |
| void |
| emit_comparison(isel_context* ctx, nir_alu_instr* instr, Temp dst, aco_opcode v16_op, |
| aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, |
| aco_opcode s64_op = aco_opcode::num_opcodes) |
| { |
| aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op |
| : instr->src[0].src.ssa->bit_size == 32 ? s32_op |
| : aco_opcode::num_opcodes; |
| aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op |
| : instr->src[0].src.ssa->bit_size == 32 ? v32_op |
| : v16_op; |
| bool use_valu = s_op == aco_opcode::num_opcodes || instr->def.divergent || |
| get_ssa_temp(ctx, instr->src[0].src.ssa).type() == RegType::vgpr || |
| get_ssa_temp(ctx, instr->src[1].src.ssa).type() == RegType::vgpr; |
| aco_opcode op = use_valu ? v_op : s_op; |
| assert(op != aco_opcode::num_opcodes); |
| assert(dst.regClass() == ctx->program->lane_mask); |
| |
| if (use_valu) |
| emit_vopc_instruction(ctx, instr, op, dst); |
| else |
| emit_sopc_instruction(ctx, instr, op, dst); |
| } |
| |
| void |
| emit_boolean_logic(isel_context* ctx, nir_alu_instr* instr, Builder::WaveSpecificOpcode op, |
| Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| |
| assert(dst.regClass() == bld.lm); |
| assert(src0.regClass() == bld.lm); |
| assert(src1.regClass() == bld.lm); |
| |
| bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1); |
| } |
| |
| void |
| select_vec2(isel_context* ctx, Temp dst, Temp cond, Temp then, Temp els) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then); |
| Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els); |
| |
| Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond); |
| Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond); |
| |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); |
| } |
| |
| void |
| emit_bcsel(isel_context* ctx, nir_alu_instr* instr, Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp cond = get_alu_src(ctx, instr->src[0]); |
| Temp then = get_alu_src(ctx, instr->src[1]); |
| Temp els = get_alu_src(ctx, instr->src[2]); |
| |
| assert(cond.regClass() == bld.lm); |
| |
| if (dst.type() == RegType::vgpr) { |
| aco_ptr<Instruction> bcsel; |
| if (dst.size() == 1) { |
| then = as_vgpr(ctx, then); |
| els = as_vgpr(ctx, els); |
| |
| bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond); |
| } else if (dst.size() == 2) { |
| select_vec2(ctx, dst, cond, then, els); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| return; |
| } |
| |
| if (instr->def.bit_size == 1) { |
| assert(dst.regClass() == bld.lm); |
| assert(then.regClass() == bld.lm); |
| assert(els.regClass() == bld.lm); |
| } |
| |
| if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */ |
| if (dst.regClass() == s1 || dst.regClass() == s2) { |
| assert((then.regClass() == s1 || then.regClass() == s2) && |
| els.regClass() == then.regClass()); |
| assert(dst.size() == then.size()); |
| aco_opcode op = |
| dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64; |
| bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond))); |
| } else { |
| isel_err(&instr->instr, "Unimplemented uniform bcsel bit size"); |
| } |
| return; |
| } |
| |
| /* divergent boolean bcsel |
| * this implements bcsel on bools: dst = s0 ? s1 : s2 |
| * are going to be: dst = (s0 & s1) | (~s0 & s2) */ |
| assert(instr->def.bit_size == 1); |
| |
| if (cond.id() != then.id()) |
| then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then); |
| |
| if (cond.id() == els.id()) |
| bld.copy(Definition(dst), then); |
| else |
| bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then, |
| bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond)); |
| } |
| |
| void |
| emit_scaled_op(isel_context* ctx, Builder& bld, Definition dst, Temp val, aco_opcode op, |
| uint32_t undo) |
| { |
| /* multiply by 16777216 to handle denormals */ |
| Temp is_denormal = bld.tmp(bld.lm); |
| VALU_instruction& valu = |
| bld.vopc_e64(aco_opcode::v_cmp_class_f32, Definition(is_denormal), val, Operand::c32(1u << 4)) |
| ->valu(); |
| valu.neg[0] = true; |
| valu.abs[0] = true; |
| Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::c32(0x4b800000u), val); |
| scaled = bld.vop1(op, bld.def(v1), scaled); |
| scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::c32(undo), scaled); |
| |
| Temp not_scaled = bld.vop1(op, bld.def(v1), val); |
| |
| bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal); |
| } |
| |
| void |
| emit_rcp(isel_context* ctx, Builder& bld, Definition dst, Temp val) |
| { |
| if (ctx->block->fp_mode.denorm32 == 0) { |
| bld.vop1(aco_opcode::v_rcp_f32, dst, val); |
| return; |
| } |
| |
| emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u); |
| } |
| |
| void |
| emit_rsq(isel_context* ctx, Builder& bld, Definition dst, Temp val) |
| { |
| if (ctx->block->fp_mode.denorm32 == 0) { |
| bld.vop1(aco_opcode::v_rsq_f32, dst, val); |
| return; |
| } |
| |
| emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u); |
| } |
| |
| void |
| emit_sqrt(isel_context* ctx, Builder& bld, Definition dst, Temp val) |
| { |
| if (ctx->block->fp_mode.denorm32 == 0) { |
| bld.vop1(aco_opcode::v_sqrt_f32, dst, val); |
| return; |
| } |
| |
| emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u); |
| } |
| |
| void |
| emit_log2(isel_context* ctx, Builder& bld, Definition dst, Temp val) |
| { |
| if (ctx->block->fp_mode.denorm32 == 0) { |
| bld.vop1(aco_opcode::v_log_f32, dst, val); |
| return; |
| } |
| |
| emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u); |
| } |
| |
| Temp |
| emit_trunc_f64(isel_context* ctx, Builder& bld, Definition dst, Temp val) |
| { |
| if (ctx->options->gfx_level >= GFX7) |
| return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val); |
| |
| /* GFX6 doesn't support V_TRUNC_F64, lower it. */ |
| /* TODO: create more efficient code! */ |
| if (val.type() == RegType::sgpr) |
| val = as_vgpr(ctx, val); |
| |
| /* Split the input value. */ |
| Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val); |
| |
| /* Extract the exponent and compute the unbiased value. */ |
| Temp exponent = |
| bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand::c32(20u), Operand::c32(11u)); |
| exponent = bld.vsub32(bld.def(v1), exponent, Operand::c32(1023u)); |
| |
| /* Extract the fractional part. */ |
| Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::c32(-1u), |
| Operand::c32(0x000fffffu)); |
| fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent); |
| |
| Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), |
| fract_mask); |
| |
| Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1); |
| Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo); |
| fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp); |
| tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi); |
| fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp); |
| |
| /* Get the sign bit. */ |
| Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x80000000u), val_hi); |
| |
| /* Decide the operation to apply depending on the unbiased exponent. */ |
| Temp exp_lt0 = |
| bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.def(bld.lm), exponent, Operand::zero()); |
| Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, |
| bld.copy(bld.def(v1), Operand::zero()), exp_lt0); |
| Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0); |
| Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand::c32(51u)); |
| dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51); |
| dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51); |
| |
| return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi); |
| } |
| |
| Temp |
| emit_floor_f64(isel_context* ctx, Builder& bld, Definition dst, Temp val) |
| { |
| if (ctx->options->gfx_level >= GFX7) |
| return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val); |
| |
| /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually |
| * lowered at NIR level for precision reasons). */ |
| Temp src0 = as_vgpr(ctx, val); |
| |
| Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::c32(-1u), |
| Operand::c32(0x3fefffffu)); |
| |
| Temp isnan = bld.vopc(aco_opcode::v_cmp_neq_f64, bld.def(bld.lm), src0, src0); |
| Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0); |
| Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val); |
| |
| Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0); |
| Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min); |
| |
| Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan); |
| Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan); |
| |
| Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1); |
| |
| Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v); |
| add->valu().neg[1] = true; |
| |
| return add->definitions[0].getTemp(); |
| } |
| |
| Temp |
| uadd32_sat(Builder& bld, Definition dst, Temp src0, Temp src1) |
| { |
| if (bld.program->gfx_level < GFX8) { |
| Builder::Result add = bld.vadd32(bld.def(v1), src0, src1, true); |
| return bld.vop2_e64(aco_opcode::v_cndmask_b32, dst, add.def(0).getTemp(), Operand::c32(-1), |
| add.def(1).getTemp()); |
| } |
| |
| Builder::Result add(NULL); |
| if (bld.program->gfx_level >= GFX9) { |
| add = bld.vop2_e64(aco_opcode::v_add_u32, dst, src0, src1); |
| } else { |
| add = bld.vop2_e64(aco_opcode::v_add_co_u32, dst, bld.def(bld.lm), src0, src1); |
| } |
| add->valu().clamp = 1; |
| return dst.getTemp(); |
| } |
| |
| Temp |
| usub32_sat(Builder& bld, Definition dst, Temp src0, Temp src1) |
| { |
| if (bld.program->gfx_level < GFX8) { |
| Builder::Result sub = bld.vsub32(bld.def(v1), src0, src1, true); |
| return bld.vop2_e64(aco_opcode::v_cndmask_b32, dst, sub.def(0).getTemp(), Operand::c32(0u), |
| sub.def(1).getTemp()); |
| } |
| |
| Builder::Result sub(NULL); |
| if (bld.program->gfx_level >= GFX9) { |
| sub = bld.vop2_e64(aco_opcode::v_sub_u32, dst, src0, src1); |
| } else { |
| sub = bld.vop2_e64(aco_opcode::v_sub_co_u32, dst, bld.def(bld.lm), src0, src1); |
| } |
| sub->valu().clamp = 1; |
| return dst.getTemp(); |
| } |
| |
| void |
| emit_vec2_f2f16(isel_context* ctx, nir_alu_instr* instr, Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp src = get_ssa_temp(ctx, instr->src[0].src.ssa); |
| RegClass rc = RegClass(src.regClass().type(), instr->src[0].src.ssa->bit_size / 32); |
| Temp src0 = emit_extract_vector(ctx, src, instr->src[0].swizzle[0], rc); |
| Temp src1 = emit_extract_vector(ctx, src, instr->src[0].swizzle[1], rc); |
| |
| src1 = as_vgpr(ctx, src1); |
| if (ctx->program->gfx_level == GFX8 || ctx->program->gfx_level == GFX9) |
| bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, Definition(dst), src0, src1); |
| else |
| bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1); |
| emit_split_vector(ctx, dst, 2); |
| } |
| |
| void |
| visit_alu_instr(isel_context* ctx, nir_alu_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| bld.is_precise = instr->exact; |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| switch (instr->op) { |
| case nir_op_vec2: |
| case nir_op_vec3: |
| case nir_op_vec4: |
| case nir_op_vec5: |
| case nir_op_vec8: |
| case nir_op_vec16: { |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems; |
| unsigned num = instr->def.num_components; |
| for (unsigned i = 0; i < num; ++i) |
| elems[i] = get_alu_src(ctx, instr->src[i]); |
| |
| if (instr->def.bit_size >= 32 || dst.type() == RegType::vgpr) { |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, instr->def.num_components, 1)}; |
| RegClass elem_rc = RegClass::get(RegType::vgpr, instr->def.bit_size / 8u); |
| for (unsigned i = 0; i < num; ++i) { |
| if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword()) |
| elems[i] = emit_extract_vector(ctx, elems[i], 0, elem_rc); |
| vec->operands[i] = Operand{elems[i]}; |
| } |
| vec->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| ctx->allocated_vec.emplace(dst.id(), elems); |
| } else { |
| bool use_s_pack = ctx->program->gfx_level >= GFX9; |
| Temp mask = bld.copy(bld.def(s1), Operand::c32((1u << instr->def.bit_size) - 1)); |
| |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> packed; |
| uint32_t const_vals[NIR_MAX_VEC_COMPONENTS] = {}; |
| for (unsigned i = 0; i < num; i++) { |
| unsigned packed_size = use_s_pack ? 16 : 32; |
| unsigned idx = i * instr->def.bit_size / packed_size; |
| unsigned offset = i * instr->def.bit_size % packed_size; |
| if (nir_src_is_const(instr->src[i].src)) { |
| const_vals[idx] |= nir_src_as_uint(instr->src[i].src) << offset; |
| continue; |
| } |
| if (nir_src_is_undef(instr->src[i].src)) |
| continue; |
| |
| if (offset != packed_size - instr->def.bit_size) |
| elems[i] = |
| bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask); |
| |
| if (offset) |
| elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), elems[i], |
| Operand::c32(offset)); |
| |
| if (packed[idx].id()) |
| packed[idx] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[i], |
| packed[idx]); |
| else |
| packed[idx] = elems[i]; |
| } |
| |
| if (use_s_pack) { |
| for (unsigned i = 0; i < dst.size(); i++) { |
| bool same = !!packed[i * 2].id() == !!packed[i * 2 + 1].id(); |
| |
| if (packed[i * 2].id() && packed[i * 2 + 1].id()) |
| packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), packed[i * 2], |
| packed[i * 2 + 1]); |
| else if (packed[i * 2 + 1].id()) |
| packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), |
| Operand::c32(const_vals[i * 2]), packed[i * 2 + 1]); |
| else if (packed[i * 2].id()) |
| packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), packed[i * 2], |
| Operand::c32(const_vals[i * 2 + 1])); |
| else |
| packed[i] = Temp(); /* Both constants, so reset the entry */ |
| |
| if (same) |
| const_vals[i] = const_vals[i * 2] | (const_vals[i * 2 + 1] << 16); |
| else |
| const_vals[i] = 0; |
| } |
| } |
| |
| for (unsigned i = 0; i < dst.size(); i++) { |
| if (const_vals[i] && packed[i].id()) |
| packed[i] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), |
| Operand::c32(const_vals[i]), packed[i]); |
| else if (!packed[i].id()) |
| packed[i] = bld.copy(bld.def(s1), Operand::c32(const_vals[i])); |
| } |
| |
| if (dst.size() == 1) |
| bld.copy(Definition(dst), packed[0]); |
| else { |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; |
| vec->definitions[0] = Definition(dst); |
| for (unsigned i = 0; i < dst.size(); ++i) |
| vec->operands[i] = Operand(packed[i]); |
| bld.insert(std::move(vec)); |
| } |
| } |
| break; |
| } |
| case nir_op_mov: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (src.type() == RegType::vgpr && dst.type() == RegType::sgpr) { |
| /* use size() instead of bytes() for 8/16-bit */ |
| assert(src.size() == dst.size() && "wrong src or dst register class for nir_op_mov"); |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src); |
| } else { |
| assert(src.bytes() == dst.bytes() && "wrong src or dst register class for nir_op_mov"); |
| bld.copy(Definition(dst), src); |
| } |
| break; |
| } |
| case nir_op_inot: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst); |
| } else if (dst.regClass() == v2) { |
| Temp lo = bld.tmp(v1), hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); |
| lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo); |
| hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); |
| } else if (dst.type() == RegType::sgpr) { |
| aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64; |
| bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_iabs: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Temp src = get_alu_src_vop3p(ctx, instr->src[0]); |
| |
| unsigned opsel_lo = (instr->src[0].swizzle[0] & 1) << 1; |
| unsigned opsel_hi = ((instr->src[0].swizzle[1] & 1) << 1) | 1; |
| |
| Temp sub = bld.vop3p(aco_opcode::v_pk_sub_u16, Definition(bld.tmp(v1)), Operand::zero(), |
| src, opsel_lo, opsel_hi); |
| bld.vop3p(aco_opcode::v_pk_max_i16, Definition(dst), sub, src, opsel_lo, opsel_hi); |
| break; |
| } |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (dst.regClass() == s1) { |
| bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), src); |
| } else if (dst.regClass() == v1) { |
| bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, |
| bld.vsub32(bld.def(v1), Operand::zero(), src)); |
| } else if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { |
| bld.vop3( |
| aco_opcode::v_max_i16_e64, Definition(dst), src, |
| bld.vop3(aco_opcode::v_sub_u16_e64, Definition(bld.tmp(v2b)), Operand::zero(2), src)); |
| } else if (dst.regClass() == v2b) { |
| src = as_vgpr(ctx, src); |
| bld.vop2(aco_opcode::v_max_i16, Definition(dst), src, |
| bld.vop2(aco_opcode::v_sub_u16, Definition(bld.tmp(v2b)), Operand::zero(2), src)); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_isign: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (dst.regClass() == s1) { |
| Temp tmp = |
| bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand::c32(-1)); |
| bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand::c32(1u)); |
| } else if (dst.regClass() == s2) { |
| Temp neg = |
| bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand::c32(63u)); |
| Temp neqz; |
| if (ctx->program->gfx_level >= GFX8) |
| neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand::zero()); |
| else |
| neqz = |
| bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand::zero()) |
| .def(1) |
| .getTemp(); |
| /* SCC gets zero-extended to 64 bit */ |
| bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz)); |
| } else if (dst.regClass() == v1) { |
| bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand::c32(-1), src, Operand::c32(1u)); |
| } else if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX9) { |
| bld.vop3(aco_opcode::v_med3_i16, Definition(dst), Operand::c16(-1), src, Operand::c16(1u)); |
| } else if (dst.regClass() == v2b) { |
| src = as_vgpr(ctx, src); |
| bld.vop2(aco_opcode::v_max_i16, Definition(dst), Operand::c16(-1), |
| bld.vop2(aco_opcode::v_min_i16, Definition(bld.tmp(v1)), Operand::c16(1u), src)); |
| } else if (dst.regClass() == v2) { |
| Temp upper = emit_extract_vector(ctx, src, 1, v1); |
| Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand::c32(31u), upper); |
| Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.def(bld.lm), Operand::zero(), src); |
| Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::c32(1u), neg, gtz); |
| upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), neg, gtz); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_imax: { |
| if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_i16_e64, dst); |
| } else if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_i16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_umax: { |
| if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_u16_e64, dst); |
| } else if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_u16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_imin: { |
| if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_i16_e64, dst); |
| } else if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_i16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_umin: { |
| if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_u16_e64, dst); |
| } else if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_u16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ior: { |
| if (instr->def.bit_size == 1) { |
| emit_boolean_logic(ctx, instr, Builder::s_or, dst); |
| } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true); |
| } else if (dst.regClass() == v2) { |
| emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true); |
| } else if (dst.regClass() == s2) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_iand: { |
| if (instr->def.bit_size == 1) { |
| emit_boolean_logic(ctx, instr, Builder::s_and, dst); |
| } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true); |
| } else if (dst.regClass() == v2) { |
| emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true); |
| } else if (dst.regClass() == s2) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ixor: { |
| if (instr->def.bit_size == 1) { |
| emit_boolean_logic(ctx, instr, Builder::s_xor, dst); |
| } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true); |
| } else if (dst.regClass() == v2) { |
| emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true); |
| } else if (dst.regClass() == s2) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ushr: { |
| if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshrrev_b16_e64, dst, false, 2, true); |
| } else if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b16, dst, false, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_lshrrev_b16, dst, true); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true); |
| } else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) { |
| bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst), get_alu_src(ctx, instr->src[1]), |
| get_alu_src(ctx, instr->src[0])); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshr_b64, dst); |
| } else if (dst.regClass() == s2) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ishl: { |
| if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshlrev_b16_e64, dst, false, 2, true); |
| } else if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b16, dst, false, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_lshlrev_b16, dst, true); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true, false, |
| false, 2); |
| } else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) { |
| bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst), get_alu_src(ctx, instr->src[1]), |
| get_alu_src(ctx, instr->src[0])); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshl_b64, dst); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true, 1); |
| } else if (dst.regClass() == s2) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ishr: { |
| if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_ashrrev_i16_e64, dst, false, 2, true); |
| } else if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i16, dst, false, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_ashrrev_i16, dst, true); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true); |
| } else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) { |
| bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst), get_alu_src(ctx, instr->src[1]), |
| get_alu_src(ctx, instr->src[0])); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_ashr_i64, dst); |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true); |
| } else if (dst.regClass() == s2) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_find_lsb: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (src.regClass() == s1) { |
| bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src); |
| } else if (src.regClass() == v1) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst); |
| } else if (src.regClass() == s2) { |
| bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src); |
| } else if (src.regClass() == v2) { |
| Temp lo = bld.tmp(v1), hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); |
| lo = bld.vop1(aco_opcode::v_ffbl_b32, bld.def(v1), lo); |
| hi = bld.vop1(aco_opcode::v_ffbl_b32, bld.def(v1), hi); |
| hi = uadd32_sat(bld, bld.def(v1), bld.copy(bld.def(s1), Operand::c32(32u)), hi); |
| bld.vop2(aco_opcode::v_min_u32, Definition(dst), lo, hi); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ufind_msb: |
| case nir_op_ifind_msb: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (src.regClass() == s1 || src.regClass() == s2) { |
| aco_opcode op = src.regClass() == s2 |
| ? (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 |
| : aco_opcode::s_flbit_i32_i64) |
| : (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 |
| : aco_opcode::s_flbit_i32); |
| Temp msb_rev = bld.sop1(op, bld.def(s1), src); |
| |
| Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), |
| Operand::c32(src.size() * 32u - 1u), msb_rev); |
| Temp msb = sub.def(0).getTemp(); |
| Temp carry = sub.def(1).getTemp(); |
| |
| bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(-1), msb, |
| bld.scc(carry)); |
| } else if (src.regClass() == v1) { |
| aco_opcode op = |
| instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32; |
| Temp msb_rev = bld.tmp(v1); |
| emit_vop1_instruction(ctx, instr, op, msb_rev); |
| Temp msb = bld.tmp(v1); |
| Temp carry = |
| bld.vsub32(Definition(msb), Operand::c32(31u), Operand(msb_rev), true).def(1).getTemp(); |
| bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), msb, msb_rev, carry); |
| } else if (src.regClass() == v2) { |
| aco_opcode op = |
| instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32; |
| |
| Temp lo = bld.tmp(v1), hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); |
| |
| lo = uadd32_sat(bld, bld.def(v1), bld.copy(bld.def(s1), Operand::c32(32u)), |
| bld.vop1(op, bld.def(v1), lo)); |
| hi = bld.vop1(op, bld.def(v1), hi); |
| Temp found_hi = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::c32(-1), hi); |
| |
| Temp msb_rev = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lo, hi, found_hi); |
| |
| Temp msb = bld.tmp(v1); |
| Temp carry = |
| bld.vsub32(Definition(msb), Operand::c32(63u), Operand(msb_rev), true).def(1).getTemp(); |
| bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), msb, msb_rev, carry); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ufind_msb_rev: |
| case nir_op_ifind_msb_rev: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (src.regClass() == s1) { |
| aco_opcode op = instr->op == nir_op_ufind_msb_rev ? aco_opcode::s_flbit_i32_b32 |
| : aco_opcode::s_flbit_i32; |
| bld.sop1(op, Definition(dst), src); |
| } else if (src.regClass() == v1) { |
| aco_opcode op = |
| instr->op == nir_op_ufind_msb_rev ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32; |
| emit_vop1_instruction(ctx, instr, op, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_bitfield_reverse: { |
| if (dst.regClass() == s1) { |
| bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0])); |
| } else if (dst.regClass() == v1) { |
| bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0])); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_iadd: { |
| if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true); |
| break; |
| } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_add_u16_e64, dst); |
| break; |
| } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_add_u16, dst, true); |
| break; |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_u16, dst); |
| break; |
| } |
| |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.type() == RegType::vgpr && dst.bytes() <= 4) { |
| if (instr->no_unsigned_wrap) |
| bld.nuw().vadd32(Definition(dst), Operand(src0), Operand(src1)); |
| else |
| bld.vadd32(Definition(dst), Operand(src0), Operand(src1)); |
| break; |
| } |
| |
| assert(src0.size() == 2 && src1.size() == 2); |
| Temp src00 = bld.tmp(src0.type(), 1); |
| Temp src01 = bld.tmp(dst.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); |
| Temp src10 = bld.tmp(src1.type(), 1); |
| Temp src11 = bld.tmp(dst.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); |
| |
| if (dst.regClass() == s2) { |
| Temp carry = bld.tmp(s1); |
| Temp dst0 = |
| bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10); |
| Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, |
| bld.scc(carry)); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); |
| } else if (dst.regClass() == v2) { |
| Temp dst0 = bld.tmp(v1); |
| Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp(); |
| Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_uadd_sat: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Instruction* add_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_u16, dst); |
| add_instr->valu().clamp = 1; |
| break; |
| } |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == s1) { |
| Temp tmp = bld.tmp(s1), carry = bld.tmp(s1); |
| bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)), src0, src1); |
| bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(-1), tmp, |
| bld.scc(carry)); |
| break; |
| } else if (dst.regClass() == v2b) { |
| Instruction* add_instr; |
| if (ctx->program->gfx_level >= GFX10) { |
| add_instr = bld.vop3(aco_opcode::v_add_u16_e64, Definition(dst), src0, src1).instr; |
| } else { |
| if (src1.type() == RegType::sgpr) |
| std::swap(src0, src1); |
| add_instr = |
| bld.vop2_e64(aco_opcode::v_add_u16, Definition(dst), src0, as_vgpr(ctx, src1)).instr; |
| } |
| add_instr->valu().clamp = 1; |
| break; |
| } else if (dst.regClass() == v1) { |
| uadd32_sat(bld, Definition(dst), src0, src1); |
| break; |
| } |
| |
| assert(src0.size() == 2 && src1.size() == 2); |
| |
| Temp src00 = bld.tmp(src0.type(), 1); |
| Temp src01 = bld.tmp(src0.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); |
| Temp src10 = bld.tmp(src1.type(), 1); |
| Temp src11 = bld.tmp(src1.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); |
| |
| if (dst.regClass() == s2) { |
| Temp carry0 = bld.tmp(s1); |
| Temp carry1 = bld.tmp(s1); |
| |
| Temp no_sat0 = |
| bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry0)), src00, src10); |
| Temp no_sat1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(Definition(carry1)), |
| src01, src11, bld.scc(carry0)); |
| |
| Temp no_sat = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), no_sat0, no_sat1); |
| |
| bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c64(-1), no_sat, |
| bld.scc(carry1)); |
| } else if (dst.regClass() == v2) { |
| Temp no_sat0 = bld.tmp(v1); |
| Temp dst0 = bld.tmp(v1); |
| Temp dst1 = bld.tmp(v1); |
| |
| Temp carry0 = bld.vadd32(Definition(no_sat0), src00, src10, true).def(1).getTemp(); |
| Temp carry1; |
| |
| if (ctx->program->gfx_level >= GFX8) { |
| carry1 = bld.tmp(bld.lm); |
| bld.vop2_e64(aco_opcode::v_addc_co_u32, Definition(dst1), Definition(carry1), |
| as_vgpr(ctx, src01), as_vgpr(ctx, src11), carry0) |
| ->valu() |
| .clamp = 1; |
| } else { |
| Temp no_sat1 = bld.tmp(v1); |
| carry1 = bld.vadd32(Definition(no_sat1), src01, src11, true, carry0).def(1).getTemp(); |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst1), no_sat1, Operand::c32(-1), |
| carry1); |
| } |
| |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst0), no_sat0, Operand::c32(-1), |
| carry1); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_iadd_sat: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Instruction* add_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_i16, dst); |
| add_instr->valu().clamp = 1; |
| break; |
| } |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == s1) { |
| Temp cond = bld.sopc(aco_opcode::s_cmp_lt_i32, bld.def(s1, scc), src1, Operand::zero()); |
| Temp bound = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(bld.def(s1, scc)), |
| Operand::c32(INT32_MAX), cond); |
| Temp overflow = bld.tmp(s1); |
| Temp add = |
| bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.scc(Definition(overflow)), src0, src1); |
| bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bound, add, bld.scc(overflow)); |
| break; |
| } |
| |
| src1 = as_vgpr(ctx, src1); |
| |
| if (dst.regClass() == v2b) { |
| Instruction* add_instr = |
| bld.vop3(aco_opcode::v_add_i16, Definition(dst), src0, src1).instr; |
| add_instr->valu().clamp = 1; |
| } else if (dst.regClass() == v1) { |
| Instruction* add_instr = |
| bld.vop3(aco_opcode::v_add_i32, Definition(dst), src0, src1).instr; |
| add_instr->valu().clamp = 1; |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_uadd_carry: { |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == s1) { |
| bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1); |
| break; |
| } |
| if (dst.regClass() == v1) { |
| Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp(); |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(1u), |
| carry); |
| break; |
| } |
| |
| Temp src00 = bld.tmp(src0.type(), 1); |
| Temp src01 = bld.tmp(dst.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); |
| Temp src10 = bld.tmp(src1.type(), 1); |
| Temp src11 = bld.tmp(dst.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); |
| if (dst.regClass() == s2) { |
| Temp carry = bld.tmp(s1); |
| bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10); |
| carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, |
| bld.scc(carry)) |
| .def(1) |
| .getTemp(); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand::zero()); |
| } else if (dst.regClass() == v2) { |
| Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp(); |
| carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp(); |
| carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), |
| Operand::c32(1u), carry); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand::zero()); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_isub: { |
| if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true); |
| break; |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_u16, dst); |
| break; |
| } |
| |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == v1) { |
| bld.vsub32(Definition(dst), src0, src1); |
| break; |
| } else if (dst.bytes() <= 2) { |
| if (ctx->program->gfx_level >= GFX10) |
| bld.vop3(aco_opcode::v_sub_u16_e64, Definition(dst), src0, src1); |
| else if (src1.type() == RegType::sgpr) |
| bld.vop2(aco_opcode::v_subrev_u16, Definition(dst), src1, as_vgpr(ctx, src0)); |
| else if (ctx->program->gfx_level >= GFX8) |
| bld.vop2(aco_opcode::v_sub_u16, Definition(dst), src0, as_vgpr(ctx, src1)); |
| else |
| bld.vsub32(Definition(dst), src0, src1); |
| break; |
| } |
| |
| Temp src00 = bld.tmp(src0.type(), 1); |
| Temp src01 = bld.tmp(dst.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); |
| Temp src10 = bld.tmp(src1.type(), 1); |
| Temp src11 = bld.tmp(dst.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); |
| if (dst.regClass() == s2) { |
| Temp borrow = bld.tmp(s1); |
| Temp dst0 = |
| bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10); |
| Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, |
| bld.scc(borrow)); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); |
| } else if (dst.regClass() == v2) { |
| Temp lower = bld.tmp(v1); |
| Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp(); |
| Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_usub_borrow: { |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == s1) { |
| bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1); |
| break; |
| } else if (dst.regClass() == v1) { |
| Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp(); |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(1u), |
| borrow); |
| break; |
| } |
| |
| Temp src00 = bld.tmp(src0.type(), 1); |
| Temp src01 = bld.tmp(dst.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); |
| Temp src10 = bld.tmp(src1.type(), 1); |
| Temp src11 = bld.tmp(dst.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); |
| if (dst.regClass() == s2) { |
| Temp borrow = bld.tmp(s1); |
| bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10); |
| borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, |
| bld.scc(borrow)) |
| .def(1) |
| .getTemp(); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand::zero()); |
| } else if (dst.regClass() == v2) { |
| Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp(); |
| borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp(); |
| borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), |
| Operand::c32(1u), borrow); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand::zero()); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_usub_sat: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Instruction* sub_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_u16, dst); |
| sub_instr->valu().clamp = 1; |
| break; |
| } |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == s1) { |
| Temp tmp = bld.tmp(s1), carry = bld.tmp(s1); |
| bld.sop2(aco_opcode::s_sub_u32, Definition(tmp), bld.scc(Definition(carry)), src0, src1); |
| bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(0), tmp, bld.scc(carry)); |
| break; |
| } else if (dst.regClass() == v2b) { |
| Instruction* sub_instr; |
| if (ctx->program->gfx_level >= GFX10) { |
| sub_instr = bld.vop3(aco_opcode::v_sub_u16_e64, Definition(dst), src0, src1).instr; |
| } else { |
| aco_opcode op = aco_opcode::v_sub_u16; |
| if (src1.type() == RegType::sgpr) { |
| std::swap(src0, src1); |
| op = aco_opcode::v_subrev_u16; |
| } |
| sub_instr = bld.vop2_e64(op, Definition(dst), src0, as_vgpr(ctx, src1)).instr; |
| } |
| sub_instr->valu().clamp = 1; |
| break; |
| } else if (dst.regClass() == v1) { |
| usub32_sat(bld, Definition(dst), src0, as_vgpr(ctx, src1)); |
| break; |
| } |
| |
| assert(src0.size() == 2 && src1.size() == 2); |
| Temp src00 = bld.tmp(src0.type(), 1); |
| Temp src01 = bld.tmp(src0.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); |
| Temp src10 = bld.tmp(src1.type(), 1); |
| Temp src11 = bld.tmp(src1.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1); |
| |
| if (dst.regClass() == s2) { |
| Temp carry0 = bld.tmp(s1); |
| Temp carry1 = bld.tmp(s1); |
| |
| Temp no_sat0 = |
| bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry0)), src00, src10); |
| Temp no_sat1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(Definition(carry1)), |
| src01, src11, bld.scc(carry0)); |
| |
| Temp no_sat = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), no_sat0, no_sat1); |
| |
| bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c64(0ull), no_sat, |
| bld.scc(carry1)); |
| } else if (dst.regClass() == v2) { |
| Temp no_sat0 = bld.tmp(v1); |
| Temp dst0 = bld.tmp(v1); |
| Temp dst1 = bld.tmp(v1); |
| |
| Temp carry0 = bld.vsub32(Definition(no_sat0), src00, src10, true).def(1).getTemp(); |
| Temp carry1; |
| |
| if (ctx->program->gfx_level >= GFX8) { |
| carry1 = bld.tmp(bld.lm); |
| bld.vop2_e64(aco_opcode::v_subb_co_u32, Definition(dst1), Definition(carry1), |
| as_vgpr(ctx, src01), as_vgpr(ctx, src11), carry0) |
| ->valu() |
| .clamp = 1; |
| } else { |
| Temp no_sat1 = bld.tmp(v1); |
| carry1 = bld.vsub32(Definition(no_sat1), src01, src11, true, carry0).def(1).getTemp(); |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst1), no_sat1, Operand::c32(0u), |
| carry1); |
| } |
| |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst0), no_sat0, Operand::c32(0u), |
| carry1); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_isub_sat: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Instruction* sub_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_i16, dst); |
| sub_instr->valu().clamp = 1; |
| break; |
| } |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == s1) { |
| Temp cond = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src1, Operand::zero()); |
| Temp bound = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(bld.def(s1, scc)), |
| Operand::c32(INT32_MAX), cond); |
| Temp overflow = bld.tmp(s1); |
| Temp sub = |
| bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.scc(Definition(overflow)), src0, src1); |
| bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bound, sub, bld.scc(overflow)); |
| break; |
| } |
| |
| src1 = as_vgpr(ctx, src1); |
| |
| if (dst.regClass() == v2b) { |
| Instruction* sub_instr = |
| bld.vop3(aco_opcode::v_sub_i16, Definition(dst), src0, src1).instr; |
| sub_instr->valu().clamp = 1; |
| } else if (dst.regClass() == v1) { |
| Instruction* sub_instr = |
| bld.vop3(aco_opcode::v_sub_i32, Definition(dst), src0, src1).instr; |
| sub_instr->valu().clamp = 1; |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_imul: { |
| if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_lo_u16_e64, dst); |
| } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_lo_u16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_mul_lo_u16, dst); |
| } else if (dst.type() == RegType::vgpr) { |
| uint32_t src0_ub = get_alu_src_ub(ctx, instr, 0); |
| uint32_t src1_ub = get_alu_src_ub(ctx, instr, 1); |
| |
| if (src0_ub <= 0xffffff && src1_ub <= 0xffffff) { |
| bool nuw_16bit = src0_ub <= 0xffff && src1_ub <= 0xffff && src0_ub * src1_ub <= 0xffff; |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_u32_u24, dst, |
| true /* commutative */, false, false, nuw_16bit); |
| } else if (nir_src_is_const(instr->src[0].src)) { |
| bld.v_mul_imm(Definition(dst), get_alu_src(ctx, instr->src[1]), |
| nir_src_as_uint(instr->src[0].src), false); |
| } else if (nir_src_is_const(instr->src[1].src)) { |
| bld.v_mul_imm(Definition(dst), get_alu_src(ctx, instr->src[0]), |
| nir_src_as_uint(instr->src[1].src), false); |
| } else { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_lo_u32, dst); |
| } |
| } else if (dst.regClass() == s1) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_umul_high: { |
| if (dst.regClass() == s1 && ctx->options->gfx_level >= GFX9) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_hi_u32, dst, false); |
| } else if (dst.bytes() == 4) { |
| uint32_t src0_ub = get_alu_src_ub(ctx, instr, 0); |
| uint32_t src1_ub = get_alu_src_ub(ctx, instr, 1); |
| |
| Temp tmp = dst.regClass() == s1 ? bld.tmp(v1) : dst; |
| if (src0_ub <= 0xffffff && src1_ub <= 0xffffff) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_hi_u32_u24, tmp, true); |
| } else { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_hi_u32, tmp); |
| } |
| |
| if (dst.regClass() == s1) |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_imul_high: { |
| if (dst.regClass() == v1) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_hi_i32, dst); |
| } else if (dst.regClass() == s1 && ctx->options->gfx_level >= GFX9) { |
| emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_hi_i32, dst, false); |
| } else if (dst.regClass() == s1) { |
| Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]), |
| as_vgpr(ctx, get_alu_src(ctx, instr->src[1]))); |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fmul: { |
| if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_mul_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fmulz: { |
| if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_legacy_f32, dst, true); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fadd: { |
| if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_add_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fsub: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Instruction* add = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_f16, dst); |
| VALU_instruction& sub = add->valu(); |
| sub.neg_lo[1] = true; |
| sub.neg_hi[1] = true; |
| break; |
| } |
| |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == v2b) { |
| if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr) |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false); |
| else |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true); |
| } else if (dst.regClass() == v1) { |
| if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr) |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false); |
| else |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true); |
| } else if (dst.regClass() == v2) { |
| Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), as_vgpr(ctx, src0), |
| as_vgpr(ctx, src1)); |
| add->valu().neg[1] = true; |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ffma: { |
| if (dst.regClass() == v2b) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f16, dst, false, 3); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| assert(instr->def.num_components == 2); |
| |
| Temp src0 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[0])); |
| Temp src1 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[1])); |
| Temp src2 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[2])); |
| |
| /* swizzle to opsel: all swizzles are either 0 (x) or 1 (y) */ |
| unsigned opsel_lo = 0, opsel_hi = 0; |
| for (unsigned i = 0; i < 3; i++) { |
| opsel_lo |= (instr->src[i].swizzle[0] & 1) << i; |
| opsel_hi |= (instr->src[i].swizzle[1] & 1) << i; |
| } |
| |
| bld.vop3p(aco_opcode::v_pk_fma_f16, Definition(dst), src0, src1, src2, opsel_lo, opsel_hi); |
| } else if (dst.regClass() == v1) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f32, dst, |
| ctx->block->fp_mode.must_flush_denorms32, 3); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f64, dst, false, 3); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ffmaz: { |
| if (dst.regClass() == v1) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_legacy_f32, dst, |
| ctx->block->fp_mode.must_flush_denorms32, 3); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fmax: { |
| if (dst.regClass() == v2b) { |
| // TODO: check fp_mode.must_flush_denorms16_64 |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, |
| ctx->block->fp_mode.must_flush_denorms32); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_f64, dst, |
| ctx->block->fp_mode.must_flush_denorms16_64); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fmin: { |
| if (dst.regClass() == v2b) { |
| // TODO: check fp_mode.must_flush_denorms16_64 |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true); |
| } else if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_f16, dst, true); |
| } else if (dst.regClass() == v1) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, |
| ctx->block->fp_mode.must_flush_denorms32); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_f64, dst, |
| ctx->block->fp_mode.must_flush_denorms16_64); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_sdot_4x8_iadd: { |
| if (ctx->options->gfx_level >= GFX11) |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, false, 0x3); |
| else |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_i8, dst, false); |
| break; |
| } |
| case nir_op_sdot_4x8_iadd_sat: { |
| if (ctx->options->gfx_level >= GFX11) |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, true, 0x3); |
| else |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_i8, dst, true); |
| break; |
| } |
| case nir_op_sudot_4x8_iadd: { |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, false, 0x1); |
| break; |
| } |
| case nir_op_sudot_4x8_iadd_sat: { |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, true, 0x1); |
| break; |
| } |
| case nir_op_udot_4x8_uadd: { |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_u32_u8, dst, false); |
| break; |
| } |
| case nir_op_udot_4x8_uadd_sat: { |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_u32_u8, dst, true); |
| break; |
| } |
| case nir_op_sdot_2x16_iadd: { |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_i32_i16, dst, false); |
| break; |
| } |
| case nir_op_sdot_2x16_iadd_sat: { |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_i32_i16, dst, true); |
| break; |
| } |
| case nir_op_udot_2x16_uadd: { |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_u32_u16, dst, false); |
| break; |
| } |
| case nir_op_udot_2x16_uadd_sat: { |
| emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_u32_u16, dst, true); |
| break; |
| } |
| case nir_op_cube_amd: { |
| Temp in = get_alu_src(ctx, instr->src[0], 3); |
| Temp src[3] = {emit_extract_vector(ctx, in, 0, v1), emit_extract_vector(ctx, in, 1, v1), |
| emit_extract_vector(ctx, in, 2, v1)}; |
| Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]); |
| Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]); |
| Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]); |
| Temp id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), src[0], src[1], src[2]); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tc, sc, ma, id); |
| break; |
| } |
| case nir_op_bcsel: { |
| emit_bcsel(ctx, instr, dst); |
| break; |
| } |
| case nir_op_frsq: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst); |
| } else if (dst.regClass() == v1) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| emit_rsq(ctx, bld, Definition(dst), src); |
| } else if (dst.regClass() == v2) { |
| /* Lowered at NIR level for precision reasons. */ |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fneg: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Temp src = get_alu_src_vop3p(ctx, instr->src[0]); |
| Instruction* vop3p = |
| bld.vop3p(aco_opcode::v_pk_mul_f16, Definition(dst), src, Operand::c16(0x3C00), |
| instr->src[0].swizzle[0] & 1, instr->src[0].swizzle[1] & 1); |
| vop3p->valu().neg_lo[0] = true; |
| vop3p->valu().neg_hi[0] = true; |
| break; |
| } |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (dst.regClass() == v2b) { |
| bld.vop2(aco_opcode::v_mul_f16, Definition(dst), Operand::c16(0xbc00u), as_vgpr(ctx, src)); |
| } else if (dst.regClass() == v1) { |
| bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0xbf800000u), |
| as_vgpr(ctx, src)); |
| } else if (dst.regClass() == v2) { |
| if (ctx->block->fp_mode.must_flush_denorms16_64) |
| src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand::c64(0x3FF0000000000000), |
| as_vgpr(ctx, src)); |
| Temp upper = bld.tmp(v1), lower = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); |
| upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand::c32(0x80000000u), upper); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fabs: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Temp src = get_alu_src_vop3p(ctx, instr->src[0]); |
| Instruction* vop3p = |
| bld.vop3p(aco_opcode::v_pk_max_f16, Definition(dst), src, src, |
| instr->src[0].swizzle[0] & 1 ? 3 : 0, instr->src[0].swizzle[1] & 1 ? 3 : 0) |
| .instr; |
| vop3p->valu().neg_lo[1] = true; |
| vop3p->valu().neg_hi[1] = true; |
| break; |
| } |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (dst.regClass() == v2b) { |
| Instruction* mul = bld.vop2_e64(aco_opcode::v_mul_f16, Definition(dst), |
| Operand::c16(0x3c00), as_vgpr(ctx, src)) |
| .instr; |
| mul->valu().abs[1] = true; |
| } else if (dst.regClass() == v1) { |
| Instruction* mul = bld.vop2_e64(aco_opcode::v_mul_f32, Definition(dst), |
| Operand::c32(0x3f800000u), as_vgpr(ctx, src)) |
| .instr; |
| mul->valu().abs[1] = true; |
| } else if (dst.regClass() == v2) { |
| if (ctx->block->fp_mode.must_flush_denorms16_64) |
| src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand::c64(0x3FF0000000000000), |
| as_vgpr(ctx, src)); |
| Temp upper = bld.tmp(v1), lower = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src); |
| upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x7FFFFFFFu), upper); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fsat: { |
| if (dst.regClass() == v1 && instr->def.bit_size == 16) { |
| Temp src = get_alu_src_vop3p(ctx, instr->src[0]); |
| Instruction* vop3p = |
| bld.vop3p(aco_opcode::v_pk_mul_f16, Definition(dst), src, Operand::c16(0x3C00), |
| instr->src[0].swizzle[0] & 1, instr->src[0].swizzle[1] & 1); |
| vop3p->valu().clamp = true; |
| break; |
| } |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (dst.regClass() == v2b) { |
| bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand::c16(0u), Operand::c16(0x3c00), |
| src); |
| } else if (dst.regClass() == v1) { |
| bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand::zero(), |
| Operand::c32(0x3f800000u), src); |
| /* apparently, it is not necessary to flush denorms if this instruction is used with these |
| * operands */ |
| // TODO: confirm that this holds under any circumstances |
| } else if (dst.regClass() == v2) { |
| Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand::zero()); |
| add->valu().clamp = true; |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_flog2: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst); |
| } else if (dst.regClass() == v1) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| emit_log2(ctx, bld, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_frcp: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst); |
| } else if (dst.regClass() == v1) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| emit_rcp(ctx, bld, Definition(dst), src); |
| } else if (dst.regClass() == v2) { |
| /* Lowered at NIR level for precision reasons. */ |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fexp2: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fsqrt: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst); |
| } else if (dst.regClass() == v1) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| emit_sqrt(ctx, bld, Definition(dst), src); |
| } else if (dst.regClass() == v2) { |
| /* Lowered at NIR level for precision reasons. */ |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ffract: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst); |
| } else if (dst.regClass() == v2) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ffloor: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst); |
| } else if (dst.regClass() == v2) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| emit_floor_f64(ctx, bld, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fceil: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst); |
| } else if (dst.regClass() == v2) { |
| if (ctx->options->gfx_level >= GFX7) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst); |
| } else { |
| /* GFX6 doesn't support V_CEIL_F64, lower it. */ |
| /* trunc = trunc(src0) |
| * if (src0 > 0.0 && src0 != trunc) |
| * trunc += 1.0 |
| */ |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0); |
| Temp tmp0 = |
| bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand::zero()); |
| Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.def(bld.lm), src0, trunc); |
| Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), tmp0, tmp1); |
| Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), |
| bld.copy(bld.def(v1), Operand::zero()), |
| bld.copy(bld.def(v1), Operand::c32(0x3ff00000u)), cond); |
| add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), |
| bld.copy(bld.def(v1), Operand::zero()), add); |
| bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add); |
| } |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ftrunc: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst); |
| } else if (dst.regClass() == v2) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| emit_trunc_f64(ctx, bld, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fround_even: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst); |
| } else if (dst.regClass() == v2) { |
| if (ctx->options->gfx_level >= GFX7) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst); |
| } else { |
| /* GFX6 doesn't support V_RNDNE_F64, lower it. */ |
| Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1); |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0); |
| |
| Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), |
| bld.copy(bld.def(s1), Operand::c32(-2u))); |
| Temp bfi = |
| bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, |
| bld.copy(bld.def(v1), Operand::c32(0x43300000u)), as_vgpr(ctx, src0_hi)); |
| Temp tmp = |
| bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, |
| bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::zero(), bfi)); |
| Instruction* sub = |
| bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, |
| bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::zero(), bfi)); |
| sub->valu().neg[1] = true; |
| tmp = sub->definitions[0].getTemp(); |
| |
| Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::c32(-1u), |
| Operand::c32(0x432fffffu)); |
| Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, v); |
| vop3->valu().abs[0] = true; |
| Temp cond = vop3->definitions[0].getTemp(); |
| |
| Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp); |
| Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, |
| as_vgpr(ctx, src0_lo), cond); |
| Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, |
| as_vgpr(ctx, src0_hi), cond); |
| |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1); |
| } |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fsin_amd: |
| case nir_op_fcos_amd: { |
| Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0])); |
| aco_ptr<Instruction> norm; |
| if (dst.regClass() == v2b) { |
| aco_opcode opcode = |
| instr->op == nir_op_fsin_amd ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16; |
| bld.vop1(opcode, Definition(dst), src); |
| } else if (dst.regClass() == v1) { |
| /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */ |
| if (ctx->options->gfx_level < GFX9) |
| src = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), src); |
| |
| aco_opcode opcode = |
| instr->op == nir_op_fsin_amd ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32; |
| bld.vop1(opcode, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ldexp: { |
| if (dst.regClass() == v2b) { |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false); |
| } else if (dst.regClass() == v1) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_ldexp_f32, dst); |
| } else if (dst.regClass() == v2) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_ldexp_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_frexp_sig: { |
| if (dst.regClass() == v2b) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f16, dst); |
| } else if (dst.regClass() == v1) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f32, dst); |
| } else if (dst.regClass() == v2) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_frexp_exp: { |
| if (instr->src[0].src.ssa->bit_size == 16) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src); |
| tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand::zero()); |
| convert_int(ctx, bld, tmp, 8, 32, true, dst); |
| } else if (instr->src[0].src.ssa->bit_size == 32) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_exp_i32_f32, dst); |
| } else if (instr->src[0].src.ssa->bit_size == 64) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_exp_i32_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_fsign: { |
| Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0])); |
| if (dst.regClass() == v2b) { |
| assert(ctx->program->gfx_level >= GFX9); |
| /* replace negative zero with positive zero */ |
| src = bld.vop2(aco_opcode::v_add_f16, bld.def(v2b), Operand::zero(), src); |
| src = |
| bld.vop3(aco_opcode::v_med3_i16, bld.def(v2b), Operand::c16(-1), src, Operand::c16(1u)); |
| bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src); |
| } else if (dst.regClass() == v1) { |
| if (ctx->block->fp_mode.denorm32 == fp_denorm_flush) { |
| /* If denormals are flushed, then v_mul_legacy_f32(2.0, src) can become omod. */ |
| src = |
| bld.vop2(aco_opcode::v_mul_legacy_f32, bld.def(v1), Operand::c32(0x40000000), src); |
| } else { |
| src = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand::zero(), src); |
| } |
| src = |
| bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand::c32(-1), src, Operand::c32(1u)); |
| bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src); |
| } else if (dst.regClass() == v2) { |
| Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.def(bld.lm), Operand::zero(), src); |
| Temp tmp = bld.copy(bld.def(v1), Operand::c32(0x3FF00000u)); |
| Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, |
| emit_extract_vector(ctx, src, 1, v1), cond); |
| |
| cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.def(bld.lm), Operand::zero(), src); |
| tmp = bld.copy(bld.def(v1), Operand::c32(0xBFF00000u)); |
| upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond); |
| |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(), upper); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_f2f16: |
| case nir_op_f2f16_rtne: { |
| assert(instr->src[0].src.ssa->bit_size == 32); |
| if (instr->def.num_components == 2) { |
| /* Vectorizing f2f16 is only possible with rtz. */ |
| assert(instr->op != nir_op_f2f16_rtne); |
| assert(ctx->block->fp_mode.round16_64 == fp_round_tz || |
| !ctx->block->fp_mode.care_about_round16_64); |
| emit_vec2_f2f16(ctx, instr, dst); |
| break; |
| } |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne) |
| /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to |
| * keep value numbering and the scheduler simpler. |
| */ |
| bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src); |
| else |
| bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); |
| break; |
| } |
| case nir_op_f2f16_rtz: { |
| assert(instr->src[0].src.ssa->bit_size == 32); |
| if (instr->def.num_components == 2) { |
| emit_vec2_f2f16(ctx, instr, dst); |
| break; |
| } |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (ctx->block->fp_mode.round16_64 == fp_round_tz) |
| bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); |
| else if (ctx->program->gfx_level == GFX8 || ctx->program->gfx_level == GFX9) |
| bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, Definition(dst), src, Operand::zero()); |
| else |
| bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, as_vgpr(ctx, src)); |
| break; |
| } |
| case nir_op_f2f32: { |
| if (instr->src[0].src.ssa->bit_size == 16) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst); |
| } else if (instr->src[0].src.ssa->bit_size == 64) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_f2f64: { |
| assert(instr->src[0].src.ssa->bit_size == 32); |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src); |
| break; |
| } |
| case nir_op_i2f16: { |
| assert(dst.regClass() == v2b); |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| const unsigned input_size = instr->src[0].src.ssa->bit_size; |
| if (input_size <= 16) { |
| /* Expand integer to the size expected by the uint→float converter used below */ |
| unsigned target_size = (ctx->program->gfx_level >= GFX8 ? 16 : 32); |
| if (input_size != target_size) { |
| src = convert_int(ctx, bld, src, input_size, target_size, true); |
| } |
| } |
| |
| if (ctx->program->gfx_level >= GFX8 && input_size <= 16) { |
| bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src); |
| } else { |
| /* Large 32bit inputs need to return +-inf/FLOAT_MAX. |
| * |
| * This is also the fallback-path taken on GFX7 and earlier, which |
| * do not support direct f16⟷i16 conversions. |
| */ |
| src = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), src); |
| bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); |
| } |
| break; |
| } |
| case nir_op_i2f32: { |
| assert(dst.size() == 1); |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| const unsigned input_size = instr->src[0].src.ssa->bit_size; |
| if (input_size <= 32) { |
| if (input_size <= 16) { |
| /* Sign-extend to 32-bits */ |
| src = convert_int(ctx, bld, src, input_size, 32, true); |
| } |
| bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_i2f64: { |
| if (instr->src[0].src.ssa->bit_size <= 32) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (instr->src[0].src.ssa->bit_size <= 16) |
| src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true); |
| bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_u2f16: { |
| assert(dst.regClass() == v2b); |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| const unsigned input_size = instr->src[0].src.ssa->bit_size; |
| if (input_size <= 16) { |
| /* Expand integer to the size expected by the uint→float converter used below */ |
| unsigned target_size = (ctx->program->gfx_level >= GFX8 ? 16 : 32); |
| if (input_size != target_size) { |
| src = convert_int(ctx, bld, src, input_size, target_size, false); |
| } |
| } |
| |
| if (ctx->program->gfx_level >= GFX8 && input_size <= 16) { |
| bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src); |
| } else { |
| /* Large 32bit inputs need to return inf/FLOAT_MAX. |
| * |
| * This is also the fallback-path taken on GFX7 and earlier, which |
| * do not support direct f16⟷u16 conversions. |
| */ |
| src = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), src); |
| bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src); |
| } |
| break; |
| } |
| case nir_op_u2f32: { |
| assert(dst.size() == 1); |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| const unsigned input_size = instr->src[0].src.ssa->bit_size; |
| if (input_size == 8) { |
| bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src); |
| } else if (input_size <= 32) { |
| if (input_size == 16) |
| src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false); |
| bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_u2f64: { |
| if (instr->src[0].src.ssa->bit_size <= 32) { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (instr->src[0].src.ssa->bit_size <= 16) |
| src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false); |
| bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_f2i8: |
| case nir_op_f2i16: { |
| if (instr->src[0].src.ssa->bit_size == 16) { |
| if (ctx->program->gfx_level >= GFX8) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst); |
| } else { |
| /* GFX7 and earlier do not support direct f16⟷i16 conversions */ |
| Temp tmp = bld.tmp(v1); |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, tmp); |
| tmp = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp); |
| tmp = convert_int(ctx, bld, tmp, 32, instr->def.bit_size, false, |
| (dst.type() == RegType::sgpr) ? Temp() : dst); |
| if (dst.type() == RegType::sgpr) { |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); |
| } |
| } |
| } else if (instr->src[0].src.ssa->bit_size == 32) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst); |
| } else { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst); |
| } |
| break; |
| } |
| case nir_op_f2u8: |
| case nir_op_f2u16: { |
| if (instr->src[0].src.ssa->bit_size == 16) { |
| if (ctx->program->gfx_level >= GFX8) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst); |
| } else { |
| /* GFX7 and earlier do not support direct f16⟷u16 conversions */ |
| Temp tmp = bld.tmp(v1); |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, tmp); |
| tmp = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp); |
| tmp = convert_int(ctx, bld, tmp, 32, instr->def.bit_size, false, |
| (dst.type() == RegType::sgpr) ? Temp() : dst); |
| if (dst.type() == RegType::sgpr) { |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); |
| } |
| } |
| } else if (instr->src[0].src.ssa->bit_size == 32) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst); |
| } else { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst); |
| } |
| break; |
| } |
| case nir_op_f2i32: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (instr->src[0].src.ssa->bit_size == 16) { |
| Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); |
| if (dst.type() == RegType::vgpr) { |
| bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp); |
| } else { |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), |
| bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp)); |
| } |
| } else if (instr->src[0].src.ssa->bit_size == 32) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst); |
| } else if (instr->src[0].src.ssa->bit_size == 64) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_f2u32: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (instr->src[0].src.ssa->bit_size == 16) { |
| Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src); |
| if (dst.type() == RegType::vgpr) { |
| bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp); |
| } else { |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), |
| bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp)); |
| } |
| } else if (instr->src[0].src.ssa->bit_size == 32) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst); |
| } else if (instr->src[0].src.ssa->bit_size == 64) { |
| emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_b2f16: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| assert(src.regClass() == bld.lm); |
| |
| if (dst.regClass() == s1) { |
| src = bool_to_scalar_condition(ctx, src); |
| bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand::c32(0x3c00u), src); |
| } else if (dst.regClass() == v2b) { |
| Temp one = bld.copy(bld.def(v1), Operand::c32(0x3c00u)); |
| bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), one, src); |
| } else { |
| unreachable("Wrong destination register class for nir_op_b2f16."); |
| } |
| break; |
| } |
| case nir_op_b2f32: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| assert(src.regClass() == bld.lm); |
| |
| if (dst.regClass() == s1) { |
| src = bool_to_scalar_condition(ctx, src); |
| bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand::c32(0x3f800000u), src); |
| } else if (dst.regClass() == v1) { |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), |
| Operand::c32(0x3f800000u), src); |
| } else { |
| unreachable("Wrong destination register class for nir_op_b2f32."); |
| } |
| break; |
| } |
| case nir_op_b2f64: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| assert(src.regClass() == bld.lm); |
| |
| if (dst.regClass() == s2) { |
| src = bool_to_scalar_condition(ctx, src); |
| bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c32(0x3f800000u), |
| Operand::zero(), bld.scc(src)); |
| } else if (dst.regClass() == v2) { |
| Temp one = bld.copy(bld.def(v1), Operand::c32(0x3FF00000u)); |
| Temp upper = |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), one, src); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(), upper); |
| } else { |
| unreachable("Wrong destination register class for nir_op_b2f64."); |
| } |
| break; |
| } |
| case nir_op_i2i8: |
| case nir_op_i2i16: |
| case nir_op_i2i32: { |
| if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) { |
| /* no need to do the extract in get_alu_src() */ |
| sgpr_extract_mode mode = instr->def.bit_size > instr->src[0].src.ssa->bit_size |
| ? sgpr_extract_sext |
| : sgpr_extract_undef; |
| extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode); |
| } else { |
| const unsigned input_bitsize = instr->src[0].src.ssa->bit_size; |
| const unsigned output_bitsize = instr->def.bit_size; |
| convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]), input_bitsize, output_bitsize, |
| output_bitsize > input_bitsize, dst); |
| } |
| break; |
| } |
| case nir_op_u2u8: |
| case nir_op_u2u16: |
| case nir_op_u2u32: { |
| if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) { |
| /* no need to do the extract in get_alu_src() */ |
| sgpr_extract_mode mode = instr->def.bit_size > instr->src[0].src.ssa->bit_size |
| ? sgpr_extract_zext |
| : sgpr_extract_undef; |
| extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode); |
| } else { |
| convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]), instr->src[0].src.ssa->bit_size, |
| instr->def.bit_size, false, dst); |
| } |
| break; |
| } |
| case nir_op_b2b32: |
| case nir_op_b2i8: |
| case nir_op_b2i16: |
| case nir_op_b2i32: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| assert(src.regClass() == bld.lm); |
| |
| if (dst.regClass() == s1) { |
| bool_to_scalar_condition(ctx, src, dst); |
| } else if (dst.type() == RegType::vgpr) { |
| bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(1u), |
| src); |
| } else { |
| unreachable("Invalid register class for b2i32"); |
| } |
| break; |
| } |
| case nir_op_b2b1: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| assert(dst.regClass() == bld.lm); |
| |
| if (src.type() == RegType::vgpr) { |
| assert(src.regClass() == v1 || src.regClass() == v2); |
| assert(dst.regClass() == bld.lm); |
| bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32, |
| Definition(dst), Operand::zero(), src); |
| } else { |
| assert(src.regClass() == s1 || src.regClass() == s2); |
| Temp tmp; |
| if (src.regClass() == s2 && ctx->program->gfx_level <= GFX7) { |
| tmp = |
| bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand::zero(), src) |
| .def(1) |
| .getTemp(); |
| } else { |
| tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32, |
| bld.scc(bld.def(s1)), Operand::zero(), src); |
| } |
| bool_to_vector_condition(ctx, tmp, dst); |
| } |
| break; |
| } |
| case nir_op_unpack_64_2x32: |
| case nir_op_unpack_32_2x16: |
| case nir_op_unpack_64_4x16: |
| case nir_op_unpack_32_4x8: |
| bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); |
| emit_split_vector( |
| ctx, dst, instr->op == nir_op_unpack_32_4x8 || instr->op == nir_op_unpack_64_4x16 ? 4 : 2); |
| break; |
| case nir_op_pack_64_2x32_split: { |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1); |
| break; |
| } |
| case nir_op_unpack_64_2x32_split_x: |
| bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), |
| get_alu_src(ctx, instr->src[0])); |
| break; |
| case nir_op_unpack_64_2x32_split_y: |
| bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), |
| get_alu_src(ctx, instr->src[0])); |
| break; |
| case nir_op_unpack_32_2x16_split_x: |
| if (dst.type() == RegType::vgpr) { |
| bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), |
| get_alu_src(ctx, instr->src[0])); |
| } else { |
| bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); |
| } |
| break; |
| case nir_op_unpack_32_2x16_split_y: |
| if (dst.type() == RegType::vgpr) { |
| bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), |
| get_alu_src(ctx, instr->src[0])); |
| } else { |
| bld.pseudo(aco_opcode::p_extract, Definition(dst), bld.def(s1, scc), |
| get_alu_src(ctx, instr->src[0]), Operand::c32(1u), Operand::c32(16u), |
| Operand::zero()); |
| } |
| break; |
| case nir_op_pack_32_2x16_split: { |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| if (dst.regClass() == v1) { |
| src0 = emit_extract_vector(ctx, src0, 0, v2b); |
| src1 = emit_extract_vector(ctx, src1, 0, v2b); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1); |
| } else { |
| src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, |
| Operand::c32(0xFFFFu)); |
| src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, |
| Operand::c32(16u)); |
| bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1); |
| } |
| break; |
| } |
| case nir_op_pack_32_4x8: bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0], 4)); break; |
| case nir_op_pack_half_2x16_rtz_split: |
| case nir_op_pack_half_2x16_split: { |
| if (dst.regClass() == v1) { |
| if (ctx->program->gfx_level == GFX8 || ctx->program->gfx_level == GFX9) |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_cvt_pkrtz_f16_f32_e64, dst); |
| else |
| emit_vop2_instruction(ctx, instr, aco_opcode::v_cvt_pkrtz_f16_f32, dst, false); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_pack_unorm_2x16: |
| case nir_op_pack_snorm_2x16: { |
| unsigned bit_size = instr->src[0].src.ssa->bit_size; |
| /* Only support 16 and 32bit. */ |
| assert(bit_size == 32 || bit_size == 16); |
| |
| RegClass src_rc = bit_size == 32 ? v1 : v2b; |
| Temp src = get_alu_src(ctx, instr->src[0], 2); |
| Temp src0 = emit_extract_vector(ctx, src, 0, src_rc); |
| Temp src1 = emit_extract_vector(ctx, src, 1, src_rc); |
| |
| /* Work around for pre-GFX9 GPU which don't have fp16 pknorm instruction. */ |
| if (bit_size == 16 && ctx->program->gfx_level < GFX9) { |
| src0 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0); |
| src1 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1); |
| bit_size = 32; |
| } |
| |
| aco_opcode opcode; |
| if (bit_size == 32) { |
| opcode = instr->op == nir_op_pack_unorm_2x16 ? aco_opcode::v_cvt_pknorm_u16_f32 |
| : aco_opcode::v_cvt_pknorm_i16_f32; |
| } else { |
| opcode = instr->op == nir_op_pack_unorm_2x16 ? aco_opcode::v_cvt_pknorm_u16_f16 |
| : aco_opcode::v_cvt_pknorm_i16_f16; |
| } |
| bld.vop3(opcode, Definition(dst), src0, src1); |
| break; |
| } |
| case nir_op_pack_uint_2x16: |
| case nir_op_pack_sint_2x16: { |
| Temp src = get_alu_src(ctx, instr->src[0], 2); |
| Temp src0 = emit_extract_vector(ctx, src, 0, v1); |
| Temp src1 = emit_extract_vector(ctx, src, 1, v1); |
| aco_opcode opcode = instr->op == nir_op_pack_uint_2x16 ? aco_opcode::v_cvt_pk_u16_u32 |
| : aco_opcode::v_cvt_pk_i16_i32; |
| bld.vop3(opcode, Definition(dst), src0, src1); |
| break; |
| } |
| case nir_op_unpack_half_2x16_split_x_flush_to_zero: |
| case nir_op_unpack_half_2x16_split_x: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (src.regClass() == v1) |
| src = bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), src); |
| if (dst.regClass() == v1) { |
| assert(ctx->block->fp_mode.must_flush_denorms16_64 == |
| (instr->op == nir_op_unpack_half_2x16_split_x_flush_to_zero)); |
| bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_unpack_half_2x16_split_y_flush_to_zero: |
| case nir_op_unpack_half_2x16_split_y: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (src.regClass() == s1) |
| src = bld.pseudo(aco_opcode::p_extract, bld.def(s1), bld.def(s1, scc), src, |
| Operand::c32(1u), Operand::c32(16u), Operand::zero()); |
| else |
| src = |
| bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), src).def(1).getTemp(); |
| if (dst.regClass() == v1) { |
| assert(ctx->block->fp_mode.must_flush_denorms16_64 == |
| (instr->op == nir_op_unpack_half_2x16_split_y_flush_to_zero)); |
| bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_sad_u8x4: { |
| assert(dst.regClass() == v1); |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_sad_u8, dst, false, 3u, false); |
| break; |
| } |
| case nir_op_fquantize2f16: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| Temp f16; |
| if (ctx->block->fp_mode.round16_64 != fp_round_ne) |
| f16 = bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, bld.def(v2b), src); |
| else |
| f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v2b), src); |
| Temp f32, cmp_res; |
| |
| if (ctx->program->gfx_level >= GFX8) { |
| Temp mask = bld.copy( |
| bld.def(s1), Operand::c32(0x36Fu)); /* value is NOT negative/positive denormal value */ |
| cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.def(bld.lm), f16, mask); |
| f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16); |
| } else { |
| /* 0x38800000 is smallest half float value (2^-14) in 32-bit float, |
| * so compare the result and flush to 0 if it's smaller. |
| */ |
| f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16); |
| Temp smallest = bld.copy(bld.def(s1), Operand::c32(0x38800000u)); |
| Instruction* tmp0 = bld.vopc_e64(aco_opcode::v_cmp_lt_f32, bld.def(bld.lm), f32, smallest); |
| tmp0->valu().abs[0] = true; |
| Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f32, bld.def(bld.lm), Operand::zero(), f32); |
| cmp_res = bld.sop2(aco_opcode::s_nand_b64, bld.def(s2), bld.def(s1, scc), |
| tmp0->definitions[0].getTemp(), tmp1); |
| } |
| |
| if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32) { |
| Temp copysign_0 = |
| bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::zero(), as_vgpr(ctx, src)); |
| bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res); |
| } else { |
| bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), f32, cmp_res); |
| } |
| break; |
| } |
| case nir_op_bfm: { |
| Temp bits = get_alu_src(ctx, instr->src[0]); |
| Temp offset = get_alu_src(ctx, instr->src[1]); |
| |
| if (dst.regClass() == s1) { |
| bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset); |
| } else if (dst.regClass() == v1) { |
| bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_bitfield_select: { |
| |
| /* dst = (insert & bitmask) | (base & ~bitmask) */ |
| if (dst.regClass() == s1) { |
| Temp bitmask = get_alu_src(ctx, instr->src[0]); |
| Temp insert = get_alu_src(ctx, instr->src[1]); |
| Temp base = get_alu_src(ctx, instr->src[2]); |
| aco_ptr<Instruction> sop2; |
| nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src); |
| nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src); |
| Operand lhs; |
| if (const_insert && const_bitmask) { |
| lhs = Operand::c32(const_insert->u32 & const_bitmask->u32); |
| } else { |
| insert = |
| bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask); |
| lhs = Operand(insert); |
| } |
| |
| Operand rhs; |
| nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src); |
| if (const_base && const_bitmask) { |
| rhs = Operand::c32(const_base->u32 & ~const_bitmask->u32); |
| } else { |
| base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask); |
| rhs = Operand(base); |
| } |
| |
| bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs); |
| |
| } else if (dst.regClass() == v1) { |
| emit_vop3a_instruction(ctx, instr, aco_opcode::v_bfi_b32, dst, false, 3); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_ubfe: |
| case nir_op_ibfe: { |
| if (dst.bytes() != 4) |
| unreachable("Unsupported BFE bit size"); |
| |
| if (dst.type() == RegType::sgpr) { |
| Temp base = get_alu_src(ctx, instr->src[0]); |
| |
| nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src); |
| nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src); |
| aco_opcode opcode = |
| instr->op == nir_op_ubfe ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32; |
| if (const_offset && const_bits) { |
| uint32_t extract = ((const_bits->u32 & 0x1f) << 16) | (const_offset->u32 & 0x1f); |
| bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, Operand::c32(extract)); |
| break; |
| } |
| |
| Temp offset = get_alu_src(ctx, instr->src[1]); |
| Temp bits = get_alu_src(ctx, instr->src[2]); |
| |
| if (ctx->program->gfx_level >= GFX9) { |
| Operand bits_op = const_bits ? Operand::c32(const_bits->u32 & 0x1f) |
| : bld.sop2(aco_opcode::s_and_b32, bld.def(s1), |
| bld.def(s1, scc), bits, Operand::c32(0x1fu)); |
| Temp extract = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), offset, bits_op); |
| bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract); |
| } else if (instr->op == nir_op_ubfe) { |
| Temp mask = bld.sop2(aco_opcode::s_bfm_b32, bld.def(s1), bits, offset); |
| Temp masked = |
| bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), base, mask); |
| bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), masked, offset); |
| } else { |
| Operand bits_op = const_bits |
| ? Operand::c32((const_bits->u32 & 0x1f) << 16) |
| : bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), |
| bld.sop2(aco_opcode::s_and_b32, bld.def(s1), |
| bld.def(s1, scc), bits, Operand::c32(0x1fu)), |
| Operand::c32(16u)); |
| Operand offset_op = const_offset |
| ? Operand::c32(const_offset->u32 & 0x1fu) |
| : bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), |
| offset, Operand::c32(0x1fu)); |
| |
| Temp extract = |
| bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), bits_op, offset_op); |
| bld.sop2(aco_opcode::s_bfe_i32, Definition(dst), bld.def(s1, scc), base, extract); |
| } |
| |
| } else { |
| aco_opcode opcode = |
| instr->op == nir_op_ubfe ? aco_opcode::v_bfe_u32 : aco_opcode::v_bfe_i32; |
| emit_vop3a_instruction(ctx, instr, opcode, dst, false, 3); |
| } |
| break; |
| } |
| case nir_op_extract_u8: |
| case nir_op_extract_i8: |
| case nir_op_extract_u16: |
| case nir_op_extract_i16: { |
| bool is_signed = instr->op == nir_op_extract_i16 || instr->op == nir_op_extract_i8; |
| unsigned comp = instr->op == nir_op_extract_u8 || instr->op == nir_op_extract_i8 ? 4 : 2; |
| uint32_t bits = comp == 4 ? 8 : 16; |
| unsigned index = nir_src_as_uint(instr->src[1].src); |
| if (bits >= instr->def.bit_size || index * bits >= instr->def.bit_size) { |
| assert(index == 0); |
| bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); |
| } else if (dst.regClass() == s1 && instr->def.bit_size == 16) { |
| Temp vec = get_ssa_temp(ctx, instr->src[0].src.ssa); |
| unsigned swizzle = instr->src[0].swizzle[0]; |
| if (vec.size() > 1) { |
| vec = emit_extract_vector(ctx, vec, swizzle / 2, s1); |
| swizzle = swizzle & 1; |
| } |
| index += swizzle * instr->def.bit_size / bits; |
| bld.pseudo(aco_opcode::p_extract, Definition(dst), bld.def(s1, scc), Operand(vec), |
| Operand::c32(index), Operand::c32(bits), Operand::c32(is_signed)); |
| } else { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| Definition def(dst); |
| if (dst.bytes() == 8) { |
| src = emit_extract_vector(ctx, src, index / comp, RegClass(src.type(), 1)); |
| index %= comp; |
| def = bld.def(src.type(), 1); |
| } |
| assert(def.bytes() <= 4); |
| if (def.regClass() == s1) { |
| bld.pseudo(aco_opcode::p_extract, def, bld.def(s1, scc), Operand(src), |
| Operand::c32(index), Operand::c32(bits), Operand::c32(is_signed)); |
| } else { |
| src = emit_extract_vector(ctx, src, 0, def.regClass()); |
| bld.pseudo(aco_opcode::p_extract, def, Operand(src), Operand::c32(index), |
| Operand::c32(bits), Operand::c32(is_signed)); |
| } |
| if (dst.size() == 2) |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), def.getTemp(), |
| Operand::zero()); |
| } |
| break; |
| } |
| case nir_op_insert_u8: |
| case nir_op_insert_u16: { |
| unsigned comp = instr->op == nir_op_insert_u8 ? 4 : 2; |
| uint32_t bits = comp == 4 ? 8 : 16; |
| unsigned index = nir_src_as_uint(instr->src[1].src); |
| if (bits >= instr->def.bit_size || index * bits >= instr->def.bit_size) { |
| assert(index == 0); |
| bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0])); |
| } else { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| Definition def(dst); |
| bool swap = false; |
| if (dst.bytes() == 8) { |
| src = emit_extract_vector(ctx, src, 0u, RegClass(src.type(), 1)); |
| swap = index >= comp; |
| index %= comp; |
| def = bld.def(src.type(), 1); |
| } |
| if (def.regClass() == s1) { |
| bld.pseudo(aco_opcode::p_insert, def, bld.def(s1, scc), Operand(src), |
| Operand::c32(index), Operand::c32(bits)); |
| } else { |
| src = emit_extract_vector(ctx, src, 0, def.regClass()); |
| bld.pseudo(aco_opcode::p_insert, def, Operand(src), Operand::c32(index), |
| Operand::c32(bits)); |
| } |
| if (dst.size() == 2 && swap) |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(), |
| def.getTemp()); |
| else if (dst.size() == 2) |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), def.getTemp(), |
| Operand::zero()); |
| } |
| break; |
| } |
| case nir_op_bit_count: { |
| Temp src = get_alu_src(ctx, instr->src[0]); |
| if (src.regClass() == s1) { |
| bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src); |
| } else if (src.regClass() == v1) { |
| bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand::zero()); |
| } else if (src.regClass() == v2) { |
| bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), emit_extract_vector(ctx, src, 1, v1), |
| bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), |
| emit_extract_vector(ctx, src, 0, v1), Operand::zero())); |
| } else if (src.regClass() == s2) { |
| bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_op_flt: { |
| emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, |
| aco_opcode::v_cmp_lt_f64); |
| break; |
| } |
| case nir_op_fge: { |
| emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, |
| aco_opcode::v_cmp_ge_f64); |
| break; |
| } |
| case nir_op_feq: { |
| emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, |
| aco_opcode::v_cmp_eq_f64); |
| break; |
| } |
| case nir_op_fneu: { |
| emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, |
| aco_opcode::v_cmp_neq_f64); |
| break; |
| } |
| case nir_op_ilt: { |
| emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, |
| aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32); |
| break; |
| } |
| case nir_op_ige: { |
| emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, |
| aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32); |
| break; |
| } |
| case nir_op_ieq: { |
| if (instr->src[0].src.ssa->bit_size == 1) |
| emit_boolean_logic(ctx, instr, Builder::s_xnor, dst); |
| else |
| emit_comparison( |
| ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, |
| aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32, |
| ctx->program->gfx_level >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes); |
| break; |
| } |
| case nir_op_ine: { |
| if (instr->src[0].src.ssa->bit_size == 1) |
| emit_boolean_logic(ctx, instr, Builder::s_xor, dst); |
| else |
| emit_comparison( |
| ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, |
| aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32, |
| ctx->program->gfx_level >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes); |
| break; |
| } |
| case nir_op_ult: { |
| emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, |
| aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32); |
| break; |
| } |
| case nir_op_uge: { |
| emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, |
| aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32); |
| break; |
| } |
| case nir_op_bitz: |
| case nir_op_bitnz: { |
| assert(instr->src[0].src.ssa->bit_size != 1); |
| bool test0 = instr->op == nir_op_bitz; |
| Temp src0 = get_alu_src(ctx, instr->src[0]); |
| Temp src1 = get_alu_src(ctx, instr->src[1]); |
| bool use_valu = src0.type() == RegType::vgpr || src1.type() == RegType::vgpr; |
| if (!use_valu) { |
| aco_opcode op = instr->src[0].src.ssa->bit_size == 64 ? aco_opcode::s_bitcmp1_b64 |
| : aco_opcode::s_bitcmp1_b32; |
| if (test0) |
| op = instr->src[0].src.ssa->bit_size == 64 ? aco_opcode::s_bitcmp0_b64 |
| : aco_opcode::s_bitcmp0_b32; |
| emit_sopc_instruction(ctx, instr, op, dst); |
| break; |
| } |
| |
| /* We do not have a VALU version of s_bitcmp. |
| * But if the second source is constant, we can use |
| * v_cmp_class_f32's LUT to check the bit. |
| * The LUT only has 10 entries, so extract a higher byte if we have to. |
| * For sign bits comparision with 0 is better because v_cmp_class |
| * can't be inverted. |
| */ |
| if (nir_src_is_const(instr->src[1].src)) { |
| uint32_t bit = nir_alu_src_as_uint(instr->src[1]); |
| bit &= instr->src[0].src.ssa->bit_size - 1; |
| src0 = as_vgpr(ctx, src0); |
| |
| if (src0.regClass() == v2) { |
| src0 = emit_extract_vector(ctx, src0, (bit & 32) != 0, v1); |
| bit &= 31; |
| } |
| |
| if (bit == 31) { |
| bld.vopc(test0 ? aco_opcode::v_cmp_le_i32 : aco_opcode::v_cmp_gt_i32, Definition(dst), |
| Operand::c32(0), src0); |
| break; |
| } |
| |
| if (bit == 15 && ctx->program->gfx_level >= GFX8) { |
| bld.vopc(test0 ? aco_opcode::v_cmp_le_i16 : aco_opcode::v_cmp_gt_i16, Definition(dst), |
| Operand::c32(0), src0); |
| break; |
| } |
| |
| /* Set max_bit lower to avoid +inf if we can use sdwa+qnan instead. */ |
| const bool can_sdwa = ctx->program->gfx_level >= GFX8 && ctx->program->gfx_level < GFX11; |
| const unsigned max_bit = can_sdwa ? 0x8 : 0x9; |
| const bool use_opsel = bit > 0xf && (bit & 0xf) <= max_bit; |
| if (use_opsel) { |
| src0 = bld.pseudo(aco_opcode::p_extract, bld.def(v1), src0, Operand::c32(1), |
| Operand::c32(16), Operand::c32(0)); |
| bit &= 0xf; |
| } |
| |
| /* If we can use sdwa the extract is free, while test0's s_not is not. */ |
| if (bit == 7 && test0 && can_sdwa) { |
| src0 = bld.pseudo(aco_opcode::p_extract, bld.def(v1), src0, Operand::c32(bit / 8), |
| Operand::c32(8), Operand::c32(1)); |
| bld.vopc(test0 ? aco_opcode::v_cmp_le_i32 : aco_opcode::v_cmp_gt_i32, Definition(dst), |
| Operand::c32(0), src0); |
| break; |
| } |
| |
| if (bit > max_bit) { |
| src0 = bld.pseudo(aco_opcode::p_extract, bld.def(v1), src0, Operand::c32(bit / 8), |
| Operand::c32(8), Operand::c32(0)); |
| bit &= 0x7; |
| } |
| |
| /* denorm and snan/qnan inputs are preserved using all float control modes. */ |
| static const struct { |
| uint32_t fp32; |
| uint32_t fp16; |
| bool negate; |
| } float_lut[10] = { |
| {0x7f800001, 0x7c01, false}, /* snan */ |
| {~0u, ~0u, false}, /* qnan */ |
| {0xff800000, 0xfc00, false}, /* -inf */ |
| {0xbf800000, 0xbc00, false}, /* -normal (-1.0) */ |
| {1, 1, true}, /* -denormal */ |
| {0, 0, true}, /* -0.0 */ |
| {0, 0, false}, /* +0.0 */ |
| {1, 1, false}, /* +denormal */ |
| {0x3f800000, 0x3c00, false}, /* +normal (+1.0) */ |
| {0x7f800000, 0x7c00, false}, /* +inf */ |
| }; |
| |
| Temp tmp = test0 ? bld.tmp(bld.lm) : dst; |
| /* fp16 can use s_movk for bit 0. It also supports opsel on gfx11. */ |
| const bool use_fp16 = (ctx->program->gfx_level >= GFX8 && bit == 0) || |
| (ctx->program->gfx_level >= GFX11 && use_opsel); |
| const aco_opcode op = use_fp16 ? aco_opcode::v_cmp_class_f16 : aco_opcode::v_cmp_class_f32; |
| const uint32_t c = use_fp16 ? float_lut[bit].fp16 : float_lut[bit].fp32; |
| |
| VALU_instruction& res = |
| bld.vopc(op, Definition(tmp), bld.copy(bld.def(s1), Operand::c32(c)), src0)->valu(); |
| if (float_lut[bit].negate) { |
| res.format = asVOP3(res.format); |
| res.neg[0] = true; |
| } |
| |
| if (test0) |
| bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), tmp); |
| |
| break; |
| } |
| |
| Temp res; |
| aco_opcode op = test0 ? aco_opcode::v_cmp_eq_i32 : aco_opcode::v_cmp_lg_i32; |
| if (instr->src[0].src.ssa->bit_size == 16) { |
| op = test0 ? aco_opcode::v_cmp_eq_i16 : aco_opcode::v_cmp_lg_i16; |
| if (ctx->program->gfx_level < GFX10) |
| res = bld.vop2_e64(aco_opcode::v_lshlrev_b16, bld.def(v2b), src1, Operand::c32(1)); |
| else |
| res = bld.vop3(aco_opcode::v_lshlrev_b16_e64, bld.def(v2b), src1, Operand::c32(1)); |
| |
| res = bld.vop2(aco_opcode::v_and_b32, bld.def(v2b), src0, res); |
| } else if (instr->src[0].src.ssa->bit_size == 32) { |
| res = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), src0, src1, Operand::c32(1)); |
| } else if (instr->src[0].src.ssa->bit_size == 64) { |
| if (ctx->program->gfx_level < GFX8) |
| res = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src0, src1); |
| else |
| res = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), src1, src0); |
| |
| res = emit_extract_vector(ctx, res, 0, v1); |
| res = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x1), res); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| bld.vopc(op, Definition(dst), Operand::c32(0), res); |
| break; |
| } |
| case nir_op_fddx: |
| case nir_op_fddy: |
| case nir_op_fddx_fine: |
| case nir_op_fddy_fine: |
| case nir_op_fddx_coarse: |
| case nir_op_fddy_coarse: { |
| if (!nir_src_is_divergent(instr->src[0].src)) { |
| /* Source is the same in all lanes, so the derivative is zero. |
| * This also avoids emitting invalid IR. |
| */ |
| bld.copy(Definition(dst), Operand::zero()); |
| break; |
| } |
| |
| Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0])); |
| uint16_t dpp_ctrl1, dpp_ctrl2; |
| if (instr->op == nir_op_fddx_fine) { |
| dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2); |
| dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3); |
| } else if (instr->op == nir_op_fddy_fine) { |
| dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1); |
| dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3); |
| } else { |
| dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0); |
| if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse) |
| dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1); |
| else |
| dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2); |
| } |
| |
| Temp tmp; |
| if (ctx->program->gfx_level >= GFX8) { |
| Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1); |
| bld.vop2_dpp(aco_opcode::v_sub_f32, Definition(dst), src, tl, dpp_ctrl2); |
| } else { |
| Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1); |
| Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2); |
| bld.vop2(aco_opcode::v_sub_f32, Definition(dst), tr, tl); |
| } |
| set_wqm(ctx, true); |
| break; |
| } |
| default: isel_err(&instr->instr, "Unknown NIR ALU instr"); |
| } |
| } |
| |
| void |
| visit_load_const(isel_context* ctx, nir_load_const_instr* instr) |
| { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| // TODO: we really want to have the resulting type as this would allow for 64bit literals |
| // which get truncated the lsb if double and msb if int |
| // for now, we only use s_mov_b64 with 64bit inline constants |
| assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar."); |
| assert(dst.type() == RegType::sgpr); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| if (instr->def.bit_size == 1) { |
| assert(dst.regClass() == bld.lm); |
| int val = instr->value[0].b ? -1 : 0; |
| Operand op = bld.lm.size() == 1 ? Operand::c32(val) : Operand::c64(val); |
| bld.copy(Definition(dst), op); |
| } else if (instr->def.bit_size == 8) { |
| bld.copy(Definition(dst), Operand::c32(instr->value[0].u8)); |
| } else if (instr->def.bit_size == 16) { |
| /* sign-extend to use s_movk_i32 instead of a literal */ |
| bld.copy(Definition(dst), Operand::c32(instr->value[0].i16)); |
| } else if (dst.size() == 1) { |
| bld.copy(Definition(dst), Operand::c32(instr->value[0].u32)); |
| } else { |
| assert(dst.size() != 1); |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; |
| if (instr->def.bit_size == 64) |
| for (unsigned i = 0; i < dst.size(); i++) |
| vec->operands[i] = Operand::c32(instr->value[0].u64 >> i * 32); |
| else { |
| for (unsigned i = 0; i < dst.size(); i++) |
| vec->operands[i] = Operand::c32(instr->value[i].u32); |
| } |
| vec->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| } |
| } |
| |
| Temp |
| emit_readfirstlane(isel_context* ctx, Temp src, Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| if (src.regClass().type() == RegType::sgpr) { |
| bld.copy(Definition(dst), src); |
| } else if (src.size() == 1) { |
| bld.vop1(aco_opcode::v_readfirstlane_b32, Definition(dst), src); |
| } else { |
| aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_split_vector, Format::PSEUDO, 1, src.size())}; |
| split->operands[0] = Operand(src); |
| |
| for (unsigned i = 0; i < src.size(); i++) { |
| split->definitions[i] = |
| bld.def(RegClass::get(RegType::vgpr, MIN2(src.bytes() - i * 4, 4))); |
| } |
| |
| Instruction* split_raw = split.get(); |
| ctx->block->instructions.emplace_back(std::move(split)); |
| |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, src.size(), 1)}; |
| vec->definitions[0] = Definition(dst); |
| for (unsigned i = 0; i < src.size(); i++) { |
| vec->operands[i] = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), |
| split_raw->definitions[i].getTemp()); |
| } |
| |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| if (src.bytes() % 4 == 0) |
| emit_split_vector(ctx, dst, src.size()); |
| } |
| |
| return dst; |
| } |
| |
| bool |
| can_use_byte_align_for_global_load(unsigned num_components, unsigned component_size, |
| unsigned align_, bool support_12_byte) |
| { |
| /* Only use byte-align for 8/16-bit loads if we won't have to increase it's size and won't have |
| * to use unsupported load sizes. |
| */ |
| assert(util_is_power_of_two_nonzero(align_)); |
| if (align_ < 4) { |
| assert(component_size < 4); |
| unsigned load_size = num_components * component_size; |
| uint32_t new_size = align(load_size + (4 - align_), 4); |
| return new_size == align(load_size, 4) && (new_size != 12 || support_12_byte); |
| } |
| return true; |
| } |
| |
| struct LoadEmitInfo { |
| Operand offset; |
| Temp dst; |
| unsigned num_components; |
| unsigned component_size; |
| Temp resource = Temp(0, s1); /* buffer resource or base 64-bit address */ |
| Temp idx = Temp(0, v1); /* buffer index */ |
| unsigned component_stride = 0; |
| unsigned const_offset = 0; |
| unsigned align_mul = 0; |
| unsigned align_offset = 0; |
| pipe_format format; |
| |
| bool glc = false; |
| bool slc = false; |
| bool split_by_component_stride = true; |
| bool readfirstlane_for_uniform = false; |
| unsigned swizzle_component_size = 0; |
| memory_sync_info sync; |
| Temp soffset = Temp(0, s1); |
| }; |
| |
| struct EmitLoadParameters { |
| using Callback = Temp (*)(Builder& bld, const LoadEmitInfo& info, Temp offset, |
| unsigned bytes_needed, unsigned align, unsigned const_offset, |
| Temp dst_hint); |
| |
| Callback callback; |
| bool byte_align_loads; |
| bool supports_8bit_16bit_loads; |
| unsigned max_const_offset_plus_one; |
| }; |
| |
| void |
| emit_load(isel_context* ctx, Builder& bld, const LoadEmitInfo& info, |
| const EmitLoadParameters& params) |
| { |
| unsigned load_size = info.num_components * info.component_size; |
| unsigned component_size = info.component_size; |
| |
| unsigned num_vals = 0; |
| Temp* const vals = (Temp*)alloca(info.dst.bytes() * sizeof(Temp)); |
| |
| unsigned const_offset = info.const_offset; |
| |
| const unsigned align_mul = info.align_mul ? info.align_mul : component_size; |
| unsigned align_offset = info.align_offset % align_mul; |
| |
| unsigned bytes_read = 0; |
| while (bytes_read < load_size) { |
| unsigned bytes_needed = load_size - bytes_read; |
| |
| /* add buffer for unaligned loads */ |
| int byte_align = 0; |
| if (params.byte_align_loads) { |
| byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1; |
| } |
| |
| if (byte_align) { |
| if (bytes_needed > 2 || (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) || |
| !params.supports_8bit_16bit_loads) { |
| if (info.component_stride) { |
| assert(params.supports_8bit_16bit_loads && "unimplemented"); |
| bytes_needed = 2; |
| byte_align = 0; |
| } else { |
| bytes_needed += byte_align == -1 ? 4 - info.align_mul : byte_align; |
| bytes_needed = align(bytes_needed, 4); |
| } |
| } else { |
| byte_align = 0; |
| } |
| } |
| |
| if (info.split_by_component_stride) { |
| if (info.swizzle_component_size) |
| bytes_needed = MIN2(bytes_needed, info.swizzle_component_size); |
| if (info.component_stride) |
| bytes_needed = MIN2(bytes_needed, info.component_size); |
| } |
| |
| bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4); |
| |
| /* reduce constant offset */ |
| Operand offset = info.offset; |
| unsigned reduced_const_offset = const_offset; |
| bool remove_const_offset_completely = need_to_align_offset; |
| if (const_offset && |
| (remove_const_offset_completely || const_offset >= params.max_const_offset_plus_one)) { |
| unsigned to_add = const_offset; |
| if (remove_const_offset_completely) { |
| reduced_const_offset = 0; |
| } else { |
| to_add = |
| const_offset / params.max_const_offset_plus_one * params.max_const_offset_plus_one; |
| reduced_const_offset %= params.max_const_offset_plus_one; |
| } |
| Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp(); |
| if (offset.isConstant()) { |
| offset = Operand::c32(offset.constantValue() + to_add); |
| } else if (offset.isUndefined()) { |
| offset = Operand::c32(to_add); |
| } else if (offset_tmp.regClass() == s1) { |
| offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), offset_tmp, |
| Operand::c32(to_add)); |
| } else if (offset_tmp.regClass() == v1) { |
| offset = bld.vadd32(bld.def(v1), offset_tmp, Operand::c32(to_add)); |
| } else { |
| Temp lo = bld.tmp(offset_tmp.type(), 1); |
| Temp hi = bld.tmp(offset_tmp.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp); |
| |
| if (offset_tmp.regClass() == s2) { |
| Temp carry = bld.tmp(s1); |
| lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, |
| Operand::c32(to_add)); |
| hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry); |
| offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi); |
| } else { |
| Temp new_lo = bld.tmp(v1); |
| Temp carry = |
| bld.vadd32(Definition(new_lo), lo, Operand::c32(to_add), true).def(1).getTemp(); |
| hi = bld.vadd32(bld.def(v1), hi, Operand::zero(), false, carry); |
| offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi); |
| } |
| } |
| } |
| |
| /* align offset down if needed */ |
| Operand aligned_offset = offset; |
| unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul; |
| if (need_to_align_offset) { |
| align = 4; |
| Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp(); |
| if (offset.isConstant()) { |
| aligned_offset = Operand::c32(offset.constantValue() & 0xfffffffcu); |
| } else if (offset.isUndefined()) { |
| aligned_offset = Operand::zero(); |
| } else if (offset_tmp.regClass() == s1) { |
| aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), |
| Operand::c32(0xfffffffcu), offset_tmp); |
| } else if (offset_tmp.regClass() == s2) { |
| aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), |
| Operand::c64(0xfffffffffffffffcllu), offset_tmp); |
| } else if (offset_tmp.regClass() == v1) { |
| aligned_offset = |
| bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0xfffffffcu), offset_tmp); |
| } else if (offset_tmp.regClass() == v2) { |
| Temp hi = bld.tmp(v1), lo = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp); |
| lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0xfffffffcu), lo); |
| aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi); |
| } |
| } |
| Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() |
| : aligned_offset.isConstant() |
| ? bld.copy(bld.def(s1), aligned_offset) |
| : Temp(0, s1); |
| |
| Temp val = params.callback(bld, info, aligned_offset_tmp, bytes_needed, align, |
| reduced_const_offset, byte_align ? Temp() : info.dst); |
| |
| /* the callback wrote directly to dst */ |
| if (val == info.dst) { |
| assert(num_vals == 0); |
| emit_split_vector(ctx, info.dst, info.num_components); |
| return; |
| } |
| |
| /* shift result right if needed */ |
| if (params.byte_align_loads && info.component_size < 4) { |
| Operand byte_align_off = Operand::c32(byte_align); |
| if (byte_align == -1) { |
| if (offset.isConstant()) |
| byte_align_off = Operand::c32(offset.constantValue() % 4u); |
| else if (offset.isUndefined()) |
| byte_align_off = Operand::zero(); |
| else if (offset.size() == 2) |
| byte_align_off = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, |
| RegClass(offset.getTemp().type(), 1))); |
| else |
| byte_align_off = offset; |
| } |
| |
| assert(val.bytes() >= load_size && "unimplemented"); |
| if (val.type() == RegType::sgpr) |
| byte_align_scalar(ctx, val, byte_align_off, info.dst); |
| else |
| byte_align_vector(ctx, val, byte_align_off, info.dst, component_size); |
| return; |
| } |
| |
| /* add result to list and advance */ |
| if (info.component_stride) { |
| assert(val.bytes() % info.component_size == 0); |
| unsigned num_loaded_components = val.bytes() / info.component_size; |
| unsigned advance_bytes = info.component_stride * num_loaded_components; |
| const_offset += advance_bytes; |
| align_offset = (align_offset + advance_bytes) % align_mul; |
| } else { |
| const_offset += val.bytes(); |
| align_offset = (align_offset + val.bytes()) % align_mul; |
| } |
| bytes_read += val.bytes(); |
| vals[num_vals++] = val; |
| } |
| |
| /* create array of components */ |
| unsigned components_split = 0; |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec; |
| bool has_vgprs = false; |
| for (unsigned i = 0; i < num_vals;) { |
| Temp* const tmp = (Temp*)alloca(num_vals * sizeof(Temp)); |
| unsigned num_tmps = 0; |
| unsigned tmp_size = 0; |
| RegType reg_type = RegType::sgpr; |
| while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) { |
| if (vals[i].type() == RegType::vgpr) |
| reg_type = RegType::vgpr; |
| tmp_size += vals[i].bytes(); |
| tmp[num_tmps++] = vals[i++]; |
| } |
| if (num_tmps > 1) { |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)}; |
| for (unsigned j = 0; j < num_tmps; j++) |
| vec->operands[j] = Operand(tmp[j]); |
| tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size)); |
| vec->definitions[0] = Definition(tmp[0]); |
| bld.insert(std::move(vec)); |
| } |
| |
| if (tmp[0].bytes() % component_size) { |
| /* trim tmp[0] */ |
| assert(i == num_vals); |
| RegClass new_rc = |
| RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size); |
| tmp[0] = |
| bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand::zero()); |
| } |
| |
| RegClass elem_rc = RegClass::get(reg_type, component_size); |
| |
| unsigned start = components_split; |
| |
| if (tmp_size == elem_rc.bytes()) { |
| allocated_vec[components_split++] = tmp[0]; |
| } else { |
| assert(tmp_size % elem_rc.bytes() == 0); |
| aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())}; |
| for (auto& def : split->definitions) { |
| Temp component = bld.tmp(elem_rc); |
| allocated_vec[components_split++] = component; |
| def = Definition(component); |
| } |
| split->operands[0] = Operand(tmp[0]); |
| bld.insert(std::move(split)); |
| } |
| |
| /* try to p_as_uniform early so we can create more optimizable code and |
| * also update allocated_vec */ |
| for (unsigned j = start; j < components_split; j++) { |
| if (allocated_vec[j].bytes() % 4 == 0 && info.dst.type() == RegType::sgpr) { |
| if (info.readfirstlane_for_uniform) { |
| allocated_vec[j] = emit_readfirstlane( |
| ctx, allocated_vec[j], bld.tmp(RegClass(RegType::sgpr, allocated_vec[j].size()))); |
| } else { |
| allocated_vec[j] = bld.as_uniform(allocated_vec[j]); |
| } |
| } |
| has_vgprs |= allocated_vec[j].type() == RegType::vgpr; |
| } |
| } |
| |
| /* concatenate components and p_as_uniform() result if needed */ |
| if (info.dst.type() == RegType::vgpr || !has_vgprs) |
| ctx->allocated_vec.emplace(info.dst.id(), allocated_vec); |
| |
| int padding_bytes = |
| MAX2((int)info.dst.bytes() - int(allocated_vec[0].bytes() * info.num_components), 0); |
| |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, info.num_components + !!padding_bytes, 1)}; |
| for (unsigned i = 0; i < info.num_components; i++) |
| vec->operands[i] = Operand(allocated_vec[i]); |
| if (padding_bytes) |
| vec->operands[info.num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes)); |
| if (info.dst.type() == RegType::sgpr && has_vgprs) { |
| Temp tmp = bld.tmp(RegType::vgpr, info.dst.size()); |
| vec->definitions[0] = Definition(tmp); |
| bld.insert(std::move(vec)); |
| if (info.readfirstlane_for_uniform) |
| emit_readfirstlane(ctx, tmp, info.dst); |
| else |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(info.dst), tmp); |
| } else { |
| vec->definitions[0] = Definition(info.dst); |
| bld.insert(std::move(vec)); |
| } |
| } |
| |
| Operand |
| load_lds_size_m0(Builder& bld) |
| { |
| /* m0 does not need to be initialized on GFX9+ */ |
| if (bld.program->gfx_level >= GFX9) |
| return Operand(s1); |
| |
| return bld.m0((Temp)bld.copy(bld.def(s1, m0), Operand::c32(0xffffffffu))); |
| } |
| |
| Temp |
| lds_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, |
| unsigned align, unsigned const_offset, Temp dst_hint) |
| { |
| offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset; |
| |
| Operand m = load_lds_size_m0(bld); |
| |
| bool large_ds_read = bld.program->gfx_level >= GFX7; |
| bool usable_read2 = bld.program->gfx_level >= GFX7; |
| |
| bool read2 = false; |
| unsigned size = 0; |
| aco_opcode op; |
| if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) { |
| size = 16; |
| op = aco_opcode::ds_read_b128; |
| } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) { |
| size = 16; |
| read2 = true; |
| op = aco_opcode::ds_read2_b64; |
| } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) { |
| size = 12; |
| op = aco_opcode::ds_read_b96; |
| } else if (bytes_needed >= 8 && align % 8 == 0) { |
| size = 8; |
| op = aco_opcode::ds_read_b64; |
| } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0 && usable_read2) { |
| size = 8; |
| read2 = true; |
| op = aco_opcode::ds_read2_b32; |
| } else if (bytes_needed >= 4 && align % 4 == 0) { |
| size = 4; |
| op = aco_opcode::ds_read_b32; |
| } else if (bytes_needed >= 2 && align % 2 == 0) { |
| size = 2; |
| op = bld.program->gfx_level >= GFX9 ? aco_opcode::ds_read_u16_d16 : aco_opcode::ds_read_u16; |
| } else { |
| size = 1; |
| op = bld.program->gfx_level >= GFX9 ? aco_opcode::ds_read_u8_d16 : aco_opcode::ds_read_u8; |
| } |
| |
| unsigned const_offset_unit = read2 ? size / 2u : 1u; |
| unsigned const_offset_range = read2 ? 255 * const_offset_unit : 65536; |
| |
| if (const_offset > (const_offset_range - const_offset_unit)) { |
| unsigned excess = const_offset - (const_offset % const_offset_range); |
| offset = bld.vadd32(bld.def(v1), offset, Operand::c32(excess)); |
| const_offset -= excess; |
| } |
| |
| const_offset /= const_offset_unit; |
| |
| RegClass rc = RegClass::get(RegType::vgpr, size); |
| Temp val = rc == info.dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc); |
| Instruction* instr; |
| if (read2) |
| instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1); |
| else |
| instr = bld.ds(op, Definition(val), offset, m, const_offset); |
| instr->ds().sync = info.sync; |
| |
| if (m.isUndefined()) |
| instr->operands.pop_back(); |
| |
| return val; |
| } |
| |
| const EmitLoadParameters lds_load_params{lds_load_callback, false, true, UINT32_MAX}; |
| |
| Temp |
| smem_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, |
| unsigned align, unsigned const_offset, Temp dst_hint) |
| { |
| assert(align >= 4u); |
| |
| bld.program->has_smem_buffer_or_global_loads = true; |
| |
| bool buffer = info.resource.id() && info.resource.bytes() == 16; |
| Temp addr = info.resource; |
| if (!buffer && !addr.id()) { |
| addr = offset; |
| offset = Temp(); |
| } |
| |
| bytes_needed = MIN2(bytes_needed, 64); |
| unsigned needed_round_up = util_next_power_of_two(bytes_needed); |
| unsigned needed_round_down = needed_round_up >> (needed_round_up != bytes_needed ? 1 : 0); |
| /* Only round-up global loads if it's aligned so that it won't cross pages */ |
| bytes_needed = buffer || align % needed_round_up == 0 ? needed_round_up : needed_round_down; |
| |
| aco_opcode op; |
| if (bytes_needed <= 4) { |
| op = buffer ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword; |
| } else if (bytes_needed <= 8) { |
| op = buffer ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2; |
| } else if (bytes_needed <= 16) { |
| op = buffer ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4; |
| } else if (bytes_needed <= 32) { |
| op = buffer ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8; |
| } else { |
| assert(bytes_needed == 64); |
| op = buffer ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16; |
| } |
| |
| aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)}; |
| if (buffer) { |
| if (const_offset) |
| offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, |
| Operand::c32(const_offset)); |
| load->operands[0] = Operand(info.resource); |
| load->operands[1] = Operand(offset); |
| } else { |
| load->operands[0] = Operand(addr); |
| if (offset.id() && const_offset) |
| load->operands[1] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, |
| Operand::c32(const_offset)); |
| else if (offset.id()) |
| load->operands[1] = Operand(offset); |
| else |
| load->operands[1] = Operand::c32(const_offset); |
| } |
| RegClass rc(RegType::sgpr, DIV_ROUND_UP(bytes_needed, 4u)); |
| Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc); |
| load->definitions[0] = Definition(val); |
| load->glc = info.glc; |
| load->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); |
| load->sync = info.sync; |
| bld.insert(std::move(load)); |
| return val; |
| } |
| |
| const EmitLoadParameters smem_load_params{smem_load_callback, true, false, 1024}; |
| |
| Temp |
| mubuf_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, |
| unsigned align_, unsigned const_offset, Temp dst_hint) |
| { |
| Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); |
| Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); |
| |
| if (info.soffset.id()) { |
| if (soffset.isTemp()) |
| vaddr = bld.copy(bld.def(v1), soffset); |
| soffset = Operand(info.soffset); |
| } |
| |
| if (soffset.isUndefined()) |
| soffset = Operand::zero(); |
| |
| bool offen = !vaddr.isUndefined(); |
| bool idxen = info.idx.id(); |
| |
| if (offen && idxen) |
| vaddr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), info.idx, vaddr); |
| else if (idxen) |
| vaddr = Operand(info.idx); |
| |
| unsigned bytes_size = 0; |
| aco_opcode op; |
| if (bytes_needed == 1 || align_ % 2) { |
| bytes_size = 1; |
| op = aco_opcode::buffer_load_ubyte; |
| } else if (bytes_needed == 2 || align_ % 4) { |
| bytes_size = 2; |
| op = aco_opcode::buffer_load_ushort; |
| } else if (bytes_needed <= 4) { |
| bytes_size = 4; |
| op = aco_opcode::buffer_load_dword; |
| } else if (bytes_needed <= 8) { |
| bytes_size = 8; |
| op = aco_opcode::buffer_load_dwordx2; |
| } else if (bytes_needed <= 12 && bld.program->gfx_level > GFX6) { |
| bytes_size = 12; |
| op = aco_opcode::buffer_load_dwordx3; |
| } else { |
| bytes_size = 16; |
| op = aco_opcode::buffer_load_dwordx4; |
| } |
| aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)}; |
| mubuf->operands[0] = Operand(info.resource); |
| mubuf->operands[1] = vaddr; |
| mubuf->operands[2] = soffset; |
| mubuf->offen = offen; |
| mubuf->idxen = idxen; |
| mubuf->glc = info.glc; |
| mubuf->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); |
| mubuf->slc = info.slc; |
| mubuf->sync = info.sync; |
| mubuf->offset = const_offset; |
| mubuf->swizzled = info.swizzle_component_size != 0; |
| RegClass rc = RegClass::get(RegType::vgpr, bytes_size); |
| Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); |
| mubuf->definitions[0] = Definition(val); |
| bld.insert(std::move(mubuf)); |
| |
| return val; |
| } |
| |
| const EmitLoadParameters mubuf_load_params{mubuf_load_callback, true, true, 4096}; |
| |
| Temp |
| mubuf_load_format_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, |
| unsigned bytes_needed, unsigned align_, unsigned const_offset, |
| Temp dst_hint) |
| { |
| Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); |
| Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); |
| |
| if (info.soffset.id()) { |
| if (soffset.isTemp()) |
| vaddr = bld.copy(bld.def(v1), soffset); |
| soffset = Operand(info.soffset); |
| } |
| |
| if (soffset.isUndefined()) |
| soffset = Operand::zero(); |
| |
| bool offen = !vaddr.isUndefined(); |
| bool idxen = info.idx.id(); |
| |
| if (offen && idxen) |
| vaddr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), info.idx, vaddr); |
| else if (idxen) |
| vaddr = Operand(info.idx); |
| |
| aco_opcode op = aco_opcode::num_opcodes; |
| if (info.component_size == 2) { |
| switch (bytes_needed) { |
| case 2: op = aco_opcode::buffer_load_format_d16_x; break; |
| case 4: op = aco_opcode::buffer_load_format_d16_xy; break; |
| case 6: op = aco_opcode::buffer_load_format_d16_xyz; break; |
| case 8: op = aco_opcode::buffer_load_format_d16_xyzw; break; |
| default: unreachable("invalid buffer load format size"); break; |
| } |
| } else { |
| assert(info.component_size == 4); |
| switch (bytes_needed) { |
| case 4: op = aco_opcode::buffer_load_format_x; break; |
| case 8: op = aco_opcode::buffer_load_format_xy; break; |
| case 12: op = aco_opcode::buffer_load_format_xyz; break; |
| case 16: op = aco_opcode::buffer_load_format_xyzw; break; |
| default: unreachable("invalid buffer load format size"); break; |
| } |
| } |
| |
| aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)}; |
| mubuf->operands[0] = Operand(info.resource); |
| mubuf->operands[1] = vaddr; |
| mubuf->operands[2] = soffset; |
| mubuf->offen = offen; |
| mubuf->idxen = idxen; |
| mubuf->glc = info.glc; |
| mubuf->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); |
| mubuf->slc = info.slc; |
| mubuf->sync = info.sync; |
| mubuf->offset = const_offset; |
| RegClass rc = RegClass::get(RegType::vgpr, bytes_needed); |
| Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); |
| mubuf->definitions[0] = Definition(val); |
| bld.insert(std::move(mubuf)); |
| |
| return val; |
| } |
| |
| const EmitLoadParameters mubuf_load_format_params{mubuf_load_format_callback, false, true, 4096}; |
| |
| Temp |
| scratch_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, |
| unsigned align_, unsigned const_offset, Temp dst_hint) |
| { |
| unsigned bytes_size = 0; |
| aco_opcode op; |
| if (bytes_needed == 1 || align_ % 2u) { |
| bytes_size = 1; |
| op = aco_opcode::scratch_load_ubyte; |
| } else if (bytes_needed == 2 || align_ % 4u) { |
| bytes_size = 2; |
| op = aco_opcode::scratch_load_ushort; |
| } else if (bytes_needed <= 4) { |
| bytes_size = 4; |
| op = aco_opcode::scratch_load_dword; |
| } else if (bytes_needed <= 8) { |
| bytes_size = 8; |
| op = aco_opcode::scratch_load_dwordx2; |
| } else if (bytes_needed <= 12) { |
| bytes_size = 12; |
| op = aco_opcode::scratch_load_dwordx3; |
| } else { |
| bytes_size = 16; |
| op = aco_opcode::scratch_load_dwordx4; |
| } |
| RegClass rc = RegClass::get(RegType::vgpr, bytes_size); |
| Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); |
| aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, Format::SCRATCH, 2, 1)}; |
| flat->operands[0] = offset.regClass() == s1 ? Operand(v1) : Operand(offset); |
| flat->operands[1] = offset.regClass() == s1 ? Operand(offset) : Operand(s1); |
| flat->sync = info.sync; |
| flat->offset = const_offset; |
| flat->definitions[0] = Definition(val); |
| bld.insert(std::move(flat)); |
| |
| return val; |
| } |
| |
| const EmitLoadParameters scratch_mubuf_load_params{mubuf_load_callback, false, true, 4096}; |
| const EmitLoadParameters scratch_flat_load_params{scratch_load_callback, false, true, 2048}; |
| |
| Temp |
| get_gfx6_global_rsrc(Builder& bld, Temp addr) |
| { |
| uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | |
| S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| |
| if (addr.type() == RegType::vgpr) |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand::zero(), Operand::zero(), |
| Operand::c32(-1u), Operand::c32(rsrc_conf)); |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand::c32(-1u), |
| Operand::c32(rsrc_conf)); |
| } |
| |
| Temp |
| add64_32(Builder& bld, Temp src0, Temp src1) |
| { |
| Temp src00 = bld.tmp(src0.type(), 1); |
| Temp src01 = bld.tmp(src0.type(), 1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0); |
| |
| if (src0.type() == RegType::vgpr || src1.type() == RegType::vgpr) { |
| Temp dst0 = bld.tmp(v1); |
| Temp carry = bld.vadd32(Definition(dst0), src00, src1, true).def(1).getTemp(); |
| Temp dst1 = bld.vadd32(bld.def(v1), src01, Operand::zero(), false, carry); |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1); |
| } else { |
| Temp carry = bld.tmp(s1); |
| Temp dst0 = |
| bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src1); |
| Temp dst1 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), src01, carry); |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), dst0, dst1); |
| } |
| } |
| |
| void |
| lower_global_address(Builder& bld, uint32_t offset_in, Temp* address_inout, |
| uint32_t* const_offset_inout, Temp* offset_inout) |
| { |
| Temp address = *address_inout; |
| uint64_t const_offset = *const_offset_inout + offset_in; |
| Temp offset = *offset_inout; |
| |
| uint64_t max_const_offset_plus_one = |
| 1; /* GFX7/8/9: FLAT loads do not support constant offsets */ |
| if (bld.program->gfx_level >= GFX9) |
| max_const_offset_plus_one = bld.program->dev.scratch_global_offset_max; |
| else if (bld.program->gfx_level == GFX6) |
| max_const_offset_plus_one = 4096; /* MUBUF has a 12-bit unsigned offset field */ |
| uint64_t excess_offset = const_offset - (const_offset % max_const_offset_plus_one); |
| const_offset %= max_const_offset_plus_one; |
| |
| if (!offset.id()) { |
| while (unlikely(excess_offset > UINT32_MAX)) { |
| address = add64_32(bld, address, bld.copy(bld.def(s1), Operand::c32(UINT32_MAX))); |
| excess_offset -= UINT32_MAX; |
| } |
| if (excess_offset) |
| offset = bld.copy(bld.def(s1), Operand::c32(excess_offset)); |
| } else { |
| /* If we add to "offset", we would transform the indended |
| * "address + u2u64(offset) + u2u64(const_offset)" into |
| * "address + u2u64(offset + const_offset)", so add to the address. |
| * This could be more efficient if excess_offset>UINT32_MAX by doing a full 64-bit addition, |
| * but that should be really rare. |
| */ |
| while (excess_offset) { |
| uint32_t src2 = MIN2(excess_offset, UINT32_MAX); |
| address = add64_32(bld, address, bld.copy(bld.def(s1), Operand::c32(src2))); |
| excess_offset -= src2; |
| } |
| } |
| |
| if (bld.program->gfx_level == GFX6) { |
| /* GFX6 (MUBUF): (SGPR address, SGPR offset) or (VGPR address, SGPR offset) */ |
| if (offset.type() != RegType::sgpr) { |
| address = add64_32(bld, address, offset); |
| offset = Temp(); |
| } |
| offset = offset.id() ? offset : bld.copy(bld.def(s1), Operand::zero()); |
| } else if (bld.program->gfx_level <= GFX8) { |
| /* GFX7,8 (FLAT): VGPR address */ |
| if (offset.id()) { |
| address = add64_32(bld, address, offset); |
| offset = Temp(); |
| } |
| address = as_vgpr(bld, address); |
| } else { |
| /* GFX9+ (GLOBAL): (VGPR address), or (SGPR address and VGPR offset) */ |
| if (address.type() == RegType::vgpr && offset.id()) { |
| address = add64_32(bld, address, offset); |
| offset = Temp(); |
| } else if (address.type() == RegType::sgpr && offset.id()) { |
| offset = as_vgpr(bld, offset); |
| } |
| if (address.type() == RegType::sgpr && !offset.id()) |
| offset = bld.copy(bld.def(v1), bld.copy(bld.def(s1), Operand::zero())); |
| } |
| |
| *address_inout = address; |
| *const_offset_inout = const_offset; |
| *offset_inout = offset; |
| } |
| |
| Temp |
| global_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, |
| unsigned align_, unsigned const_offset, Temp dst_hint) |
| { |
| Temp addr = info.resource; |
| if (!addr.id()) { |
| addr = offset; |
| offset = Temp(); |
| } |
| lower_global_address(bld, 0, &addr, &const_offset, &offset); |
| |
| unsigned bytes_size = 0; |
| bool use_mubuf = bld.program->gfx_level == GFX6; |
| bool global = bld.program->gfx_level >= GFX9; |
| aco_opcode op; |
| if (bytes_needed == 1 || align_ % 2u) { |
| bytes_size = 1; |
| op = use_mubuf ? aco_opcode::buffer_load_ubyte |
| : global ? aco_opcode::global_load_ubyte |
| : aco_opcode::flat_load_ubyte; |
| } else if (bytes_needed == 2 || align_ % 4u) { |
| bytes_size = 2; |
| op = use_mubuf ? aco_opcode::buffer_load_ushort |
| : global ? aco_opcode::global_load_ushort |
| : aco_opcode::flat_load_ushort; |
| } else if (bytes_needed <= 4) { |
| bytes_size = 4; |
| op = use_mubuf ? aco_opcode::buffer_load_dword |
| : global ? aco_opcode::global_load_dword |
| : aco_opcode::flat_load_dword; |
| } else if (bytes_needed <= 8 || (bytes_needed <= 12 && use_mubuf)) { |
| bytes_size = 8; |
| op = use_mubuf ? aco_opcode::buffer_load_dwordx2 |
| : global ? aco_opcode::global_load_dwordx2 |
| : aco_opcode::flat_load_dwordx2; |
| } else if (bytes_needed <= 12 && !use_mubuf) { |
| bytes_size = 12; |
| op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3; |
| } else { |
| bytes_size = 16; |
| op = use_mubuf ? aco_opcode::buffer_load_dwordx4 |
| : global ? aco_opcode::global_load_dwordx4 |
| : aco_opcode::flat_load_dwordx4; |
| } |
| RegClass rc = RegClass::get(RegType::vgpr, bytes_size); |
| Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); |
| if (use_mubuf) { |
| aco_ptr<MUBUF_instruction> mubuf{ |
| create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)}; |
| mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, addr)); |
| mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1); |
| mubuf->operands[2] = Operand(offset); |
| mubuf->glc = info.glc; |
| mubuf->dlc = false; |
| mubuf->offset = const_offset; |
| mubuf->addr64 = addr.type() == RegType::vgpr; |
| mubuf->disable_wqm = false; |
| mubuf->sync = info.sync; |
| mubuf->definitions[0] = Definition(val); |
| bld.insert(std::move(mubuf)); |
| } else { |
| aco_ptr<FLAT_instruction> flat{ |
| create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)}; |
| if (addr.regClass() == s2) { |
| assert(global && offset.id() && offset.type() == RegType::vgpr); |
| flat->operands[0] = Operand(offset); |
| flat->operands[1] = Operand(addr); |
| } else { |
| assert(addr.type() == RegType::vgpr && !offset.id()); |
| flat->operands[0] = Operand(addr); |
| flat->operands[1] = Operand(s1); |
| } |
| flat->glc = info.glc; |
| flat->dlc = |
| info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); |
| flat->sync = info.sync; |
| assert(global || !const_offset); |
| flat->offset = const_offset; |
| flat->definitions[0] = Definition(val); |
| bld.insert(std::move(flat)); |
| } |
| |
| return val; |
| } |
| |
| const EmitLoadParameters global_load_params{global_load_callback, true, true, UINT32_MAX}; |
| |
| Temp |
| load_lds(isel_context* ctx, unsigned elem_size_bytes, unsigned num_components, Temp dst, |
| Temp address, unsigned base_offset, unsigned align) |
| { |
| assert(util_is_power_of_two_nonzero(align)); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes}; |
| info.align_mul = align; |
| info.align_offset = 0; |
| info.sync = memory_sync_info(storage_shared); |
| info.const_offset = base_offset; |
| /* The 2 separate loads for gfx10+ wave64 can see different values, even for uniform addresses, |
| * if another wave writes LDS in between. Use v_readfirstlane instead of p_as_uniform in order |
| * to avoid copy-propagation. |
| */ |
| info.readfirstlane_for_uniform = ctx->options->gfx_level >= GFX10 && |
| ctx->program->wave_size == 64 && |
| ctx->program->workgroup_size > 64; |
| emit_load(ctx, bld, info, lds_load_params); |
| |
| return dst; |
| } |
| |
| void |
| split_store_data(isel_context* ctx, RegType dst_type, unsigned count, Temp* dst, unsigned* bytes, |
| Temp src) |
| { |
| if (!count) |
| return; |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| /* count == 1 fast path */ |
| if (count == 1) { |
| if (dst_type == RegType::sgpr) |
| dst[0] = bld.as_uniform(src); |
| else |
| dst[0] = as_vgpr(ctx, src); |
| return; |
| } |
| |
| /* elem_size_bytes is the greatest common divisor which is a power of 2 */ |
| unsigned elem_size_bytes = |
| 1u << (ffs(std::accumulate(bytes, bytes + count, 8, std::bit_or<>{})) - 1); |
| |
| ASSERTED bool is_subdword = elem_size_bytes < 4; |
| assert(!is_subdword || dst_type == RegType::vgpr); |
| |
| for (unsigned i = 0; i < count; i++) |
| dst[i] = bld.tmp(RegClass::get(dst_type, bytes[i])); |
| |
| std::vector<Temp> temps; |
| /* use allocated_vec if possible */ |
| auto it = ctx->allocated_vec.find(src.id()); |
| if (it != ctx->allocated_vec.end()) { |
| if (!it->second[0].id()) |
| goto split; |
| unsigned elem_size = it->second[0].bytes(); |
| assert(src.bytes() % elem_size == 0); |
| |
| for (unsigned i = 0; i < src.bytes() / elem_size; i++) { |
| if (!it->second[i].id()) |
| goto split; |
| } |
| if (elem_size_bytes % elem_size) |
| goto split; |
| |
| temps.insert(temps.end(), it->second.begin(), it->second.begin() + src.bytes() / elem_size); |
| elem_size_bytes = elem_size; |
| } |
| |
| split: |
| /* split src if necessary */ |
| if (temps.empty()) { |
| if (is_subdword && src.type() == RegType::sgpr) |
| src = as_vgpr(ctx, src); |
| if (dst_type == RegType::sgpr) |
| src = bld.as_uniform(src); |
| |
| unsigned num_elems = src.bytes() / elem_size_bytes; |
| aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elems)}; |
| split->operands[0] = Operand(src); |
| for (unsigned i = 0; i < num_elems; i++) { |
| temps.emplace_back(bld.tmp(RegClass::get(dst_type, elem_size_bytes))); |
| split->definitions[i] = Definition(temps.back()); |
| } |
| bld.insert(std::move(split)); |
| } |
| |
| unsigned idx = 0; |
| for (unsigned i = 0; i < count; i++) { |
| unsigned op_count = dst[i].bytes() / elem_size_bytes; |
| if (op_count == 1) { |
| if (dst_type == RegType::sgpr) |
| dst[i] = bld.as_uniform(temps[idx++]); |
| else |
| dst[i] = as_vgpr(ctx, temps[idx++]); |
| continue; |
| } |
| |
| aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, |
| Format::PSEUDO, op_count, 1)}; |
| for (unsigned j = 0; j < op_count; j++) { |
| Temp tmp = temps[idx++]; |
| if (dst_type == RegType::sgpr) |
| tmp = bld.as_uniform(tmp); |
| vec->operands[j] = Operand(tmp); |
| } |
| vec->definitions[0] = Definition(dst[i]); |
| bld.insert(std::move(vec)); |
| } |
| return; |
| } |
| |
| bool |
| scan_write_mask(uint32_t mask, uint32_t todo_mask, int* start, int* count) |
| { |
| unsigned start_elem = ffs(todo_mask) - 1; |
| bool skip = !(mask & (1 << start_elem)); |
| if (skip) |
| mask = ~mask & todo_mask; |
| |
| mask &= todo_mask; |
| |
| u_bit_scan_consecutive_range(&mask, start, count); |
| |
| return !skip; |
| } |
| |
| void |
| advance_write_mask(uint32_t* todo_mask, int start, int count) |
| { |
| *todo_mask &= ~u_bit_consecutive(0, count) << start; |
| } |
| |
| void |
| store_lds(isel_context* ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask, Temp address, |
| unsigned base_offset, unsigned align) |
| { |
| assert(util_is_power_of_two_nonzero(align)); |
| assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8); |
| |
| Builder bld(ctx->program, ctx->block); |
| bool large_ds_write = ctx->options->gfx_level >= GFX7; |
| bool usable_write2 = ctx->options->gfx_level >= GFX7; |
| |
| unsigned write_count = 0; |
| Temp write_datas[32]; |
| unsigned offsets[32]; |
| unsigned bytes[32]; |
| aco_opcode opcodes[32]; |
| |
| wrmask = util_widen_mask(wrmask, elem_size_bytes); |
| |
| const unsigned wrmask_bitcnt = util_bitcount(wrmask); |
| uint32_t todo = u_bit_consecutive(0, data.bytes()); |
| |
| if (u_bit_consecutive(0, wrmask_bitcnt) == wrmask) |
| todo = MIN2(todo, wrmask); |
| |
| while (todo) { |
| int offset, byte; |
| if (!scan_write_mask(wrmask, todo, &offset, &byte)) { |
| offsets[write_count] = offset; |
| bytes[write_count] = byte; |
| opcodes[write_count] = aco_opcode::num_opcodes; |
| write_count++; |
| advance_write_mask(&todo, offset, byte); |
| continue; |
| } |
| |
| bool aligned2 = offset % 2 == 0 && align % 2 == 0; |
| bool aligned4 = offset % 4 == 0 && align % 4 == 0; |
| bool aligned8 = offset % 8 == 0 && align % 8 == 0; |
| bool aligned16 = offset % 16 == 0 && align % 16 == 0; |
| |
| // TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial |
| aco_opcode op = aco_opcode::num_opcodes; |
| if (byte >= 16 && aligned16 && large_ds_write) { |
| op = aco_opcode::ds_write_b128; |
| byte = 16; |
| } else if (byte >= 12 && aligned16 && large_ds_write) { |
| op = aco_opcode::ds_write_b96; |
| byte = 12; |
| } else if (byte >= 8 && aligned8) { |
| op = aco_opcode::ds_write_b64; |
| byte = 8; |
| } else if (byte >= 4 && aligned4) { |
| op = aco_opcode::ds_write_b32; |
| byte = 4; |
| } else if (byte >= 2 && aligned2) { |
| op = aco_opcode::ds_write_b16; |
| byte = 2; |
| } else if (byte >= 1) { |
| op = aco_opcode::ds_write_b8; |
| byte = 1; |
| } else { |
| assert(false); |
| } |
| |
| offsets[write_count] = offset; |
| bytes[write_count] = byte; |
| opcodes[write_count] = op; |
| write_count++; |
| advance_write_mask(&todo, offset, byte); |
| } |
| |
| Operand m = load_lds_size_m0(bld); |
| |
| split_store_data(ctx, RegType::vgpr, write_count, write_datas, bytes, data); |
| |
| for (unsigned i = 0; i < write_count; i++) { |
| aco_opcode op = opcodes[i]; |
| if (op == aco_opcode::num_opcodes) |
| continue; |
| |
| Temp split_data = write_datas[i]; |
| |
| unsigned second = write_count; |
| if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) { |
| for (second = i + 1; second < write_count; second++) { |
| if (opcodes[second] == op && (offsets[second] - offsets[i]) % split_data.bytes() == 0) { |
| op = split_data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64; |
| opcodes[second] = aco_opcode::num_opcodes; |
| break; |
| } |
| } |
| } |
| |
| bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64; |
| unsigned write2_off = (offsets[second] - offsets[i]) / split_data.bytes(); |
| |
| unsigned inline_offset = base_offset + offsets[i]; |
| unsigned max_offset = write2 ? (255 - write2_off) * split_data.bytes() : 65535; |
| Temp address_offset = address; |
| if (inline_offset > max_offset) { |
| address_offset = bld.vadd32(bld.def(v1), Operand::c32(base_offset), address_offset); |
| inline_offset = offsets[i]; |
| } |
| |
| /* offsets[i] shouldn't be large enough for this to happen */ |
| assert(inline_offset <= max_offset); |
| |
| Instruction* instr; |
| if (write2) { |
| Temp second_data = write_datas[second]; |
| inline_offset /= split_data.bytes(); |
| instr = bld.ds(op, address_offset, split_data, second_data, m, inline_offset, |
| inline_offset + write2_off); |
| } else { |
| instr = bld.ds(op, address_offset, split_data, m, inline_offset); |
| } |
| instr->ds().sync = memory_sync_info(storage_shared); |
| |
| if (m.isUndefined()) |
| instr->operands.pop_back(); |
| } |
| } |
| |
| aco_opcode |
| get_buffer_store_op(unsigned bytes) |
| { |
| switch (bytes) { |
| case 1: return aco_opcode::buffer_store_byte; |
| case 2: return aco_opcode::buffer_store_short; |
| case 4: return aco_opcode::buffer_store_dword; |
| case 8: return aco_opcode::buffer_store_dwordx2; |
| case 12: return aco_opcode::buffer_store_dwordx3; |
| case 16: return aco_opcode::buffer_store_dwordx4; |
| } |
| unreachable("Unexpected store size"); |
| return aco_opcode::num_opcodes; |
| } |
| |
| void |
| split_buffer_store(isel_context* ctx, nir_intrinsic_instr* instr, bool smem, RegType dst_type, |
| Temp data, unsigned writemask, int swizzle_element_size, unsigned* write_count, |
| Temp* write_datas, unsigned* offsets) |
| { |
| unsigned write_count_with_skips = 0; |
| bool skips[16]; |
| unsigned bytes[16]; |
| |
| /* determine how to split the data */ |
| unsigned todo = u_bit_consecutive(0, data.bytes()); |
| while (todo) { |
| int offset, byte; |
| skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &byte); |
| offsets[write_count_with_skips] = offset; |
| if (skips[write_count_with_skips]) { |
| bytes[write_count_with_skips] = byte; |
| advance_write_mask(&todo, offset, byte); |
| write_count_with_skips++; |
| continue; |
| } |
| |
| /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be |
| * larger than swizzle_element_size */ |
| byte = MIN2(byte, swizzle_element_size); |
| if (byte % 4) |
| byte = byte > 4 ? byte & ~0x3 : MIN2(byte, 2); |
| |
| /* SMEM and GFX6 VMEM can't emit 12-byte stores */ |
| if ((ctx->program->gfx_level == GFX6 || smem) && byte == 12) |
| byte = 8; |
| |
| /* dword or larger stores have to be dword-aligned */ |
| unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4; |
| unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset; |
| bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0; |
| if (!dword_aligned) |
| byte = MIN2(byte, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1); |
| |
| bytes[write_count_with_skips] = byte; |
| advance_write_mask(&todo, offset, byte); |
| write_count_with_skips++; |
| } |
| |
| /* actually split data */ |
| split_store_data(ctx, dst_type, write_count_with_skips, write_datas, bytes, data); |
| |
| /* remove skips */ |
| for (unsigned i = 0; i < write_count_with_skips; i++) { |
| if (skips[i]) |
| continue; |
| write_datas[*write_count] = write_datas[i]; |
| offsets[*write_count] = offsets[i]; |
| (*write_count)++; |
| } |
| } |
| |
| Temp |
| create_vec_from_array(isel_context* ctx, Temp arr[], unsigned cnt, RegType reg_type, |
| unsigned elem_size_bytes, unsigned split_cnt = 0u, Temp dst = Temp()) |
| { |
| Builder bld(ctx->program, ctx->block); |
| unsigned dword_size = elem_size_bytes / 4; |
| |
| if (!dst.id()) |
| dst = bld.tmp(RegClass(reg_type, cnt * dword_size)); |
| |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec; |
| aco_ptr<Pseudo_instruction> instr{ |
| create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)}; |
| instr->definitions[0] = Definition(dst); |
| |
| for (unsigned i = 0; i < cnt; ++i) { |
| if (arr[i].id()) { |
| assert(arr[i].size() == dword_size); |
| allocated_vec[i] = arr[i]; |
| instr->operands[i] = Operand(arr[i]); |
| } else { |
| Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), |
| Operand::zero(dword_size == 2 ? 8 : 4)); |
| allocated_vec[i] = zero; |
| instr->operands[i] = Operand(zero); |
| } |
| } |
| |
| bld.insert(std::move(instr)); |
| |
| if (split_cnt) |
| emit_split_vector(ctx, dst, split_cnt); |
| else |
| ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */ |
| |
| return dst; |
| } |
| |
| inline unsigned |
| resolve_excess_vmem_const_offset(Builder& bld, Temp& voffset, unsigned const_offset) |
| { |
| if (const_offset >= 4096) { |
| unsigned excess_const_offset = const_offset / 4096u * 4096u; |
| const_offset %= 4096u; |
| |
| if (!voffset.id()) |
| voffset = bld.copy(bld.def(v1), Operand::c32(excess_const_offset)); |
| else if (unlikely(voffset.regClass() == s1)) |
| voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), |
| Operand::c32(excess_const_offset), Operand(voffset)); |
| else if (likely(voffset.regClass() == v1)) |
| voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand::c32(excess_const_offset)); |
| else |
| unreachable("Unsupported register class of voffset"); |
| } |
| |
| return const_offset; |
| } |
| |
| void |
| emit_single_mubuf_store(isel_context* ctx, Temp descriptor, Temp voffset, Temp soffset, Temp idx, |
| Temp vdata, unsigned const_offset, memory_sync_info sync, bool glc, |
| bool slc, bool swizzled) |
| { |
| assert(vdata.id()); |
| assert(vdata.size() != 3 || ctx->program->gfx_level != GFX6); |
| assert(vdata.size() >= 1 && vdata.size() <= 4); |
| |
| Builder bld(ctx->program, ctx->block); |
| aco_opcode op = get_buffer_store_op(vdata.bytes()); |
| const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset); |
| |
| bool offen = voffset.id(); |
| bool idxen = idx.id(); |
| |
| Operand soffset_op = soffset.id() ? Operand(soffset) : Operand::zero(); |
| glc &= ctx->program->gfx_level < GFX11; |
| |
| Operand vaddr_op(v1); |
| if (offen && idxen) |
| vaddr_op = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), idx, voffset); |
| else if (offen) |
| vaddr_op = Operand(voffset); |
| else if (idxen) |
| vaddr_op = Operand(idx); |
| |
| Builder::Result r = |
| bld.mubuf(op, Operand(descriptor), vaddr_op, soffset_op, Operand(vdata), const_offset, offen, |
| swizzled, idxen, /* addr64 */ false, /* disable_wqm */ false, glc, |
| /* dlc*/ false, slc); |
| |
| r->mubuf().sync = sync; |
| } |
| |
| void |
| store_vmem_mubuf(isel_context* ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset, Temp idx, |
| unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask, |
| bool swizzled, memory_sync_info sync, bool glc, bool slc) |
| { |
| Builder bld(ctx->program, ctx->block); |
| assert(elem_size_bytes == 1 || elem_size_bytes == 2 || elem_size_bytes == 4 || |
| elem_size_bytes == 8); |
| assert(write_mask); |
| write_mask = util_widen_mask(write_mask, elem_size_bytes); |
| |
| unsigned write_count = 0; |
| Temp write_datas[32]; |
| unsigned offsets[32]; |
| split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask, |
| swizzled && ctx->program->gfx_level <= GFX8 ? 4 : 16, &write_count, |
| write_datas, offsets); |
| |
| for (unsigned i = 0; i < write_count; i++) { |
| unsigned const_offset = offsets[i] + base_const_offset; |
| emit_single_mubuf_store(ctx, descriptor, voffset, soffset, idx, write_datas[i], const_offset, |
| sync, glc, slc, swizzled); |
| } |
| } |
| |
| Temp |
| wave_id_in_threadgroup(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| return bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(24u | (4u << 16))); |
| } |
| |
| Temp |
| thread_id_in_threadgroup(isel_context* ctx) |
| { |
| /* tid_in_tg = wave_id * wave_size + tid_in_wave */ |
| |
| Builder bld(ctx->program, ctx->block); |
| Temp tid_in_wave = emit_mbcnt(ctx, bld.tmp(v1)); |
| |
| if (ctx->program->workgroup_size <= ctx->program->wave_size) |
| return tid_in_wave; |
| |
| Temp wave_id_in_tg = wave_id_in_threadgroup(ctx); |
| Temp num_pre_threads = |
| bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), wave_id_in_tg, |
| Operand::c32(ctx->program->wave_size == 64 ? 6u : 5u)); |
| return bld.vadd32(bld.def(v1), Operand(num_pre_threads), Operand(tid_in_wave)); |
| } |
| |
| bool |
| store_output_to_temps(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| unsigned write_mask = nir_intrinsic_write_mask(instr); |
| unsigned component = nir_intrinsic_component(instr); |
| nir_src offset = *nir_get_io_offset_src(instr); |
| |
| if (!nir_src_is_const(offset) || nir_src_as_uint(offset)) |
| return false; |
| |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| |
| if (instr->src[0].ssa->bit_size == 64) |
| write_mask = util_widen_mask(write_mask, 2); |
| |
| RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1; |
| |
| /* Use semantic location as index. radv already uses it as intrinsic base |
| * but radeonsi does not. We need to make LS output and TCS input index |
| * match each other, so need to use semantic location explicitly. Also for |
| * TCS epilog to index tess factor temps using semantic location directly. |
| */ |
| nir_io_semantics sem = nir_intrinsic_io_semantics(instr); |
| unsigned base = sem.location; |
| if (ctx->stage == fragment_fs) { |
| /* color result is a legacy slot which won't appear with data result |
| * at the same time. Here we just use the data slot for it to simplify |
| * code handling for both of them. |
| */ |
| if (base == FRAG_RESULT_COLOR) |
| base = FRAG_RESULT_DATA0; |
| |
| /* Sencond output of dual source blend just use data1 slot for simplicity, |
| * because dual source blend does not support multi render target. |
| */ |
| base += sem.dual_source_blend_index; |
| } |
| unsigned idx = base * 4u + component; |
| |
| for (unsigned i = 0; i < 8; ++i) { |
| if (write_mask & (1 << i)) { |
| ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u); |
| ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc); |
| } |
| idx++; |
| } |
| |
| if (ctx->stage == fragment_fs && ctx->program->info.has_epilog && base >= FRAG_RESULT_DATA0) { |
| unsigned index = base - FRAG_RESULT_DATA0; |
| |
| if (nir_intrinsic_src_type(instr) == nir_type_float16) { |
| ctx->output_color_types |= ACO_TYPE_FLOAT16 << (index * 2); |
| } else if (nir_intrinsic_src_type(instr) == nir_type_int16) { |
| ctx->output_color_types |= ACO_TYPE_INT16 << (index * 2); |
| } else if (nir_intrinsic_src_type(instr) == nir_type_uint16) { |
| ctx->output_color_types |= ACO_TYPE_UINT16 << (index * 2); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool |
| load_input_from_temps(isel_context* ctx, nir_intrinsic_instr* instr, Temp dst) |
| { |
| /* Only TCS per-vertex inputs are supported by this function. |
| * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations |
| * is the same. |
| */ |
| if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq) |
| return false; |
| |
| nir_src* off_src = nir_get_io_offset_src(instr); |
| nir_src* vertex_index_src = nir_get_io_arrayed_index_src(instr); |
| nir_instr* vertex_index_instr = vertex_index_src->ssa->parent_instr; |
| bool can_use_temps = |
| nir_src_is_const(*off_src) && vertex_index_instr->type == nir_instr_type_intrinsic && |
| nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id; |
| |
| if (!can_use_temps) |
| return false; |
| |
| nir_io_semantics sem = nir_intrinsic_io_semantics(instr); |
| |
| unsigned idx = |
| sem.location * 4u + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src); |
| Temp* src = &ctx->inputs.temps[idx]; |
| create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst); |
| |
| return true; |
| } |
| |
| void |
| visit_store_output(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| /* LS pass output to TCS by temp if they have same in/out patch size. */ |
| bool ls_need_output = ctx->stage == vertex_tess_control_hs && |
| ctx->shader->info.stage == MESA_SHADER_VERTEX && ctx->tcs_in_out_eq; |
| |
| bool tcs_need_output = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && |
| ctx->program->info.has_epilog && |
| ctx->program->info.tcs.pass_tessfactors_by_reg; |
| |
| bool ps_need_output = ctx->stage == fragment_fs; |
| |
| if (ls_need_output || tcs_need_output || ps_need_output) { |
| bool stored_to_temps = store_output_to_temps(ctx, instr); |
| if (!stored_to_temps) { |
| isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction"); |
| abort(); |
| } |
| } else { |
| unreachable("Shader stage not implemented"); |
| } |
| } |
| |
| bool |
| in_exec_divergent_or_in_loop(isel_context* ctx) |
| { |
| return ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent || |
| ctx->cf_info.had_divergent_discard; |
| } |
| |
| void |
| emit_interp_instr_gfx11(isel_context* ctx, unsigned idx, unsigned component, Temp src, Temp dst, |
| Temp prim_mask) |
| { |
| Temp coord1 = emit_extract_vector(ctx, src, 0, v1); |
| Temp coord2 = emit_extract_vector(ctx, src, 1, v1); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| if (in_exec_divergent_or_in_loop(ctx)) { |
| Operand prim_mask_op = bld.m0(prim_mask); |
| prim_mask_op.setLateKill(true); /* we don't want the bld.lm definition to use m0 */ |
| Operand coord2_op(coord2); |
| coord2_op.setLateKill(true); /* we re-use the destination reg in the middle */ |
| bld.pseudo(aco_opcode::p_interp_gfx11, Definition(dst), Operand(v1.as_linear()), |
| Operand::c32(idx), Operand::c32(component), coord1, coord2_op, prim_mask_op); |
| return; |
| } |
| |
| Temp p = bld.ldsdir(aco_opcode::lds_param_load, bld.def(v1), bld.m0(prim_mask), idx, component); |
| |
| Temp res; |
| if (dst.regClass() == v2b) { |
| Temp p10 = |
| bld.vinterp_inreg(aco_opcode::v_interp_p10_f16_f32_inreg, bld.def(v1), p, coord1, p); |
| res = bld.vinterp_inreg(aco_opcode::v_interp_p2_f16_f32_inreg, bld.def(v1), p, coord2, p10); |
| emit_extract_vector(ctx, res, 0, dst); |
| } else { |
| Temp p10 = bld.vinterp_inreg(aco_opcode::v_interp_p10_f32_inreg, bld.def(v1), p, coord1, p); |
| bld.vinterp_inreg(aco_opcode::v_interp_p2_f32_inreg, Definition(dst), p, coord2, p10); |
| } |
| /* lds_param_load must be done in WQM, and the result kept valid for helper lanes. */ |
| set_wqm(ctx, true); |
| } |
| |
| void |
| emit_interp_instr(isel_context* ctx, unsigned idx, unsigned component, Temp src, Temp dst, |
| Temp prim_mask) |
| { |
| if (ctx->options->gfx_level >= GFX11) { |
| emit_interp_instr_gfx11(ctx, idx, component, src, dst, prim_mask); |
| return; |
| } |
| |
| Temp coord1 = emit_extract_vector(ctx, src, 0, v1); |
| Temp coord2 = emit_extract_vector(ctx, src, 1, v1); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| if (dst.regClass() == v2b) { |
| if (ctx->program->dev.has_16bank_lds) { |
| assert(ctx->options->gfx_level <= GFX8); |
| Builder::Result interp_p1 = |
| bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand::c32(2u) /* P0 */, |
| bld.m0(prim_mask), idx, component); |
| interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b), coord1, |
| bld.m0(prim_mask), interp_p1, idx, component); |
| bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2, bld.m0(prim_mask), |
| interp_p1, idx, component); |
| } else { |
| aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16; |
| |
| if (ctx->options->gfx_level == GFX8) |
| interp_p2_op = aco_opcode::v_interp_p2_legacy_f16; |
| |
| Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1), coord1, |
| bld.m0(prim_mask), idx, component); |
| bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, |
| component); |
| } |
| } else { |
| Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, |
| bld.m0(prim_mask), idx, component); |
| |
| if (ctx->program->dev.has_16bank_lds) |
| interp_p1->operands[0].setLateKill(true); |
| |
| bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, |
| idx, component); |
| } |
| } |
| |
| void |
| emit_interp_mov_instr(isel_context* ctx, unsigned idx, unsigned component, unsigned vertex_id, |
| Temp dst, Temp prim_mask) |
| { |
| Builder bld(ctx->program, ctx->block); |
| if (ctx->options->gfx_level >= GFX11) { |
| uint16_t dpp_ctrl = dpp_quad_perm(vertex_id, vertex_id, vertex_id, vertex_id); |
| if (in_exec_divergent_or_in_loop(ctx)) { |
| Operand prim_mask_op = bld.m0(prim_mask); |
| prim_mask_op.setLateKill(true); /* we don't want the bld.lm definition to use m0 */ |
| bld.pseudo(aco_opcode::p_interp_gfx11, Definition(dst), Operand(v1.as_linear()), |
| Operand::c32(idx), Operand::c32(component), Operand::c32(dpp_ctrl), |
| prim_mask_op); |
| } else { |
| Temp p = |
| bld.ldsdir(aco_opcode::lds_param_load, bld.def(v1), bld.m0(prim_mask), idx, component); |
| if (dst.regClass() == v2b) { |
| Temp res = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p, dpp_ctrl); |
| emit_extract_vector(ctx, res, 0, dst); |
| } else { |
| bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(dst), p, dpp_ctrl); |
| } |
| /* lds_param_load must be done in WQM, and the result kept valid for helper lanes. */ |
| set_wqm(ctx, true); |
| } |
| } else { |
| bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand::c32((vertex_id + 2) % 3), |
| bld.m0(prim_mask), idx, component); |
| } |
| } |
| |
| void |
| emit_load_frag_coord(isel_context* ctx, Temp dst, unsigned num_components) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)); |
| for (unsigned i = 0; i < num_components; i++) { |
| if (ctx->args->frag_pos[i].used) |
| vec->operands[i] = Operand(get_arg(ctx, ctx->args->frag_pos[i])); |
| else |
| vec->operands[i] = Operand(v1); |
| } |
| if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) { |
| assert(num_components == 4); |
| vec->operands[3] = |
| bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->frag_pos[3])); |
| } |
| |
| for (Operand& op : vec->operands) |
| op = op.isUndefined() ? Operand::zero() : op; |
| |
| vec->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| emit_split_vector(ctx, dst, num_components); |
| return; |
| } |
| |
| void |
| emit_load_frag_shading_rate(isel_context* ctx, Temp dst) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp cond; |
| |
| /* VRS Rate X = Ancillary[2:3] |
| * VRS Rate Y = Ancillary[4:5] |
| */ |
| Temp x_rate = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->ancillary), |
| Operand::c32(2u), Operand::c32(2u)); |
| Temp y_rate = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->ancillary), |
| Operand::c32(4u), Operand::c32(2u)); |
| |
| /* xRate = xRate == 0x1 ? Horizontal2Pixels : None. */ |
| cond = bld.vopc(aco_opcode::v_cmp_eq_i32, bld.def(bld.lm), Operand::c32(1u), Operand(x_rate)); |
| x_rate = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand::zero()), |
| bld.copy(bld.def(v1), Operand::c32(4u)), cond); |
| |
| /* yRate = yRate == 0x1 ? Vertical2Pixels : None. */ |
| cond = bld.vopc(aco_opcode::v_cmp_eq_i32, bld.def(bld.lm), Operand::c32(1u), Operand(y_rate)); |
| y_rate = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand::zero()), |
| bld.copy(bld.def(v1), Operand::c32(1u)), cond); |
| |
| bld.vop2(aco_opcode::v_or_b32, Definition(dst), Operand(x_rate), Operand(y_rate)); |
| } |
| |
| void |
| visit_load_interpolated_input(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp coords = get_ssa_temp(ctx, instr->src[0].ssa); |
| unsigned idx = nir_intrinsic_base(instr); |
| unsigned component = nir_intrinsic_component(instr); |
| Temp prim_mask = get_arg(ctx, ctx->args->prim_mask); |
| |
| assert(nir_src_is_const(instr->src[1]) && !nir_src_as_uint(instr->src[1])); |
| |
| if (instr->def.num_components == 1) { |
| emit_interp_instr(ctx, idx, component, coords, dst, prim_mask); |
| } else { |
| aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, instr->def.num_components, 1)); |
| for (unsigned i = 0; i < instr->def.num_components; i++) { |
| Temp tmp = ctx->program->allocateTmp(instr->def.bit_size == 16 ? v2b : v1); |
| emit_interp_instr(ctx, idx, component + i, coords, tmp, prim_mask); |
| vec->operands[i] = Operand(tmp); |
| } |
| vec->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| } |
| } |
| |
| Temp |
| mtbuf_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed, |
| unsigned alignment, unsigned const_offset, Temp dst_hint) |
| { |
| Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); |
| Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); |
| |
| if (info.soffset.id()) { |
| if (soffset.isTemp()) |
| vaddr = bld.copy(bld.def(v1), soffset); |
| soffset = Operand(info.soffset); |
| } |
| |
| if (soffset.isUndefined()) |
| soffset = Operand::zero(); |
| |
| const bool offen = !vaddr.isUndefined(); |
| const bool idxen = info.idx.id(); |
| |
| if (offen && idxen) |
| vaddr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), info.idx, vaddr); |
| else if (idxen) |
| vaddr = Operand(info.idx); |
| |
| /* Determine number of fetched components. |
| * Note, ACO IR works with GFX6-8 nfmt + dfmt fields, these are later converted for GFX10+. |
| */ |
| const struct ac_vtx_format_info* vtx_info = |
| ac_get_vtx_format_info(GFX8, CHIP_POLARIS10, info.format); |
| /* The number of channels in the format determines the memory range. */ |
| const unsigned max_components = vtx_info->num_channels; |
| /* Calculate maximum number of components loaded according to alignment. */ |
| unsigned max_fetched_components = bytes_needed / info.component_size; |
| max_fetched_components = |
| ac_get_safe_fetch_size(bld.program->gfx_level, vtx_info, const_offset, max_components, |
| alignment, max_fetched_components); |
| const unsigned fetch_fmt = vtx_info->hw_format[max_fetched_components - 1]; |
| /* Adjust bytes needed in case we need to do a smaller load due to alignment. |
| * If a larger format is selected, it's still OK to load a smaller amount from it. |
| */ |
| bytes_needed = MIN2(bytes_needed, max_fetched_components * info.component_size); |
| unsigned bytes_size = 0; |
| const unsigned bit_size = info.component_size * 8; |
| aco_opcode op = aco_opcode::num_opcodes; |
| |
| if (bytes_needed == 2) { |
| bytes_size = 2; |
| op = aco_opcode::tbuffer_load_format_d16_x; |
| } else if (bytes_needed <= 4) { |
| bytes_size = 4; |
| if (bit_size == 16) |
| op = aco_opcode::tbuffer_load_format_d16_xy; |
| else |
| op = aco_opcode::tbuffer_load_format_x; |
| } else if (bytes_needed <= 6) { |
| bytes_size = 6; |
| if (bit_size == 16) |
| op = aco_opcode::tbuffer_load_format_d16_xyz; |
| else |
| op = aco_opcode::tbuffer_load_format_xy; |
| } else if (bytes_needed <= 8) { |
| bytes_size = 8; |
| if (bit_size == 16) |
| op = aco_opcode::tbuffer_load_format_d16_xyzw; |
| else |
| op = aco_opcode::tbuffer_load_format_xy; |
| } else if (bytes_needed <= 12) { |
| bytes_size = 12; |
| op = aco_opcode::tbuffer_load_format_xyz; |
| } else { |
| bytes_size = 16; |
| op = aco_opcode::tbuffer_load_format_xyzw; |
| } |
| |
| /* Abort when suitable opcode wasn't found so we don't compile buggy shaders. */ |
| if (op == aco_opcode::num_opcodes) { |
| aco_err(bld.program, "unsupported bit size for typed buffer load"); |
| abort(); |
| } |
| |
| aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(op, Format::MTBUF, 3, 1)}; |
| mtbuf->operands[0] = Operand(info.resource); |
| mtbuf->operands[1] = vaddr; |
| mtbuf->operands[2] = soffset; |
| mtbuf->offen = offen; |
| mtbuf->idxen = idxen; |
| mtbuf->glc = info.glc; |
| mtbuf->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3); |
| mtbuf->slc = info.slc; |
| mtbuf->sync = info.sync; |
| mtbuf->offset = const_offset; |
| mtbuf->dfmt = fetch_fmt & 0xf; |
| mtbuf->nfmt = fetch_fmt >> 4; |
| RegClass rc = RegClass::get(RegType::vgpr, bytes_size); |
| Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc); |
| mtbuf->definitions[0] = Definition(val); |
| bld.insert(std::move(mtbuf)); |
| |
| return val; |
| } |
| |
| const EmitLoadParameters mtbuf_load_params{mtbuf_load_callback, false, true, 4096}; |
| |
| void |
| visit_load_fs_input(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| nir_src offset = *nir_get_io_offset_src(instr); |
| |
| if (!nir_src_is_const(offset) || nir_src_as_uint(offset)) |
| isel_err(offset.ssa->parent_instr, "Unimplemented non-zero nir_intrinsic_load_input offset"); |
| |
| Temp prim_mask = get_arg(ctx, ctx->args->prim_mask); |
| |
| unsigned idx = nir_intrinsic_base(instr); |
| unsigned component = nir_intrinsic_component(instr); |
| unsigned vertex_id = 0; /* P0 */ |
| |
| if (instr->intrinsic == nir_intrinsic_load_input_vertex) |
| vertex_id = nir_src_as_uint(instr->src[0]); |
| |
| if (instr->def.num_components == 1 && instr->def.bit_size != 64) { |
| emit_interp_mov_instr(ctx, idx, component, vertex_id, dst, prim_mask); |
| } else { |
| unsigned num_components = instr->def.num_components; |
| if (instr->def.bit_size == 64) |
| num_components *= 2; |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)}; |
| for (unsigned i = 0; i < num_components; i++) { |
| unsigned chan_component = (component + i) % 4; |
| unsigned chan_idx = idx + (component + i) / 4; |
| vec->operands[i] = Operand(bld.tmp(instr->def.bit_size == 16 ? v2b : v1)); |
| emit_interp_mov_instr(ctx, chan_idx, chan_component, vertex_id, vec->operands[i].getTemp(), |
| prim_mask); |
| } |
| vec->definitions[0] = Definition(dst); |
| bld.insert(std::move(vec)); |
| } |
| } |
| |
| void |
| visit_load_tcs_per_vertex_input(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL); |
| |
| Builder bld(ctx->program, ctx->block); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| if (load_input_from_temps(ctx, instr, dst)) |
| return; |
| |
| unreachable("LDS-based TCS input should have been lowered in NIR."); |
| } |
| |
| void |
| visit_load_per_vertex_input(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| switch (ctx->shader->info.stage) { |
| case MESA_SHADER_TESS_CTRL: visit_load_tcs_per_vertex_input(ctx, instr); break; |
| default: unreachable("Unimplemented shader stage"); |
| } |
| } |
| |
| void |
| visit_load_tess_coord(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL); |
| |
| Builder bld(ctx->program, ctx->block); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| Operand tes_u(get_arg(ctx, ctx->args->tes_u)); |
| Operand tes_v(get_arg(ctx, ctx->args->tes_v)); |
| Operand tes_w = Operand::zero(); |
| |
| if (ctx->shader->info.tess._primitive_mode == TESS_PRIMITIVE_TRIANGLES) { |
| Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v); |
| tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand::c32(0x3f800000u /* 1.0f */), tmp); |
| tes_w = Operand(tmp); |
| } |
| |
| Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w); |
| emit_split_vector(ctx, tess_coord, 3); |
| } |
| |
| void |
| load_buffer(isel_context* ctx, unsigned num_components, unsigned component_size, Temp dst, |
| Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset, bool glc = false, |
| bool allow_smem = true, memory_sync_info sync = memory_sync_info()) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| bool use_smem = |
| dst.type() != RegType::vgpr && (!glc || ctx->options->gfx_level >= GFX8) && allow_smem; |
| if (use_smem) |
| offset = bld.as_uniform(offset); |
| else { |
| /* GFX6-7 are affected by a hw bug that prevents address clamping to |
| * work correctly when the SGPR offset is used. |
| */ |
| if (offset.type() == RegType::sgpr && ctx->options->gfx_level < GFX8) |
| offset = as_vgpr(ctx, offset); |
| } |
| |
| LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc}; |
| info.glc = glc; |
| info.sync = sync; |
| info.align_mul = align_mul; |
| info.align_offset = align_offset; |
| if (use_smem) |
| emit_load(ctx, bld, info, smem_load_params); |
| else |
| emit_load(ctx, bld, info, mubuf_load_params); |
| } |
| |
| void |
| visit_load_ubo(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Builder bld(ctx->program, ctx->block); |
| Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| |
| unsigned size = instr->def.bit_size / 8; |
| load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), |
| nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr)); |
| } |
| |
| void |
| visit_load_push_constant(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| unsigned offset = nir_intrinsic_base(instr); |
| unsigned count = instr->def.num_components; |
| nir_const_value* index_cv = nir_src_as_const_value(instr->src[0]); |
| |
| if (instr->def.bit_size == 64) |
| count *= 2; |
| |
| if (index_cv && instr->def.bit_size >= 32) { |
| unsigned start = (offset + index_cv->u32) / 4u; |
| uint64_t mask = BITFIELD64_MASK(count) << start; |
| if ((ctx->args->inline_push_const_mask | mask) == ctx->args->inline_push_const_mask && |
| start + count <= (sizeof(ctx->args->inline_push_const_mask) * 8u)) { |
| std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems; |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, count, 1)}; |
| unsigned arg_index = |
| util_bitcount64(ctx->args->inline_push_const_mask & BITFIELD64_MASK(start)); |
| for (unsigned i = 0; i < count; ++i) { |
| elems[i] = get_arg(ctx, ctx->args->inline_push_consts[arg_index++]); |
| vec->operands[i] = Operand{elems[i]}; |
| } |
| vec->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| ctx->allocated_vec.emplace(dst.id(), elems); |
| return; |
| } |
| } |
| |
| Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| if (offset != 0) // TODO check if index != 0 as well |
| index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), |
| Operand::c32(offset), index); |
| Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->push_constants)); |
| Temp vec = dst; |
| bool trim = false; |
| bool aligned = true; |
| |
| if (instr->def.bit_size == 8) { |
| aligned = index_cv && (offset + index_cv->u32) % 4 == 0; |
| bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4); |
| if (!aligned) |
| vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2); |
| } else if (instr->def.bit_size == 16) { |
| aligned = index_cv && (offset + index_cv->u32) % 4 == 0; |
| if (!aligned) |
| vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1); |
| } |
| |
| aco_opcode op; |
| |
| switch (vec.size()) { |
| case 1: op = aco_opcode::s_load_dword; break; |
| case 2: op = aco_opcode::s_load_dwordx2; break; |
| case 3: |
| vec = bld.tmp(s4); |
| trim = true; |
| FALLTHROUGH; |
| case 4: op = aco_opcode::s_load_dwordx4; break; |
| case 6: |
| vec = bld.tmp(s8); |
| trim = true; |
| FALLTHROUGH; |
| case 8: op = aco_opcode::s_load_dwordx8; break; |
| default: unreachable("unimplemented or forbidden load_push_constant."); |
| } |
| |
| bld.smem(op, Definition(vec), ptr, index); |
| |
| if (!aligned) { |
| Operand byte_offset = index_cv ? Operand::c32((offset + index_cv->u32) % 4) : Operand(index); |
| byte_align_scalar(ctx, vec, byte_offset, dst); |
| return; |
| } |
| |
| if (trim) { |
| emit_split_vector(ctx, vec, 4); |
| RegClass rc = dst.size() == 3 ? s1 : s2; |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), emit_extract_vector(ctx, vec, 0, rc), |
| emit_extract_vector(ctx, vec, 1, rc), emit_extract_vector(ctx, vec, 2, rc)); |
| } |
| emit_split_vector(ctx, dst, instr->def.num_components); |
| } |
| |
| void |
| visit_load_constant(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| uint32_t desc_type = |
| S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| if (ctx->options->gfx_level >= GFX10) { |
| desc_type |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | |
| S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | |
| S_008F0C_RESOURCE_LEVEL(ctx->options->gfx_level < GFX11); |
| } else { |
| desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | |
| S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| } |
| |
| unsigned base = nir_intrinsic_base(instr); |
| unsigned range = nir_intrinsic_range(instr); |
| |
| Temp offset = get_ssa_temp(ctx, instr->src[0].ssa); |
| if (base && offset.type() == RegType::sgpr) |
| offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, |
| Operand::c32(base)); |
| else if (base && offset.type() == RegType::vgpr) |
| offset = bld.vadd32(bld.def(v1), Operand::c32(base), offset); |
| |
| Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), |
| bld.pseudo(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), |
| Operand::c32(ctx->constant_data_offset)), |
| Operand::c32(MIN2(base + range, ctx->shader->constant_data_size)), |
| Operand::c32(desc_type)); |
| unsigned size = instr->def.bit_size / 8; |
| // TODO: get alignment information for subdword constants |
| load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0); |
| } |
| |
| /* Packs multiple Temps of different sizes in to a vector of v1 Temps. |
| * The byte count of each input Temp must be a multiple of 2. |
| */ |
| static std::vector<Temp> |
| emit_pack_v1(isel_context* ctx, const std::vector<Temp>& unpacked) |
| { |
| Builder bld(ctx->program, ctx->block); |
| std::vector<Temp> packed; |
| Temp low = Temp(); |
| for (Temp tmp : unpacked) { |
| assert(tmp.bytes() % 2 == 0); |
| unsigned byte_idx = 0; |
| while (byte_idx < tmp.bytes()) { |
| if (low != Temp()) { |
| Temp high = emit_extract_vector(ctx, tmp, byte_idx / 2, v2b); |
| Temp dword = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), low, high); |
| low = Temp(); |
| packed.push_back(dword); |
| byte_idx += 2; |
| } else if (byte_idx % 4 == 0 && (byte_idx + 4) <= tmp.bytes()) { |
| packed.emplace_back(emit_extract_vector(ctx, tmp, byte_idx / 4, v1)); |
| byte_idx += 4; |
| } else { |
| low = emit_extract_vector(ctx, tmp, byte_idx / 2, v2b); |
| byte_idx += 2; |
| } |
| } |
| } |
| if (low != Temp()) { |
| Temp dword = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), low, Operand(v2b)); |
| packed.push_back(dword); |
| } |
| return packed; |
| } |
| |
| static bool |
| should_declare_array(ac_image_dim dim) |
| { |
| return dim == ac_image_cube || dim == ac_image_1darray || dim == ac_image_2darray || |
| dim == ac_image_2darraymsaa; |
| } |
| |
| static int |
| image_type_to_components_count(enum glsl_sampler_dim dim, bool array) |
| { |
| switch (dim) { |
| case GLSL_SAMPLER_DIM_BUF: return 1; |
| case GLSL_SAMPLER_DIM_1D: return array ? 2 : 1; |
| case GLSL_SAMPLER_DIM_2D: return array ? 3 : 2; |
| case GLSL_SAMPLER_DIM_MS: return array ? 3 : 2; |
| case GLSL_SAMPLER_DIM_3D: |
| case GLSL_SAMPLER_DIM_CUBE: return 3; |
| case GLSL_SAMPLER_DIM_RECT: |
| case GLSL_SAMPLER_DIM_SUBPASS: return 2; |
| case GLSL_SAMPLER_DIM_SUBPASS_MS: return 2; |
| default: break; |
| } |
| return 0; |
| } |
| |
| static MIMG_instruction* |
| emit_mimg(Builder& bld, aco_opcode op, Temp dst, Temp rsrc, Operand samp, std::vector<Temp> coords, |
| Operand vdata = Operand(v1)) |
| { |
| size_t nsa_size = bld.program->dev.max_nsa_vgprs; |
| nsa_size = bld.program->gfx_level >= GFX11 || coords.size() <= nsa_size ? nsa_size : 0; |
| |
| const bool strict_wqm = coords[0].regClass().is_linear_vgpr(); |
| if (strict_wqm) |
| nsa_size = coords.size(); |
| |
| for (unsigned i = 0; i < std::min(coords.size(), nsa_size); i++) { |
| if (!coords[i].id()) |
| continue; |
| |
| coords[i] = as_vgpr(bld, coords[i]); |
| } |
| |
| if (nsa_size < coords.size()) { |
| Temp coord = coords[nsa_size]; |
| if (coords.size() - nsa_size > 1) { |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, coords.size() - nsa_size, 1)}; |
| |
| unsigned coord_size = 0; |
| for (unsigned i = nsa_size; i < coords.size(); i++) { |
| vec->operands[i - nsa_size] = Operand(coords[i]); |
| coord_size += coords[i].size(); |
| } |
| |
| coord = bld.tmp(RegType::vgpr, coord_size); |
| vec->definitions[0] = Definition(coord); |
| bld.insert(std::move(vec)); |
| } else { |
| coord = as_vgpr(bld, coord); |
| } |
| |
| coords[nsa_size] = coord; |
| coords.resize(nsa_size + 1); |
| } |
| |
| bool has_dst = dst.id() != 0; |
| |
| aco_ptr<MIMG_instruction> mimg{ |
| create_instruction<MIMG_instruction>(op, Format::MIMG, 3 + coords.size(), has_dst)}; |
| if (has_dst) |
| mimg->definitions[0] = Definition(dst); |
| mimg->operands[0] = Operand(rsrc); |
| mimg->operands[1] = samp; |
| mimg->operands[2] = vdata; |
| for (unsigned i = 0; i < coords.size(); i++) |
| mimg->operands[3 + i] = Operand(coords[i]); |
| mimg->strict_wqm = strict_wqm; |
| |
| MIMG_instruction* res = mimg.get(); |
| bld.insert(std::move(mimg)); |
| return res; |
| } |
| |
| void |
| visit_bvh64_intersect_ray_amd(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp resource = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp node = get_ssa_temp(ctx, instr->src[1].ssa); |
| Temp tmax = get_ssa_temp(ctx, instr->src[2].ssa); |
| Temp origin = get_ssa_temp(ctx, instr->src[3].ssa); |
| Temp dir = get_ssa_temp(ctx, instr->src[4].ssa); |
| Temp inv_dir = get_ssa_temp(ctx, instr->src[5].ssa); |
| |
| /* On GFX11 image_bvh64_intersect_ray has a special vaddr layout with NSA: |
| * There are five smaller vector groups: |
| * node_pointer, ray_extent, ray_origin, ray_dir, ray_inv_dir. |
| * These directly match the NIR intrinsic sources. |
| */ |
| std::vector<Temp> args = { |
| node, tmax, origin, dir, inv_dir, |
| }; |
| |
| if (bld.program->gfx_level == GFX10_3) { |
| std::vector<Temp> scalar_args; |
| for (Temp tmp : args) { |
| for (unsigned i = 0; i < tmp.size(); i++) |
| scalar_args.push_back(emit_extract_vector(ctx, tmp, i, v1)); |
| } |
| args = std::move(scalar_args); |
| } |
| |
| MIMG_instruction* mimg = |
| emit_mimg(bld, aco_opcode::image_bvh64_intersect_ray, dst, resource, Operand(s4), args); |
| mimg->dim = ac_image_1d; |
| mimg->dmask = 0xf; |
| mimg->unrm = true; |
| mimg->r128 = true; |
| |
| emit_split_vector(ctx, dst, instr->def.num_components); |
| } |
| |
| static std::vector<Temp> |
| get_image_coords(isel_context* ctx, const nir_intrinsic_instr* instr) |
| { |
| |
| Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa); |
| bool a16 = instr->src[1].ssa->bit_size == 16; |
| RegClass rc = a16 ? v2b : v1; |
| enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); |
| bool is_array = nir_intrinsic_image_array(instr); |
| ASSERTED bool add_frag_pos = |
| (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); |
| assert(!add_frag_pos && "Input attachments should be lowered."); |
| bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); |
| bool gfx9_1d = ctx->options->gfx_level == GFX9 && dim == GLSL_SAMPLER_DIM_1D; |
| int count = image_type_to_components_count(dim, is_array); |
| std::vector<Temp> coords; |
| Builder bld(ctx->program, ctx->block); |
| |
| if (gfx9_1d) { |
| coords.emplace_back(emit_extract_vector(ctx, src0, 0, rc)); |
| coords.emplace_back(bld.copy(bld.def(rc), Operand::zero(a16 ? 2 : 4))); |
| if (is_array) |
| coords.emplace_back(emit_extract_vector(ctx, src0, 1, rc)); |
| } else { |
| for (int i = 0; i < count; i++) |
| coords.emplace_back(emit_extract_vector(ctx, src0, i, rc)); |
| } |
| |
| bool has_lod = false; |
| Temp lod; |
| |
| if (instr->intrinsic == nir_intrinsic_bindless_image_load || |
| instr->intrinsic == nir_intrinsic_bindless_image_sparse_load || |
| instr->intrinsic == nir_intrinsic_bindless_image_store) { |
| int lod_index = instr->intrinsic == nir_intrinsic_bindless_image_store ? 4 : 3; |
| assert(instr->src[lod_index].ssa->bit_size == (a16 ? 16 : 32)); |
| has_lod = |
| !nir_src_is_const(instr->src[lod_index]) || nir_src_as_uint(instr->src[lod_index]) != 0; |
| |
| if (has_lod) |
| lod = get_ssa_temp_tex(ctx, instr->src[lod_index].ssa, a16); |
| } |
| |
| if (ctx->program->info.image_2d_view_of_3d && dim == GLSL_SAMPLER_DIM_2D && !is_array) { |
| /* The hw can't bind a slice of a 3D image as a 2D image, because it |
| * ignores BASE_ARRAY if the target is 3D. The workaround is to read |
| * BASE_ARRAY and set it as the 3rd address operand for all 2D images. |
| */ |
| assert(ctx->options->gfx_level == GFX9); |
| Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| Temp rsrc_word5 = emit_extract_vector(ctx, rsrc, 5, v1); |
| /* Extract the BASE_ARRAY field [0:12] from the descriptor. */ |
| Temp first_layer = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), rsrc_word5, Operand::c32(0u), |
| Operand::c32(13u)); |
| |
| if (has_lod) { |
| /* If there's a lod parameter it matter if the image is 3d or 2d because |
| * the hw reads either the fourth or third component as lod. So detect |
| * 3d images and place the lod at the third component otherwise. |
| * For non 3D descriptors we effectively add lod twice to coords, |
| * but the hw will only read the first one, the second is ignored. |
| */ |
| Temp rsrc_word3 = emit_extract_vector(ctx, rsrc, 3, s1); |
| Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), rsrc_word3, |
| Operand::c32(28 | (4 << 16))); /* extract last 4 bits */ |
| Temp is_3d = bld.vopc_e64(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), type, |
| Operand::c32(V_008F1C_SQ_RSRC_IMG_3D)); |
| first_layer = |
| bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), as_vgpr(ctx, lod), first_layer, is_3d); |
| } |
| |
| if (a16) |
| coords.emplace_back(emit_extract_vector(ctx, first_layer, 0, v2b)); |
| else |
| coords.emplace_back(first_layer); |
| } |
| |
| if (is_ms && instr->intrinsic != nir_intrinsic_bindless_image_fragment_mask_load_amd) { |
| assert(instr->src[2].ssa->bit_size == (a16 ? 16 : 32)); |
| coords.emplace_back(get_ssa_temp_tex(ctx, instr->src[2].ssa, a16)); |
| } |
| |
| if (has_lod) |
| coords.emplace_back(lod); |
| |
| return emit_pack_v1(ctx, coords); |
| } |
| |
| memory_sync_info |
| get_memory_sync_info(nir_intrinsic_instr* instr, storage_class storage, unsigned semantics) |
| { |
| /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */ |
| if (semantics & semantic_atomicrmw) |
| return memory_sync_info(storage, semantics); |
| |
| unsigned access = nir_intrinsic_access(instr); |
| |
| if (access & ACCESS_VOLATILE) |
| semantics |= semantic_volatile; |
| if (access & ACCESS_CAN_REORDER) |
| semantics |= semantic_can_reorder | semantic_private; |
| |
| return memory_sync_info(storage, semantics); |
| } |
| |
| Operand |
| emit_tfe_init(Builder& bld, Temp dst) |
| { |
| Temp tmp = bld.tmp(dst.regClass()); |
| |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; |
| for (unsigned i = 0; i < dst.size(); i++) |
| vec->operands[i] = Operand::zero(); |
| vec->definitions[0] = Definition(tmp); |
| /* Since this is fixed to an instruction's definition register, any CSE will |
| * just create copies. Copying costs about the same as zero-initialization, |
| * but these copies can break up clauses. |
| */ |
| vec->definitions[0].setNoCSE(true); |
| bld.insert(std::move(vec)); |
| |
| return Operand(tmp); |
| } |
| |
| void |
| visit_image_load(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); |
| bool is_array = nir_intrinsic_image_array(instr); |
| bool is_sparse = instr->intrinsic == nir_intrinsic_bindless_image_sparse_load; |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0); |
| unsigned access = nir_intrinsic_access(instr); |
| |
| unsigned result_size = instr->def.num_components - is_sparse; |
| unsigned expand_mask = nir_def_components_read(&instr->def) & u_bit_consecutive(0, result_size); |
| expand_mask = MAX2(expand_mask, 1); /* this can be zero in the case of sparse image loads */ |
| if (dim == GLSL_SAMPLER_DIM_BUF) |
| expand_mask = (1u << util_last_bit(expand_mask)) - 1u; |
| unsigned dmask = expand_mask; |
| if (instr->def.bit_size == 64) { |
| expand_mask &= 0x9; |
| /* only R64_UINT and R64_SINT supported. x is in xy of the result, w in zw */ |
| dmask = ((expand_mask & 0x1) ? 0x3 : 0) | ((expand_mask & 0x8) ? 0xc : 0); |
| } |
| if (is_sparse) |
| expand_mask |= 1 << result_size; |
| |
| bool d16 = instr->def.bit_size == 16; |
| assert(!d16 || !is_sparse); |
| |
| unsigned num_bytes = util_bitcount(dmask) * (d16 ? 2 : 4) + is_sparse * 4; |
| |
| Temp tmp; |
| if (num_bytes == dst.bytes() && dst.type() == RegType::vgpr) |
| tmp = dst; |
| else |
| tmp = bld.tmp(RegClass::get(RegType::vgpr, num_bytes)); |
| |
| Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| |
| if (dim == GLSL_SAMPLER_DIM_BUF) { |
| Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); |
| |
| aco_opcode opcode; |
| if (!d16) { |
| switch (util_bitcount(dmask)) { |
| case 1: opcode = aco_opcode::buffer_load_format_x; break; |
| case 2: opcode = aco_opcode::buffer_load_format_xy; break; |
| case 3: opcode = aco_opcode::buffer_load_format_xyz; break; |
| case 4: opcode = aco_opcode::buffer_load_format_xyzw; break; |
| default: unreachable(">4 channel buffer image load"); |
| } |
| } else { |
| switch (util_bitcount(dmask)) { |
| case 1: opcode = aco_opcode::buffer_load_format_d16_x; break; |
| case 2: opcode = aco_opcode::buffer_load_format_d16_xy; break; |
| case 3: opcode = aco_opcode::buffer_load_format_d16_xyz; break; |
| case 4: opcode = aco_opcode::buffer_load_format_d16_xyzw; break; |
| default: unreachable(">4 channel buffer image load"); |
| } |
| } |
| aco_ptr<MUBUF_instruction> load{ |
| create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3 + is_sparse, 1)}; |
| load->operands[0] = Operand(resource); |
| load->operands[1] = Operand(vindex); |
| load->operands[2] = Operand::c32(0); |
| load->definitions[0] = Definition(tmp); |
| load->idxen = true; |
| load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT); |
| load->dlc = |
| load->glc && (ctx->options->gfx_level == GFX10 || ctx->options->gfx_level == GFX10_3); |
| load->sync = sync; |
| load->tfe = is_sparse; |
| if (load->tfe) |
| load->operands[3] = emit_tfe_init(bld, tmp); |
| ctx->block->instructions.emplace_back(std::move(load)); |
| } else { |
| std::vector<Temp> coords = get_image_coords(ctx, instr); |
| |
| aco_opcode opcode; |
| if (instr->intrinsic == nir_intrinsic_bindless_image_fragment_mask_load_amd) { |
| opcode = aco_opcode::image_load; |
| } else { |
| bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0; |
| opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip; |
| } |
| |
| Operand vdata = is_sparse ? emit_tfe_init(bld, tmp) : Operand(v1); |
| MIMG_instruction* load = emit_mimg(bld, opcode, tmp, resource, Operand(s4), coords, vdata); |
| load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0; |
| load->dlc = |
| load->glc && (ctx->options->gfx_level == GFX10 || ctx->options->gfx_level == GFX10_3); |
| load->a16 = instr->src[1].ssa->bit_size == 16; |
| load->d16 = d16; |
| load->dmask = dmask; |
| load->unrm = true; |
| load->tfe = is_sparse; |
| |
| if (instr->intrinsic == nir_intrinsic_bindless_image_fragment_mask_load_amd) { |
| load->dim = is_array ? ac_image_2darray : ac_image_2d; |
| load->da = is_array; |
| load->sync = memory_sync_info(); |
| } else { |
| ac_image_dim sdim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array); |
| load->dim = sdim; |
| load->da = should_declare_array(sdim); |
| load->sync = sync; |
| } |
| } |
| |
| if (is_sparse && instr->def.bit_size == 64) { |
| /* The result components are 64-bit but the sparse residency code is |
| * 32-bit. So add a zero to the end so expand_vector() works correctly. |
| */ |
| tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, tmp.size() + 1), tmp, |
| Operand::zero()); |
| } |
| |
| expand_vector(ctx, tmp, dst, instr->def.num_components, expand_mask, instr->def.bit_size == 64); |
| } |
| |
| void |
| visit_image_store(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); |
| bool is_array = nir_intrinsic_image_array(instr); |
| Temp data = get_ssa_temp(ctx, instr->src[3].ssa); |
| bool d16 = instr->src[3].ssa->bit_size == 16; |
| |
| /* only R64_UINT and R64_SINT supported */ |
| if (instr->src[3].ssa->bit_size == 64 && data.bytes() > 8) |
| data = emit_extract_vector(ctx, data, 0, RegClass(data.type(), 2)); |
| data = as_vgpr(ctx, data); |
| |
| uint32_t num_components = d16 ? instr->src[3].ssa->num_components : data.size(); |
| |
| memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0); |
| unsigned access = nir_intrinsic_access(instr); |
| bool glc = ctx->options->gfx_level == GFX6 || |
| ((access & (ACCESS_VOLATILE | ACCESS_COHERENT)) && ctx->program->gfx_level < GFX11); |
| |
| if (dim == GLSL_SAMPLER_DIM_BUF) { |
| Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); |
| aco_opcode opcode; |
| if (!d16) { |
| switch (num_components) { |
| case 1: opcode = aco_opcode::buffer_store_format_x; break; |
| case 2: opcode = aco_opcode::buffer_store_format_xy; break; |
| case 3: opcode = aco_opcode::buffer_store_format_xyz; break; |
| case 4: opcode = aco_opcode::buffer_store_format_xyzw; break; |
| default: unreachable(">4 channel buffer image store"); |
| } |
| } else { |
| switch (num_components) { |
| case 1: opcode = aco_opcode::buffer_store_format_d16_x; break; |
| case 2: opcode = aco_opcode::buffer_store_format_d16_xy; break; |
| case 3: opcode = aco_opcode::buffer_store_format_d16_xyz; break; |
| case 4: opcode = aco_opcode::buffer_store_format_d16_xyzw; break; |
| default: unreachable(">4 channel buffer image store"); |
| } |
| } |
| aco_ptr<MUBUF_instruction> store{ |
| create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)}; |
| store->operands[0] = Operand(rsrc); |
| store->operands[1] = Operand(vindex); |
| store->operands[2] = Operand::c32(0); |
| store->operands[3] = Operand(data); |
| store->idxen = true; |
| store->glc = glc; |
| store->dlc = false; |
| store->disable_wqm = true; |
| store->sync = sync; |
| ctx->program->needs_exact = true; |
| ctx->block->instructions.emplace_back(std::move(store)); |
| return; |
| } |
| |
| assert(data.type() == RegType::vgpr); |
| std::vector<Temp> coords = get_image_coords(ctx, instr); |
| Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| |
| bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0; |
| aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip; |
| |
| uint32_t dmask = BITFIELD_MASK(num_components); |
| /* remove zero/undef elements from data, components which aren't in dmask |
| * are zeroed anyway |
| */ |
| if (instr->src[3].ssa->bit_size == 32 || instr->src[3].ssa->bit_size == 16) { |
| for (uint32_t i = 0; i < instr->num_components; i++) { |
| nir_scalar comp = nir_scalar_resolved(instr->src[3].ssa, i); |
| if ((nir_scalar_is_const(comp) && nir_scalar_as_uint(comp) == 0) || |
| nir_scalar_is_undef(comp)) |
| dmask &= ~BITFIELD_BIT(i); |
| } |
| |
| /* dmask cannot be 0, at least one vgpr is always read */ |
| if (dmask == 0) |
| dmask = 1; |
| |
| if (dmask != BITFIELD_MASK(num_components)) { |
| uint32_t dmask_count = util_bitcount(dmask); |
| RegClass rc = d16 ? v2b : v1; |
| if (dmask_count == 1) { |
| data = emit_extract_vector(ctx, data, ffs(dmask) - 1, rc); |
| } else { |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, dmask_count, 1)}; |
| uint32_t index = 0; |
| u_foreach_bit (bit, dmask) { |
| vec->operands[index++] = Operand(emit_extract_vector(ctx, data, bit, rc)); |
| } |
| data = bld.tmp(RegClass::get(RegType::vgpr, dmask_count * rc.bytes())); |
| vec->definitions[0] = Definition(data); |
| bld.insert(std::move(vec)); |
| } |
| } |
| } |
| |
| MIMG_instruction* store = |
| emit_mimg(bld, opcode, Temp(0, v1), resource, Operand(s4), coords, Operand(data)); |
| store->glc = glc; |
| store->dlc = false; |
| store->a16 = instr->src[1].ssa->bit_size == 16; |
| store->d16 = d16; |
| store->dmask = dmask; |
| store->unrm = true; |
| ac_image_dim sdim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array); |
| store->dim = sdim; |
| store->da = should_declare_array(sdim); |
| store->disable_wqm = true; |
| store->sync = sync; |
| ctx->program->needs_exact = true; |
| return; |
| } |
| |
| void |
| translate_buffer_image_atomic_op(const nir_atomic_op op, aco_opcode* buf_op, aco_opcode* buf_op64, |
| aco_opcode* image_op) |
| { |
| switch (op) { |
| case nir_atomic_op_iadd: |
| *buf_op = aco_opcode::buffer_atomic_add; |
| *buf_op64 = aco_opcode::buffer_atomic_add_x2; |
| *image_op = aco_opcode::image_atomic_add; |
| break; |
| case nir_atomic_op_umin: |
| *buf_op = aco_opcode::buffer_atomic_umin; |
| *buf_op64 = aco_opcode::buffer_atomic_umin_x2; |
| *image_op = aco_opcode::image_atomic_umin; |
| break; |
| case nir_atomic_op_imin: |
| *buf_op = aco_opcode::buffer_atomic_smin; |
| *buf_op64 = aco_opcode::buffer_atomic_smin_x2; |
| *image_op = aco_opcode::image_atomic_smin; |
| break; |
| case nir_atomic_op_umax: |
| *buf_op = aco_opcode::buffer_atomic_umax; |
| *buf_op64 = aco_opcode::buffer_atomic_umax_x2; |
| *image_op = aco_opcode::image_atomic_umax; |
| break; |
| case nir_atomic_op_imax: |
| *buf_op = aco_opcode::buffer_atomic_smax; |
| *buf_op64 = aco_opcode::buffer_atomic_smax_x2; |
| *image_op = aco_opcode::image_atomic_smax; |
| break; |
| case nir_atomic_op_iand: |
| *buf_op = aco_opcode::buffer_atomic_and; |
| *buf_op64 = aco_opcode::buffer_atomic_and_x2; |
| *image_op = aco_opcode::image_atomic_and; |
| break; |
| case nir_atomic_op_ior: |
| *buf_op = aco_opcode::buffer_atomic_or; |
| *buf_op64 = aco_opcode::buffer_atomic_or_x2; |
| *image_op = aco_opcode::image_atomic_or; |
| break; |
| case nir_atomic_op_ixor: |
| *buf_op = aco_opcode::buffer_atomic_xor; |
| *buf_op64 = aco_opcode::buffer_atomic_xor_x2; |
| *image_op = aco_opcode::image_atomic_xor; |
| break; |
| case nir_atomic_op_xchg: |
| *buf_op = aco_opcode::buffer_atomic_swap; |
| *buf_op64 = aco_opcode::buffer_atomic_swap_x2; |
| *image_op = aco_opcode::image_atomic_swap; |
| break; |
| case nir_atomic_op_cmpxchg: |
| *buf_op = aco_opcode::buffer_atomic_cmpswap; |
| *buf_op64 = aco_opcode::buffer_atomic_cmpswap_x2; |
| *image_op = aco_opcode::image_atomic_cmpswap; |
| break; |
| case nir_atomic_op_inc_wrap: |
| *buf_op = aco_opcode::buffer_atomic_inc; |
| *buf_op64 = aco_opcode::buffer_atomic_inc_x2; |
| *image_op = aco_opcode::image_atomic_inc; |
| break; |
| case nir_atomic_op_dec_wrap: |
| *buf_op = aco_opcode::buffer_atomic_dec; |
| *buf_op64 = aco_opcode::buffer_atomic_dec_x2; |
| *image_op = aco_opcode::image_atomic_dec; |
| break; |
| case nir_atomic_op_fadd: |
| *buf_op = aco_opcode::buffer_atomic_add_f32; |
| *buf_op64 = aco_opcode::num_opcodes; |
| *image_op = aco_opcode::num_opcodes; |
| break; |
| case nir_atomic_op_fmin: |
| *buf_op = aco_opcode::buffer_atomic_fmin; |
| *buf_op64 = aco_opcode::buffer_atomic_fmin_x2; |
| *image_op = aco_opcode::image_atomic_fmin; |
| break; |
| case nir_atomic_op_fmax: |
| *buf_op = aco_opcode::buffer_atomic_fmax; |
| *buf_op64 = aco_opcode::buffer_atomic_fmax_x2; |
| *image_op = aco_opcode::image_atomic_fmax; |
| break; |
| default: unreachable("unsupported atomic operation"); |
| } |
| } |
| |
| void |
| visit_image_atomic(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| bool return_previous = !nir_def_is_unused(&instr->def); |
| const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); |
| bool is_array = nir_intrinsic_image_array(instr); |
| Builder bld(ctx->program, ctx->block); |
| |
| const nir_atomic_op op = nir_intrinsic_atomic_op(instr); |
| const bool cmpswap = op == nir_atomic_op_cmpxchg; |
| |
| aco_opcode buf_op, buf_op64, image_op; |
| translate_buffer_image_atomic_op(op, &buf_op, &buf_op64, &image_op); |
| |
| Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa)); |
| bool is_64bit = data.bytes() == 8; |
| assert((data.bytes() == 4 || data.bytes() == 8) && "only 32/64-bit image atomics implemented."); |
| |
| if (cmpswap) |
| data = bld.pseudo(aco_opcode::p_create_vector, bld.def(is_64bit ? v4 : v2), |
| get_ssa_temp(ctx, instr->src[4].ssa), data); |
| |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw); |
| |
| if (dim == GLSL_SAMPLER_DIM_BUF) { |
| Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1); |
| Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| // assert(ctx->options->gfx_level < GFX9 && "GFX9 stride size workaround not yet |
| // implemented."); |
| aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>( |
| is_64bit ? buf_op64 : buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)}; |
| mubuf->operands[0] = Operand(resource); |
| mubuf->operands[1] = Operand(vindex); |
| mubuf->operands[2] = Operand::c32(0); |
| mubuf->operands[3] = Operand(data); |
| Definition def = |
| return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition(); |
| if (return_previous) |
| mubuf->definitions[0] = def; |
| mubuf->offset = 0; |
| mubuf->idxen = true; |
| mubuf->glc = return_previous; |
| mubuf->dlc = false; /* Not needed for atomics */ |
| mubuf->disable_wqm = true; |
| mubuf->sync = sync; |
| ctx->program->needs_exact = true; |
| ctx->block->instructions.emplace_back(std::move(mubuf)); |
| if (return_previous && cmpswap) |
| bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero()); |
| return; |
| } |
| |
| std::vector<Temp> coords = get_image_coords(ctx, instr); |
| Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| Temp tmp = return_previous ? (cmpswap ? bld.tmp(data.regClass()) : dst) : Temp(0, v1); |
| MIMG_instruction* mimg = |
| emit_mimg(bld, image_op, tmp, resource, Operand(s4), coords, Operand(data)); |
| mimg->glc = return_previous; |
| mimg->dlc = false; /* Not needed for atomics */ |
| mimg->dmask = (1 << data.size()) - 1; |
| mimg->a16 = instr->src[1].ssa->bit_size == 16; |
| mimg->unrm = true; |
| ac_image_dim sdim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array); |
| mimg->dim = sdim; |
| mimg->da = should_declare_array(sdim); |
| mimg->disable_wqm = true; |
| mimg->sync = sync; |
| ctx->program->needs_exact = true; |
| if (return_previous && cmpswap) |
| bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), tmp, Operand::zero()); |
| return; |
| } |
| |
| void |
| visit_load_ssbo(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| unsigned num_components = instr->num_components; |
| |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| |
| unsigned access = nir_intrinsic_access(instr); |
| bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT); |
| unsigned size = instr->def.bit_size / 8; |
| |
| bool allow_smem = access & ACCESS_CAN_REORDER; |
| |
| load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), |
| nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem, |
| get_memory_sync_info(instr, storage_buffer, 0)); |
| } |
| |
| void |
| visit_store_ssbo(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp data = get_ssa_temp(ctx, instr->src[0].ssa); |
| unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; |
| unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); |
| Temp offset = get_ssa_temp(ctx, instr->src[2].ssa); |
| |
| Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)); |
| |
| memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0); |
| bool glc = (nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT)) && |
| ctx->program->gfx_level < GFX11; |
| |
| unsigned write_count = 0; |
| Temp write_datas[32]; |
| unsigned offsets[32]; |
| split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, 16, &write_count, |
| write_datas, offsets); |
| |
| /* GFX6-7 are affected by a hw bug that prevents address clamping to work |
| * correctly when the SGPR offset is used. |
| */ |
| if (offset.type() == RegType::sgpr && ctx->options->gfx_level < GFX8) |
| offset = as_vgpr(ctx, offset); |
| |
| for (unsigned i = 0; i < write_count; i++) { |
| aco_opcode op = get_buffer_store_op(write_datas[i].bytes()); |
| |
| aco_ptr<MUBUF_instruction> store{ |
| create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)}; |
| store->operands[0] = Operand(rsrc); |
| store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); |
| store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); |
| store->operands[3] = Operand(write_datas[i]); |
| store->offset = offsets[i]; |
| store->offen = (offset.type() == RegType::vgpr); |
| store->glc = glc; |
| store->dlc = false; |
| store->disable_wqm = true; |
| store->sync = sync; |
| ctx->program->needs_exact = true; |
| ctx->block->instructions.emplace_back(std::move(store)); |
| } |
| } |
| |
| void |
| visit_atomic_ssbo(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| bool return_previous = !nir_def_is_unused(&instr->def); |
| Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa)); |
| |
| const nir_atomic_op nir_op = nir_intrinsic_atomic_op(instr); |
| const bool cmpswap = nir_op == nir_atomic_op_cmpxchg; |
| |
| aco_opcode op32, op64, image_op; |
| translate_buffer_image_atomic_op(nir_op, &op32, &op64, &image_op); |
| |
| if (cmpswap) |
| data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2), |
| get_ssa_temp(ctx, instr->src[3].ssa), data); |
| |
| Temp offset = get_ssa_temp(ctx, instr->src[1].ssa); |
| Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| aco_opcode op = instr->def.bit_size == 32 ? op32 : op64; |
| aco_ptr<MUBUF_instruction> mubuf{ |
| create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)}; |
| mubuf->operands[0] = Operand(rsrc); |
| mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1); |
| mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0); |
| mubuf->operands[3] = Operand(data); |
| Definition def = |
| return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition(); |
| if (return_previous) |
| mubuf->definitions[0] = def; |
| mubuf->offset = 0; |
| mubuf->offen = (offset.type() == RegType::vgpr); |
| mubuf->glc = return_previous; |
| mubuf->dlc = false; /* Not needed for atomics */ |
| mubuf->disable_wqm = true; |
| mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); |
| ctx->program->needs_exact = true; |
| ctx->block->instructions.emplace_back(std::move(mubuf)); |
| if (return_previous && cmpswap) |
| bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero()); |
| } |
| |
| void |
| parse_global(isel_context* ctx, nir_intrinsic_instr* intrin, Temp* address, uint32_t* const_offset, |
| Temp* offset) |
| { |
| bool is_store = intrin->intrinsic == nir_intrinsic_store_global_amd; |
| *address = get_ssa_temp(ctx, intrin->src[is_store ? 1 : 0].ssa); |
| |
| *const_offset = nir_intrinsic_base(intrin); |
| |
| unsigned num_src = nir_intrinsic_infos[intrin->intrinsic].num_srcs; |
| nir_src offset_src = intrin->src[num_src - 1]; |
| if (!nir_src_is_const(offset_src) || nir_src_as_uint(offset_src)) |
| *offset = get_ssa_temp(ctx, offset_src.ssa); |
| else |
| *offset = Temp(); |
| } |
| |
| void |
| visit_load_global(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| unsigned num_components = instr->num_components; |
| unsigned component_size = instr->def.bit_size / 8; |
| |
| Temp addr, offset; |
| uint32_t const_offset; |
| parse_global(ctx, instr, &addr, &const_offset, &offset); |
| |
| LoadEmitInfo info = {Operand(addr), get_ssa_temp(ctx, &instr->def), num_components, |
| component_size}; |
| if (offset.id()) { |
| info.resource = addr; |
| info.offset = Operand(offset); |
| } |
| info.const_offset = const_offset; |
| info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT); |
| info.align_mul = nir_intrinsic_align_mul(instr); |
| info.align_offset = nir_intrinsic_align_offset(instr); |
| info.sync = get_memory_sync_info(instr, storage_buffer, 0); |
| |
| /* Don't expand global loads when they use MUBUF or SMEM. |
| * Global loads don't have the bounds checking that buffer loads have that |
| * makes this safe. |
| */ |
| unsigned align = nir_intrinsic_align(instr); |
| bool byte_align_for_smem_mubuf = |
| can_use_byte_align_for_global_load(num_components, component_size, align, false); |
| |
| /* VMEM stores don't update the SMEM cache and it's difficult to prove that |
| * it's safe to use SMEM */ |
| bool can_use_smem = |
| (nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE) && byte_align_for_smem_mubuf; |
| if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->gfx_level < GFX8) || |
| !can_use_smem) { |
| EmitLoadParameters params = global_load_params; |
| params.byte_align_loads = ctx->options->gfx_level > GFX6 || byte_align_for_smem_mubuf; |
| emit_load(ctx, bld, info, params); |
| } else { |
| if (info.resource.id()) |
| info.resource = bld.as_uniform(info.resource); |
| info.offset = Operand(bld.as_uniform(info.offset)); |
| emit_load(ctx, bld, info, smem_load_params); |
| } |
| } |
| |
| void |
| visit_store_global(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; |
| unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); |
| |
| Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); |
| memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0); |
| bool glc = (nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT)) && |
| ctx->program->gfx_level < GFX11; |
| |
| unsigned write_count = 0; |
| Temp write_datas[32]; |
| unsigned offsets[32]; |
| split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, 16, &write_count, |
| write_datas, offsets); |
| |
| Temp addr, offset; |
| uint32_t const_offset; |
| parse_global(ctx, instr, &addr, &const_offset, &offset); |
| |
| for (unsigned i = 0; i < write_count; i++) { |
| Temp write_address = addr; |
| uint32_t write_const_offset = const_offset; |
| Temp write_offset = offset; |
| lower_global_address(bld, offsets[i], &write_address, &write_const_offset, &write_offset); |
| |
| if (ctx->options->gfx_level >= GFX7) { |
| bool global = ctx->options->gfx_level >= GFX9; |
| aco_opcode op; |
| switch (write_datas[i].bytes()) { |
| case 1: op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte; break; |
| case 2: op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short; break; |
| case 4: op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword; break; |
| case 8: |
| op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2; |
| break; |
| case 12: |
| op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3; |
| break; |
| case 16: |
| op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4; |
| break; |
| default: unreachable("store_global not implemented for this size."); |
| } |
| |
| aco_ptr<FLAT_instruction> flat{ |
| create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)}; |
| if (write_address.regClass() == s2) { |
| assert(global && write_offset.id() && write_offset.type() == RegType::vgpr); |
| flat->operands[0] = Operand(write_offset); |
| flat->operands[1] = Operand(write_address); |
| } else { |
| assert(write_address.type() == RegType::vgpr && !write_offset.id()); |
| flat->operands[0] = Operand(write_address); |
| flat->operands[1] = Operand(s1); |
| } |
| flat->operands[2] = Operand(write_datas[i]); |
| flat->glc = glc; |
| flat->dlc = false; |
| assert(global || !write_const_offset); |
| flat->offset = write_const_offset; |
| flat->disable_wqm = true; |
| flat->sync = sync; |
| ctx->program->needs_exact = true; |
| ctx->block->instructions.emplace_back(std::move(flat)); |
| } else { |
| assert(ctx->options->gfx_level == GFX6); |
| |
| aco_opcode op = get_buffer_store_op(write_datas[i].bytes()); |
| |
| Temp rsrc = get_gfx6_global_rsrc(bld, write_address); |
| |
| aco_ptr<MUBUF_instruction> mubuf{ |
| create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)}; |
| mubuf->operands[0] = Operand(rsrc); |
| mubuf->operands[1] = |
| write_address.type() == RegType::vgpr ? Operand(write_address) : Operand(v1); |
| mubuf->operands[2] = Operand(write_offset); |
| mubuf->operands[3] = Operand(write_datas[i]); |
| mubuf->glc = glc; |
| mubuf->dlc = false; |
| mubuf->offset = write_const_offset; |
| mubuf->addr64 = write_address.type() == RegType::vgpr; |
| mubuf->disable_wqm = true; |
| mubuf->sync = sync; |
| ctx->program->needs_exact = true; |
| ctx->block->instructions.emplace_back(std::move(mubuf)); |
| } |
| } |
| } |
| |
| void |
| visit_global_atomic(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| bool return_previous = !nir_def_is_unused(&instr->def); |
| Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); |
| |
| const nir_atomic_op nir_op = nir_intrinsic_atomic_op(instr); |
| const bool cmpswap = nir_op == nir_atomic_op_cmpxchg; |
| |
| if (cmpswap) |
| data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2), |
| get_ssa_temp(ctx, instr->src[2].ssa), data); |
| |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| aco_opcode op32, op64; |
| |
| Temp addr, offset; |
| uint32_t const_offset; |
| parse_global(ctx, instr, &addr, &const_offset, &offset); |
| lower_global_address(bld, 0, &addr, &const_offset, &offset); |
| |
| if (ctx->options->gfx_level >= GFX7) { |
| bool global = ctx->options->gfx_level >= GFX9; |
| switch (nir_op) { |
| case nir_atomic_op_iadd: |
| op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add; |
| op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2; |
| break; |
| case nir_atomic_op_imin: |
| op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin; |
| op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2; |
| break; |
| case nir_atomic_op_umin: |
| op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin; |
| op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2; |
| break; |
| case nir_atomic_op_imax: |
| op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax; |
| op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2; |
| break; |
| case nir_atomic_op_umax: |
| op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax; |
| op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2; |
| break; |
| case nir_atomic_op_iand: |
| op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and; |
| op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2; |
| break; |
| case nir_atomic_op_ior: |
| op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or; |
| op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2; |
| break; |
| case nir_atomic_op_ixor: |
| op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor; |
| op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2; |
| break; |
| case nir_atomic_op_xchg: |
| op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap; |
| op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2; |
| break; |
| case nir_atomic_op_cmpxchg: |
| op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap; |
| op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2; |
| break; |
| case nir_atomic_op_fadd: |
| op32 = global ? aco_opcode::global_atomic_add_f32 : aco_opcode::flat_atomic_add_f32; |
| op64 = aco_opcode::num_opcodes; |
| break; |
| case nir_atomic_op_fmin: |
| op32 = global ? aco_opcode::global_atomic_fmin : aco_opcode::flat_atomic_fmin; |
| op64 = global ? aco_opcode::global_atomic_fmin_x2 : aco_opcode::flat_atomic_fmin_x2; |
| break; |
| case nir_atomic_op_fmax: |
| op32 = global ? aco_opcode::global_atomic_fmax : aco_opcode::flat_atomic_fmax; |
| op64 = global ? aco_opcode::global_atomic_fmax_x2 : aco_opcode::flat_atomic_fmax_x2; |
| break; |
| default: unreachable("unsupported atomic operation"); |
| } |
| |
| aco_opcode op = instr->def.bit_size == 32 ? op32 : op64; |
| aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>( |
| op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)}; |
| if (addr.regClass() == s2) { |
| assert(global && offset.id() && offset.type() == RegType::vgpr); |
| flat->operands[0] = Operand(offset); |
| flat->operands[1] = Operand(addr); |
| } else { |
| assert(addr.type() == RegType::vgpr && !offset.id()); |
| flat->operands[0] = Operand(addr); |
| flat->operands[1] = Operand(s1); |
| } |
| flat->operands[2] = Operand(data); |
| if (return_previous) |
| flat->definitions[0] = Definition(dst); |
| flat->glc = return_previous; |
| flat->dlc = false; /* Not needed for atomics */ |
| assert(global || !const_offset); |
| flat->offset = const_offset; |
| flat->disable_wqm = true; |
| flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); |
| ctx->program->needs_exact = true; |
| ctx->block->instructions.emplace_back(std::move(flat)); |
| } else { |
| assert(ctx->options->gfx_level == GFX6); |
| |
| UNUSED aco_opcode image_op; |
| translate_buffer_image_atomic_op(nir_op, &op32, &op64, &image_op); |
| |
| Temp rsrc = get_gfx6_global_rsrc(bld, addr); |
| |
| aco_opcode op = instr->def.bit_size == 32 ? op32 : op64; |
| |
| aco_ptr<MUBUF_instruction> mubuf{ |
| create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)}; |
| mubuf->operands[0] = Operand(rsrc); |
| mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1); |
| mubuf->operands[2] = Operand(offset); |
| mubuf->operands[3] = Operand(data); |
| Definition def = |
| return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition(); |
| if (return_previous) |
| mubuf->definitions[0] = def; |
| mubuf->glc = return_previous; |
| mubuf->dlc = false; |
| mubuf->offset = const_offset; |
| mubuf->addr64 = addr.type() == RegType::vgpr; |
| mubuf->disable_wqm = true; |
| mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw); |
| ctx->program->needs_exact = true; |
| ctx->block->instructions.emplace_back(std::move(mubuf)); |
| if (return_previous && cmpswap) |
| bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero()); |
| } |
| } |
| |
| unsigned |
| aco_storage_mode_from_nir_mem_mode(unsigned mem_mode) |
| { |
| unsigned storage = storage_none; |
| |
| if (mem_mode & nir_var_shader_out) |
| storage |= storage_vmem_output; |
| if ((mem_mode & nir_var_mem_ssbo) || (mem_mode & nir_var_mem_global)) |
| storage |= storage_buffer; |
| if (mem_mode & nir_var_mem_task_payload) |
| storage |= storage_task_payload; |
| if (mem_mode & nir_var_mem_shared) |
| storage |= storage_shared; |
| if (mem_mode & nir_var_image) |
| storage |= storage_image; |
| |
| return storage; |
| } |
| |
| void |
| visit_load_buffer(isel_context* ctx, nir_intrinsic_instr* intrin) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| /* Swizzled buffer addressing seems to be broken on GFX11 without the idxen bit. */ |
| bool swizzled = nir_intrinsic_access(intrin) & ACCESS_IS_SWIZZLED_AMD; |
| bool idxen = (swizzled && ctx->program->gfx_level >= GFX11) || |
| !nir_src_is_const(intrin->src[3]) || nir_src_as_uint(intrin->src[3]); |
| bool v_offset_zero = nir_src_is_const(intrin->src[1]) && !nir_src_as_uint(intrin->src[1]); |
| bool s_offset_zero = nir_src_is_const(intrin->src[2]) && !nir_src_as_uint(intrin->src[2]); |
| |
| Temp dst = get_ssa_temp(ctx, &intrin->def); |
| Temp descriptor = bld.as_uniform(get_ssa_temp(ctx, intrin->src[0].ssa)); |
| Temp v_offset = |
| v_offset_zero ? Temp(0, v1) : as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[1].ssa)); |
| Temp s_offset = |
| s_offset_zero ? Temp(0, s1) : bld.as_uniform(get_ssa_temp(ctx, intrin->src[2].ssa)); |
| Temp idx = idxen ? as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[3].ssa)) : Temp(); |
| |
| bool glc = nir_intrinsic_access(intrin) & ACCESS_COHERENT; |
| bool slc = nir_intrinsic_access(intrin) & ACCESS_NON_TEMPORAL; |
| |
| unsigned const_offset = nir_intrinsic_base(intrin); |
| unsigned elem_size_bytes = intrin->def.bit_size / 8u; |
| unsigned num_components = intrin->def.num_components; |
| |
| nir_variable_mode mem_mode = nir_intrinsic_memory_modes(intrin); |
| memory_sync_info sync(aco_storage_mode_from_nir_mem_mode(mem_mode)); |
| |
| LoadEmitInfo info = {Operand(v_offset), dst, num_components, elem_size_bytes, descriptor}; |
| info.idx = idx; |
| info.glc = glc; |
| info.slc = slc; |
| info.soffset = s_offset; |
| info.const_offset = const_offset; |
| info.sync = sync; |
| |
| if (intrin->intrinsic == nir_intrinsic_load_typed_buffer_amd) { |
| const pipe_format format = nir_intrinsic_format(intrin); |
| const struct ac_vtx_format_info* vtx_info = |
| ac_get_vtx_format_info(ctx->program->gfx_level, ctx->program->family, format); |
| const struct util_format_description* f = util_format_description(format); |
| const unsigned align_mul = nir_intrinsic_align_mul(intrin); |
| const unsigned align_offset = nir_intrinsic_align_offset(intrin); |
| |
| /* Avoid splitting: |
| * - non-array formats because that would result in incorrect code |
| * - when element size is same as component size (to reduce instruction count) |
| */ |
| const bool can_split = f->is_array && elem_size_bytes != vtx_info->chan_byte_size; |
| |
| info.align_mul = align_mul; |
| info.align_offset = align_offset; |
| info.format = format; |
| info.component_stride = can_split ? vtx_info->chan_byte_size : 0; |
| info.split_by_component_stride = false; |
| |
| emit_load(ctx, bld, info, mtbuf_load_params); |
| } else { |
| assert(intrin->intrinsic == nir_intrinsic_load_buffer_amd); |
| |
| if (nir_intrinsic_access(intrin) & ACCESS_USES_FORMAT_AMD) { |
| assert(!swizzled); |
| |
| emit_load(ctx, bld, info, mubuf_load_format_params); |
| } else { |
| const unsigned swizzle_element_size = |
| swizzled ? (ctx->program->gfx_level <= GFX8 ? 4 : 16) : 0; |
| |
| info.component_stride = swizzle_element_size; |
| info.swizzle_component_size = swizzle_element_size ? 4 : 0; |
| info.align_mul = MIN2(elem_size_bytes, 4); |
| info.align_offset = 0; |
| |
| emit_load(ctx, bld, info, mubuf_load_params); |
| } |
| } |
| } |
| |
| void |
| visit_store_buffer(isel_context* ctx, nir_intrinsic_instr* intrin) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| /* Swizzled buffer addressing seems to be broken on GFX11 without the idxen bit. */ |
| bool swizzled = nir_intrinsic_access(intrin) & ACCESS_IS_SWIZZLED_AMD; |
| bool idxen = (swizzled && ctx->program->gfx_level >= GFX11) || |
| !nir_src_is_const(intrin->src[4]) || nir_src_as_uint(intrin->src[4]); |
| bool v_offset_zero = nir_src_is_const(intrin->src[2]) && !nir_src_as_uint(intrin->src[2]); |
| bool s_offset_zero = nir_src_is_const(intrin->src[3]) && !nir_src_as_uint(intrin->src[3]); |
| |
| Temp store_src = get_ssa_temp(ctx, intrin->src[0].ssa); |
| Temp descriptor = bld.as_uniform(get_ssa_temp(ctx, intrin->src[1].ssa)); |
| Temp v_offset = |
| v_offset_zero ? Temp(0, v1) : as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[2].ssa)); |
| Temp s_offset = |
| s_offset_zero ? Temp(0, s1) : bld.as_uniform(get_ssa_temp(ctx, intrin->src[3].ssa)); |
| Temp idx = idxen ? as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[4].ssa)) : Temp(); |
| |
| bool glc = nir_intrinsic_access(intrin) & ACCESS_COHERENT; |
| bool slc = nir_intrinsic_access(intrin) & ACCESS_NON_TEMPORAL; |
| |
| unsigned const_offset = nir_intrinsic_base(intrin); |
| unsigned write_mask = nir_intrinsic_write_mask(intrin); |
| unsigned elem_size_bytes = intrin->src[0].ssa->bit_size / 8u; |
| |
| nir_variable_mode mem_mode = nir_intrinsic_memory_modes(intrin); |
| /* GS outputs are only written once. */ |
| const bool written_once = |
| mem_mode == nir_var_shader_out && ctx->shader->info.stage == MESA_SHADER_GEOMETRY; |
| memory_sync_info sync(aco_storage_mode_from_nir_mem_mode(mem_mode), |
| written_once ? semantic_can_reorder : semantic_none); |
| |
| store_vmem_mubuf(ctx, store_src, descriptor, v_offset, s_offset, idx, const_offset, |
| elem_size_bytes, write_mask, swizzled, sync, glc, slc); |
| } |
| |
| void |
| visit_load_smem(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp base = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| Temp offset = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)); |
| |
| /* If base address is 32bit, convert to 64bit with the high 32bit part. */ |
| if (base.bytes() == 4) { |
| base = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), base, |
| Operand::c32(ctx->options->address32_hi)); |
| } |
| |
| aco_opcode opcode = aco_opcode::s_load_dword; |
| unsigned size = 1; |
| |
| assert(dst.bytes() <= 64); |
| |
| if (dst.bytes() > 32) { |
| opcode = aco_opcode::s_load_dwordx16; |
| size = 16; |
| } else if (dst.bytes() > 16) { |
| opcode = aco_opcode::s_load_dwordx8; |
| size = 8; |
| } else if (dst.bytes() > 8) { |
| opcode = aco_opcode::s_load_dwordx4; |
| size = 4; |
| } else if (dst.bytes() > 4) { |
| opcode = aco_opcode::s_load_dwordx2; |
| size = 2; |
| } |
| |
| if (dst.size() != size) { |
| bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), |
| bld.smem(opcode, bld.def(RegType::sgpr, size), base, offset), Operand::c32(0u)); |
| } else { |
| bld.smem(opcode, Definition(dst), base, offset); |
| } |
| emit_split_vector(ctx, dst, instr->def.num_components); |
| } |
| |
| sync_scope |
| translate_nir_scope(mesa_scope scope) |
| { |
| switch (scope) { |
| case SCOPE_NONE: |
| case SCOPE_INVOCATION: return scope_invocation; |
| case SCOPE_SUBGROUP: return scope_subgroup; |
| case SCOPE_WORKGROUP: return scope_workgroup; |
| case SCOPE_QUEUE_FAMILY: return scope_queuefamily; |
| case SCOPE_DEVICE: return scope_device; |
| case SCOPE_SHADER_CALL: return scope_invocation; |
| } |
| unreachable("invalid scope"); |
| } |
| |
| void |
| emit_barrier(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| unsigned storage_allowed = storage_buffer | storage_image; |
| unsigned semantics = 0; |
| sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr)); |
| sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr)); |
| |
| /* We use shared storage for the following: |
| * - compute shaders expose it in their API |
| * - when tessellation is used, TCS and VS I/O is lowered to shared memory |
| * - when GS is used on GFX9+, VS->GS and TES->GS I/O is lowered to shared memory |
| * - additionally, when NGG is used on GFX10+, shared memory is used for certain features |
| */ |
| bool shared_storage_used = |
| ctx->stage.hw == AC_HW_COMPUTE_SHADER || ctx->stage.hw == AC_HW_LOCAL_SHADER || |
| ctx->stage.hw == AC_HW_HULL_SHADER || |
| (ctx->stage.hw == AC_HW_LEGACY_GEOMETRY_SHADER && ctx->program->gfx_level >= GFX9) || |
| ctx->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER; |
| |
| if (shared_storage_used) |
| storage_allowed |= storage_shared; |
| |
| /* Task payload: Task Shader output, Mesh Shader input */ |
| if (ctx->stage.has(SWStage::MS) || ctx->stage.has(SWStage::TS)) |
| storage_allowed |= storage_task_payload; |
| |
| /* Allow VMEM output for all stages that can have outputs. */ |
| if ((ctx->stage.hw != AC_HW_COMPUTE_SHADER && ctx->stage.hw != AC_HW_PIXEL_SHADER) || |
| ctx->stage.has(SWStage::TS)) |
| storage_allowed |= storage_vmem_output; |
| |
| /* Workgroup barriers can hang merged shaders that can potentially have 0 threads in either half. |
| * They are allowed in CS, TCS, and in any NGG shader. |
| */ |
| ASSERTED bool workgroup_scope_allowed = ctx->stage.hw == AC_HW_COMPUTE_SHADER || |
| ctx->stage.hw == AC_HW_HULL_SHADER || |
| ctx->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER; |
| |
| unsigned nir_storage = nir_intrinsic_memory_modes(instr); |
| unsigned storage = aco_storage_mode_from_nir_mem_mode(nir_storage); |
| storage &= storage_allowed; |
| |
| unsigned nir_semantics = nir_intrinsic_memory_semantics(instr); |
| if (nir_semantics & NIR_MEMORY_ACQUIRE) |
| semantics |= semantic_acquire | semantic_release; |
| if (nir_semantics & NIR_MEMORY_RELEASE) |
| semantics |= semantic_acquire | semantic_release; |
| |
| assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE))); |
| assert(exec_scope != scope_workgroup || workgroup_scope_allowed); |
| |
| bld.barrier(aco_opcode::p_barrier, |
| memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope), |
| exec_scope); |
| } |
| |
| void |
| visit_load_shared(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| // TODO: implement sparse reads using ds_read2_b32 and nir_def_components_read() |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); |
| Builder bld(ctx->program, ctx->block); |
| |
| unsigned elem_size_bytes = instr->def.bit_size / 8; |
| unsigned num_components = instr->def.num_components; |
| unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes; |
| load_lds(ctx, elem_size_bytes, num_components, dst, address, nir_intrinsic_base(instr), align); |
| } |
| |
| void |
| visit_store_shared(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| unsigned writemask = nir_intrinsic_write_mask(instr); |
| Temp data = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); |
| unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; |
| |
| unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes; |
| store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align); |
| } |
| |
| void |
| visit_shared_atomic(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| unsigned offset = nir_intrinsic_base(instr); |
| Builder bld(ctx->program, ctx->block); |
| Operand m = load_lds_size_m0(bld); |
| Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); |
| Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); |
| |
| unsigned num_operands = 3; |
| aco_opcode op32, op64, op32_rtn, op64_rtn; |
| switch (nir_intrinsic_atomic_op(instr)) { |
| case nir_atomic_op_iadd: |
| op32 = aco_opcode::ds_add_u32; |
| op64 = aco_opcode::ds_add_u64; |
| op32_rtn = aco_opcode::ds_add_rtn_u32; |
| op64_rtn = aco_opcode::ds_add_rtn_u64; |
| break; |
| case nir_atomic_op_imin: |
| op32 = aco_opcode::ds_min_i32; |
| op64 = aco_opcode::ds_min_i64; |
| op32_rtn = aco_opcode::ds_min_rtn_i32; |
| op64_rtn = aco_opcode::ds_min_rtn_i64; |
| break; |
| case nir_atomic_op_umin: |
| op32 = aco_opcode::ds_min_u32; |
| op64 = aco_opcode::ds_min_u64; |
| op32_rtn = aco_opcode::ds_min_rtn_u32; |
| op64_rtn = aco_opcode::ds_min_rtn_u64; |
| break; |
| case nir_atomic_op_imax: |
| op32 = aco_opcode::ds_max_i32; |
| op64 = aco_opcode::ds_max_i64; |
| op32_rtn = aco_opcode::ds_max_rtn_i32; |
| op64_rtn = aco_opcode::ds_max_rtn_i64; |
| break; |
| case nir_atomic_op_umax: |
| op32 = aco_opcode::ds_max_u32; |
| op64 = aco_opcode::ds_max_u64; |
| op32_rtn = aco_opcode::ds_max_rtn_u32; |
| op64_rtn = aco_opcode::ds_max_rtn_u64; |
| break; |
| case nir_atomic_op_iand: |
| op32 = aco_opcode::ds_and_b32; |
| op64 = aco_opcode::ds_and_b64; |
| op32_rtn = aco_opcode::ds_and_rtn_b32; |
| op64_rtn = aco_opcode::ds_and_rtn_b64; |
| break; |
| case nir_atomic_op_ior: |
| op32 = aco_opcode::ds_or_b32; |
| op64 = aco_opcode::ds_or_b64; |
| op32_rtn = aco_opcode::ds_or_rtn_b32; |
| op64_rtn = aco_opcode::ds_or_rtn_b64; |
| break; |
| case nir_atomic_op_ixor: |
| op32 = aco_opcode::ds_xor_b32; |
| op64 = aco_opcode::ds_xor_b64; |
| op32_rtn = aco_opcode::ds_xor_rtn_b32; |
| op64_rtn = aco_opcode::ds_xor_rtn_b64; |
| break; |
| case nir_atomic_op_xchg: |
| op32 = aco_opcode::ds_write_b32; |
| op64 = aco_opcode::ds_write_b64; |
| op32_rtn = aco_opcode::ds_wrxchg_rtn_b32; |
| op64_rtn = aco_opcode::ds_wrxchg_rtn_b64; |
| break; |
| case nir_atomic_op_cmpxchg: |
| op32 = aco_opcode::ds_cmpst_b32; |
| op64 = aco_opcode::ds_cmpst_b64; |
| op32_rtn = aco_opcode::ds_cmpst_rtn_b32; |
| op64_rtn = aco_opcode::ds_cmpst_rtn_b64; |
| num_operands = 4; |
| break; |
| case nir_atomic_op_fadd: |
| op32 = aco_opcode::ds_add_f32; |
| op32_rtn = aco_opcode::ds_add_rtn_f32; |
| op64 = aco_opcode::num_opcodes; |
| op64_rtn = aco_opcode::num_opcodes; |
| break; |
| case nir_atomic_op_fmin: |
| op32 = aco_opcode::ds_min_f32; |
| op32_rtn = aco_opcode::ds_min_rtn_f32; |
| op64 = aco_opcode::ds_min_f64; |
| op64_rtn = aco_opcode::ds_min_rtn_f64; |
| break; |
| case nir_atomic_op_fmax: |
| op32 = aco_opcode::ds_max_f32; |
| op32_rtn = aco_opcode::ds_max_rtn_f32; |
| op64 = aco_opcode::ds_max_f64; |
| op64_rtn = aco_opcode::ds_max_rtn_f64; |
| break; |
| default: unreachable("Unhandled shared atomic intrinsic"); |
| } |
| |
| bool return_previous = !nir_def_is_unused(&instr->def); |
| |
| aco_opcode op; |
| if (data.size() == 1) { |
| assert(instr->def.bit_size == 32); |
| op = return_previous ? op32_rtn : op32; |
| } else { |
| assert(instr->def.bit_size == 64); |
| op = return_previous ? op64_rtn : op64; |
| } |
| |
| if (offset > 65535) { |
| address = bld.vadd32(bld.def(v1), Operand::c32(offset), address); |
| offset = 0; |
| } |
| |
| aco_ptr<DS_instruction> ds; |
| ds.reset( |
| create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0)); |
| ds->operands[0] = Operand(address); |
| ds->operands[1] = Operand(data); |
| if (num_operands == 4) { |
| Temp data2 = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa)); |
| ds->operands[2] = Operand(data2); |
| if (bld.program->gfx_level >= GFX11) |
| std::swap(ds->operands[1], ds->operands[2]); |
| } |
| ds->operands[num_operands - 1] = m; |
| ds->offset0 = offset; |
| if (return_previous) |
| ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->def)); |
| ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw); |
| |
| if (m.isUndefined()) |
| ds->operands.pop_back(); |
| |
| ctx->block->instructions.emplace_back(std::move(ds)); |
| } |
| |
| void |
| visit_access_shared2_amd(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| bool is_store = instr->intrinsic == nir_intrinsic_store_shared2_amd; |
| Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[is_store].ssa)); |
| Builder bld(ctx->program, ctx->block); |
| |
| assert(bld.program->gfx_level >= GFX7); |
| |
| bool is64bit = (is_store ? instr->src[0].ssa->bit_size : instr->def.bit_size) == 64; |
| uint8_t offset0 = nir_intrinsic_offset0(instr); |
| uint8_t offset1 = nir_intrinsic_offset1(instr); |
| bool st64 = nir_intrinsic_st64(instr); |
| |
| Operand m = load_lds_size_m0(bld); |
| Instruction* ds; |
| if (is_store) { |
| aco_opcode op = st64 |
| ? (is64bit ? aco_opcode::ds_write2st64_b64 : aco_opcode::ds_write2st64_b32) |
| : (is64bit ? aco_opcode::ds_write2_b64 : aco_opcode::ds_write2_b32); |
| Temp data = get_ssa_temp(ctx, instr->src[0].ssa); |
| RegClass comp_rc = is64bit ? v2 : v1; |
| Temp data0 = emit_extract_vector(ctx, data, 0, comp_rc); |
| Temp data1 = emit_extract_vector(ctx, data, 1, comp_rc); |
| ds = bld.ds(op, address, data0, data1, m, offset0, offset1); |
| } else { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Definition tmp_dst(dst.type() == RegType::vgpr ? dst : bld.tmp(is64bit ? v4 : v2)); |
| aco_opcode op = st64 ? (is64bit ? aco_opcode::ds_read2st64_b64 : aco_opcode::ds_read2st64_b32) |
| : (is64bit ? aco_opcode::ds_read2_b64 : aco_opcode::ds_read2_b32); |
| ds = bld.ds(op, tmp_dst, address, m, offset0, offset1); |
| } |
| ds->ds().sync = memory_sync_info(storage_shared); |
| if (m.isUndefined()) |
| ds->operands.pop_back(); |
| |
| if (!is_store) { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| if (dst.type() == RegType::sgpr) { |
| emit_split_vector(ctx, ds->definitions[0].getTemp(), dst.size()); |
| Temp comp[4]; |
| /* Use scalar v_readfirstlane_b32 for better 32-bit copy propagation */ |
| for (unsigned i = 0; i < dst.size(); i++) |
| comp[i] = bld.as_uniform(emit_extract_vector(ctx, ds->definitions[0].getTemp(), i, v1)); |
| if (is64bit) { |
| Temp comp0 = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), comp[0], comp[1]); |
| Temp comp1 = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), comp[2], comp[3]); |
| ctx->allocated_vec[comp0.id()] = {comp[0], comp[1]}; |
| ctx->allocated_vec[comp1.id()] = {comp[2], comp[3]}; |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), comp0, comp1); |
| ctx->allocated_vec[dst.id()] = {comp0, comp1}; |
| } else { |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), comp[0], comp[1]); |
| } |
| } |
| |
| emit_split_vector(ctx, dst, 2); |
| } |
| } |
| |
| Temp |
| get_scratch_resource(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp scratch_addr = ctx->program->private_segment_buffer; |
| if (!scratch_addr.bytes()) { |
| Temp addr_lo = |
| bld.sop1(aco_opcode::p_load_symbol, bld.def(s1), Operand::c32(aco_symbol_scratch_addr_lo)); |
| Temp addr_hi = |
| bld.sop1(aco_opcode::p_load_symbol, bld.def(s1), Operand::c32(aco_symbol_scratch_addr_hi)); |
| scratch_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), addr_lo, addr_hi); |
| } else if (ctx->stage.hw != AC_HW_COMPUTE_SHADER) { |
| scratch_addr = |
| bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand::zero()); |
| } |
| |
| uint32_t rsrc_conf = |
| S_008F0C_ADD_TID_ENABLE(1) | S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2); |
| |
| if (ctx->program->gfx_level >= GFX10) { |
| rsrc_conf |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | |
| S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | |
| S_008F0C_RESOURCE_LEVEL(ctx->program->gfx_level < GFX11); |
| } else if (ctx->program->gfx_level <= |
| GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */ |
| rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | |
| S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| } |
| |
| /* older generations need element size = 4 bytes. element size removed in GFX9 */ |
| if (ctx->program->gfx_level <= GFX8) |
| rsrc_conf |= S_008F0C_ELEMENT_SIZE(1); |
| |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand::c32(-1u), |
| Operand::c32(rsrc_conf)); |
| } |
| |
| void |
| visit_load_scratch(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| LoadEmitInfo info = {Operand(v1), dst, instr->def.num_components, instr->def.bit_size / 8u}; |
| info.align_mul = nir_intrinsic_align_mul(instr); |
| info.align_offset = nir_intrinsic_align_offset(instr); |
| info.swizzle_component_size = ctx->program->gfx_level <= GFX8 ? 4 : 0; |
| info.sync = memory_sync_info(storage_scratch, semantic_private); |
| if (ctx->program->gfx_level >= GFX9) { |
| if (nir_src_is_const(instr->src[0])) { |
| uint32_t max = ctx->program->dev.scratch_global_offset_max + 1; |
| info.offset = |
| bld.copy(bld.def(s1), Operand::c32(ROUND_DOWN_TO(nir_src_as_uint(instr->src[0]), max))); |
| info.const_offset = nir_src_as_uint(instr->src[0]) % max; |
| } else { |
| info.offset = Operand(get_ssa_temp(ctx, instr->src[0].ssa)); |
| } |
| EmitLoadParameters params = scratch_flat_load_params; |
| params.max_const_offset_plus_one = ctx->program->dev.scratch_global_offset_max + 1; |
| emit_load(ctx, bld, info, params); |
| } else { |
| info.resource = get_scratch_resource(ctx); |
| info.offset = Operand(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa))); |
| info.soffset = ctx->program->scratch_offset; |
| emit_load(ctx, bld, info, scratch_mubuf_load_params); |
| } |
| } |
| |
| void |
| visit_store_scratch(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); |
| Temp offset = get_ssa_temp(ctx, instr->src[1].ssa); |
| |
| unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8; |
| unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes); |
| |
| unsigned write_count = 0; |
| Temp write_datas[32]; |
| unsigned offsets[32]; |
| unsigned swizzle_component_size = ctx->program->gfx_level <= GFX8 ? 4 : 16; |
| split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, swizzle_component_size, |
| &write_count, write_datas, offsets); |
| |
| if (ctx->program->gfx_level >= GFX9) { |
| uint32_t max = ctx->program->dev.scratch_global_offset_max + 1; |
| offset = nir_src_is_const(instr->src[1]) ? Temp(0, s1) : offset; |
| uint32_t base_const_offset = |
| nir_src_is_const(instr->src[1]) ? nir_src_as_uint(instr->src[1]) : 0; |
| |
| for (unsigned i = 0; i < write_count; i++) { |
| aco_opcode op; |
| switch (write_datas[i].bytes()) { |
| case 1: op = aco_opcode::scratch_store_byte; break; |
| case 2: op = aco_opcode::scratch_store_short; break; |
| case 4: op = aco_opcode::scratch_store_dword; break; |
| case 8: op = aco_opcode::scratch_store_dwordx2; break; |
| case 12: op = aco_opcode::scratch_store_dwordx3; break; |
| case 16: op = aco_opcode::scratch_store_dwordx4; break; |
| default: unreachable("Unexpected store size"); |
| } |
| |
| uint32_t const_offset = base_const_offset + offsets[i]; |
| assert(const_offset < max || offset.id() == 0); |
| |
| Operand addr = offset.regClass() == s1 ? Operand(v1) : Operand(offset); |
| Operand saddr = offset.regClass() == s1 ? Operand(offset) : Operand(s1); |
| if (offset.id() == 0) |
| saddr = bld.copy(bld.def(s1), Operand::c32(ROUND_DOWN_TO(const_offset, max))); |
| |
| bld.scratch(op, addr, saddr, write_datas[i], const_offset % max, |
| memory_sync_info(storage_scratch, semantic_private)); |
| } |
| } else { |
| Temp rsrc = get_scratch_resource(ctx); |
| offset = as_vgpr(ctx, offset); |
| for (unsigned i = 0; i < write_count; i++) { |
| aco_opcode op = get_buffer_store_op(write_datas[i].bytes()); |
| Instruction* mubuf = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, |
| write_datas[i], offsets[i], true, true); |
| mubuf->mubuf().sync = memory_sync_info(storage_scratch, semantic_private); |
| } |
| } |
| } |
| |
| ReduceOp |
| get_reduce_op(nir_op op, unsigned bit_size) |
| { |
| switch (op) { |
| #define CASEI(name) \ |
| case nir_op_##name: \ |
| return (bit_size == 32) ? name##32 \ |
| : (bit_size == 16) ? name##16 \ |
| : (bit_size == 8) ? name##8 \ |
| : name##64; |
| #define CASEF(name) \ |
| case nir_op_##name: return (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; |
| CASEI(iadd) |
| CASEI(imul) |
| CASEI(imin) |
| CASEI(umin) |
| CASEI(imax) |
| CASEI(umax) |
| CASEI(iand) |
| CASEI(ior) |
| CASEI(ixor) |
| CASEF(fadd) |
| CASEF(fmul) |
| CASEF(fmin) |
| CASEF(fmax) |
| default: unreachable("unknown reduction op"); |
| #undef CASEI |
| #undef CASEF |
| } |
| } |
| |
| void |
| emit_uniform_subgroup(isel_context* ctx, nir_intrinsic_instr* instr, Temp src) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Definition dst(get_ssa_temp(ctx, &instr->def)); |
| assert(dst.regClass().type() != RegType::vgpr); |
| if (src.regClass().type() == RegType::vgpr) |
| bld.pseudo(aco_opcode::p_as_uniform, dst, src); |
| else |
| bld.copy(dst, src); |
| } |
| |
| void |
| emit_addition_uniform_reduce(isel_context* ctx, nir_op op, Definition dst, nir_src src, Temp count) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp src_tmp = get_ssa_temp(ctx, src.ssa); |
| |
| if (op == nir_op_fadd) { |
| src_tmp = as_vgpr(ctx, src_tmp); |
| Temp tmp = dst.regClass() == s1 ? bld.tmp(RegClass::get(RegType::vgpr, src.ssa->bit_size / 8)) |
| : dst.getTemp(); |
| |
| if (src.ssa->bit_size == 16) { |
| count = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v2b), count); |
| bld.vop2(aco_opcode::v_mul_f16, Definition(tmp), count, src_tmp); |
| } else { |
| assert(src.ssa->bit_size == 32); |
| count = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), count); |
| bld.vop2(aco_opcode::v_mul_f32, Definition(tmp), count, src_tmp); |
| } |
| |
| if (tmp != dst.getTemp()) |
| bld.pseudo(aco_opcode::p_as_uniform, dst, tmp); |
| |
| return; |
| } |
| |
| if (dst.regClass() == s1) |
| src_tmp = bld.as_uniform(src_tmp); |
| |
| if (op == nir_op_ixor && count.type() == RegType::sgpr) |
| count = |
| bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), count, Operand::c32(1u)); |
| else if (op == nir_op_ixor) |
| count = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(1u), count); |
| |
| assert(dst.getTemp().type() == count.type()); |
| |
| if (nir_src_is_const(src)) { |
| if (nir_src_as_uint(src) == 1 && dst.bytes() <= 2) |
| bld.pseudo(aco_opcode::p_extract_vector, dst, count, Operand::zero()); |
| else if (nir_src_as_uint(src) == 1) |
| bld.copy(dst, count); |
| else if (nir_src_as_uint(src) == 0) |
| bld.copy(dst, Operand::zero(dst.bytes())); |
| else if (count.type() == RegType::vgpr) |
| bld.v_mul_imm(dst, count, nir_src_as_uint(src)); |
| else |
| bld.sop2(aco_opcode::s_mul_i32, dst, src_tmp, count); |
| } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) { |
| bld.vop3(aco_opcode::v_mul_lo_u16_e64, dst, src_tmp, count); |
| } else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) { |
| bld.vop2(aco_opcode::v_mul_lo_u16, dst, src_tmp, count); |
| } else if (dst.getTemp().type() == RegType::vgpr) { |
| bld.vop3(aco_opcode::v_mul_lo_u32, dst, src_tmp, count); |
| } else { |
| bld.sop2(aco_opcode::s_mul_i32, dst, src_tmp, count); |
| } |
| } |
| |
| bool |
| emit_uniform_reduce(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| nir_op op = (nir_op)nir_intrinsic_reduction_op(instr); |
| if (op == nir_op_imul || op == nir_op_fmul) |
| return false; |
| |
| if (op == nir_op_iadd || op == nir_op_ixor || op == nir_op_fadd) { |
| Builder bld(ctx->program, ctx->block); |
| Definition dst(get_ssa_temp(ctx, &instr->def)); |
| unsigned bit_size = instr->src[0].ssa->bit_size; |
| if (bit_size > 32) |
| return false; |
| |
| Temp thread_count = |
| bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), Operand(exec, bld.lm)); |
| set_wqm(ctx); |
| |
| emit_addition_uniform_reduce(ctx, op, dst, instr->src[0], thread_count); |
| } else { |
| emit_uniform_subgroup(ctx, instr, get_ssa_temp(ctx, instr->src[0].ssa)); |
| } |
| |
| return true; |
| } |
| |
| bool |
| emit_uniform_scan(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Definition dst(get_ssa_temp(ctx, &instr->def)); |
| nir_op op = (nir_op)nir_intrinsic_reduction_op(instr); |
| bool inc = instr->intrinsic == nir_intrinsic_inclusive_scan; |
| |
| if (op == nir_op_imul || op == nir_op_fmul) |
| return false; |
| |
| if (op == nir_op_iadd || op == nir_op_ixor || op == nir_op_fadd) { |
| if (instr->src[0].ssa->bit_size > 32) |
| return false; |
| |
| Temp packed_tid; |
| if (inc) |
| packed_tid = emit_mbcnt(ctx, bld.tmp(v1), Operand(exec, bld.lm), Operand::c32(1u)); |
| else |
| packed_tid = emit_mbcnt(ctx, bld.tmp(v1), Operand(exec, bld.lm)); |
| set_wqm(ctx); |
| |
| emit_addition_uniform_reduce(ctx, op, dst, instr->src[0], packed_tid); |
| return true; |
| } |
| |
| assert(op == nir_op_imin || op == nir_op_umin || op == nir_op_imax || op == nir_op_umax || |
| op == nir_op_iand || op == nir_op_ior || op == nir_op_fmin || op == nir_op_fmax); |
| |
| if (inc) { |
| emit_uniform_subgroup(ctx, instr, get_ssa_temp(ctx, instr->src[0].ssa)); |
| return true; |
| } |
| |
| /* Copy the source and write the reduction operation identity to the first lane. */ |
| Temp lane = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)); |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| ReduceOp reduce_op = get_reduce_op(op, instr->src[0].ssa->bit_size); |
| if (dst.bytes() == 8) { |
| Temp lo = bld.tmp(v1), hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); |
| uint32_t identity_lo = get_reduction_identity(reduce_op, 0); |
| uint32_t identity_hi = get_reduction_identity(reduce_op, 1); |
| |
| lo = |
| bld.writelane(bld.def(v1), bld.copy(bld.def(s1, m0), Operand::c32(identity_lo)), lane, lo); |
| hi = |
| bld.writelane(bld.def(v1), bld.copy(bld.def(s1, m0), Operand::c32(identity_hi)), lane, hi); |
| bld.pseudo(aco_opcode::p_create_vector, dst, lo, hi); |
| } else { |
| uint32_t identity = get_reduction_identity(reduce_op, 0); |
| bld.writelane(dst, bld.copy(bld.def(s1, m0), Operand::c32(identity)), lane, |
| as_vgpr(ctx, src)); |
| } |
| |
| set_wqm(ctx); |
| return true; |
| } |
| |
| Temp |
| emit_reduction_instr(isel_context* ctx, aco_opcode aco_op, ReduceOp op, unsigned cluster_size, |
| Definition dst, Temp src) |
| { |
| assert(src.bytes() <= 8); |
| assert(src.type() == RegType::vgpr); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| unsigned num_defs = 0; |
| Definition defs[5]; |
| defs[num_defs++] = dst; |
| defs[num_defs++] = bld.def(bld.lm); /* used internally to save/restore exec */ |
| |
| /* scalar identity temporary */ |
| bool need_sitmp = (ctx->program->gfx_level <= GFX7 || ctx->program->gfx_level >= GFX10) && |
| aco_op != aco_opcode::p_reduce; |
| if (aco_op == aco_opcode::p_exclusive_scan) { |
| need_sitmp |= (op == imin8 || op == imin16 || op == imin32 || op == imin64 || op == imax8 || |
| op == imax16 || op == imax32 || op == imax64 || op == fmin16 || op == fmin32 || |
| op == fmin64 || op == fmax16 || op == fmax32 || op == fmax64 || op == fmul16 || |
| op == fmul64); |
| } |
| if (need_sitmp) |
| defs[num_defs++] = bld.def(RegType::sgpr, dst.size()); |
| |
| /* scc clobber */ |
| defs[num_defs++] = bld.def(s1, scc); |
| |
| /* vcc clobber */ |
| bool clobber_vcc = false; |
| if ((op == iadd32 || op == imul64) && ctx->program->gfx_level < GFX9) |
| clobber_vcc = true; |
| if ((op == iadd8 || op == iadd16) && ctx->program->gfx_level < GFX8) |
| clobber_vcc = true; |
| if (op == iadd64 || op == umin64 || op == umax64 || op == imin64 || op == imax64) |
| clobber_vcc = true; |
| |
| if (clobber_vcc) |
| defs[num_defs++] = bld.def(bld.lm, vcc); |
| |
| Pseudo_reduction_instruction* reduce = create_instruction<Pseudo_reduction_instruction>( |
| aco_op, Format::PSEUDO_REDUCTION, 3, num_defs); |
| reduce->operands[0] = Operand(src); |
| /* setup_reduce_temp will update these undef operands if needed */ |
| reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear()); |
| reduce->operands[2] = Operand(v1.as_linear()); |
| std::copy(defs, defs + num_defs, reduce->definitions.begin()); |
| |
| reduce->reduce_op = op; |
| reduce->cluster_size = cluster_size; |
| bld.insert(std::move(reduce)); |
| |
| return dst.getTemp(); |
| } |
| |
| Temp |
| inclusive_scan_to_exclusive(isel_context* ctx, ReduceOp op, Definition dst, Temp src) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| Temp scan = emit_reduction_instr(ctx, aco_opcode::p_inclusive_scan, op, ctx->program->wave_size, |
| bld.def(dst.regClass()), src); |
| |
| switch (op) { |
| case iadd8: |
| case iadd16: |
| case iadd32: return bld.vsub32(dst, scan, src); |
| case ixor64: |
| case iadd64: { |
| Temp src00 = bld.tmp(v1); |
| Temp src01 = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), scan); |
| Temp src10 = bld.tmp(v1); |
| Temp src11 = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src); |
| |
| Temp lower = bld.tmp(v1); |
| Temp upper = bld.tmp(v1); |
| if (op == iadd64) { |
| Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp(); |
| bld.vsub32(Definition(upper), src01, src11, false, borrow); |
| } else { |
| bld.vop2(aco_opcode::v_xor_b32, Definition(lower), src00, src10); |
| bld.vop2(aco_opcode::v_xor_b32, Definition(upper), src01, src11); |
| } |
| return bld.pseudo(aco_opcode::p_create_vector, dst, lower, upper); |
| } |
| case ixor8: |
| case ixor16: |
| case ixor32: return bld.vop2(aco_opcode::v_xor_b32, dst, scan, src); |
| default: unreachable("Unsupported op"); |
| } |
| } |
| |
| void |
| emit_interp_center(isel_context* ctx, Temp dst, Temp bary, Temp pos1, Temp pos2) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Temp p1 = emit_extract_vector(ctx, bary, 0, v1); |
| Temp p2 = emit_extract_vector(ctx, bary, 1, v1); |
| |
| Temp ddx_1, ddx_2, ddy_1, ddy_2; |
| uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0); |
| uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1); |
| uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2); |
| |
| /* Build DD X/Y */ |
| if (ctx->program->gfx_level >= GFX8) { |
| Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0); |
| ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1); |
| ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2); |
| Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0); |
| ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1); |
| ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2); |
| } else { |
| Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0); |
| ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1); |
| ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1); |
| ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2); |
| ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_1); |
| |
| Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0); |
| ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1); |
| ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_2); |
| ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2); |
| ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2); |
| } |
| |
| /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */ |
| aco_opcode mad = |
| ctx->program->gfx_level >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32; |
| Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1); |
| Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2); |
| tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1); |
| tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp1, tmp2); |
| set_wqm(ctx, true); |
| return; |
| } |
| |
| Temp merged_wave_info_to_mask(isel_context* ctx, unsigned i); |
| Temp lanecount_to_mask(isel_context* ctx, Temp count); |
| void pops_await_overlapped_waves(isel_context* ctx); |
| |
| Temp |
| get_interp_param(isel_context* ctx, nir_intrinsic_op intrin, enum glsl_interp_mode interp) |
| { |
| bool linear = interp == INTERP_MODE_NOPERSPECTIVE; |
| if (intrin == nir_intrinsic_load_barycentric_pixel || |
| intrin == nir_intrinsic_load_barycentric_at_offset) { |
| return get_arg(ctx, linear ? ctx->args->linear_center : ctx->args->persp_center); |
| } else if (intrin == nir_intrinsic_load_barycentric_centroid) { |
| return get_arg(ctx, linear ? ctx->args->linear_centroid : ctx->args->persp_centroid); |
| } else { |
| assert(intrin == nir_intrinsic_load_barycentric_sample); |
| return get_arg(ctx, linear ? ctx->args->linear_sample : ctx->args->persp_sample); |
| } |
| } |
| |
| void |
| ds_ordered_count_offsets(isel_context* ctx, unsigned index_operand, unsigned wave_release, |
| unsigned wave_done, unsigned* offset0, unsigned* offset1) |
| { |
| unsigned ordered_count_index = index_operand & 0x3f; |
| unsigned count_dword = (index_operand >> 24) & 0xf; |
| |
| assert(ctx->options->gfx_level >= GFX10); |
| assert(count_dword >= 1 && count_dword <= 4); |
| |
| *offset0 = ordered_count_index << 2; |
| *offset1 = wave_release | (wave_done << 1) | ((count_dword - 1) << 6); |
| |
| if (ctx->options->gfx_level < GFX11) |
| *offset1 |= 3 /* GS shader type */ << 2; |
| } |
| |
| struct aco_export_mrt { |
| Operand out[4]; |
| unsigned enabled_channels; |
| unsigned target; |
| bool compr; |
| }; |
| |
| static void |
| create_fs_dual_src_export_gfx11(isel_context* ctx, const struct aco_export_mrt* mrt0, |
| const struct aco_export_mrt* mrt1) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| aco_ptr<Pseudo_instruction> exp{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_dual_src_export_gfx11, Format::PSEUDO, 8, 6)}; |
| for (unsigned i = 0; i < 4; i++) { |
| exp->operands[i] = mrt0 ? mrt0->out[i] : Operand(v1); |
| exp->operands[i].setLateKill(true); |
| exp->operands[i + 4] = mrt1 ? mrt1->out[i] : Operand(v1); |
| exp->operands[i + 4].setLateKill(true); |
| } |
| |
| RegClass type = RegClass(RegType::vgpr, util_bitcount(mrt0->enabled_channels)); |
| exp->definitions[0] = bld.def(type); /* mrt0 */ |
| exp->definitions[1] = bld.def(type); /* mrt1 */ |
| exp->definitions[2] = bld.def(bld.lm); |
| exp->definitions[3] = bld.def(bld.lm); |
| exp->definitions[4] = bld.def(bld.lm, vcc); |
| exp->definitions[5] = bld.def(s1, scc); |
| ctx->block->instructions.emplace_back(std::move(exp)); |
| |
| ctx->program->has_color_exports = true; |
| } |
| |
| static void |
| visit_cmat_muladd(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| aco_opcode opcode = aco_opcode::num_opcodes; |
| unsigned signed_mask = 0; |
| bool clamp = false; |
| |
| switch (instr->src[0].ssa->bit_size) { |
| case 16: |
| switch (instr->def.bit_size) { |
| case 32: opcode = aco_opcode::v_wmma_f32_16x16x16_f16; break; |
| case 16: opcode = aco_opcode::v_wmma_f16_16x16x16_f16; break; |
| } |
| break; |
| case 8: |
| opcode = aco_opcode::v_wmma_i32_16x16x16_iu8; |
| signed_mask = nir_intrinsic_cmat_signed_mask(instr); |
| clamp = nir_intrinsic_saturate(instr); |
| break; |
| } |
| |
| if (opcode == aco_opcode::num_opcodes) |
| unreachable("visit_cmat_muladd: invalid bit size combination"); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Operand A(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa))); |
| Operand B(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa))); |
| Operand C(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa))); |
| |
| A.setLateKill(true); |
| B.setLateKill(true); |
| |
| VALU_instruction& vop3p = bld.vop3p(opcode, Definition(dst), A, B, C, 0, 0)->valu(); |
| vop3p.neg_lo[0] = (signed_mask & 0x1) != 0; |
| vop3p.neg_lo[1] = (signed_mask & 0x2) != 0; |
| vop3p.clamp = clamp; |
| |
| emit_split_vector(ctx, dst, instr->def.num_components); |
| } |
| |
| void |
| visit_intrinsic(isel_context* ctx, nir_intrinsic_instr* instr) |
| { |
| Builder bld(ctx->program, ctx->block); |
| switch (instr->intrinsic) { |
| case nir_intrinsic_load_barycentric_sample: |
| case nir_intrinsic_load_barycentric_pixel: |
| case nir_intrinsic_load_barycentric_centroid: { |
| glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr); |
| Temp bary = get_interp_param(ctx, instr->intrinsic, mode); |
| assert(bary.size() == 2); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), bary); |
| emit_split_vector(ctx, dst, 2); |
| break; |
| } |
| case nir_intrinsic_load_barycentric_model: { |
| Temp model = get_arg(ctx, ctx->args->pull_model); |
| assert(model.size() == 3); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), model); |
| emit_split_vector(ctx, dst, 3); |
| break; |
| } |
| case nir_intrinsic_load_barycentric_at_offset: { |
| Temp offset = get_ssa_temp(ctx, instr->src[0].ssa); |
| RegClass rc = RegClass(offset.type(), 1); |
| Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset); |
| Temp bary = get_interp_param(ctx, instr->intrinsic, |
| (glsl_interp_mode)nir_intrinsic_interp_mode(instr)); |
| emit_interp_center(ctx, get_ssa_temp(ctx, &instr->def), bary, pos1, pos2); |
| break; |
| } |
| case nir_intrinsic_load_front_face: { |
| bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->def)), |
| Operand::zero(), get_arg(ctx, ctx->args->front_face)); |
| break; |
| } |
| case nir_intrinsic_load_view_index: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->view_index))); |
| break; |
| } |
| case nir_intrinsic_load_frag_coord: { |
| emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->def), 4); |
| break; |
| } |
| case nir_intrinsic_load_frag_shading_rate: |
| emit_load_frag_shading_rate(ctx, get_ssa_temp(ctx, &instr->def)); |
| break; |
| case nir_intrinsic_load_sample_pos: { |
| Temp posx = get_arg(ctx, ctx->args->frag_pos[0]); |
| Temp posy = get_arg(ctx, ctx->args->frag_pos[1]); |
| bld.pseudo( |
| aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->def)), |
| posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand::zero(), |
| posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand::zero()); |
| break; |
| } |
| case nir_intrinsic_load_tess_coord: visit_load_tess_coord(ctx, instr); break; |
| case nir_intrinsic_load_interpolated_input: visit_load_interpolated_input(ctx, instr); break; |
| case nir_intrinsic_store_output: visit_store_output(ctx, instr); break; |
| case nir_intrinsic_load_input: |
| case nir_intrinsic_load_input_vertex: |
| if (ctx->program->stage == fragment_fs) |
| visit_load_fs_input(ctx, instr); |
| else |
| isel_err(&instr->instr, "Shader inputs should have been lowered in NIR."); |
| break; |
| case nir_intrinsic_load_per_vertex_input: visit_load_per_vertex_input(ctx, instr); break; |
| case nir_intrinsic_load_ubo: visit_load_ubo(ctx, instr); break; |
| case nir_intrinsic_load_push_constant: visit_load_push_constant(ctx, instr); break; |
| case nir_intrinsic_load_constant: visit_load_constant(ctx, instr); break; |
| case nir_intrinsic_load_shared: visit_load_shared(ctx, instr); break; |
| case nir_intrinsic_store_shared: visit_store_shared(ctx, instr); break; |
| case nir_intrinsic_shared_atomic: |
| case nir_intrinsic_shared_atomic_swap: visit_shared_atomic(ctx, instr); break; |
| case nir_intrinsic_load_shared2_amd: |
| case nir_intrinsic_store_shared2_amd: visit_access_shared2_amd(ctx, instr); break; |
| case nir_intrinsic_bindless_image_load: |
| case nir_intrinsic_bindless_image_fragment_mask_load_amd: |
| case nir_intrinsic_bindless_image_sparse_load: visit_image_load(ctx, instr); break; |
| case nir_intrinsic_bindless_image_store: visit_image_store(ctx, instr); break; |
| case nir_intrinsic_bindless_image_atomic: |
| case nir_intrinsic_bindless_image_atomic_swap: visit_image_atomic(ctx, instr); break; |
| case nir_intrinsic_load_ssbo: visit_load_ssbo(ctx, instr); break; |
| case nir_intrinsic_store_ssbo: visit_store_ssbo(ctx, instr); break; |
| case nir_intrinsic_load_typed_buffer_amd: |
| case nir_intrinsic_load_buffer_amd: visit_load_buffer(ctx, instr); break; |
| case nir_intrinsic_store_buffer_amd: visit_store_buffer(ctx, instr); break; |
| case nir_intrinsic_load_smem_amd: visit_load_smem(ctx, instr); break; |
| case nir_intrinsic_load_global_amd: visit_load_global(ctx, instr); break; |
| case nir_intrinsic_store_global_amd: visit_store_global(ctx, instr); break; |
| case nir_intrinsic_global_atomic_amd: |
| case nir_intrinsic_global_atomic_swap_amd: visit_global_atomic(ctx, instr); break; |
| case nir_intrinsic_ssbo_atomic: |
| case nir_intrinsic_ssbo_atomic_swap: visit_atomic_ssbo(ctx, instr); break; |
| case nir_intrinsic_load_scratch: visit_load_scratch(ctx, instr); break; |
| case nir_intrinsic_store_scratch: visit_store_scratch(ctx, instr); break; |
| case nir_intrinsic_barrier: emit_barrier(ctx, instr); break; |
| case nir_intrinsic_load_num_workgroups: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| if (ctx->options->load_grid_size_from_user_sgpr) { |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->num_work_groups)); |
| } else { |
| Temp addr = get_arg(ctx, ctx->args->num_work_groups); |
| assert(addr.regClass() == s2); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), |
| bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), addr, Operand::zero()), |
| bld.smem(aco_opcode::s_load_dword, bld.def(s1), addr, Operand::c32(8))); |
| } |
| emit_split_vector(ctx, dst, 3); |
| break; |
| } |
| case nir_intrinsic_load_ray_launch_size: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->rt.launch_size))); |
| emit_split_vector(ctx, dst, 3); |
| break; |
| } |
| case nir_intrinsic_load_ray_launch_id: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->rt.launch_id))); |
| emit_split_vector(ctx, dst, 3); |
| break; |
| } |
| case nir_intrinsic_load_ray_launch_size_addr_amd: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp addr = get_arg(ctx, ctx->args->rt.launch_size_addr); |
| assert(addr.regClass() == s2); |
| bld.copy(Definition(dst), Operand(addr)); |
| break; |
| } |
| case nir_intrinsic_load_local_invocation_id: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| if (ctx->options->gfx_level >= GFX11) { |
| Temp local_ids[3]; |
| |
| /* Thread IDs are packed in VGPR0, 10 bits per component. */ |
| for (uint32_t i = 0; i < 3; i++) { |
| if (i == 0 && ctx->shader->info.workgroup_size[1] == 1 && |
| ctx->shader->info.workgroup_size[2] == 1 && |
| !ctx->shader->info.workgroup_size_variable) { |
| local_ids[i] = get_arg(ctx, ctx->args->local_invocation_ids); |
| } else if (i == 2 || (i == 1 && ctx->shader->info.workgroup_size[2] == 1 && |
| !ctx->shader->info.workgroup_size_variable)) { |
| local_ids[i] = |
| bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand::c32(i * 10u), |
| get_arg(ctx, ctx->args->local_invocation_ids)); |
| } else { |
| local_ids[i] = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), |
| get_arg(ctx, ctx->args->local_invocation_ids), |
| Operand::c32(i * 10u), Operand::c32(10u)); |
| } |
| } |
| |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), local_ids[0], local_ids[1], |
| local_ids[2]); |
| } else { |
| bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->local_invocation_ids))); |
| } |
| emit_split_vector(ctx, dst, 3); |
| break; |
| } |
| case nir_intrinsic_load_workgroup_id: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| if (ctx->stage.hw == AC_HW_COMPUTE_SHADER) { |
| const struct ac_arg* ids = ctx->args->workgroup_ids; |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), |
| ids[0].used ? Operand(get_arg(ctx, ids[0])) : Operand::zero(), |
| ids[1].used ? Operand(get_arg(ctx, ids[1])) : Operand::zero(), |
| ids[2].used ? Operand(get_arg(ctx, ids[2])) : Operand::zero()); |
| emit_split_vector(ctx, dst, 3); |
| } else { |
| isel_err(&instr->instr, "Unsupported stage for load_workgroup_id"); |
| } |
| break; |
| } |
| case nir_intrinsic_load_local_invocation_index: { |
| if (ctx->stage.hw == AC_HW_LOCAL_SHADER || ctx->stage.hw == AC_HW_HULL_SHADER) { |
| if (ctx->options->gfx_level >= GFX11) { |
| /* On GFX11, RelAutoIndex is WaveID * WaveSize + ThreadID. */ |
| Temp wave_id = |
| bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| get_arg(ctx, ctx->args->tcs_wave_id), Operand::c32(0u | (3u << 16))); |
| |
| Temp temp = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), wave_id, |
| Operand::c32(ctx->program->wave_size)); |
| emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->def), Operand(), Operand(temp)); |
| } else { |
| bld.copy(Definition(get_ssa_temp(ctx, &instr->def)), |
| get_arg(ctx, ctx->args->vs_rel_patch_id)); |
| } |
| break; |
| } else if (ctx->stage.hw == AC_HW_LEGACY_GEOMETRY_SHADER || |
| ctx->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER) { |
| bld.copy(Definition(get_ssa_temp(ctx, &instr->def)), thread_id_in_threadgroup(ctx)); |
| break; |
| } else if (ctx->program->workgroup_size <= ctx->program->wave_size) { |
| emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->def)); |
| break; |
| } |
| |
| Temp id = emit_mbcnt(ctx, bld.tmp(v1)); |
| |
| /* The tg_size bits [6:11] contain the subgroup id, |
| * we need this multiplied by the wave size, and then OR the thread id to it. |
| */ |
| if (ctx->program->wave_size == 64) { |
| /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just |
| * feed that to v_or */ |
| Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), |
| Operand::c32(0xfc0u), get_arg(ctx, ctx->args->tg_size)); |
| bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->def)), tg_num, id); |
| } else { |
| /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */ |
| Temp tg_num = |
| bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| get_arg(ctx, ctx->args->tg_size), Operand::c32(0x6u | (0x6u << 16))); |
| bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->def)), tg_num, |
| Operand::c32(0x5u), id); |
| } |
| break; |
| } |
| case nir_intrinsic_load_subgroup_invocation: { |
| emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->def)); |
| break; |
| } |
| case nir_intrinsic_ballot: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| if (instr->src[0].ssa->bit_size == 1) { |
| assert(src.regClass() == bld.lm); |
| } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) { |
| src = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), src); |
| } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) { |
| src = bld.vopc(aco_opcode::v_cmp_lg_u64, bld.def(bld.lm), Operand::zero(), src); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| |
| /* Make sure that all inactive lanes return zero. |
| * Value-numbering might remove the comparison above */ |
| Definition def = dst.size() == bld.lm.size() ? Definition(dst) : bld.def(bld.lm); |
| src = bld.sop2(Builder::s_and, def, bld.def(s1, scc), src, Operand(exec, bld.lm)); |
| if (dst.size() != bld.lm.size()) { |
| /* Wave32 with ballot size set to 64 */ |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand::zero()); |
| } |
| |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_inverse_ballot: { |
| Temp src = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| assert(dst.size() == bld.lm.size()); |
| if (src.size() > dst.size()) { |
| emit_extract_vector(ctx, src, 0, dst); |
| } else if (src.size() < dst.size()) { |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand::zero()); |
| } else { |
| bld.copy(Definition(dst), src); |
| } |
| break; |
| } |
| case nir_intrinsic_shuffle: |
| case nir_intrinsic_read_invocation: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| if (!nir_src_is_divergent(instr->src[0])) { |
| emit_uniform_subgroup(ctx, instr, src); |
| } else { |
| Temp tid = get_ssa_temp(ctx, instr->src[1].ssa); |
| if (instr->intrinsic == nir_intrinsic_read_invocation || |
| !nir_src_is_divergent(instr->src[1])) |
| tid = bld.as_uniform(tid); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| if (instr->def.bit_size != 1) |
| src = as_vgpr(ctx, src); |
| |
| if (src.regClass() == v1b || src.regClass() == v2b) { |
| Temp tmp = bld.tmp(v1); |
| tmp = emit_bpermute(ctx, bld, tid, src); |
| if (dst.type() == RegType::vgpr) |
| bld.pseudo(aco_opcode::p_split_vector, Definition(dst), |
| bld.def(src.regClass() == v1b ? v3b : v2b), tmp); |
| else |
| bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp); |
| } else if (src.regClass() == v1) { |
| Temp tmp = emit_bpermute(ctx, bld, tid, src); |
| bld.copy(Definition(dst), tmp); |
| } else if (src.regClass() == v2) { |
| Temp lo = bld.tmp(v1), hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); |
| lo = emit_bpermute(ctx, bld, tid, lo); |
| hi = emit_bpermute(ctx, bld, tid, hi); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); |
| emit_split_vector(ctx, dst, 2); |
| } else if (instr->def.bit_size == 1 && tid.regClass() == s1) { |
| assert(src.regClass() == bld.lm); |
| Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid); |
| bool_to_vector_condition(ctx, tmp, dst); |
| } else if (instr->def.bit_size == 1 && tid.regClass() == v1) { |
| assert(src.regClass() == bld.lm); |
| Temp tmp; |
| if (ctx->program->gfx_level <= GFX7) |
| tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid); |
| else if (ctx->program->wave_size == 64) |
| tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src); |
| else |
| tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src); |
| tmp = emit_extract_vector(ctx, tmp, 0, v1); |
| tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(1u), tmp); |
| bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(dst), Operand::zero(), tmp); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| set_wqm(ctx); |
| } |
| break; |
| } |
| case nir_intrinsic_load_sample_id: { |
| bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->def)), |
| get_arg(ctx, ctx->args->ancillary), Operand::c32(8u), Operand::c32(4u)); |
| break; |
| } |
| case nir_intrinsic_read_first_invocation: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| if (instr->def.bit_size == 1) { |
| assert(src.regClass() == bld.lm); |
| Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, |
| bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm))); |
| bool_to_vector_condition(ctx, tmp, dst); |
| } else { |
| emit_readfirstlane(ctx, src, dst); |
| } |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_vote_all: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| assert(src.regClass() == bld.lm); |
| assert(dst.regClass() == bld.lm); |
| |
| Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src); |
| tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, Operand(exec, bld.lm)) |
| .def(1) |
| .getTemp(); |
| Temp cond = bool_to_vector_condition(ctx, tmp); |
| bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond); |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_vote_any: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| assert(src.regClass() == bld.lm); |
| assert(dst.regClass() == bld.lm); |
| |
| Temp tmp = bool_to_scalar_condition(ctx, src); |
| bool_to_vector_condition(ctx, tmp, dst); |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_quad_vote_any: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); |
| bld.sop1(Builder::s_wqm, Definition(get_ssa_temp(ctx, &instr->def)), bld.def(s1, scc), src); |
| set_wqm(ctx, true); |
| break; |
| } |
| case nir_intrinsic_quad_vote_all: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| src = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src); |
| src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); |
| src = bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), src); |
| bld.sop1(Builder::s_not, Definition(get_ssa_temp(ctx, &instr->def)), bld.def(s1, scc), src); |
| set_wqm(ctx, true); |
| break; |
| } |
| case nir_intrinsic_reduce: |
| case nir_intrinsic_inclusive_scan: |
| case nir_intrinsic_exclusive_scan: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| nir_op op = (nir_op)nir_intrinsic_reduction_op(instr); |
| unsigned cluster_size = |
| instr->intrinsic == nir_intrinsic_reduce ? nir_intrinsic_cluster_size(instr) : 0; |
| cluster_size = util_next_power_of_two( |
| MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size)); |
| const unsigned bit_size = instr->src[0].ssa->bit_size; |
| assert(bit_size != 1); |
| |
| if (!nir_src_is_divergent(instr->src[0]) && cluster_size == ctx->program->wave_size) { |
| /* We use divergence analysis to assign the regclass, so check if it's |
| * working as expected */ |
| ASSERTED bool expected_divergent = instr->intrinsic == nir_intrinsic_exclusive_scan; |
| if (instr->intrinsic == nir_intrinsic_inclusive_scan) |
| expected_divergent = op == nir_op_iadd || op == nir_op_fadd || op == nir_op_ixor; |
| assert(instr->def.divergent == expected_divergent); |
| |
| if (instr->intrinsic == nir_intrinsic_reduce) { |
| if (emit_uniform_reduce(ctx, instr)) |
| break; |
| } else if (emit_uniform_scan(ctx, instr)) { |
| break; |
| } |
| } |
| |
| src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8)); |
| ReduceOp reduce_op = get_reduce_op(op, bit_size); |
| |
| aco_opcode aco_op; |
| switch (instr->intrinsic) { |
| case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break; |
| case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break; |
| case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break; |
| default: unreachable("unknown reduce intrinsic"); |
| } |
| |
| /* Avoid whole wave shift. */ |
| const bool use_inclusive_for_exclusive = aco_op == aco_opcode::p_exclusive_scan && |
| (op == nir_op_iadd || op == nir_op_ixor) && |
| dst.type() == RegType::vgpr; |
| if (use_inclusive_for_exclusive) |
| inclusive_scan_to_exclusive(ctx, reduce_op, Definition(dst), src); |
| else |
| emit_reduction_instr(ctx, aco_op, reduce_op, cluster_size, Definition(dst), src); |
| |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_quad_broadcast: |
| case nir_intrinsic_quad_swap_horizontal: |
| case nir_intrinsic_quad_swap_vertical: |
| case nir_intrinsic_quad_swap_diagonal: |
| case nir_intrinsic_quad_swizzle_amd: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| |
| if (!instr->def.divergent) { |
| emit_uniform_subgroup(ctx, instr, src); |
| break; |
| } |
| |
| /* Quad broadcast lane. */ |
| unsigned lane = 0; |
| /* Use VALU for the bool instructions that don't have a SALU-only special case. */ |
| bool bool_use_valu = instr->def.bit_size == 1; |
| |
| uint16_t dpp_ctrl = 0; |
| |
| bool allow_fi = true; |
| switch (instr->intrinsic) { |
| case nir_intrinsic_quad_swap_horizontal: dpp_ctrl = dpp_quad_perm(1, 0, 3, 2); break; |
| case nir_intrinsic_quad_swap_vertical: dpp_ctrl = dpp_quad_perm(2, 3, 0, 1); break; |
| case nir_intrinsic_quad_swap_diagonal: dpp_ctrl = dpp_quad_perm(3, 2, 1, 0); break; |
| case nir_intrinsic_quad_swizzle_amd: |
| dpp_ctrl = nir_intrinsic_swizzle_mask(instr); |
| allow_fi &= nir_intrinsic_fetch_inactive(instr); |
| break; |
| case nir_intrinsic_quad_broadcast: |
| lane = nir_src_as_const_value(instr->src[1])->u32; |
| dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane); |
| bool_use_valu = false; |
| break; |
| default: break; |
| } |
| |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| /* Setup source. */ |
| if (bool_use_valu) |
| src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), |
| Operand::c32(-1), src); |
| else if (instr->def.bit_size != 1) |
| src = as_vgpr(ctx, src); |
| |
| if (instr->def.bit_size == 1 && instr->intrinsic == nir_intrinsic_quad_broadcast) { |
| /* Special case for quad broadcast using SALU only. */ |
| assert(src.regClass() == bld.lm && dst.regClass() == bld.lm); |
| |
| uint32_t half_mask = 0x11111111u << lane; |
| Operand mask_tmp = bld.lm.bytes() == 4 |
| ? Operand::c32(half_mask) |
| : bld.pseudo(aco_opcode::p_create_vector, bld.def(bld.lm), |
| Operand::c32(half_mask), Operand::c32(half_mask)); |
| |
| src = |
| bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); |
| src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp, src); |
| bld.sop1(Builder::s_wqm, Definition(dst), bld.def(s1, scc), src); |
| } else if (instr->def.bit_size <= 32 || bool_use_valu) { |
| unsigned excess_bytes = bool_use_valu ? 0 : 4 - instr->def.bit_size / 8; |
| Definition def = (excess_bytes || bool_use_valu) ? bld.def(v1) : Definition(dst); |
| |
| if (ctx->program->gfx_level >= GFX8) |
| bld.vop1_dpp(aco_opcode::v_mov_b32, def, src, dpp_ctrl, 0xf, 0xf, true, allow_fi); |
| else |
| bld.ds(aco_opcode::ds_swizzle_b32, def, src, (1 << 15) | dpp_ctrl); |
| |
| if (excess_bytes) |
| bld.pseudo(aco_opcode::p_split_vector, Definition(dst), |
| bld.def(RegClass::get(dst.type(), excess_bytes)), def.getTemp()); |
| if (bool_use_valu) |
| bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(dst), Operand::zero(), def.getTemp()); |
| } else if (instr->def.bit_size == 64) { |
| Temp lo = bld.tmp(v1), hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); |
| |
| if (ctx->program->gfx_level >= GFX8) { |
| lo = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl, 0xf, 0xf, true, |
| allow_fi); |
| hi = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl, 0xf, 0xf, true, |
| allow_fi); |
| } else { |
| lo = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl); |
| hi = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl); |
| } |
| |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); |
| emit_split_vector(ctx, dst, 2); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR quad group instruction bit size."); |
| } |
| |
| /* Vulkan spec 9.25: Helper invocations must be active for quad group instructions. */ |
| set_wqm(ctx, true); |
| break; |
| } |
| case nir_intrinsic_masked_swizzle_amd: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| if (!instr->def.divergent) { |
| emit_uniform_subgroup(ctx, instr, src); |
| break; |
| } |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| uint32_t mask = nir_intrinsic_swizzle_mask(instr); |
| bool allow_fi = nir_intrinsic_fetch_inactive(instr); |
| |
| if (instr->def.bit_size != 1) |
| src = as_vgpr(ctx, src); |
| |
| if (instr->def.bit_size == 1) { |
| assert(src.regClass() == bld.lm); |
| src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), |
| Operand::c32(-1), src); |
| src = emit_masked_swizzle(ctx, bld, src, mask, allow_fi); |
| bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(dst), Operand::zero(), src); |
| } else if (dst.regClass() == v1b) { |
| Temp tmp = emit_masked_swizzle(ctx, bld, src, mask, allow_fi); |
| emit_extract_vector(ctx, tmp, 0, dst); |
| } else if (dst.regClass() == v2b) { |
| Temp tmp = emit_masked_swizzle(ctx, bld, src, mask, allow_fi); |
| emit_extract_vector(ctx, tmp, 0, dst); |
| } else if (dst.regClass() == v1) { |
| bld.copy(Definition(dst), emit_masked_swizzle(ctx, bld, src, mask, allow_fi)); |
| } else if (dst.regClass() == v2) { |
| Temp lo = bld.tmp(v1), hi = bld.tmp(v1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src); |
| lo = emit_masked_swizzle(ctx, bld, lo, mask, allow_fi); |
| hi = emit_masked_swizzle(ctx, bld, hi, mask, allow_fi); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); |
| emit_split_vector(ctx, dst, 2); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_write_invocation_amd: { |
| Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); |
| Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)); |
| Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa)); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| if (dst.regClass() == v1) { |
| /* src2 is ignored for writelane. RA assigns the same reg for dst */ |
| bld.writelane(Definition(dst), val, lane, src); |
| } else if (dst.regClass() == v2) { |
| Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1); |
| Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val); |
| Temp lo = bld.writelane(bld.def(v1), val_lo, lane, src_hi); |
| Temp hi = bld.writelane(bld.def(v1), val_hi, lane, src_hi); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi); |
| emit_split_vector(ctx, dst, 2); |
| } else { |
| isel_err(&instr->instr, "Unimplemented NIR instr bit size"); |
| } |
| break; |
| } |
| case nir_intrinsic_mbcnt_amd: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp add_src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| /* Fit 64-bit mask for wave32 */ |
| src = emit_extract_vector(ctx, src, 0, RegClass(src.type(), bld.lm.size())); |
| emit_mbcnt(ctx, dst, Operand(src), Operand(add_src)); |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_lane_permute_16_amd: { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| assert(ctx->program->gfx_level >= GFX10); |
| |
| if (src.regClass() == s1) { |
| bld.copy(Definition(dst), src); |
| } else if (dst.regClass() == v1 && src.regClass() == v1) { |
| bld.vop3(aco_opcode::v_permlane16_b32, Definition(dst), src, |
| bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)), |
| bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa))); |
| } else { |
| isel_err(&instr->instr, "Unimplemented lane_permute_16_amd"); |
| } |
| break; |
| } |
| case nir_intrinsic_load_helper_invocation: |
| case nir_intrinsic_is_helper_invocation: { |
| /* load_helper() after demote() get lowered to is_helper(). |
| * Otherwise, these two behave the same. */ |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.pseudo(aco_opcode::p_is_helper, Definition(dst), Operand(exec, bld.lm)); |
| ctx->program->needs_exact = true; |
| break; |
| } |
| case nir_intrinsic_demote: |
| case nir_intrinsic_demote_if: { |
| Operand cond = Operand::c32(-1u); |
| if (instr->intrinsic == nir_intrinsic_demote_if) { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| assert(src.regClass() == bld.lm); |
| cond = |
| bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); |
| } |
| |
| bld.pseudo(aco_opcode::p_demote_to_helper, cond); |
| |
| if (ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent) |
| ctx->cf_info.exec_potentially_empty_discard = true; |
| |
| ctx->block->kind |= block_kind_uses_discard; |
| ctx->program->needs_exact = true; |
| break; |
| } |
| case nir_intrinsic_terminate: |
| case nir_intrinsic_terminate_if: |
| case nir_intrinsic_discard: |
| case nir_intrinsic_discard_if: { |
| Operand cond = Operand::c32(-1u); |
| if (instr->intrinsic == nir_intrinsic_discard_if || |
| instr->intrinsic == nir_intrinsic_terminate_if) { |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| assert(src.regClass() == bld.lm); |
| cond = |
| bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)); |
| |
| ctx->cf_info.had_divergent_discard |= nir_src_is_divergent(instr->src[0]); |
| } |
| |
| bld.pseudo(aco_opcode::p_discard_if, cond); |
| |
| if (ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent) |
| ctx->cf_info.exec_potentially_empty_discard = true; |
| ctx->cf_info.had_divergent_discard |= in_exec_divergent_or_in_loop(ctx); |
| ctx->block->kind |= block_kind_uses_discard; |
| ctx->program->needs_exact = true; |
| break; |
| } |
| case nir_intrinsic_first_invocation: { |
| bld.sop1(Builder::s_ff1_i32, Definition(get_ssa_temp(ctx, &instr->def)), |
| Operand(exec, bld.lm)); |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_last_invocation: { |
| Temp flbit = bld.sop1(Builder::s_flbit_i32, bld.def(s1), Operand(exec, bld.lm)); |
| bld.sop2(aco_opcode::s_sub_i32, Definition(get_ssa_temp(ctx, &instr->def)), bld.def(s1, scc), |
| Operand::c32(ctx->program->wave_size - 1u), flbit); |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_elect: { |
| /* p_elect is lowered in aco_insert_exec_mask. |
| * Use exec as an operand so value numbering and the pre-RA optimizer won't recognize |
| * two p_elect with different exec masks as the same. |
| */ |
| bld.pseudo(aco_opcode::p_elect, Definition(get_ssa_temp(ctx, &instr->def)), |
| Operand(exec, bld.lm)); |
| set_wqm(ctx); |
| break; |
| } |
| case nir_intrinsic_shader_clock: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| if (nir_intrinsic_memory_scope(instr) == SCOPE_SUBGROUP && |
| ctx->options->gfx_level >= GFX10_3) { |
| /* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */ |
| Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29); |
| bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand::zero()); |
| } else if (nir_intrinsic_memory_scope(instr) == SCOPE_DEVICE && |
| ctx->options->gfx_level >= GFX11) { |
| bld.sop1(aco_opcode::s_sendmsg_rtn_b64, Definition(dst), |
| Operand::c32(sendmsg_rtn_get_realtime)); |
| } else { |
| aco_opcode opcode = nir_intrinsic_memory_scope(instr) == SCOPE_DEVICE |
| ? aco_opcode::s_memrealtime |
| : aco_opcode::s_memtime; |
| bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile)); |
| } |
| emit_split_vector(ctx, dst, 2); |
| break; |
| } |
| case nir_intrinsic_load_vertex_id_zero_base: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->vertex_id)); |
| break; |
| } |
| case nir_intrinsic_load_first_vertex: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->base_vertex)); |
| break; |
| } |
| case nir_intrinsic_load_base_instance: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->start_instance)); |
| break; |
| } |
| case nir_intrinsic_load_instance_id: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->instance_id)); |
| break; |
| } |
| case nir_intrinsic_load_draw_id: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->draw_id)); |
| break; |
| } |
| case nir_intrinsic_load_invocation_id: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) { |
| if (ctx->options->gfx_level >= GFX10) |
| bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand::c32(127u), |
| get_arg(ctx, ctx->args->gs_invocation_id)); |
| else |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_invocation_id)); |
| } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) { |
| bld.vop3(aco_opcode::v_bfe_u32, Definition(dst), get_arg(ctx, ctx->args->tcs_rel_ids), |
| Operand::c32(8u), Operand::c32(5u)); |
| } else { |
| unreachable("Unsupported stage for load_invocation_id"); |
| } |
| |
| break; |
| } |
| case nir_intrinsic_load_primitive_id: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| switch (ctx->shader->info.stage) { |
| case MESA_SHADER_GEOMETRY: |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_prim_id)); |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->tcs_patch_id)); |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->tes_patch_id)); |
| break; |
| default: |
| if (ctx->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER && !ctx->stage.has(SWStage::GS)) { |
| /* In case of NGG, the GS threads always have the primitive ID |
| * even if there is no SW GS. */ |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_prim_id)); |
| break; |
| } else if (ctx->shader->info.stage == MESA_SHADER_VERTEX) { |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->vs_prim_id)); |
| break; |
| } |
| unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id"); |
| } |
| |
| break; |
| } |
| case nir_intrinsic_sendmsg_amd: { |
| unsigned imm = nir_intrinsic_base(instr); |
| Temp m0_content = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| bld.sopp(aco_opcode::s_sendmsg, bld.m0(m0_content), -1, imm); |
| break; |
| } |
| case nir_intrinsic_load_gs_wave_id_amd: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| if (ctx->args->merged_wave_info.used) |
| bld.pseudo(aco_opcode::p_extract, Definition(dst), bld.def(s1, scc), |
| get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(2u), Operand::c32(8u), |
| Operand::zero()); |
| else if (ctx->args->gs_wave_id.used) |
| bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_wave_id)); |
| else |
| unreachable("Shader doesn't have GS wave ID."); |
| break; |
| } |
| case nir_intrinsic_is_subgroup_invocation_lt_amd: { |
| Temp src = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| bld.copy(Definition(get_ssa_temp(ctx, &instr->def)), lanecount_to_mask(ctx, src)); |
| break; |
| } |
| case nir_intrinsic_gds_atomic_add_amd: { |
| Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp gds_addr = get_ssa_temp(ctx, instr->src[1].ssa); |
| Temp m0_val = get_ssa_temp(ctx, instr->src[2].ssa); |
| Operand m = bld.m0((Temp)bld.copy(bld.def(s1, m0), bld.as_uniform(m0_val))); |
| bld.ds(aco_opcode::ds_add_u32, as_vgpr(ctx, gds_addr), as_vgpr(ctx, store_val), m, 0u, 0u, |
| true); |
| break; |
| } |
| case nir_intrinsic_load_sbt_base_amd: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp addr = get_arg(ctx, ctx->args->rt.sbt_descriptors); |
| assert(addr.regClass() == s2); |
| bld.copy(Definition(dst), Operand(addr)); |
| break; |
| } |
| case nir_intrinsic_bvh64_intersect_ray_amd: visit_bvh64_intersect_ray_amd(ctx, instr); break; |
| case nir_intrinsic_load_rt_dynamic_callable_stack_base_amd: |
| bld.copy(Definition(get_ssa_temp(ctx, &instr->def)), |
| get_arg(ctx, ctx->args->rt.dynamic_callable_stack_base)); |
| break; |
| case nir_intrinsic_load_resume_shader_address_amd: { |
| bld.pseudo(aco_opcode::p_resume_shader_address, Definition(get_ssa_temp(ctx, &instr->def)), |
| bld.def(s1, scc), Operand::c32(nir_intrinsic_call_idx(instr))); |
| break; |
| } |
| case nir_intrinsic_overwrite_vs_arguments_amd: { |
| ctx->arg_temps[ctx->args->vertex_id.arg_index] = get_ssa_temp(ctx, instr->src[0].ssa); |
| ctx->arg_temps[ctx->args->instance_id.arg_index] = get_ssa_temp(ctx, instr->src[1].ssa); |
| break; |
| } |
| case nir_intrinsic_overwrite_tes_arguments_amd: { |
| ctx->arg_temps[ctx->args->tes_u.arg_index] = get_ssa_temp(ctx, instr->src[0].ssa); |
| ctx->arg_temps[ctx->args->tes_v.arg_index] = get_ssa_temp(ctx, instr->src[1].ssa); |
| ctx->arg_temps[ctx->args->tes_rel_patch_id.arg_index] = get_ssa_temp(ctx, instr->src[3].ssa); |
| ctx->arg_temps[ctx->args->tes_patch_id.arg_index] = get_ssa_temp(ctx, instr->src[2].ssa); |
| break; |
| } |
| case nir_intrinsic_load_scalar_arg_amd: |
| case nir_intrinsic_load_vector_arg_amd: { |
| assert(nir_intrinsic_base(instr) < ctx->args->arg_count); |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp src = ctx->arg_temps[nir_intrinsic_base(instr)]; |
| assert(src.id()); |
| assert(src.type() == (instr->intrinsic == nir_intrinsic_load_scalar_arg_amd ? RegType::sgpr |
| : RegType::vgpr)); |
| bld.copy(Definition(dst), src); |
| emit_split_vector(ctx, dst, dst.size()); |
| break; |
| } |
| case nir_intrinsic_ordered_xfb_counter_add_amd: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp ordered_id = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp counter = get_ssa_temp(ctx, instr->src[1].ssa); |
| |
| Temp gds_base = bld.copy(bld.def(v1), Operand::c32(0u)); |
| unsigned offset0, offset1; |
| Instruction* ds_instr; |
| Operand m; |
| |
| /* Lock a GDS mutex. */ |
| ds_ordered_count_offsets(ctx, 1 << 24u, false, false, &offset0, &offset1); |
| m = bld.m0(bld.as_uniform(ordered_id)); |
| ds_instr = |
| bld.ds(aco_opcode::ds_ordered_count, bld.def(v1), gds_base, m, offset0, offset1, true); |
| ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_volatile); |
| |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, instr->num_components, 1)}; |
| unsigned write_mask = nir_intrinsic_write_mask(instr); |
| |
| for (unsigned i = 0; i < instr->num_components; i++) { |
| if (write_mask & (1 << i)) { |
| Temp chan_counter = emit_extract_vector(ctx, counter, i, v1); |
| |
| ds_instr = bld.ds(aco_opcode::ds_add_gs_reg_rtn, bld.def(v1), Operand(), chan_counter, |
| i * 4, 0u, true); |
| ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_atomicrmw); |
| |
| vec->operands[i] = Operand(ds_instr->definitions[0].getTemp()); |
| } else { |
| vec->operands[i] = Operand::zero(); |
| } |
| } |
| |
| vec->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| |
| /* Unlock a GDS mutex. */ |
| ds_ordered_count_offsets(ctx, 1 << 24u, true, true, &offset0, &offset1); |
| m = bld.m0(bld.as_uniform(ordered_id)); |
| ds_instr = |
| bld.ds(aco_opcode::ds_ordered_count, bld.def(v1), gds_base, m, offset0, offset1, true); |
| ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_volatile); |
| |
| emit_split_vector(ctx, dst, instr->num_components); |
| break; |
| } |
| case nir_intrinsic_xfb_counter_sub_amd: { |
| unsigned write_mask = nir_intrinsic_write_mask(instr); |
| Temp counter = get_ssa_temp(ctx, instr->src[0].ssa); |
| |
| u_foreach_bit (i, write_mask) { |
| Temp chan_counter = emit_extract_vector(ctx, counter, i, v1); |
| Instruction* ds_instr; |
| |
| ds_instr = bld.ds(aco_opcode::ds_sub_gs_reg_rtn, bld.def(v1), Operand(), chan_counter, |
| i * 4, 0u, true); |
| ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_atomicrmw); |
| } |
| break; |
| } |
| case nir_intrinsic_export_amd: |
| case nir_intrinsic_export_row_amd: { |
| unsigned flags = nir_intrinsic_flags(instr); |
| unsigned target = nir_intrinsic_base(instr); |
| unsigned write_mask = nir_intrinsic_write_mask(instr); |
| |
| /* Mark vertex export block. */ |
| if (target == V_008DFC_SQ_EXP_POS || target <= V_008DFC_SQ_EXP_NULL) |
| ctx->block->kind |= block_kind_export_end; |
| |
| if (target < V_008DFC_SQ_EXP_MRTZ) |
| ctx->program->has_color_exports = true; |
| |
| const bool row_en = instr->intrinsic == nir_intrinsic_export_row_amd; |
| |
| aco_ptr<Export_instruction> exp{ |
| create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4 + row_en, 0)}; |
| |
| exp->dest = target; |
| exp->enabled_mask = write_mask; |
| exp->compressed = flags & AC_EXP_FLAG_COMPRESSED; |
| |
| /* ACO may reorder position/mrt export instructions, then mark done for last |
| * export instruction. So don't respect the nir AC_EXP_FLAG_DONE for position/mrt |
| * exports here and leave it to ACO. |
| */ |
| if (target == V_008DFC_SQ_EXP_PRIM) |
| exp->done = flags & AC_EXP_FLAG_DONE; |
| else |
| exp->done = false; |
| |
| /* ACO may reorder mrt export instructions, then mark valid mask for last |
| * export instruction. So don't respect the nir AC_EXP_FLAG_VALID_MASK for mrt |
| * exports here and leave it to ACO. |
| */ |
| if (target > V_008DFC_SQ_EXP_NULL) |
| exp->valid_mask = flags & AC_EXP_FLAG_VALID_MASK; |
| else |
| exp->valid_mask = false; |
| |
| exp->row_en = row_en; |
| |
| /* Compressed export uses two bits for a channel. */ |
| uint32_t channel_mask = |
| exp->compressed ? (write_mask & 0x3 ? 1 : 0) | (write_mask & 0xc ? 2 : 0) : write_mask; |
| |
| Temp value = get_ssa_temp(ctx, instr->src[0].ssa); |
| for (unsigned i = 0; i < 4; i++) { |
| exp->operands[i] = channel_mask & BITFIELD_BIT(i) |
| ? Operand(emit_extract_vector(ctx, value, i, v1)) |
| : Operand(v1); |
| } |
| |
| if (row_en) { |
| Temp row = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)); |
| /* Hack to prevent the RA from moving the source into m0 and then back to a normal SGPR. */ |
| row = bld.copy(bld.def(s1, m0), row); |
| exp->operands[4] = bld.m0(row); |
| } |
| |
| ctx->block->instructions.emplace_back(std::move(exp)); |
| break; |
| } |
| case nir_intrinsic_export_dual_src_blend_amd: { |
| Temp val0 = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp val1 = get_ssa_temp(ctx, instr->src[1].ssa); |
| unsigned write_mask = nir_intrinsic_write_mask(instr); |
| |
| struct aco_export_mrt mrt0, mrt1; |
| for (unsigned i = 0; i < 4; i++) { |
| mrt0.out[i] = write_mask & BITFIELD_BIT(i) ? Operand(emit_extract_vector(ctx, val0, i, v1)) |
| : Operand(v1); |
| |
| mrt1.out[i] = write_mask & BITFIELD_BIT(i) ? Operand(emit_extract_vector(ctx, val1, i, v1)) |
| : Operand(v1); |
| } |
| mrt0.enabled_channels = mrt1.enabled_channels = write_mask; |
| |
| create_fs_dual_src_export_gfx11(ctx, &mrt0, &mrt1); |
| |
| ctx->block->kind |= block_kind_export_end; |
| break; |
| } |
| case nir_intrinsic_strict_wqm_coord_amd: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp src = get_ssa_temp(ctx, instr->src[0].ssa); |
| Temp tmp = bld.tmp(RegClass::get(RegType::vgpr, dst.bytes())); |
| unsigned begin_size = nir_intrinsic_base(instr); |
| |
| unsigned num_src = 1; |
| auto it = ctx->allocated_vec.find(src.id()); |
| if (it != ctx->allocated_vec.end()) |
| num_src = src.bytes() / it->second[0].bytes(); |
| |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, num_src + !!begin_size, 1)}; |
| |
| if (begin_size) |
| vec->operands[0] = Operand(RegClass::get(RegType::vgpr, begin_size)); |
| for (unsigned i = 0; i < num_src; i++) { |
| Temp comp = it != ctx->allocated_vec.end() ? it->second[i] : src; |
| vec->operands[i + !!begin_size] = Operand(comp); |
| } |
| |
| vec->definitions[0] = Definition(tmp); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| |
| bld.pseudo(aco_opcode::p_start_linear_vgpr, Definition(dst), tmp); |
| break; |
| } |
| case nir_intrinsic_load_lds_ngg_scratch_base_amd: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.sop1(aco_opcode::p_load_symbol, Definition(dst), |
| Operand::c32(aco_symbol_lds_ngg_scratch_base)); |
| break; |
| } |
| case nir_intrinsic_load_lds_ngg_gs_out_vertex_base_amd: { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| bld.sop1(aco_opcode::p_load_symbol, Definition(dst), |
| Operand::c32(aco_symbol_lds_ngg_gs_out_vertex_base)); |
| break; |
| } |
| case nir_intrinsic_store_scalar_arg_amd: { |
| ctx->arg_temps[nir_intrinsic_base(instr)] = |
| bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa)); |
| break; |
| } |
| case nir_intrinsic_store_vector_arg_amd: { |
| ctx->arg_temps[nir_intrinsic_base(instr)] = |
| as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)); |
| break; |
| } |
| case nir_intrinsic_begin_invocation_interlock: { |
| pops_await_overlapped_waves(ctx); |
| break; |
| } |
| case nir_intrinsic_end_invocation_interlock: { |
| if (ctx->options->gfx_level < GFX11) |
| bld.pseudo(aco_opcode::p_pops_gfx9_ordered_section_done); |
| break; |
| } |
| case nir_intrinsic_cmat_muladd_amd: visit_cmat_muladd(ctx, instr); break; |
| default: |
| isel_err(&instr->instr, "Unimplemented intrinsic instr"); |
| abort(); |
| |
| break; |
| } |
| } |
| |
| void |
| get_const_vec(nir_def* vec, nir_const_value* cv[4]) |
| { |
| if (vec->parent_instr->type != nir_instr_type_alu) |
| return; |
| nir_alu_instr* vec_instr = nir_instr_as_alu(vec->parent_instr); |
| if (vec_instr->op != nir_op_vec(vec->num_components)) |
| return; |
| |
| for (unsigned i = 0; i < vec->num_components; i++) { |
| cv[i] = |
| vec_instr->src[i].swizzle[0] == 0 ? nir_src_as_const_value(vec_instr->src[i].src) : NULL; |
| } |
| } |
| |
| void |
| visit_tex(isel_context* ctx, nir_tex_instr* instr) |
| { |
| assert(instr->op != nir_texop_samples_identical); |
| |
| Builder bld(ctx->program, ctx->block); |
| bool has_bias = false, has_lod = false, level_zero = false, has_compare = false, |
| has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, |
| has_sample_index = false, has_clamped_lod = false, has_wqm_coord = false; |
| Temp resource, sampler, bias = Temp(), compare = Temp(), sample_index = Temp(), lod = Temp(), |
| offset = Temp(), ddx = Temp(), ddy = Temp(), clamped_lod = Temp(), |
| coord = Temp(), wqm_coord = Temp(); |
| std::vector<Temp> coords; |
| std::vector<Temp> derivs; |
| nir_const_value* const_offset[4] = {NULL, NULL, NULL, NULL}; |
| |
| for (unsigned i = 0; i < instr->num_srcs; i++) { |
| switch (instr->src[i].src_type) { |
| case nir_tex_src_texture_handle: |
| resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[i].src.ssa)); |
| break; |
| case nir_tex_src_sampler_handle: |
| sampler = bld.as_uniform(get_ssa_temp(ctx, instr->src[i].src.ssa)); |
| break; |
| default: break; |
| } |
| } |
| |
| bool tg4_integer_workarounds = ctx->options->gfx_level <= GFX8 && instr->op == nir_texop_tg4 && |
| (instr->dest_type & (nir_type_int | nir_type_uint)); |
| bool tg4_integer_cube_workaround = |
| tg4_integer_workarounds && instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE; |
| |
| bool a16 = false, g16 = false; |
| |
| int coord_idx = nir_tex_instr_src_index(instr, nir_tex_src_coord); |
| if (coord_idx > 0) |
| a16 = instr->src[coord_idx].src.ssa->bit_size == 16; |
| |
| int ddx_idx = nir_tex_instr_src_index(instr, nir_tex_src_ddx); |
| if (ddx_idx > 0) |
| g16 = instr->src[ddx_idx].src.ssa->bit_size == 16; |
| |
| for (unsigned i = 0; i < instr->num_srcs; i++) { |
| switch (instr->src[i].src_type) { |
| case nir_tex_src_coord: { |
| assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); |
| coord = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16); |
| break; |
| } |
| case nir_tex_src_backend1: { |
| assert(instr->src[i].src.ssa->bit_size == 32); |
| wqm_coord = get_ssa_temp(ctx, instr->src[i].src.ssa); |
| has_wqm_coord = true; |
| break; |
| } |
| case nir_tex_src_bias: |
| assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); |
| /* Doesn't need get_ssa_temp_tex because we pack it into its own dword anyway. */ |
| bias = get_ssa_temp(ctx, instr->src[i].src.ssa); |
| has_bias = true; |
| break; |
| case nir_tex_src_lod: { |
| if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0) { |
| level_zero = true; |
| } else { |
| assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); |
| lod = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16); |
| has_lod = true; |
| } |
| break; |
| } |
| case nir_tex_src_min_lod: |
| assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); |
| clamped_lod = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16); |
| has_clamped_lod = true; |
| break; |
| case nir_tex_src_comparator: |
| if (instr->is_shadow) { |
| assert(instr->src[i].src.ssa->bit_size == 32); |
| compare = get_ssa_temp(ctx, instr->src[i].src.ssa); |
| has_compare = true; |
| } |
| break; |
| case nir_tex_src_offset: |
| case nir_tex_src_backend2: |
| assert(instr->src[i].src.ssa->bit_size == 32); |
| offset = get_ssa_temp(ctx, instr->src[i].src.ssa); |
| get_const_vec(instr->src[i].src.ssa, const_offset); |
| has_offset = true; |
| break; |
| case nir_tex_src_ddx: |
| assert(instr->src[i].src.ssa->bit_size == (g16 ? 16 : 32)); |
| ddx = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, g16); |
| has_ddx = true; |
| break; |
| case nir_tex_src_ddy: |
| assert(instr->src[i].src.ssa->bit_size == (g16 ? 16 : 32)); |
| ddy = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, g16); |
| has_ddy = true; |
| break; |
| case nir_tex_src_ms_index: |
| assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32)); |
| sample_index = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16); |
| has_sample_index = true; |
| break; |
| case nir_tex_src_texture_offset: |
| case nir_tex_src_sampler_offset: |
| default: break; |
| } |
| } |
| |
| if (has_wqm_coord) { |
| assert(instr->op == nir_texop_tex || instr->op == nir_texop_txb || |
| instr->op == nir_texop_lod); |
| assert(wqm_coord.regClass().is_linear_vgpr()); |
| assert(!a16 && !g16); |
| } |
| |
| if (instr->op == nir_texop_tg4 && !has_lod && !instr->is_gather_implicit_lod) |
| level_zero = true; |
| |
| if (has_offset) { |
| assert(instr->op != nir_texop_txf); |
| |
| aco_ptr<Instruction> tmp_instr; |
| Temp acc, pack = Temp(); |
| |
| uint32_t pack_const = 0; |
| for (unsigned i = 0; i < offset.size(); i++) { |
| if (!const_offset[i]) |
| continue; |
| pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i); |
| } |
| |
| if (offset.type() == RegType::sgpr) { |
| for (unsigned i = 0; i < offset.size(); i++) { |
| if (const_offset[i]) |
| continue; |
| |
| acc = emit_extract_vector(ctx, offset, i, s1); |
| acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, |
| Operand::c32(0x3Fu)); |
| |
| if (i) { |
| acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, |
| Operand::c32(8u * i)); |
| } |
| |
| if (pack == Temp()) { |
| pack = acc; |
| } else { |
| pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc); |
| } |
| } |
| |
| if (pack_const && pack != Temp()) |
| pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), |
| Operand::c32(pack_const), pack); |
| } else { |
| for (unsigned i = 0; i < offset.size(); i++) { |
| if (const_offset[i]) |
| continue; |
| |
| acc = emit_extract_vector(ctx, offset, i, v1); |
| acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x3Fu), acc); |
| |
| if (i) { |
| acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(8u * i), acc); |
| } |
| |
| if (pack == Temp()) { |
| pack = acc; |
| } else { |
| pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc); |
| } |
| } |
| |
| if (pack_const && pack != Temp()) |
| pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand::c32(pack_const), pack); |
| } |
| if (pack == Temp()) |
| offset = bld.copy(bld.def(v1), Operand::c32(pack_const)); |
| else |
| offset = pack; |
| } |
| |
| std::vector<Temp> unpacked_coord; |
| if (coord != Temp()) |
| unpacked_coord.push_back(coord); |
| if (has_sample_index) |
| unpacked_coord.push_back(sample_index); |
| if (has_lod) |
| unpacked_coord.push_back(lod); |
| if (has_clamped_lod) |
| unpacked_coord.push_back(clamped_lod); |
| |
| coords = emit_pack_v1(ctx, unpacked_coord); |
| |
| /* pack derivatives */ |
| if (has_ddx || has_ddy) { |
| assert(a16 == g16 || ctx->options->gfx_level >= GFX10); |
| std::array<Temp, 2> ddxddy = {ddx, ddy}; |
| for (Temp tmp : ddxddy) { |
| if (tmp == Temp()) |
| continue; |
| std::vector<Temp> unpacked = {tmp}; |
| for (Temp derv : emit_pack_v1(ctx, unpacked)) |
| derivs.push_back(derv); |
| } |
| has_derivs = true; |
| } |
| |
| unsigned dim = 0; |
| bool da = false; |
| if (instr->sampler_dim != GLSL_SAMPLER_DIM_BUF) { |
| dim = ac_get_sampler_dim(ctx->options->gfx_level, instr->sampler_dim, instr->is_array); |
| da = should_declare_array((ac_image_dim)dim); |
| } |
| |
| /* Build tex instruction */ |
| unsigned dmask = nir_def_components_read(&instr->def) & 0xf; |
| if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) |
| dmask = u_bit_consecutive(0, util_last_bit(dmask)); |
| if (instr->is_sparse) |
| dmask = MAX2(dmask, 1) | 0x10; |
| bool d16 = instr->def.bit_size == 16; |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| Temp tmp_dst = dst; |
| |
| /* gather4 selects the component by dmask and always returns vec4 (vec5 if sparse) */ |
| if (instr->op == nir_texop_tg4) { |
| assert(instr->def.num_components == (4 + instr->is_sparse)); |
| if (instr->is_shadow) |
| dmask = 1; |
| else |
| dmask = 1 << instr->component; |
| if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr) |
| tmp_dst = bld.tmp(instr->is_sparse ? v5 : (d16 ? v2 : v4)); |
| } else if (instr->op == nir_texop_fragment_mask_fetch_amd) { |
| tmp_dst = bld.tmp(v1); |
| } else if (util_bitcount(dmask) != instr->def.num_components || dst.type() == RegType::sgpr) { |
| unsigned bytes = util_bitcount(dmask) * instr->def.bit_size / 8; |
| tmp_dst = bld.tmp(RegClass::get(RegType::vgpr, bytes)); |
| } |
| |
| Temp tg4_compare_cube_wa64 = Temp(); |
| |
| if (tg4_integer_workarounds) { |
| Temp half_texel[2]; |
| if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) { |
| half_texel[0] = half_texel[1] = bld.copy(bld.def(v1), Operand::c32(0xbf000000 /*-0.5*/)); |
| } else { |
| Temp tg4_lod = bld.copy(bld.def(v1), Operand::zero()); |
| Temp size = bld.tmp(v2); |
| MIMG_instruction* tex = emit_mimg(bld, aco_opcode::image_get_resinfo, size, resource, |
| Operand(s4), std::vector<Temp>{tg4_lod}); |
| tex->dim = dim; |
| tex->dmask = 0x3; |
| tex->da = da; |
| emit_split_vector(ctx, size, size.size()); |
| |
| for (unsigned i = 0; i < 2; i++) { |
| half_texel[i] = emit_extract_vector(ctx, size, i, v1); |
| half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]); |
| half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]); |
| half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), |
| Operand::c32(0xbf000000 /*-0.5*/), half_texel[i]); |
| } |
| |
| if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D && !instr->is_array) { |
| /* In vulkan, whether the sampler uses unnormalized |
| * coordinates or not is a dynamic property of the |
| * sampler. Hence, to figure out whether or not we |
| * need to divide by the texture size, we need to test |
| * the sampler at runtime. This tests the bit set by |
| * radv_init_sampler(). |
| */ |
| unsigned bit_idx = ffs(S_008F30_FORCE_UNNORMALIZED(1)) - 1; |
| Temp dword0 = emit_extract_vector(ctx, sampler, 0, s1); |
| Temp not_needed = |
| bld.sopc(aco_opcode::s_bitcmp0_b32, bld.def(s1, scc), dword0, Operand::c32(bit_idx)); |
| |
| not_needed = bool_to_vector_condition(ctx, not_needed); |
| half_texel[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), |
| Operand::c32(0xbf000000 /*-0.5*/), half_texel[0], not_needed); |
| half_texel[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), |
| Operand::c32(0xbf000000 /*-0.5*/), half_texel[1], not_needed); |
| } |
| } |
| |
| Temp new_coords[2] = {bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]), |
| bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])}; |
| |
| if (tg4_integer_cube_workaround) { |
| /* see comment in ac_nir_to_llvm.c's lower_gather4_integer() */ |
| Temp* const desc = (Temp*)alloca(resource.size() * sizeof(Temp)); |
| aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_split_vector, Format::PSEUDO, 1, resource.size())}; |
| split->operands[0] = Operand(resource); |
| for (unsigned i = 0; i < resource.size(); i++) { |
| desc[i] = bld.tmp(s1); |
| split->definitions[i] = Definition(desc[i]); |
| } |
| ctx->block->instructions.emplace_back(std::move(split)); |
| |
| Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], |
| Operand::c32(20u | (6u << 16))); |
| Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt, |
| Operand::c32(V_008F14_IMG_DATA_FORMAT_8_8_8_8)); |
| |
| Temp nfmt; |
| if (instr->dest_type & nir_type_uint) { |
| nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), |
| Operand::c32(V_008F14_IMG_NUM_FORMAT_USCALED), |
| Operand::c32(V_008F14_IMG_NUM_FORMAT_UINT), bld.scc(compare_cube_wa)); |
| } else { |
| nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), |
| Operand::c32(V_008F14_IMG_NUM_FORMAT_SSCALED), |
| Operand::c32(V_008F14_IMG_NUM_FORMAT_SINT), bld.scc(compare_cube_wa)); |
| } |
| tg4_compare_cube_wa64 = bld.tmp(bld.lm); |
| bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64); |
| |
| nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, |
| Operand::c32(26u)); |
| |
| desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1], |
| Operand::c32(C_008F14_NUM_FORMAT)); |
| desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt); |
| |
| aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, resource.size(), 1)}; |
| for (unsigned i = 0; i < resource.size(); i++) |
| vec->operands[i] = Operand(desc[i]); |
| resource = bld.tmp(resource.regClass()); |
| vec->definitions[0] = Definition(resource); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| |
| new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), new_coords[0], coords[0], |
| tg4_compare_cube_wa64); |
| new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), new_coords[1], coords[1], |
| tg4_compare_cube_wa64); |
| } |
| coords[0] = new_coords[0]; |
| coords[1] = new_coords[1]; |
| } |
| |
| if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) { |
| // FIXME: if (ctx->abi->gfx9_stride_size_workaround) return |
| // ac_build_buffer_load_format_gfx9_safe() |
| |
| assert(coords.size() == 1); |
| aco_opcode op; |
| if (d16) { |
| switch (util_last_bit(dmask & 0xf)) { |
| case 1: op = aco_opcode::buffer_load_format_d16_x; break; |
| case 2: op = aco_opcode::buffer_load_format_d16_xy; break; |
| case 3: op = aco_opcode::buffer_load_format_d16_xyz; break; |
| case 4: op = aco_opcode::buffer_load_format_d16_xyzw; break; |
| default: unreachable("Tex instruction loads more than 4 components."); |
| } |
| } else { |
| switch (util_last_bit(dmask & 0xf)) { |
| case 1: op = aco_opcode::buffer_load_format_x; break; |
| case 2: op = aco_opcode::buffer_load_format_xy; break; |
| case 3: op = aco_opcode::buffer_load_format_xyz; break; |
| case 4: op = aco_opcode::buffer_load_format_xyzw; break; |
| default: unreachable("Tex instruction loads more than 4 components."); |
| } |
| } |
| |
| aco_ptr<MUBUF_instruction> mubuf{ |
| create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3 + instr->is_sparse, 1)}; |
| mubuf->operands[0] = Operand(resource); |
| mubuf->operands[1] = Operand(coords[0]); |
| mubuf->operands[2] = Operand::c32(0); |
| mubuf->definitions[0] = Definition(tmp_dst); |
| mubuf->idxen = true; |
| mubuf->tfe = instr->is_sparse; |
| if (mubuf->tfe) |
| mubuf->operands[3] = emit_tfe_init(bld, tmp_dst); |
| ctx->block->instructions.emplace_back(std::move(mubuf)); |
| |
| expand_vector(ctx, tmp_dst, dst, instr->def.num_components, dmask); |
| return; |
| } |
| |
| /* gather MIMG address components */ |
| std::vector<Temp> args; |
| if (has_wqm_coord) { |
| args.emplace_back(wqm_coord); |
| if (!(ctx->block->kind & block_kind_top_level)) |
| ctx->unended_linear_vgprs.push_back(wqm_coord); |
| } |
| if (has_offset) |
| args.emplace_back(offset); |
| if (has_bias) |
| args.emplace_back(emit_pack_v1(ctx, {bias})[0]); |
| if (has_compare) |
| args.emplace_back(compare); |
| if (has_derivs) |
| args.insert(args.end(), derivs.begin(), derivs.end()); |
| |
| args.insert(args.end(), coords.begin(), coords.end()); |
| |
| if (instr->op == nir_texop_txf || instr->op == nir_texop_fragment_fetch_amd || |
| instr->op == nir_texop_fragment_mask_fetch_amd || instr->op == nir_texop_txf_ms) { |
| aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || |
| instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS |
| ? aco_opcode::image_load |
| : aco_opcode::image_load_mip; |
| Operand vdata = instr->is_sparse ? emit_tfe_init(bld, tmp_dst) : Operand(v1); |
| MIMG_instruction* tex = emit_mimg(bld, op, tmp_dst, resource, Operand(s4), args, vdata); |
| if (instr->op == nir_texop_fragment_mask_fetch_amd) |
| tex->dim = da ? ac_image_2darray : ac_image_2d; |
| else |
| tex->dim = dim; |
| tex->dmask = dmask & 0xf; |
| tex->unrm = true; |
| tex->da = da; |
| tex->tfe = instr->is_sparse; |
| tex->d16 = d16; |
| tex->a16 = a16; |
| |
| if (instr->op == nir_texop_fragment_mask_fetch_amd) { |
| /* Use 0x76543210 if the image doesn't have FMASK. */ |
| assert(dmask == 1 && dst.bytes() == 4); |
| assert(dst.id() != tmp_dst.id()); |
| |
| if (dst.regClass() == s1) { |
| Temp is_not_null = bld.sopc(aco_opcode::s_cmp_lg_u32, bld.def(s1, scc), Operand::zero(), |
| emit_extract_vector(ctx, resource, 1, s1)); |
| bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bld.as_uniform(tmp_dst), |
| Operand::c32(0x76543210), bld.scc(is_not_null)); |
| } else { |
| Temp is_not_null = bld.tmp(bld.lm); |
| bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(is_not_null), Operand::zero(), |
| emit_extract_vector(ctx, resource, 1, s1)); |
| bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), |
| bld.copy(bld.def(v1), Operand::c32(0x76543210)), tmp_dst, is_not_null); |
| } |
| } else { |
| expand_vector(ctx, tmp_dst, dst, instr->def.num_components, dmask); |
| } |
| return; |
| } |
| |
| bool separate_g16 = ctx->options->gfx_level >= GFX10 && g16; |
| |
| // TODO: would be better to do this by adding offsets, but needs the opcodes ordered. |
| aco_opcode opcode = aco_opcode::image_sample; |
| if (has_offset) { /* image_sample_*_o */ |
| if (has_clamped_lod) { |
| if (has_compare) { |
| opcode = aco_opcode::image_sample_c_cl_o; |
| if (separate_g16) |
| opcode = aco_opcode::image_sample_c_d_cl_o_g16; |
| else if (has_derivs) |
| opcode = aco_opcode::image_sample_c_d_cl_o; |
| if (has_bias) |
| opcode = aco_opcode::image_sample_c_b_cl_o; |
| } else { |
| opcode = aco_opcode::image_sample_cl_o; |
| if (separate_g16) |
| opcode = aco_opcode::image_sample_d_cl_o_g16; |
| else if (has_derivs) |
| opcode = aco_opcode::image_sample_d_cl_o; |
| if (has_bias) |
| opcode = aco_opcode::image_sample_b_cl_o; |
| } |
| } else if (has_compare) { |
| opcode = aco_opcode::image_sample_c_o; |
| if (separate_g16) |
| opcode = aco_opcode::image_sample_c_d_o_g16; |
| else if (has_derivs) |
| opcode = aco_opcode::image_sample_c_d_o; |
| if (has_bias) |
| opcode = aco_opcode::image_sample_c_b_o; |
| if (level_zero) |
| opcode = aco_opcode::image_sample_c_lz_o; |
| if (has_lod) |
| opcode = aco_opcode::image_sample_c_l_o; |
| } else { |
| opcode = aco_opcode::image_sample_o; |
| if (separate_g16) |
| opcode = aco_opcode::image_sample_d_o_g16; |
| else if (has_derivs) |
| opcode = aco_opcode::image_sample_d_o; |
| if (has_bias) |
| opcode = aco_opcode::image_sample_b_o; |
| if (level_zero) |
| opcode = aco_opcode::image_sample_lz_o; |
| if (has_lod) |
| opcode = aco_opcode::image_sample_l_o; |
| } |
| } else if (has_clamped_lod) { /* image_sample_*_cl */ |
| if (has_compare) { |
| opcode = aco_opcode::image_sample_c_cl; |
| if (separate_g16) |
| opcode = aco_opcode::image_sample_c_d_cl_g16; |
| else if (has_derivs) |
| opcode = aco_opcode::image_sample_c_d_cl; |
| if (has_bias) |
| opcode = aco_opcode::image_sample_c_b_cl; |
| } else { |
| opcode = aco_opcode::image_sample_cl; |
| if (separate_g16) |
| opcode = aco_opcode::image_sample_d_cl_g16; |
| else if (has_derivs) |
| opcode = aco_opcode::image_sample_d_cl; |
| if (has_bias) |
| opcode = aco_opcode::image_sample_b_cl; |
| } |
| } else { /* no offset */ |
| if (has_compare) { |
| opcode = aco_opcode::image_sample_c; |
| if (separate_g16) |
| opcode = aco_opcode::image_sample_c_d_g16; |
| else if (has_derivs) |
| opcode = aco_opcode::image_sample_c_d; |
| if (has_bias) |
| opcode = aco_opcode::image_sample_c_b; |
| if (level_zero) |
| opcode = aco_opcode::image_sample_c_lz; |
| if (has_lod) |
| opcode = aco_opcode::image_sample_c_l; |
| } else { |
| opcode = aco_opcode::image_sample; |
| if (separate_g16) |
| opcode = aco_opcode::image_sample_d_g16; |
| else if (has_derivs) |
| opcode = aco_opcode::image_sample_d; |
| if (has_bias) |
| opcode = aco_opcode::image_sample_b; |
| if (level_zero) |
| opcode = aco_opcode::image_sample_lz; |
| if (has_lod) |
| opcode = aco_opcode::image_sample_l; |
| } |
| } |
| |
| if (instr->op == nir_texop_tg4) { |
| /* GFX11 supports implicit LOD, but the extension is unsupported. */ |
| assert(level_zero || ctx->options->gfx_level < GFX11); |
| |
| if (has_offset) { /* image_gather4_*_o */ |
| if (has_compare) { |
| opcode = aco_opcode::image_gather4_c_o; |
| if (level_zero) |
| opcode = aco_opcode::image_gather4_c_lz_o; |
| if (has_lod) |
| opcode = aco_opcode::image_gather4_c_l_o; |
| if (has_bias) |
| opcode = aco_opcode::image_gather4_c_b_o; |
| } else { |
| opcode = aco_opcode::image_gather4_o; |
| if (level_zero) |
| opcode = aco_opcode::image_gather4_lz_o; |
| if (has_lod) |
| opcode = aco_opcode::image_gather4_l_o; |
| if (has_bias) |
| opcode = aco_opcode::image_gather4_b_o; |
| } |
| } else { |
| if (has_compare) { |
| opcode = aco_opcode::image_gather4_c; |
| if (level_zero) |
| opcode = aco_opcode::image_gather4_c_lz; |
| if (has_lod) |
| opcode = aco_opcode::image_gather4_c_l; |
| if (has_bias) |
| opcode = aco_opcode::image_gather4_c_b; |
| } else { |
| opcode = aco_opcode::image_gather4; |
| if (level_zero) |
| opcode = aco_opcode::image_gather4_lz; |
| if (has_lod) |
| opcode = aco_opcode::image_gather4_l; |
| if (has_bias) |
| opcode = aco_opcode::image_gather4_b; |
| } |
| } |
| } else if (instr->op == nir_texop_lod) { |
| opcode = aco_opcode::image_get_lod; |
| } |
| |
| bool implicit_derivs = bld.program->stage == fragment_fs && !has_derivs && !has_lod && |
| !level_zero && instr->sampler_dim != GLSL_SAMPLER_DIM_MS && |
| instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS; |
| |
| Operand vdata = instr->is_sparse ? emit_tfe_init(bld, tmp_dst) : Operand(v1); |
| MIMG_instruction* tex = emit_mimg(bld, opcode, tmp_dst, resource, Operand(sampler), args, vdata); |
| tex->dim = dim; |
| tex->dmask = dmask & 0xf; |
| tex->da = da; |
| tex->unrm = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT; |
| tex->tfe = instr->is_sparse; |
| tex->d16 = d16; |
| tex->a16 = a16; |
| if (implicit_derivs) |
| set_wqm(ctx, true); |
| |
| if (tg4_integer_cube_workaround) { |
| assert(tmp_dst.id() != dst.id()); |
| assert(tmp_dst.size() == dst.size()); |
| |
| emit_split_vector(ctx, tmp_dst, tmp_dst.size()); |
| Temp val[4]; |
| for (unsigned i = 0; i < 4; i++) { |
| val[i] = emit_extract_vector(ctx, tmp_dst, i, v1); |
| Temp cvt_val; |
| if (instr->dest_type & nir_type_uint) |
| cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]); |
| else |
| cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]); |
| val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, |
| tg4_compare_cube_wa64); |
| } |
| |
| Temp tmp = dst.regClass() == tmp_dst.regClass() ? dst : bld.tmp(tmp_dst.regClass()); |
| if (instr->is_sparse) |
| tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), val[0], val[1], val[2], |
| val[3], emit_extract_vector(ctx, tmp_dst, 4, v1)); |
| else |
| tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), val[0], val[1], val[2], |
| val[3]); |
| } |
| unsigned mask = instr->op == nir_texop_tg4 ? (instr->is_sparse ? 0x1F : 0xF) : dmask; |
| expand_vector(ctx, tmp_dst, dst, instr->def.num_components, mask); |
| } |
| |
| Operand |
| get_phi_operand(isel_context* ctx, nir_def* ssa, RegClass rc, bool logical) |
| { |
| Temp tmp = get_ssa_temp(ctx, ssa); |
| if (ssa->parent_instr->type == nir_instr_type_undef) { |
| return Operand(rc); |
| } else if (logical && ssa->bit_size == 1 && |
| ssa->parent_instr->type == nir_instr_type_load_const) { |
| bool val = nir_instr_as_load_const(ssa->parent_instr)->value[0].b; |
| return Operand::c32_or_c64(val ? -1 : 0, ctx->program->lane_mask == s2); |
| } else { |
| return Operand(tmp); |
| } |
| } |
| |
| void |
| visit_phi(isel_context* ctx, nir_phi_instr* instr) |
| { |
| aco_ptr<Pseudo_instruction> phi; |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| assert(instr->def.bit_size != 1 || dst.regClass() == ctx->program->lane_mask); |
| |
| bool logical = !dst.is_linear() || instr->def.divergent; |
| logical |= (ctx->block->kind & block_kind_merge) != 0; |
| aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi; |
| |
| /* we want a sorted list of sources, since the predecessor list is also sorted */ |
| std::map<unsigned, nir_def*> phi_src; |
| nir_foreach_phi_src (src, instr) |
| phi_src[src->pred->index] = src->src.ssa; |
| |
| std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds; |
| unsigned num_operands = 0; |
| Operand* const operands = (Operand*)alloca( |
| (std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1) * sizeof(Operand)); |
| unsigned num_defined = 0; |
| unsigned cur_pred_idx = 0; |
| for (std::pair<unsigned, nir_def*> src : phi_src) { |
| if (cur_pred_idx < preds.size()) { |
| /* handle missing preds (IF merges with discard/break) and extra preds |
| * (loop exit with discard) */ |
| unsigned block = ctx->cf_info.nir_to_aco[src.first]; |
| unsigned skipped = 0; |
| while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block) |
| skipped++; |
| if (cur_pred_idx + skipped < preds.size()) { |
| for (unsigned i = 0; i < skipped; i++) |
| operands[num_operands++] = Operand(dst.regClass()); |
| cur_pred_idx += skipped; |
| } else { |
| continue; |
| } |
| } |
| /* Handle missing predecessors at the end. This shouldn't happen with loop |
| * headers and we can't ignore these sources for loop header phis. */ |
| if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size()) |
| continue; |
| cur_pred_idx++; |
| Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical); |
| operands[num_operands++] = op; |
| num_defined += !op.isUndefined(); |
| } |
| /* handle block_kind_continue_or_break at loop exit blocks */ |
| while (cur_pred_idx++ < preds.size()) |
| operands[num_operands++] = Operand(dst.regClass()); |
| |
| /* If the loop ends with a break, still add a linear continue edge in case |
| * that break is divergent or continue_or_break is used. We'll either remove |
| * this operand later in visit_loop() if it's not necessary or replace the |
| * undef with something correct. */ |
| if (!logical && ctx->block->kind & block_kind_loop_header) { |
| nir_loop* loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent); |
| nir_block* last = nir_loop_last_block(loop); |
| if (last->successors[0] != instr->instr.block) |
| operands[num_operands++] = Operand(RegClass()); |
| } |
| |
| /* we can use a linear phi in some cases if one src is undef */ |
| if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) { |
| phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, |
| num_operands, 1)); |
| |
| Block* linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]]; |
| Block* invert = &ctx->program->blocks[linear_else->linear_preds[0]]; |
| assert(invert->kind & block_kind_invert); |
| |
| unsigned then_block = invert->linear_preds[0]; |
| |
| Block* insert_block = NULL; |
| for (unsigned i = 0; i < num_operands; i++) { |
| Operand op = operands[i]; |
| if (op.isUndefined()) |
| continue; |
| insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block; |
| phi->operands[0] = op; |
| break; |
| } |
| assert(insert_block); /* should be handled by the "num_defined == 0" case above */ |
| phi->operands[1] = Operand(dst.regClass()); |
| phi->definitions[0] = Definition(dst); |
| insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi)); |
| return; |
| } |
| |
| phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1)); |
| for (unsigned i = 0; i < num_operands; i++) |
| phi->operands[i] = operands[i]; |
| phi->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi)); |
| } |
| |
| void |
| visit_undef(isel_context* ctx, nir_undef_instr* instr) |
| { |
| Temp dst = get_ssa_temp(ctx, &instr->def); |
| |
| assert(dst.type() == RegType::sgpr); |
| |
| if (dst.size() == 1) { |
| Builder(ctx->program, ctx->block).copy(Definition(dst), Operand::zero()); |
| } else { |
| aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)}; |
| for (unsigned i = 0; i < dst.size(); i++) |
| vec->operands[i] = Operand::zero(); |
| vec->definitions[0] = Definition(dst); |
| ctx->block->instructions.emplace_back(std::move(vec)); |
| } |
| } |
| |
| void |
| begin_loop(isel_context* ctx, loop_context* lc) |
| { |
| // TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true |
| append_logical_end(ctx->block); |
| ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform; |
| Builder bld(ctx->program, ctx->block); |
| bld.branch(aco_opcode::p_branch, bld.def(s2)); |
| unsigned loop_preheader_idx = ctx->block->index; |
| |
| lc->loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level)); |
| |
| ctx->program->next_loop_depth++; |
| |
| Block* loop_header = ctx->program->create_and_insert_block(); |
| loop_header->kind |= block_kind_loop_header; |
| add_edge(loop_preheader_idx, loop_header); |
| ctx->block = loop_header; |
| |
| append_logical_start(ctx->block); |
| |
| lc->header_idx_old = std::exchange(ctx->cf_info.parent_loop.header_idx, loop_header->index); |
| lc->exit_old = std::exchange(ctx->cf_info.parent_loop.exit, &lc->loop_exit); |
| lc->divergent_cont_old = std::exchange(ctx->cf_info.parent_loop.has_divergent_continue, false); |
| lc->divergent_branch_old = std::exchange(ctx->cf_info.parent_loop.has_divergent_branch, false); |
| lc->divergent_if_old = std::exchange(ctx->cf_info.parent_if.is_divergent, false); |
| } |
| |
| void |
| end_loop(isel_context* ctx, loop_context* lc) |
| { |
| // TODO: what if a loop ends with a unconditional or uniformly branched continue |
| // and this branch is never taken? |
| if (!ctx->cf_info.has_branch) { |
| unsigned loop_header_idx = ctx->cf_info.parent_loop.header_idx; |
| Builder bld(ctx->program, ctx->block); |
| append_logical_end(ctx->block); |
| |
| if (ctx->cf_info.exec_potentially_empty_discard || |
| ctx->cf_info.exec_potentially_empty_break) { |
| /* Discards can result in code running with an empty exec mask. |
| * This would result in divergent breaks not ever being taken. As a |
| * workaround, break the loop when the loop mask is empty instead of |
| * always continuing. */ |
| ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform); |
| unsigned block_idx = ctx->block->index; |
| |
| /* create helper blocks to avoid critical edges */ |
| Block* break_block = ctx->program->create_and_insert_block(); |
| break_block->kind = block_kind_uniform; |
| bld.reset(break_block); |
| bld.branch(aco_opcode::p_branch, bld.def(s2)); |
| add_linear_edge(block_idx, break_block); |
| add_linear_edge(break_block->index, &lc->loop_exit); |
| |
| Block* continue_block = ctx->program->create_and_insert_block(); |
| continue_block->kind = block_kind_uniform; |
| bld.reset(continue_block); |
| bld.branch(aco_opcode::p_branch, bld.def(s2)); |
| add_linear_edge(block_idx, continue_block); |
| add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]); |
| |
| if (!ctx->cf_info.parent_loop.has_divergent_branch) |
| add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]); |
| ctx->block = &ctx->program->blocks[block_idx]; |
| } else { |
| ctx->block->kind |= (block_kind_continue | block_kind_uniform); |
| if (!ctx->cf_info.parent_loop.has_divergent_branch) |
| add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]); |
| else |
| add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]); |
| } |
| |
| bld.reset(ctx->block); |
| bld.branch(aco_opcode::p_branch, bld.def(s2)); |
| } |
| |
| ctx->cf_info.has_branch = false; |
| ctx->program->next_loop_depth--; |
| |
| // TODO: if the loop has not a single exit, we must add one °° |
| /* emit loop successor block */ |
| ctx->block = ctx->program->insert_block(std::move(lc->loop_exit)); |
| append_logical_start(ctx->block); |
| |
| #if 0 |
| // TODO: check if it is beneficial to not branch on continues |
| /* trim linear phis in loop header */ |
| for (auto&& instr : loop_entry->instructions) { |
| if (instr->opcode == aco_opcode::p_linear_phi) { |
| aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)}; |
| new_phi->definitions[0] = instr->definitions[0]; |
| for (unsigned i = 0; i < new_phi->operands.size(); i++) |
| new_phi->operands[i] = instr->operands[i]; |
| /* check that the remaining operands are all the same */ |
| for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++) |
| assert(instr->operands[i].tempId() == instr->operands.back().tempId()); |
| instr.swap(new_phi); |
| } else if (instr->opcode == aco_opcode::p_phi) { |
| continue; |
| } else { |
| break; |
| } |
| } |
| #endif |
| |
| ctx->cf_info.parent_loop.header_idx = lc->header_idx_old; |
| ctx->cf_info.parent_loop.exit = lc->exit_old; |
| ctx->cf_info.parent_loop.has_divergent_continue = lc->divergent_cont_old; |
| ctx->cf_info.parent_loop.has_divergent_branch = lc->divergent_branch_old; |
| ctx->cf_info.parent_if.is_divergent = lc->divergent_if_old; |
| if (!ctx->block->loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) |
| ctx->cf_info.exec_potentially_empty_discard = false; |
| } |
| |
| void |
| emit_loop_jump(isel_context* ctx, bool is_break) |
| { |
| Builder bld(ctx->program, ctx->block); |
| Block* logical_target; |
| append_logical_end(ctx->block); |
| unsigned idx = ctx->block->index; |
| |
| if (is_break) { |
| logical_target = ctx->cf_info.parent_loop.exit; |
| add_logical_edge(idx, logical_target); |
| ctx->block->kind |= block_kind_break; |
| |
| if (!ctx->cf_info.parent_if.is_divergent && |
| !ctx->cf_info.parent_loop.has_divergent_continue) { |
| /* uniform break - directly jump out of the loop */ |
| ctx->block->kind |= block_kind_uniform; |
| ctx->cf_info.has_branch = true; |
| bld.branch(aco_opcode::p_branch, bld.def(s2)); |
| add_linear_edge(idx, logical_target); |
| return; |
| } |
| ctx->cf_info.parent_loop.has_divergent_branch = true; |
| } else { |
| logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx]; |
| add_logical_edge(idx, logical_target); |
| ctx->block->kind |= block_kind_continue; |
| |
| if (!ctx->cf_info.parent_if.is_divergent) { |
| /* uniform continue - directly jump to the loop header */ |
| ctx->block->kind |= block_kind_uniform; |
| ctx->cf_info.has_branch = true; |
| bld.branch(aco_opcode::p_branch, bld.def(s2)); |
| add_linear_edge(idx, logical_target); |
| return; |
| } |
| |
| /* for potential uniform breaks after this continue, |
| we must ensure that they are handled correctly */ |
| ctx->cf_info.parent_loop.has_divergent_continue = true; |
| ctx->cf_info.parent_loop.has_divergent_branch = true; |
| } |
| |
| if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) { |
| ctx->cf_info.exec_potentially_empty_break = true; |
| ctx->cf_info.exec_potentially_empty_break_depth = ctx->block->loop_nest_depth; |
| } |
| |
| /* remove critical edges from linear CFG */ |
| bld.branch(aco_opcode::p_branch, bld.def(s2)); |
| Block* break_block = ctx->program->create_and_insert_block(); |
| break_block->kind |= block_kind_uniform; |
| add_linear_edge(idx, break_block); |
| /* the loop_header pointer might be invalidated by this point */ |
| if (!is_break) |
| logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx]; |
| add_linear_edge(break_block->index, logical_target); |
| bld.reset(break_block); |
| bld.branch(aco_opcode::p_branch, bld.def(s2)); |
| |
| Block* continue_block = ctx->program->create_and_insert_block(); |
| add_linear_edge(idx, continue_block); |
| append_logical_start(continue_block); |
| ctx->block = continue_block; |
| } |
| |
| void |
| emit_loop_break(isel_context* ctx) |
| { |
| emit_loop_jump(ctx, true); |
| } |
| |
| void |
| emit_loop_continue(isel_context* ctx) |
| { |
| emit_loop_jump(ctx, false); |
| } |
| |
| void |
| visit_jump(isel_context* ctx, nir_jump_instr* instr) |
| { |
| /* visit_block() would usually do this but divergent jumps updates ctx->block */ |
| ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index; |
| |
| switch (instr->type) { |
| case nir_jump_break: emit_loop_break(ctx); break; |
| case nir_jump_continue: emit_loop_continue(ctx); break; |
| default: isel_err(&instr->instr, "Unknown NIR jump instr"); abort(); |
| } |
| } |
| |
| void |
| visit_block(isel_context* ctx, nir_block* block) |
| { |
| if (ctx->block->kind & block_kind_top_level) { |
| Builder bld(ctx->program, ctx->block); |
| for (Temp tmp : ctx->unended_linear_vgprs) |
| bld.pseudo(aco_opcode::p_end_linear_vgpr, tmp); |
| ctx->unended_linear_vgprs.clear(); |
| } |
| |
| ctx->block->instructions.reserve(ctx->block->instructions.size() + |
| exec_list_length(&block->instr_list) * 2); |
| nir_foreach_instr (instr, block) { |
| switch (instr->type) { |
| case nir_instr_type_alu: visit_alu_instr(ctx, nir_instr_as_alu(instr)); break; |
| case nir_instr_type_load_const: visit_load_const(ctx, nir_instr_as_load_const(instr)); break; |
| case nir_instr_type_intrinsic: visit_intrinsic(ctx, nir_instr_as_intrinsic(instr)); break; |
| case nir_instr_type_tex: visit_tex(ctx, nir_instr_as_tex(instr)); break; |
| case nir_instr_type_phi: visit_phi(ctx, nir_instr_as_phi(instr)); break; |
| case nir_instr_type_undef: visit_undef(ctx, nir_instr_as_undef(instr)); break; |
| case nir_instr_type_deref: break; |
| case nir_instr_type_jump: visit_jump(ctx, nir_instr_as_jump(instr)); break; |
| default: isel_err(instr, "Unknown NIR instr type"); |
| } |
| } |
| |
| if (!ctx->cf_info.parent_loop.has_divergent_branch) |
| ctx->cf_info.nir_to_aco[block->index] = ctx->block->index; |
| } |
| |
| static Operand |
| create_continue_phis(isel_context* ctx, unsigned first, unsigned last, |
| aco_ptr<Instruction>& header_phi, Operand* vals) |
| { |
| vals[0] = Operand(header_phi->definitions[0].getTemp()); |
| RegClass rc = vals[0].regClass(); |
| |
| unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth; |
| |
| unsigned next_pred = 1; |
| |
| for (unsigned idx = first + 1; idx <= last; idx++) { |
| Block& block = ctx->program->blocks[idx]; |
| if (block.loop_nest_depth != loop_nest_depth) { |
| vals[idx - first] = vals[idx - 1 - first]; |
| continue; |
| } |
| |
| if ((block.kind & block_kind_continue) && block.index != last) { |
| vals[idx - first] = header_phi->operands[next_pred]; |
| next_pred++; |
| continue; |
| } |
| |
| bool all_same = true; |
| for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++) |
| all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first]; |
| |
| Operand val; |
| if (all_same) { |
| val = vals[block.linear_preds[0] - first]; |
| } else { |
| aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>( |
| aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1)); |
| for (unsigned i = 0; i < block.linear_preds.size(); i++) |
| phi->operands[i] = vals[block.linear_preds[i] - first]; |
| val = Operand(ctx->program->allocateTmp(rc)); |
| phi->definitions[0] = Definition(val.getTemp()); |
| block.instructions.emplace(block.instructions.begin(), std::move(phi)); |
| } |
| vals[idx - first] = val; |
| } |
| |
| return vals[last - first]; |
| } |
| |
| static void begin_uniform_if_then(isel_context* ctx, if_context* ic, Temp cond); |
| static void begin_uniform_if_else(isel_context* ctx, if_context* ic); |
| static void end_uniform_if(isel_context* ctx, if_context* ic); |
| |
| static void |
| visit_loop(isel_context* ctx, nir_loop* loop) |
| { |
| assert(!nir_loop_has_continue_construct(loop)); |
| loop_context lc; |
| begin_loop(ctx, &lc); |
| |
| bool unreachable = visit_cf_list(ctx, &loop->body); |
| |
| unsigned loop_header_idx = ctx->cf_info.parent_loop.header_idx; |
| |
| /* Fixup phis in loop header from unreachable blocks. |
| * has_branch/has_divergent_branch also indicates if the loop ends with a |
| * break/continue instruction, but we don't emit those if unreachable=true */ |
| if (unreachable) { |
| assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch); |
| bool linear = ctx->cf_info.has_branch; |
| bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch; |
| for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) { |
| if ((logical && instr->opcode == aco_opcode::p_phi) || |
| (linear && instr->opcode == aco_opcode::p_linear_phi)) { |
| /* the last operand should be the one that needs to be removed */ |
| instr->operands.pop_back(); |
| } else if (!is_phi(instr)) { |
| break; |
| } |
| } |
| } |
| |
| /* Fixup linear phis in loop header from expecting a continue. Both this fixup |
| * and the previous one shouldn't both happen at once because a break in the |
| * merge block would get CSE'd */ |
| if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) { |
| unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1); |
| Operand* const vals = (Operand*)alloca(num_vals * sizeof(Operand)); |
| for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) { |
| if (instr->opcode == aco_opcode::p_linear_phi) { |
| if (ctx->cf_info.has_branch) |
| instr->operands.pop_back(); |
| else |
| instr->operands.back() = |
| create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals); |
| } else if (!is_phi(instr)) { |
| break; |
| } |
| } |
| } |
| |
| /* NIR seems to allow this, and even though the loop exit has no predecessors, SSA defs from the |
| * loop header are live. Handle this without complicating the ACO IR by creating a dummy break. |
| */ |
| if (nir_cf_node_cf_tree_next(&loop->cf_node)->predecessors->entries == 0) { |
| Builder bld(ctx->program, ctx->block); |
| Temp cond = bld.copy(bld.def(s1, scc), Operand::zero()); |
| if_context ic; |
| begin_uniform_if_then(ctx, &ic, cond); |
| emit_loop_break(ctx); |
| begin_uniform_if_else(ctx, &ic); |
| end_uniform_if(ctx, &ic); |
| } |
| |
| end_loop(ctx, &lc); |
| } |
| |
| static void |
| begin_divergent_if_then(isel_context* ctx, if_context* ic, Temp cond, |
| nir_selection_control sel_ctrl = nir_selection_control_none) |
| { |
| ic->cond = cond; |
| |
| append_logical_end(ctx->block); |
| ctx->block->kind |= block_kind_branch; |
| |
| /* branch to linear then block */ |
| assert(cond.regClass() == ctx->program->lane_mask); |
| aco_ptr<Pseudo_branch_instruction> branch; |
| branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, |
| Format::PSEUDO_BRANCH, 1, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| branch->operands[0] = Operand(cond); |
| branch->selection_control_remove = sel_ctrl == nir_selection_control_flatten || |
| sel_ctrl == nir_selection_control_divergent_always_taken; |
| ctx->block->instructions.push_back(std::move(branch)); |
| |
| ic->BB_if_idx = ctx->block->index; |
| ic->BB_invert = Block(); |
| /* Invert blocks are intentionally not marked as top level because they |
| * are not part of the logical cfg. */ |
| ic->BB_invert.kind |= block_kind_invert; |
| ic->BB_endif = Block(); |
| ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level)); |
| |
| ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard; |
| ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break; |
| ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth; |
| ic->divergent_old = ctx->cf_info.parent_if.is_divergent; |
| ic->had_divergent_discard_old = ctx->cf_info.had_divergent_discard; |
| ctx->cf_info.parent_if.is_divergent = true; |
| |
| /* divergent branches use cbranch_execz */ |
| ctx->cf_info.exec_potentially_empty_discard = false; |
| ctx->cf_info.exec_potentially_empty_break = false; |
| ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; |
| |
| /** emit logical then block */ |
| ctx->program->next_divergent_if_logical_depth++; |
| Block* BB_then_logical = ctx->program->create_and_insert_block(); |
| add_edge(ic->BB_if_idx, BB_then_logical); |
| ctx->block = BB_then_logical; |
| append_logical_start(BB_then_logical); |
| } |
| |
| static void |
| begin_divergent_if_else(isel_context* ctx, if_context* ic, |
| nir_selection_control sel_ctrl = nir_selection_control_none) |
| { |
| Block* BB_then_logical = ctx->block; |
| append_logical_end(BB_then_logical); |
| /* branch from logical then block to invert block */ |
| aco_ptr<Pseudo_branch_instruction> branch; |
| branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, |
| Format::PSEUDO_BRANCH, 0, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| BB_then_logical->instructions.emplace_back(std::move(branch)); |
| add_linear_edge(BB_then_logical->index, &ic->BB_invert); |
| if (!ctx->cf_info.parent_loop.has_divergent_branch) |
| add_logical_edge(BB_then_logical->index, &ic->BB_endif); |
| BB_then_logical->kind |= block_kind_uniform; |
| assert(!ctx->cf_info.has_branch); |
| ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch; |
| ctx->cf_info.parent_loop.has_divergent_branch = false; |
| ctx->program->next_divergent_if_logical_depth--; |
| |
| /** emit linear then block */ |
| Block* BB_then_linear = ctx->program->create_and_insert_block(); |
| BB_then_linear->kind |= block_kind_uniform; |
| add_linear_edge(ic->BB_if_idx, BB_then_linear); |
| /* branch from linear then block to invert block */ |
| branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, |
| Format::PSEUDO_BRANCH, 0, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| BB_then_linear->instructions.emplace_back(std::move(branch)); |
| add_linear_edge(BB_then_linear->index, &ic->BB_invert); |
| |
| /** emit invert merge block */ |
| ctx->block = ctx->program->insert_block(std::move(ic->BB_invert)); |
| ic->invert_idx = ctx->block->index; |
| |
| /* branch to linear else block (skip else) */ |
| branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, |
| Format::PSEUDO_BRANCH, 0, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| branch->selection_control_remove = sel_ctrl == nir_selection_control_flatten || |
| sel_ctrl == nir_selection_control_divergent_always_taken; |
| ctx->block->instructions.push_back(std::move(branch)); |
| |
| ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard; |
| ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break; |
| ic->exec_potentially_empty_break_depth_old = std::min( |
| ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth); |
| /* divergent branches use cbranch_execz */ |
| ctx->cf_info.exec_potentially_empty_discard = false; |
| ctx->cf_info.exec_potentially_empty_break = false; |
| ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; |
| |
| ic->had_divergent_discard_then = ctx->cf_info.had_divergent_discard; |
| ctx->cf_info.had_divergent_discard = ic->had_divergent_discard_old; |
| |
| /** emit logical else block */ |
| ctx->program->next_divergent_if_logical_depth++; |
| Block* BB_else_logical = ctx->program->create_and_insert_block(); |
| add_logical_edge(ic->BB_if_idx, BB_else_logical); |
| add_linear_edge(ic->invert_idx, BB_else_logical); |
| ctx->block = BB_else_logical; |
| append_logical_start(BB_else_logical); |
| } |
| |
| static void |
| end_divergent_if(isel_context* ctx, if_context* ic) |
| { |
| Block* BB_else_logical = ctx->block; |
| append_logical_end(BB_else_logical); |
| |
| /* branch from logical else block to endif block */ |
| aco_ptr<Pseudo_branch_instruction> branch; |
| branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, |
| Format::PSEUDO_BRANCH, 0, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| BB_else_logical->instructions.emplace_back(std::move(branch)); |
| add_linear_edge(BB_else_logical->index, &ic->BB_endif); |
| if (!ctx->cf_info.parent_loop.has_divergent_branch) |
| add_logical_edge(BB_else_logical->index, &ic->BB_endif); |
| BB_else_logical->kind |= block_kind_uniform; |
| ctx->program->next_divergent_if_logical_depth--; |
| |
| assert(!ctx->cf_info.has_branch); |
| ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent; |
| |
| /** emit linear else block */ |
| Block* BB_else_linear = ctx->program->create_and_insert_block(); |
| BB_else_linear->kind |= block_kind_uniform; |
| add_linear_edge(ic->invert_idx, BB_else_linear); |
| |
| /* branch from linear else block to endif block */ |
| branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, |
| Format::PSEUDO_BRANCH, 0, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| BB_else_linear->instructions.emplace_back(std::move(branch)); |
| add_linear_edge(BB_else_linear->index, &ic->BB_endif); |
| |
| /** emit endif merge block */ |
| ctx->block = ctx->program->insert_block(std::move(ic->BB_endif)); |
| append_logical_start(ctx->block); |
| |
| ctx->cf_info.parent_if.is_divergent = ic->divergent_old; |
| ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old; |
| ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old; |
| ctx->cf_info.exec_potentially_empty_break_depth = std::min( |
| ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth); |
| if (ctx->block->loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth && |
| !ctx->cf_info.parent_if.is_divergent) { |
| ctx->cf_info.exec_potentially_empty_break = false; |
| ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; |
| } |
| /* uniform control flow never has an empty exec-mask */ |
| if (!ctx->block->loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) { |
| ctx->cf_info.exec_potentially_empty_discard = false; |
| ctx->cf_info.exec_potentially_empty_break = false; |
| ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX; |
| } |
| ctx->cf_info.had_divergent_discard |= ic->had_divergent_discard_then; |
| } |
| |
| static void |
| begin_uniform_if_then(isel_context* ctx, if_context* ic, Temp cond) |
| { |
| assert(cond.regClass() == s1); |
| |
| append_logical_end(ctx->block); |
| ctx->block->kind |= block_kind_uniform; |
| |
| aco_ptr<Pseudo_branch_instruction> branch; |
| aco_opcode branch_opcode = aco_opcode::p_cbranch_z; |
| branch.reset( |
| create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| branch->operands[0] = Operand(cond); |
| branch->operands[0].setFixed(scc); |
| ctx->block->instructions.emplace_back(std::move(branch)); |
| |
| ic->BB_if_idx = ctx->block->index; |
| ic->BB_endif = Block(); |
| ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level; |
| |
| ctx->cf_info.has_branch = false; |
| ctx->cf_info.parent_loop.has_divergent_branch = false; |
| |
| ic->had_divergent_discard_old = ctx->cf_info.had_divergent_discard; |
| |
| /** emit then block */ |
| ctx->program->next_uniform_if_depth++; |
| Block* BB_then = ctx->program->create_and_insert_block(); |
| add_edge(ic->BB_if_idx, BB_then); |
| append_logical_start(BB_then); |
| ctx->block = BB_then; |
| } |
| |
| static void |
| begin_uniform_if_else(isel_context* ctx, if_context* ic) |
| { |
| Block* BB_then = ctx->block; |
| |
| ic->uniform_has_then_branch = ctx->cf_info.has_branch; |
| ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch; |
| |
| if (!ic->uniform_has_then_branch) { |
| append_logical_end(BB_then); |
| /* branch from then block to endif block */ |
| aco_ptr<Pseudo_branch_instruction> branch; |
| branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, |
| Format::PSEUDO_BRANCH, 0, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| BB_then->instructions.emplace_back(std::move(branch)); |
| add_linear_edge(BB_then->index, &ic->BB_endif); |
| if (!ic->then_branch_divergent) |
| add_logical_edge(BB_then->index, &ic->BB_endif); |
| BB_then->kind |= block_kind_uniform; |
| } |
| |
| ctx->cf_info.has_branch = false; |
| ctx->cf_info.parent_loop.has_divergent_branch = false; |
| |
| ic->had_divergent_discard_then = ctx->cf_info.had_divergent_discard; |
| ctx->cf_info.had_divergent_discard = ic->had_divergent_discard_old; |
| |
| /** emit else block */ |
| Block* BB_else = ctx->program->create_and_insert_block(); |
| add_edge(ic->BB_if_idx, BB_else); |
| append_logical_start(BB_else); |
| ctx->block = BB_else; |
| } |
| |
| static void |
| end_uniform_if(isel_context* ctx, if_context* ic) |
| { |
| Block* BB_else = ctx->block; |
| |
| if (!ctx->cf_info.has_branch) { |
| append_logical_end(BB_else); |
| /* branch from then block to endif block */ |
| aco_ptr<Pseudo_branch_instruction> branch; |
| branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, |
| Format::PSEUDO_BRANCH, 0, 1)); |
| branch->definitions[0] = Definition(ctx->program->allocateTmp(s2)); |
| BB_else->instructions.emplace_back(std::move(branch)); |
| add_linear_edge(BB_else->index, &ic->BB_endif); |
| if (!ctx->cf_info.parent_loop.has_divergent_branch) |
| add_logical_edge(BB_else->index, &ic->BB_endif); |
| BB_else->kind |= block_kind_uniform; |
| } |
| |
| ctx->cf_info.has_branch &= ic->uniform_has_then_branch; |
| ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent; |
| ctx->cf_info.had_divergent_discard |= ic->had_divergent_discard_then; |
| |
| /** emit endif merge block */ |
| ctx->program->next_uniform_if_depth--; |
| if (!ctx->cf_info.has_branch) { |
| ctx->block = ctx->program->insert_block(std::move(ic->BB_endif)); |
| append_logical_start(ctx->block); |
| } |
| } |
| |
| static bool |
| visit_if(isel_context* ctx, nir_if* if_stmt) |
| { |
| Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa); |
| Builder bld(ctx->program, ctx->block); |
| aco_ptr<Pseudo_branch_instruction> branch; |
| if_context ic; |
| |
| if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */ |
| /** |
| * Uniform conditionals are represented in the following way*) : |
| * |
| * The linear and logical CFG: |
| * BB_IF |
| * / \ |
| * BB_THEN (logical) BB_ELSE (logical) |
| * \ / |
| * BB_ENDIF |
| * |
| * *) Exceptions may be due to break and continue statements within loops |
| * If a break/continue happens within uniform control flow, it branches |
| * to the loop exit/entry block. Otherwise, it branches to the next |
| * merge block. |
| **/ |
| |
| assert(cond.regClass() == ctx->program->lane_mask); |
| cond = bool_to_scalar_condition(ctx, cond); |
| |
| begin_uniform_if_then(ctx, &ic, cond); |
| visit_cf_list(ctx, &if_stmt->then_list); |
| |
| begin_uniform_if_else(ctx, &ic); |
| visit_cf_list(ctx, &if_stmt->else_list); |
| |
| end_uniform_if(ctx, &ic); |
| } else { /* non-uniform condition */ |
| /** |
| * To maintain a logical and linear CFG without critical edges, |
| * non-uniform conditionals are represented in the following way*) : |
| * |
| * The linear CFG: |
| * BB_IF |
| * / \ |
| * BB_THEN (logical) BB_THEN (linear) |
| * \ / |
| * BB_INVERT (linear) |
| * / \ |
| * BB_ELSE (logical) BB_ELSE (linear) |
| * \ / |
| * BB_ENDIF |
| * |
| * The logical CFG: |
| * BB_IF |
| * / \ |
| * BB_THEN (logical) BB_ELSE (logical) |
| * \ / |
| * BB_ENDIF |
| * |
| * *) Exceptions may be due to break and continue statements within loops |
| **/ |
| |
| begin_divergent_if_then(ctx, &ic, cond, if_stmt->control); |
| visit_cf_list(ctx, &if_stmt->then_list); |
| |
| begin_divergent_if_else(ctx, &ic, if_stmt->control); |
| visit_cf_list(ctx, &if_stmt->else_list); |
| |
| end_divergent_if(ctx, &ic); |
| } |
| |
| return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty(); |
| } |
| |
| static bool |
| visit_cf_list(isel_context* ctx, struct exec_list* list) |
| { |
| foreach_list_typed (nir_cf_node, node, node, list) { |
| switch (node->type) { |
| case nir_cf_node_block: visit_block(ctx, nir_cf_node_as_block(node)); break; |
| case nir_cf_node_if: |
| if (!visit_if(ctx, nir_cf_node_as_if(node))) |
| return true; |
| break; |
| case nir_cf_node_loop: visit_loop(ctx, nir_cf_node_as_loop(node)); break; |
| default: unreachable("unimplemented cf list type"); |
| } |
| } |
| return false; |
| } |
| |
| static void |
| export_mrt(isel_context* ctx, const struct aco_export_mrt* mrt) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| bld.exp(aco_opcode::exp, mrt->out[0], mrt->out[1], mrt->out[2], mrt->out[3], |
| mrt->enabled_channels, mrt->target, mrt->compr); |
| |
| ctx->program->has_color_exports = true; |
| } |
| |
| static bool |
| export_fs_mrt_color(isel_context* ctx, const struct aco_ps_epilog_info* info, Temp colors[4], |
| unsigned slot, struct aco_export_mrt* mrt) |
| { |
| unsigned col_format = (info->spi_shader_col_format >> (slot * 4)) & 0xf; |
| |
| if (col_format == V_028714_SPI_SHADER_ZERO) |
| return false; |
| |
| Builder bld(ctx->program, ctx->block); |
| Operand values[4]; |
| |
| for (unsigned i = 0; i < 4; ++i) { |
| values[i] = Operand(colors[i]); |
| } |
| |
| unsigned enabled_channels = 0; |
| aco_opcode compr_op = aco_opcode::num_opcodes; |
| bool compr = false; |
| bool is_16bit = colors[0].regClass() == v2b; |
| bool is_int8 = (info->color_is_int8 >> slot) & 1; |
| bool is_int10 = (info->color_is_int10 >> slot) & 1; |
| bool enable_mrt_output_nan_fixup = (ctx->options->enable_mrt_output_nan_fixup >> slot) & 1; |
| |
| /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */ |
| if (enable_mrt_output_nan_fixup && !is_16bit && |
| (col_format == V_028714_SPI_SHADER_32_R || col_format == V_028714_SPI_SHADER_32_GR || |
| col_format == V_028714_SPI_SHADER_32_AR || col_format == V_028714_SPI_SHADER_32_ABGR || |
| col_format == V_028714_SPI_SHADER_FP16_ABGR)) { |
| for (unsigned i = 0; i < 4; i++) { |
| Temp is_not_nan = |
| bld.vopc(aco_opcode::v_cmp_eq_f32, bld.def(bld.lm), values[i], values[i]); |
| values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), values[i], |
| is_not_nan); |
| } |
| } |
| |
| switch (col_format) { |
| case V_028714_SPI_SHADER_32_R: enabled_channels = 1; break; |
| |
| case V_028714_SPI_SHADER_32_GR: enabled_channels = 0x3; break; |
| |
| case V_028714_SPI_SHADER_32_AR: |
| if (ctx->options->gfx_level >= GFX10) { |
| /* Special case: on GFX10, the outputs are different for 32_AR */ |
| enabled_channels = 0x3; |
| values[1] = values[3]; |
| values[3] = Operand(v1); |
| } else { |
| enabled_channels = 0x9; |
| } |
| break; |
| |
| case V_028714_SPI_SHADER_FP16_ABGR: |
| for (int i = 0; i < 2; i++) { |
| if (is_16bit) { |
| values[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), values[i * 2], |
| values[i * 2 + 1]); |
| } else if (ctx->options->gfx_level == GFX8 || ctx->options->gfx_level == GFX9) { |
| values[i] = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, bld.def(v1), values[i * 2], |
| values[i * 2 + 1]); |
| } else { |
| values[i] = bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), values[i * 2], |
| values[i * 2 + 1]); |
| } |
| } |
| values[2] = Operand(v1); |
| values[3] = Operand(v1); |
| enabled_channels = 0xf; |
| compr = true; |
| break; |
| |
| case V_028714_SPI_SHADER_UNORM16_ABGR: |
| if (is_16bit && ctx->options->gfx_level >= GFX9) { |
| compr_op = aco_opcode::v_cvt_pknorm_u16_f16; |
| } else { |
| compr_op = aco_opcode::v_cvt_pknorm_u16_f32; |
| } |
| break; |
| |
| case V_028714_SPI_SHADER_SNORM16_ABGR: |
| if (is_16bit && ctx->options->gfx_level >= GFX9) { |
| compr_op = aco_opcode::v_cvt_pknorm_i16_f16; |
| } else { |
| compr_op = aco_opcode::v_cvt_pknorm_i16_f32; |
| } |
| break; |
| |
| case V_028714_SPI_SHADER_UINT16_ABGR: |
| compr_op = aco_opcode::v_cvt_pk_u16_u32; |
| if (is_int8 || is_int10) { |
| /* clamp */ |
| uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0; |
| |
| for (unsigned i = 0; i < 4; i++) { |
| uint32_t max = i == 3 && is_int10 ? 3 : max_rgb; |
| |
| values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1), Operand::c32(max), values[i]); |
| } |
| } else if (is_16bit) { |
| for (unsigned i = 0; i < 4; i++) { |
| Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false); |
| values[i] = Operand(tmp); |
| } |
| } |
| break; |
| |
| case V_028714_SPI_SHADER_SINT16_ABGR: |
| compr_op = aco_opcode::v_cvt_pk_i16_i32; |
| if (is_int8 || is_int10) { |
| /* clamp */ |
| uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0; |
| uint32_t min_rgb = is_int8 ? -128 : is_int10 ? -512 : 0; |
| |
| for (unsigned i = 0; i < 4; i++) { |
| uint32_t max = i == 3 && is_int10 ? 1 : max_rgb; |
| uint32_t min = i == 3 && is_int10 ? -2u : min_rgb; |
| |
| values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1), Operand::c32(max), values[i]); |
| values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand::c32(min), values[i]); |
| } |
| } else if (is_16bit) { |
| for (unsigned i = 0; i < 4; i++) { |
| Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true); |
| values[i] = Operand(tmp); |
| } |
| } |
| break; |
| |
| case V_028714_SPI_SHADER_32_ABGR: enabled_channels = 0xF; break; |
| |
| case V_028714_SPI_SHADER_ZERO: |
| default: return false; |
| } |
| |
| if (compr_op != aco_opcode::num_opcodes) { |
| values[0] = bld.vop3(compr_op, bld.def(v1), values[0], values[1]); |
| values[1] = bld.vop3(compr_op, bld.def(v1), values[2], values[3]); |
| values[2] = Operand(v1); |
| values[3] = Operand(v1); |
| enabled_channels = 0xf; |
| compr = true; |
| } else if (!compr) { |
| for (int i = 0; i < 4; i++) |
| values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1); |
| } |
| |
| if (ctx->program->gfx_level >= GFX11) { |
| /* GFX11 doesn't use COMPR for exports, but the channel mask should be |
| * 0x3 instead. |
| */ |
| enabled_channels = compr ? 0x3 : enabled_channels; |
| compr = false; |
| } |
| |
| for (unsigned i = 0; i < 4; i++) |
| mrt->out[i] = values[i]; |
| mrt->target = V_008DFC_SQ_EXP_MRT; |
| mrt->enabled_channels = enabled_channels; |
| mrt->compr = compr; |
| |
| return true; |
| } |
| |
| static void |
| export_fs_mrtz(isel_context* ctx, Temp depth, Temp stencil, Temp samplemask, Temp alpha) |
| { |
| Builder bld(ctx->program, ctx->block); |
| unsigned enabled_channels = 0; |
| bool compr = false; |
| Operand values[4]; |
| |
| for (unsigned i = 0; i < 4; ++i) { |
| values[i] = Operand(v1); |
| } |
| |
| /* Both stencil and sample mask only need 16-bits. */ |
| if (!depth.id() && !alpha.id() && (stencil.id() || samplemask.id())) { |
| compr = ctx->program->gfx_level < GFX11; /* COMPR flag */ |
| |
| if (stencil.id()) { |
| /* Stencil should be in X[23:16]. */ |
| values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(16u), stencil); |
| enabled_channels |= ctx->program->gfx_level >= GFX11 ? 0x1 : 0x3; |
| } |
| |
| if (samplemask.id()) { |
| /* SampleMask should be in Y[15:0]. */ |
| values[1] = Operand(samplemask); |
| enabled_channels |= ctx->program->gfx_level >= GFX11 ? 0x2 : 0xc; |
| } |
| } else { |
| if (depth.id()) { |
| values[0] = Operand(depth); |
| enabled_channels |= 0x1; |
| } |
| |
| if (stencil.id()) { |
| values[1] = Operand(stencil); |
| enabled_channels |= 0x2; |
| } |
| |
| if (samplemask.id()) { |
| values[2] = Operand(samplemask); |
| enabled_channels |= 0x4; |
| } |
| |
| if (alpha.id()) { |
| assert(ctx->program->gfx_level >= GFX11); |
| values[3] = Operand(alpha); |
| enabled_channels |= 0x8; |
| } |
| } |
| |
| /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X |
| * writemask component. |
| */ |
| if (ctx->options->gfx_level == GFX6 && ctx->options->family != CHIP_OLAND && |
| ctx->options->family != CHIP_HAINAN) { |
| enabled_channels |= 0x1; |
| } |
| |
| bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3], enabled_channels, |
| V_008DFC_SQ_EXP_MRTZ, compr); |
| } |
| |
| static void |
| create_fs_null_export(isel_context* ctx) |
| { |
| /* FS must always have exports. |
| * So when there are none, we need to add a null export. |
| */ |
| |
| Builder bld(ctx->program, ctx->block); |
| /* GFX11 doesn't support NULL exports, and MRT0 should be exported instead. */ |
| unsigned dest = ctx->options->gfx_level >= GFX11 ? V_008DFC_SQ_EXP_MRT : V_008DFC_SQ_EXP_NULL; |
| bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1), |
| /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, /* vm */ true); |
| |
| ctx->program->has_color_exports = true; |
| } |
| |
| static void |
| create_fs_jump_to_epilog(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| std::vector<Operand> color_exports; |
| PhysReg exports_start(256); /* VGPR 0 */ |
| |
| for (unsigned slot = FRAG_RESULT_DATA0; slot < FRAG_RESULT_DATA7 + 1; ++slot) { |
| unsigned color_index = slot - FRAG_RESULT_DATA0; |
| unsigned color_type = (ctx->output_color_types >> (color_index * 2)) & 0x3; |
| unsigned write_mask = ctx->outputs.mask[slot]; |
| |
| if (!write_mask) |
| continue; |
| |
| PhysReg color_start(exports_start.reg() + color_index * 4); |
| |
| for (unsigned i = 0; i < 4; i++) { |
| if (!(write_mask & BITFIELD_BIT(i))) { |
| color_exports.emplace_back(Operand(v1)); |
| continue; |
| } |
| |
| PhysReg chan_reg = color_start.advance(i * 4u); |
| Operand chan(ctx->outputs.temps[slot * 4u + i]); |
| |
| if (color_type == ACO_TYPE_FLOAT16) { |
| chan = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), chan); |
| } else if (color_type == ACO_TYPE_INT16 || color_type == ACO_TYPE_UINT16) { |
| bool sign_ext = color_type == ACO_TYPE_INT16; |
| Temp tmp = convert_int(ctx, bld, chan.getTemp(), 16, 32, sign_ext); |
| chan = Operand(tmp); |
| } |
| |
| chan.setFixed(chan_reg); |
| color_exports.emplace_back(chan); |
| } |
| } |
| |
| Temp continue_pc = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->program->info.ps.epilog_pc)); |
| |
| aco_ptr<Pseudo_instruction> jump{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_jump_to_epilog, Format::PSEUDO, 1 + color_exports.size(), 0)}; |
| jump->operands[0] = Operand(continue_pc); |
| for (unsigned i = 0; i < color_exports.size(); i++) { |
| jump->operands[i + 1] = color_exports[i]; |
| } |
| ctx->block->instructions.emplace_back(std::move(jump)); |
| } |
| |
| PhysReg |
| get_arg_reg(const struct ac_shader_args* args, struct ac_arg arg) |
| { |
| assert(arg.used); |
| enum ac_arg_regfile file = args->args[arg.arg_index].file; |
| unsigned reg = args->args[arg.arg_index].offset; |
| return PhysReg(file == AC_ARG_SGPR ? reg : reg + 256); |
| } |
| |
| static Operand |
| get_arg_for_end(isel_context* ctx, struct ac_arg arg) |
| { |
| return Operand(get_arg(ctx, arg), get_arg_reg(ctx->args, arg)); |
| } |
| |
| static Temp |
| get_tcs_out_current_patch_data_offset(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| const unsigned output_vertex_size = ctx->program->info.tcs.num_linked_outputs * 4u; |
| const unsigned pervertex_output_patch_size = |
| ctx->program->info.tcs.tcs_vertices_out * output_vertex_size; |
| const unsigned output_patch_stride = |
| pervertex_output_patch_size + ctx->program->info.tcs.num_linked_patch_outputs * 4u; |
| |
| Temp tcs_rel_ids = get_arg(ctx, ctx->args->tcs_rel_ids); |
| Temp rel_patch_id = |
| bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand::c32(0u), Operand::c32(8u)); |
| Temp patch_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, output_patch_stride, false); |
| |
| Temp tcs_offchip_layout = get_arg(ctx, ctx->program->info.tcs.tcs_offchip_layout); |
| |
| Temp patch_control_points = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), |
| tcs_offchip_layout, Operand::c32(0x3f)); |
| |
| Temp num_patches = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| tcs_offchip_layout, Operand::c32(0x60006)); |
| |
| Temp lshs_vertex_stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| tcs_offchip_layout, Operand::c32(0x8000c)); |
| |
| Temp input_patch_size = |
| bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), patch_control_points, lshs_vertex_stride); |
| |
| Temp output_patch0_offset = |
| bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), num_patches, input_patch_size); |
| |
| Temp output_patch_offset = |
| bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), |
| Operand::c32(pervertex_output_patch_size), output_patch0_offset); |
| |
| return bld.nuw().vadd32(bld.def(v1), patch_offset, output_patch_offset); |
| } |
| |
| static Temp |
| get_patch_base(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| const unsigned output_vertex_size = ctx->program->info.tcs.num_linked_outputs * 16u; |
| const unsigned pervertex_output_patch_size = |
| ctx->program->info.tcs.tcs_vertices_out * output_vertex_size; |
| |
| Temp num_patches = |
| bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| get_arg(ctx, ctx->program->info.tcs.tcs_offchip_layout), Operand::c32(0x60006)); |
| |
| return bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), num_patches, |
| Operand::c32(pervertex_output_patch_size)); |
| } |
| |
| static void |
| passthrough_all_args(isel_context* ctx, std::vector<Operand>& regs) |
| { |
| struct ac_arg arg; |
| arg.used = true; |
| |
| for (arg.arg_index = 0; arg.arg_index < ctx->args->arg_count; arg.arg_index++) |
| regs.emplace_back(get_arg_for_end(ctx, arg)); |
| } |
| |
| static void |
| build_end_with_regs(isel_context* ctx, std::vector<Operand>& regs) |
| { |
| aco_ptr<Pseudo_instruction> end{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_end_with_regs, Format::PSEUDO, regs.size(), 0)}; |
| |
| for (unsigned i = 0; i < regs.size(); i++) |
| end->operands[i] = regs[i]; |
| |
| ctx->block->instructions.emplace_back(std::move(end)); |
| |
| ctx->block->kind |= block_kind_end_with_regs; |
| } |
| |
| static void |
| create_tcs_jump_to_epilog(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| PhysReg vgpr_start(256); /* VGPR 0 */ |
| PhysReg sgpr_start(0); /* SGPR 0 */ |
| |
| /* SGPRs */ |
| Operand ring_offsets = Operand(get_arg(ctx, ctx->args->ring_offsets)); |
| ring_offsets.setFixed(sgpr_start); |
| |
| Operand tess_offchip_offset = Operand(get_arg(ctx, ctx->args->tess_offchip_offset)); |
| tess_offchip_offset.setFixed(sgpr_start.advance(8u)); |
| |
| Operand tcs_factor_offset = Operand(get_arg(ctx, ctx->args->tcs_factor_offset)); |
| tcs_factor_offset.setFixed(sgpr_start.advance(12u)); |
| |
| Operand tcs_offchip_layout = Operand(get_arg(ctx, ctx->program->info.tcs.tcs_offchip_layout)); |
| tcs_offchip_layout.setFixed(sgpr_start.advance(16u)); |
| |
| Operand patch_base = Operand(get_patch_base(ctx)); |
| patch_base.setFixed(sgpr_start.advance(20u)); |
| |
| /* VGPRs */ |
| Operand tcs_out_current_patch_data_offset = Operand(get_tcs_out_current_patch_data_offset(ctx)); |
| tcs_out_current_patch_data_offset.setFixed(vgpr_start); |
| |
| Operand invocation_id = |
| bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids), |
| Operand::c32(8u), Operand::c32(5u)); |
| invocation_id.setFixed(vgpr_start.advance(4u)); |
| |
| Operand rel_patch_id = |
| bld.pseudo(aco_opcode::p_extract, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids), |
| Operand::c32(0u), Operand::c32(8u), Operand::c32(0u)); |
| rel_patch_id.setFixed(vgpr_start.advance(8u)); |
| |
| Temp continue_pc = |
| convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->program->info.tcs.epilog_pc)); |
| |
| aco_ptr<Pseudo_instruction> jump{ |
| create_instruction<Pseudo_instruction>(aco_opcode::p_jump_to_epilog, Format::PSEUDO, 9, 0)}; |
| jump->operands[0] = Operand(continue_pc); |
| jump->operands[1] = ring_offsets; |
| jump->operands[2] = tess_offchip_offset; |
| jump->operands[3] = tcs_factor_offset; |
| jump->operands[4] = tcs_offchip_layout; |
| jump->operands[5] = patch_base; |
| jump->operands[6] = tcs_out_current_patch_data_offset; |
| jump->operands[7] = invocation_id; |
| jump->operands[8] = rel_patch_id; |
| ctx->block->instructions.emplace_back(std::move(jump)); |
| } |
| |
| static void |
| create_tcs_end_for_epilog(isel_context* ctx) |
| { |
| std::vector<Operand> regs; |
| |
| regs.emplace_back(get_arg_for_end(ctx, ctx->program->info.tcs.tcs_offchip_layout)); |
| regs.emplace_back(get_arg_for_end(ctx, ctx->program->info.tcs.tes_offchip_addr)); |
| regs.emplace_back(get_arg_for_end(ctx, ctx->args->tess_offchip_offset)); |
| regs.emplace_back(get_arg_for_end(ctx, ctx->args->tcs_factor_offset)); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| /* Leave a hole corresponding to the two input VGPRs. This ensures that |
| * the invocation_id output does not alias the tcs_rel_ids input, |
| * which saves a V_MOV on gfx9. |
| */ |
| unsigned vgpr = 256 + ctx->args->num_vgprs_used; |
| |
| Temp rel_patch_id = |
| bld.pseudo(aco_opcode::p_extract, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids), |
| Operand::c32(0u), Operand::c32(8u), Operand::c32(0u)); |
| regs.emplace_back(Operand(rel_patch_id, PhysReg{vgpr++})); |
| |
| Temp invocation_id = |
| bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids), |
| Operand::c32(8u), Operand::c32(5u)); |
| regs.emplace_back(Operand(invocation_id, PhysReg{vgpr++})); |
| |
| if (ctx->program->info.tcs.pass_tessfactors_by_reg) { |
| vgpr++; /* skip the tess factor LDS offset */ |
| |
| unsigned slot = VARYING_SLOT_TESS_LEVEL_OUTER; |
| u_foreach_bit (i, ctx->outputs.mask[slot]) { |
| regs.emplace_back(Operand(ctx->outputs.temps[slot * 4 + i], PhysReg{vgpr + i})); |
| } |
| vgpr += 4; |
| |
| slot = VARYING_SLOT_TESS_LEVEL_INNER; |
| u_foreach_bit (i, ctx->outputs.mask[slot]) { |
| regs.emplace_back(Operand(ctx->outputs.temps[slot * 4 + i], PhysReg{vgpr + i})); |
| } |
| } else { |
| Temp patch0_patch_data_offset = |
| bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| get_arg(ctx, ctx->program->info.tcs.vs_state_bits), Operand::c32(0xe000a)); |
| |
| Temp tf_lds_offset = |
| bld.v_mul24_imm(bld.def(v1), rel_patch_id, ctx->program->info.tcs.patch_stride); |
| tf_lds_offset = bld.nuw().vadd32(bld.def(v1), tf_lds_offset, patch0_patch_data_offset); |
| |
| regs.emplace_back(Operand(tf_lds_offset, PhysReg{vgpr})); |
| } |
| |
| build_end_with_regs(ctx, regs); |
| } |
| |
| static void |
| create_fs_end_for_epilog(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| std::vector<Operand> regs; |
| |
| regs.emplace_back(get_arg_for_end(ctx, ctx->program->info.ps.alpha_reference)); |
| |
| unsigned vgpr = 256; |
| |
| for (unsigned slot = FRAG_RESULT_DATA0; slot <= FRAG_RESULT_DATA7; slot++) { |
| unsigned index = slot - FRAG_RESULT_DATA0; |
| unsigned type = (ctx->output_color_types >> (index * 2)) & 0x3; |
| unsigned write_mask = ctx->outputs.mask[slot]; |
| |
| if (!write_mask) |
| continue; |
| |
| if (type == ACO_TYPE_ANY32) { |
| u_foreach_bit (i, write_mask) { |
| regs.emplace_back(Operand(ctx->outputs.temps[slot * 4 + i], PhysReg{vgpr + i})); |
| } |
| } else { |
| for (unsigned i = 0; i < 2; i++) { |
| unsigned mask = (write_mask >> (i * 2)) & 0x3; |
| if (!mask) |
| continue; |
| |
| unsigned chan = slot * 4 + i * 2; |
| Operand lo = mask & 0x1 ? Operand(ctx->outputs.temps[chan]) : Operand(v2b); |
| Operand hi = mask & 0x2 ? Operand(ctx->outputs.temps[chan + 1]) : Operand(v2b); |
| |
| Temp dst = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), lo, hi); |
| regs.emplace_back(Operand(dst, PhysReg{vgpr + i})); |
| } |
| } |
| vgpr += 4; |
| } |
| |
| if (ctx->outputs.mask[FRAG_RESULT_DEPTH]) |
| regs.emplace_back(Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4], PhysReg{vgpr++})); |
| |
| if (ctx->outputs.mask[FRAG_RESULT_STENCIL]) |
| regs.emplace_back(Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4], PhysReg{vgpr++})); |
| |
| if (ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) |
| regs.emplace_back(Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4], PhysReg{vgpr++})); |
| |
| build_end_with_regs(ctx, regs); |
| |
| /* Exit WQM mode finally. */ |
| ctx->program->needs_exact = true; |
| } |
| |
| Pseudo_instruction* |
| add_startpgm(struct isel_context* ctx) |
| { |
| unsigned def_count = 0; |
| for (unsigned i = 0; i < ctx->args->arg_count; i++) { |
| if (ctx->args->args[i].skip) |
| continue; |
| unsigned align = MIN2(4, util_next_power_of_two(ctx->args->args[i].size)); |
| if (ctx->args->args[i].file == AC_ARG_SGPR && ctx->args->args[i].offset % align) |
| def_count += ctx->args->args[i].size; |
| else |
| def_count++; |
| } |
| |
| Pseudo_instruction* startpgm = |
| create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, def_count); |
| ctx->block->instructions.emplace_back(startpgm); |
| for (unsigned i = 0, arg = 0; i < ctx->args->arg_count; i++) { |
| if (ctx->args->args[i].skip) |
| continue; |
| |
| enum ac_arg_regfile file = ctx->args->args[i].file; |
| unsigned size = ctx->args->args[i].size; |
| unsigned reg = ctx->args->args[i].offset; |
| RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size); |
| |
| if (file == AC_ARG_SGPR && reg % MIN2(4, util_next_power_of_two(size))) { |
| Temp elems[16]; |
| for (unsigned j = 0; j < size; j++) { |
| elems[j] = ctx->program->allocateTmp(s1); |
| startpgm->definitions[arg++] = Definition(elems[j].id(), PhysReg{reg + j}, s1); |
| } |
| ctx->arg_temps[i] = create_vec_from_array(ctx, elems, size, RegType::sgpr, 4); |
| } else { |
| Temp dst = ctx->program->allocateTmp(type); |
| Definition def(dst); |
| def.setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256}); |
| ctx->arg_temps[i] = dst; |
| startpgm->definitions[arg++] = def; |
| |
| if (ctx->args->args[i].pending_vmem) { |
| assert(file == AC_ARG_VGPR); |
| ctx->program->args_pending_vmem.push_back(def); |
| } |
| } |
| } |
| |
| /* epilog has no scratch */ |
| if (ctx->args->scratch_offset.used) { |
| if (ctx->program->gfx_level < GFX9) { |
| /* Stash these in the program so that they can be accessed later when |
| * handling spilling. |
| */ |
| if (ctx->args->ring_offsets.used) |
| ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets); |
| |
| ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset); |
| } else if (ctx->program->gfx_level <= GFX10_3 && ctx->program->stage != raytracing_cs) { |
| /* Manually initialize scratch. For RT stages scratch initialization is done in the prolog. |
| */ |
| Operand scratch_offset = Operand(get_arg(ctx, ctx->args->scratch_offset)); |
| scratch_offset.setLateKill(true); |
| |
| Operand scratch_addr = ctx->args->ring_offsets.used |
| ? Operand(get_arg(ctx, ctx->args->ring_offsets)) |
| : Operand(s2); |
| |
| Builder bld(ctx->program, ctx->block); |
| bld.pseudo(aco_opcode::p_init_scratch, bld.def(s2), bld.def(s1, scc), scratch_addr, |
| scratch_offset); |
| } |
| } |
| |
| return startpgm; |
| } |
| |
| void |
| fix_ls_vgpr_init_bug(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| constexpr unsigned hs_idx = 1u; |
| Builder::Result hs_thread_count = |
| bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| get_arg(ctx, ctx->args->merged_wave_info), Operand::c32((8u << 16) | (hs_idx * 8u))); |
| Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp()); |
| |
| /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */ |
| |
| Temp instance_id = |
| bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->vertex_id), |
| get_arg(ctx, ctx->args->instance_id), ls_has_nonzero_hs_threads); |
| Temp vs_rel_patch_id = |
| bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids), |
| get_arg(ctx, ctx->args->vs_rel_patch_id), ls_has_nonzero_hs_threads); |
| Temp vertex_id = |
| bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->tcs_patch_id), |
| get_arg(ctx, ctx->args->vertex_id), ls_has_nonzero_hs_threads); |
| |
| ctx->arg_temps[ctx->args->instance_id.arg_index] = instance_id; |
| ctx->arg_temps[ctx->args->vs_rel_patch_id.arg_index] = vs_rel_patch_id; |
| ctx->arg_temps[ctx->args->vertex_id.arg_index] = vertex_id; |
| } |
| |
| void |
| split_arguments(isel_context* ctx, Pseudo_instruction* startpgm) |
| { |
| /* Split all arguments except for the first (ring_offsets) and the last |
| * (exec) so that the dead channels don't stay live throughout the program. |
| */ |
| for (int i = 1; i < startpgm->definitions.size(); i++) { |
| if (startpgm->definitions[i].regClass().size() > 1) { |
| emit_split_vector(ctx, startpgm->definitions[i].getTemp(), |
| startpgm->definitions[i].regClass().size()); |
| } |
| } |
| } |
| |
| void |
| setup_fp_mode(isel_context* ctx, nir_shader* shader) |
| { |
| Program* program = ctx->program; |
| |
| unsigned float_controls = shader->info.float_controls_execution_mode; |
| |
| program->next_fp_mode.preserve_signed_zero_inf_nan32 = |
| float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; |
| program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = |
| float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 | |
| FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64); |
| |
| program->next_fp_mode.must_flush_denorms32 = |
| float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; |
| program->next_fp_mode.must_flush_denorms16_64 = |
| float_controls & |
| (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 | FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64); |
| |
| program->next_fp_mode.care_about_round32 = |
| float_controls & |
| (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32); |
| |
| program->next_fp_mode.care_about_round16_64 = |
| float_controls & |
| (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 | |
| FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64); |
| |
| /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and |
| * the precision seems needed for Wolfenstein: Youngblood to render correctly */ |
| if (program->next_fp_mode.must_flush_denorms16_64) |
| program->next_fp_mode.denorm16_64 = 0; |
| else |
| program->next_fp_mode.denorm16_64 = fp_denorm_keep; |
| |
| /* preserving fp32 denorms is expensive, so only do it if asked */ |
| if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) |
| program->next_fp_mode.denorm32 = fp_denorm_keep; |
| else |
| program->next_fp_mode.denorm32 = 0; |
| |
| if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) |
| program->next_fp_mode.round32 = fp_round_tz; |
| else |
| program->next_fp_mode.round32 = fp_round_ne; |
| |
| if (float_controls & |
| (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64)) |
| program->next_fp_mode.round16_64 = fp_round_tz; |
| else |
| program->next_fp_mode.round16_64 = fp_round_ne; |
| |
| ctx->block->fp_mode = program->next_fp_mode; |
| } |
| |
| void |
| cleanup_cfg(Program* program) |
| { |
| /* create linear_succs/logical_succs */ |
| for (Block& BB : program->blocks) { |
| for (unsigned idx : BB.linear_preds) |
| program->blocks[idx].linear_succs.emplace_back(BB.index); |
| for (unsigned idx : BB.logical_preds) |
| program->blocks[idx].logical_succs.emplace_back(BB.index); |
| } |
| } |
| |
| void |
| finish_program(isel_context* ctx) |
| { |
| cleanup_cfg(ctx->program); |
| |
| /* Insert a single p_end_wqm instruction after the last derivative calculation */ |
| if (ctx->program->stage == fragment_fs && ctx->program->needs_wqm && ctx->program->needs_exact) { |
| /* Find the next BB at top-level CFG */ |
| while (!(ctx->program->blocks[ctx->wqm_block_idx].kind & block_kind_top_level)) { |
| ctx->wqm_block_idx++; |
| ctx->wqm_instruction_idx = 0; |
| } |
| |
| std::vector<aco_ptr<Instruction>>* instrs = |
| &ctx->program->blocks[ctx->wqm_block_idx].instructions; |
| auto it = instrs->begin() + ctx->wqm_instruction_idx; |
| |
| /* Delay transistion to Exact to help optimizations and scheduling */ |
| while (it != instrs->end()) { |
| aco_ptr<Instruction>& instr = *it; |
| /* End WQM before: */ |
| if (instr->isVMEM() || instr->isFlatLike() || instr->isDS() || instr->isEXP() || |
| instr->opcode == aco_opcode::p_dual_src_export_gfx11 || |
| instr->opcode == aco_opcode::p_logical_start) |
| break; |
| |
| ++it; |
| |
| /* End WQM after: */ |
| if (instr->opcode == aco_opcode::p_logical_end || |
| instr->opcode == aco_opcode::p_discard_if || |
| instr->opcode == aco_opcode::p_demote_to_helper || |
| instr->opcode == aco_opcode::p_end_with_regs) |
| break; |
| } |
| |
| Builder bld(ctx->program); |
| bld.reset(instrs, it); |
| bld.pseudo(aco_opcode::p_end_wqm); |
| } |
| } |
| |
| Temp |
| lanecount_to_mask(isel_context* ctx, Temp count) |
| { |
| assert(count.regClass() == s1); |
| |
| Builder bld(ctx->program, ctx->block); |
| Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand::zero()); |
| Temp cond; |
| |
| if (ctx->program->wave_size == 64) { |
| /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */ |
| Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, |
| Operand::c32(6u /* log2(64) */)); |
| cond = |
| bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand::c32(-1u), mask, bld.scc(active_64)); |
| } else { |
| /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of |
| * the register */ |
| cond = emit_extract_vector(ctx, mask, 0, bld.lm); |
| } |
| |
| return cond; |
| } |
| |
| Temp |
| merged_wave_info_to_mask(isel_context* ctx, unsigned i) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| /* lanecount_to_mask() only cares about s0.u[6:0] so we don't need either s_bfe nor s_and here */ |
| Temp count = i == 0 ? get_arg(ctx, ctx->args->merged_wave_info) |
| : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), |
| get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(i * 8u)); |
| |
| return lanecount_to_mask(ctx, count); |
| } |
| |
| static void |
| insert_rt_jump_next(isel_context& ctx, const struct ac_shader_args* args) |
| { |
| unsigned src_count = ctx.args->arg_count; |
| Pseudo_instruction* ret = |
| create_instruction<Pseudo_instruction>(aco_opcode::p_return, Format::PSEUDO, src_count, 0); |
| ctx.block->instructions.emplace_back(ret); |
| |
| for (unsigned i = 0; i < src_count; i++) { |
| enum ac_arg_regfile file = ctx.args->args[i].file; |
| unsigned size = ctx.args->args[i].size; |
| unsigned reg = ctx.args->args[i].offset + (file == AC_ARG_SGPR ? 0 : 256); |
| RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size); |
| Operand op = ctx.arg_temps[i].id() ? Operand(ctx.arg_temps[i], PhysReg{reg}) |
| : Operand(PhysReg{reg}, type); |
| ret->operands[i] = op; |
| } |
| |
| Builder bld(ctx.program, ctx.block); |
| bld.sop1(aco_opcode::s_setpc_b64, get_arg(&ctx, ctx.args->rt.uniform_shader_addr)); |
| } |
| |
| void |
| select_program_rt(isel_context& ctx, unsigned shader_count, struct nir_shader* const* shaders, |
| const struct ac_shader_args* args) |
| { |
| for (unsigned i = 0; i < shader_count; i++) { |
| if (i) { |
| ctx.block = ctx.program->create_and_insert_block(); |
| ctx.block->kind = block_kind_top_level | block_kind_resume; |
| } |
| |
| nir_shader* nir = shaders[i]; |
| init_context(&ctx, nir); |
| setup_fp_mode(&ctx, nir); |
| |
| Pseudo_instruction* startpgm = add_startpgm(&ctx); |
| append_logical_start(ctx.block); |
| split_arguments(&ctx, startpgm); |
| visit_cf_list(&ctx, &nir_shader_get_entrypoint(nir)->body); |
| append_logical_end(ctx.block); |
| ctx.block->kind |= block_kind_uniform; |
| |
| /* Fix output registers and jump to next shader. We can skip this when dealing with a raygen |
| * shader without shader calls. |
| */ |
| if (shader_count > 1 || shaders[i]->info.stage != MESA_SHADER_RAYGEN) |
| insert_rt_jump_next(ctx, args); |
| |
| cleanup_context(&ctx); |
| } |
| |
| ctx.program->config->float_mode = ctx.program->blocks[0].fp_mode.val; |
| finish_program(&ctx); |
| } |
| |
| void |
| pops_await_overlapped_waves(isel_context* ctx) |
| { |
| ctx->program->has_pops_overlapped_waves_wait = true; |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| if (ctx->program->gfx_level >= GFX11) { |
| /* GFX11+ - waiting for the export from the overlapped waves. |
| * Await the export_ready event (bit wait_event_imm_dont_wait_export_ready clear). |
| */ |
| bld.sopp(aco_opcode::s_wait_event, -1, 0); |
| return; |
| } |
| |
| /* Pre-GFX11 - sleep loop polling the exiting wave ID. */ |
| |
| const Temp collision = get_arg(ctx, ctx->args->pops_collision_wave_id); |
| |
| /* Check if there's an overlap in the current wave - otherwise, the wait may result in a hang. */ |
| const Temp did_overlap = |
| bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), collision, Operand::c32(31)); |
| if_context did_overlap_if_context; |
| begin_uniform_if_then(ctx, &did_overlap_if_context, did_overlap); |
| bld.reset(ctx->block); |
| |
| /* Set the packer register - after this, pops_exiting_wave_id can be polled. */ |
| if (ctx->program->gfx_level >= GFX10) { |
| /* 2 packer ID bits on GFX10-10.3. */ |
| const Temp packer_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| collision, Operand::c32(0x2001c)); |
| /* POPS_PACKER register: bit 0 - POPS enabled for this wave, bits 2:1 - packer ID. */ |
| const Temp packer_id_hwreg_bits = bld.sop2(aco_opcode::s_lshl1_add_u32, bld.def(s1), |
| bld.def(s1, scc), packer_id, Operand::c32(1)); |
| bld.sopk(aco_opcode::s_setreg_b32, packer_id_hwreg_bits, ((3 - 1) << 11) | 25); |
| } else { |
| /* 1 packer ID bit on GFX9. */ |
| const Temp packer_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| collision, Operand::c32(0x1001c)); |
| /* MODE register: bit 24 - wave is associated with packer 0, bit 25 - with packer 1. |
| * Packer index to packer bits: 0 to 0b01, 1 to 0b10. |
| */ |
| const Temp packer_id_hwreg_bits = |
| bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), packer_id, Operand::c32(1)); |
| bld.sopk(aco_opcode::s_setreg_b32, packer_id_hwreg_bits, ((2 - 1) << 11) | (24 << 6) | 1); |
| } |
| |
| Temp newest_overlapped_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), |
| collision, Operand::c32(0xa0010)); |
| if (ctx->program->gfx_level < GFX10) { |
| /* On GFX9, the newest overlapped wave ID value passed to the shader is smaller than the |
| * actual wave ID by 1 in case of wraparound. |
| */ |
| const Temp current_wave_id = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), |
| collision, Operand::c32(0x3ff)); |
| const Temp newest_overlapped_wave_id_wrapped = bld.sopc( |
| aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), newest_overlapped_wave_id, current_wave_id); |
| newest_overlapped_wave_id = |
| bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), newest_overlapped_wave_id, |
| newest_overlapped_wave_id_wrapped); |
| } |
| |
| /* The wave IDs are the low 10 bits of a monotonically increasing wave counter. |
| * The overlapped and the exiting wave IDs can't be larger than the current wave ID, and they are |
| * no more than 1023 values behind the current wave ID. |
| * Remap the overlapped and the exiting wave IDs from wrapping to monotonic so an unsigned |
| * comparison can be used: the wave `current - 1023` becomes 0, it's followed by a piece growing |
| * away from 0, then a piece increasing until UINT32_MAX, and the current wave is UINT32_MAX. |
| * To do that, subtract `current - 1023`, which with wrapping arithmetic is (current + 1), and |
| * `a - (b + 1)` is `a + ~b`. |
| * Note that if the 10-bit current wave ID is 1023 (thus 1024 will be subtracted), the wave |
| * `current - 1023` will become `UINT32_MAX - 1023` rather than 0, but all the possible wave IDs |
| * will still grow monotonically in the 32-bit value, and the unsigned comparison will behave as |
| * expected. |
| */ |
| const Temp wave_id_offset = bld.sop2(aco_opcode::s_nand_b32, bld.def(s1), bld.def(s1, scc), |
| collision, Operand::c32(0x3ff)); |
| newest_overlapped_wave_id = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), |
| newest_overlapped_wave_id, wave_id_offset); |
| |
| /* Await the overlapped waves. */ |
| |
| loop_context wait_loop_context; |
| begin_loop(ctx, &wait_loop_context); |
| bld.reset(ctx->block); |
| |
| const Temp exiting_wave_id = bld.pseudo(aco_opcode::p_pops_gfx9_add_exiting_wave_id, bld.def(s1), |
| bld.def(s1, scc), wave_id_offset); |
| /* If the exiting (not exited) wave ID is larger than the newest overlapped wave ID (after |
| * remapping both to monotonically increasing unsigned integers), the newest overlapped wave has |
| * exited the ordered section. |
| */ |
| const Temp newest_overlapped_wave_exited = bld.sopc(aco_opcode::s_cmp_lt_u32, bld.def(s1, scc), |
| newest_overlapped_wave_id, exiting_wave_id); |
| if_context newest_overlapped_wave_exited_if_context; |
| begin_uniform_if_then(ctx, &newest_overlapped_wave_exited_if_context, |
| newest_overlapped_wave_exited); |
| emit_loop_break(ctx); |
| begin_uniform_if_else(ctx, &newest_overlapped_wave_exited_if_context); |
| end_uniform_if(ctx, &newest_overlapped_wave_exited_if_context); |
| bld.reset(ctx->block); |
| |
| /* Sleep before rechecking to let overlapped waves run for some time. */ |
| bld.sopp(aco_opcode::s_sleep, -1, ctx->program->gfx_level >= GFX10 ? UINT16_MAX : 3); |
| |
| end_loop(ctx, &wait_loop_context); |
| bld.reset(ctx->block); |
| |
| /* Indicate the wait has been done to subsequent compilation stages. */ |
| bld.pseudo(aco_opcode::p_pops_gfx9_overlapped_wave_wait_done); |
| |
| begin_uniform_if_else(ctx, &did_overlap_if_context); |
| end_uniform_if(ctx, &did_overlap_if_context); |
| bld.reset(ctx->block); |
| } |
| |
| static void |
| create_merged_jump_to_epilog(isel_context* ctx) |
| { |
| Builder bld(ctx->program, ctx->block); |
| std::vector<Operand> regs; |
| |
| for (unsigned i = 0; i < ctx->args->arg_count; i++) { |
| if (!ctx->args->args[i].preserved) |
| continue; |
| |
| const enum ac_arg_regfile file = ctx->args->args[i].file; |
| const unsigned reg = ctx->args->args[i].offset; |
| |
| Operand op(ctx->arg_temps[i]); |
| op.setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256}); |
| regs.emplace_back(op); |
| } |
| |
| Temp continue_pc = |
| convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->program->info.next_stage_pc)); |
| |
| aco_ptr<Pseudo_instruction> jump{create_instruction<Pseudo_instruction>( |
| aco_opcode::p_jump_to_epilog, Format::PSEUDO, 1 + regs.size(), 0)}; |
| jump->operands[0] = Operand(continue_pc); |
| for (unsigned i = 0; i < regs.size(); i++) { |
| jump->operands[i + 1] = regs[i]; |
| } |
| ctx->block->instructions.emplace_back(std::move(jump)); |
| } |
| |
| static void |
| create_end_for_merged_shader(isel_context* ctx) |
| { |
| std::vector<Operand> regs; |
| |
| unsigned max_args; |
| if (ctx->stage.sw == SWStage::VS) { |
| assert(ctx->args->vertex_id.used); |
| max_args = ctx->args->vertex_id.arg_index; |
| } else { |
| assert(ctx->stage.sw == SWStage::TES); |
| assert(ctx->args->tes_u.used); |
| max_args = ctx->args->tes_u.arg_index; |
| } |
| |
| struct ac_arg arg; |
| arg.used = true; |
| |
| for (arg.arg_index = 0; arg.arg_index < max_args; arg.arg_index++) |
| regs.emplace_back(get_arg_for_end(ctx, arg)); |
| |
| build_end_with_regs(ctx, regs); |
| } |
| |
| void |
| select_shader(isel_context& ctx, nir_shader* nir, const bool need_startpgm, const bool need_endpgm, |
| const bool need_barrier, if_context* ic_merged_wave_info, |
| const bool check_merged_wave_info, const bool endif_merged_wave_info) |
| { |
| init_context(&ctx, nir); |
| setup_fp_mode(&ctx, nir); |
| |
| Program* program = ctx.program; |
| |
| if (need_startpgm) { |
| /* Needs to be after init_context() for FS. */ |
| Pseudo_instruction* startpgm = add_startpgm(&ctx); |
| append_logical_start(ctx.block); |
| |
| if (ctx.options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs && |
| !program->info.vs.has_prolog) |
| fix_ls_vgpr_init_bug(&ctx); |
| |
| split_arguments(&ctx, startpgm); |
| |
| if (!program->info.vs.has_prolog && |
| (program->stage.has(SWStage::VS) || program->stage.has(SWStage::TES))) { |
| Builder(ctx.program, ctx.block).sopp(aco_opcode::s_setprio, -1u, 0x3u); |
| } |
| } |
| |
| if (program->gfx_level == GFX10 && program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER && |
| !program->stage.has(SWStage::GS)) { |
| /* Workaround for Navi1x HW bug to ensure that all NGG waves launch before |
| * s_sendmsg(GS_ALLOC_REQ). |
| */ |
| Builder(ctx.program, ctx.block).sopp(aco_opcode::s_barrier, -1u, 0u); |
| } |
| |
| if (check_merged_wave_info) { |
| const unsigned i = |
| nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ? 0 : 1; |
| const Temp cond = merged_wave_info_to_mask(&ctx, i); |
| begin_divergent_if_then(&ctx, ic_merged_wave_info, cond); |
| } |
| |
| if (need_barrier) { |
| const sync_scope scope = ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq && |
| program->wave_size % nir->info.tess.tcs_vertices_out == 0 |
| ? scope_subgroup |
| : scope_workgroup; |
| |
| Builder(ctx.program, ctx.block) |
| .barrier(aco_opcode::p_barrier, memory_sync_info(storage_shared, semantic_acqrel, scope), |
| scope); |
| } |
| |
| nir_function_impl* func = nir_shader_get_entrypoint(nir); |
| visit_cf_list(&ctx, &func->body); |
| |
| if (ctx.program->info.has_epilog) { |
| if (ctx.stage == fragment_fs) { |
| if (ctx.options->is_opengl) |
| create_fs_end_for_epilog(&ctx); |
| else |
| create_fs_jump_to_epilog(&ctx); |
| |
| /* FS epilogs always have at least one color/null export. */ |
| ctx.program->has_color_exports = true; |
| } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) { |
| assert(ctx.stage == tess_control_hs || ctx.stage == vertex_tess_control_hs); |
| if (ctx.options->is_opengl) |
| create_tcs_end_for_epilog(&ctx); |
| else |
| create_tcs_jump_to_epilog(&ctx); |
| } |
| } |
| |
| if (endif_merged_wave_info) { |
| begin_divergent_if_else(&ctx, ic_merged_wave_info); |
| end_divergent_if(&ctx, ic_merged_wave_info); |
| } |
| |
| bool is_first_stage_of_merged_shader = false; |
| |
| if (ctx.program->info.merged_shader_compiled_separately && |
| (ctx.stage.sw == SWStage::VS || ctx.stage.sw == SWStage::TES)) { |
| assert(program->gfx_level >= GFX9); |
| if (ctx.options->is_opengl) |
| create_end_for_merged_shader(&ctx); |
| else |
| create_merged_jump_to_epilog(&ctx); |
| |
| is_first_stage_of_merged_shader = true; |
| } |
| |
| cleanup_context(&ctx); |
| |
| if (need_endpgm) { |
| program->config->float_mode = program->blocks[0].fp_mode.val; |
| |
| append_logical_end(ctx.block); |
| ctx.block->kind |= block_kind_uniform; |
| |
| if ((!program->info.has_epilog && !is_first_stage_of_merged_shader) || |
| (nir->info.stage == MESA_SHADER_TESS_CTRL && program->gfx_level >= GFX9)) { |
| Builder(program, ctx.block).sopp(aco_opcode::s_endpgm); |
| } |
| |
| finish_program(&ctx); |
| } |
| } |
| |
| void |
| select_program_merged(isel_context& ctx, const unsigned shader_count, nir_shader* const* shaders) |
| { |
| if_context ic_merged_wave_info; |
| const bool ngg_gs = ctx.stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER && ctx.stage.has(SWStage::GS); |
| |
| for (unsigned i = 0; i < shader_count; i++) { |
| nir_shader* nir = shaders[i]; |
| |
| /* We always need to insert p_startpgm at the beginning of the first shader. */ |
| const bool need_startpgm = i == 0; |
| |
| /* Need to handle program end for last shader stage. */ |
| const bool need_endpgm = i == shader_count - 1; |
| |
| /* In a merged VS+TCS HS, the VS implementation can be completely empty. */ |
| nir_function_impl* func = nir_shader_get_entrypoint(nir); |
| const bool empty_shader = |
| nir_cf_list_is_empty_block(&func->body) && |
| ((nir->info.stage == MESA_SHADER_VERTEX && |
| (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) || |
| (nir->info.stage == MESA_SHADER_TESS_EVAL && ctx.stage == tess_eval_geometry_gs)); |
| |
| /* See if we need to emit a check of the merged wave info SGPR. */ |
| const bool check_merged_wave_info = |
| ctx.tcs_in_out_eq ? i == 0 : (shader_count >= 2 && !empty_shader && !(ngg_gs && i == 1)); |
| const bool endif_merged_wave_info = |
| ctx.tcs_in_out_eq ? i == 1 : (check_merged_wave_info && !(ngg_gs && i == 1)); |
| |
| /* Skip s_barrier from TCS when VS outputs are not stored in the LDS. */ |
| const bool tcs_skip_barrier = |
| ctx.stage == vertex_tess_control_hs && ctx.tcs_temp_only_inputs == nir->info.inputs_read; |
| |
| /* A barrier is usually needed at the beginning of the second shader, with exceptions. */ |
| const bool need_barrier = i != 0 && !ngg_gs && !tcs_skip_barrier; |
| |
| select_shader(ctx, nir, need_startpgm, need_endpgm, need_barrier, &ic_merged_wave_info, |
| check_merged_wave_info, endif_merged_wave_info); |
| |
| if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) { |
| /* Special handling when TCS input and output patch size is the same. |
| * Outputs of the previous stage are inputs to the next stage. |
| */ |
| ctx.inputs = ctx.outputs; |
| ctx.outputs = shader_io_state(); |
| } |
| } |
| } |
| |
| Temp |
| get_tess_ring_descriptor(isel_context* ctx, const struct aco_tcs_epilog_info* einfo, |
| bool is_tcs_factor_ring) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| if (!ctx->options->is_opengl) { |
| Temp ring_offsets = get_arg(ctx, ctx->args->ring_offsets); |
| uint32_t tess_ring_offset = |
| is_tcs_factor_ring ? 5 /* RING_HS_TESS_FACTOR */ : 6 /* RING_HS_TESS_OFFCHIP */; |
| return bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ring_offsets, |
| Operand::c32(tess_ring_offset * 16u)); |
| } |
| |
| Temp addr = get_arg(ctx, einfo->tcs_out_lds_layout); |
| /* TCS only receives high 13 bits of the address. */ |
| addr = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), addr, |
| Operand::c32(0xfff80000)); |
| |
| if (is_tcs_factor_ring) { |
| addr = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, |
| Operand::c32(einfo->tess_offchip_ring_size)); |
| } |
| |
| uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (ctx->options->gfx_level >= GFX11) { |
| rsrc3 |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | |
| S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW); |
| } else if (ctx->options->gfx_level >= GFX10) { |
| rsrc3 |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | |
| S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); |
| } else { |
| rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | |
| S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| } |
| |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, |
| Operand::c32(ctx->options->address32_hi), Operand::c32(0xffffffff), |
| Operand::c32(rsrc3)); |
| } |
| |
| void |
| store_tess_factor_to_tess_ring(isel_context* ctx, Temp tess_ring_desc, Temp factors[], |
| unsigned factor_comps, Temp sbase, Temp voffset, Temp num_patches, |
| unsigned patch_offset) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| Temp soffset = sbase; |
| if (patch_offset) { |
| Temp offset = |
| bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), num_patches, Operand::c32(patch_offset)); |
| soffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), soffset, offset); |
| } |
| |
| Temp data = factor_comps == 1 |
| ? factors[0] |
| : create_vec_from_array(ctx, factors, factor_comps, RegType::vgpr, 4); |
| |
| emit_single_mubuf_store(ctx, tess_ring_desc, voffset, soffset, Temp(), data, 0, |
| memory_sync_info(storage_vmem_output), true, false, false); |
| } |
| |
| Temp |
| build_fast_udiv_nuw(isel_context* ctx, Temp num, Temp multiplier, Temp pre_shift, Temp post_shift, |
| Temp increment) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| num = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), pre_shift, num); |
| num = bld.nuw().vadd32(bld.def(v1), num, increment); |
| num = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), num, multiplier); |
| return bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), post_shift, num); |
| } |
| |
| Temp |
| get_gl_vs_prolog_vertex_index(isel_context* ctx, const struct aco_gl_vs_prolog_info* vinfo, |
| unsigned input_index, Temp instance_divisor_constbuf) |
| { |
| bool divisor_is_one = vinfo->instance_divisor_is_one & (1u << input_index); |
| bool divisor_is_fetched = vinfo->instance_divisor_is_fetched & (1u << input_index); |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| Temp index; |
| if (divisor_is_one) { |
| index = get_arg(ctx, ctx->args->instance_id); |
| } else if (divisor_is_fetched) { |
| Temp instance_id = get_arg(ctx, ctx->args->instance_id); |
| |
| Temp udiv_factors = bld.smem(aco_opcode::s_buffer_load_dwordx4, bld.def(s4), |
| instance_divisor_constbuf, Operand::c32(input_index * 16)); |
| emit_split_vector(ctx, udiv_factors, 4); |
| |
| index = build_fast_udiv_nuw(ctx, instance_id, emit_extract_vector(ctx, udiv_factors, 0, s1), |
| emit_extract_vector(ctx, udiv_factors, 1, s1), |
| emit_extract_vector(ctx, udiv_factors, 2, s1), |
| emit_extract_vector(ctx, udiv_factors, 3, s1)); |
| } |
| |
| if (divisor_is_one || divisor_is_fetched) { |
| Temp start_instance = get_arg(ctx, ctx->args->start_instance); |
| index = bld.vadd32(bld.def(v1), index, start_instance); |
| } else { |
| Temp base_vertex = get_arg(ctx, ctx->args->base_vertex); |
| Temp vertex_id = get_arg(ctx, ctx->args->vertex_id); |
| index = bld.vadd32(bld.def(v1), base_vertex, vertex_id); |
| } |
| |
| return index; |
| } |
| |
| void |
| emit_polygon_stipple(isel_context* ctx, const struct aco_ps_prolog_info* finfo) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| /* Use the fixed-point gl_FragCoord input. |
| * Since the stipple pattern is 32x32 and it repeats, just get 5 bits |
| * per coordinate to get the repeating effect. |
| */ |
| Temp pos_fixed_pt = get_arg(ctx, ctx->args->pos_fixed_pt); |
| Temp addr0 = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x1f), pos_fixed_pt); |
| Temp addr1 = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), pos_fixed_pt, Operand::c32(16u), |
| Operand::c32(5u)); |
| |
| /* Load the buffer descriptor. */ |
| Temp list = get_arg(ctx, finfo->internal_bindings); |
| list = convert_pointer_to_64_bit(ctx, list); |
| Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), list, |
| Operand::c32(finfo->poly_stipple_buf_offset)); |
| |
| /* The stipple pattern is 32x32, each row has 32 bits. */ |
| Temp offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2), addr1); |
| Temp row = bld.mubuf(aco_opcode::buffer_load_dword, bld.def(v1), desc, offset, Operand::c32(0u), |
| 0, true); |
| Temp bit = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), row, addr0, Operand::c32(1u)); |
| Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand::zero(), bit); |
| bld.pseudo(aco_opcode::p_demote_to_helper, cond); |
| |
| ctx->block->kind |= block_kind_uses_discard; |
| ctx->program->needs_exact = true; |
| } |
| |
| void |
| overwrite_interp_args(isel_context* ctx, const struct aco_ps_prolog_info* finfo) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| if (finfo->bc_optimize_for_persp || finfo->bc_optimize_for_linear) { |
| /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER; |
| * The hw doesn't compute CENTROID if the whole wave only |
| * contains fully-covered quads. |
| */ |
| Temp bc_optimize = get_arg(ctx, ctx->args->prim_mask); |
| |
| /* enabled when bit 31 is set */ |
| Temp cond = |
| bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), bc_optimize, Operand::c32(31u)); |
| |
| /* scale 1bit scc to wave size bits used by v_cndmask */ |
| cond = bool_to_vector_condition(ctx, cond); |
| |
| if (finfo->bc_optimize_for_persp) { |
| Temp center = get_arg(ctx, ctx->args->persp_center); |
| Temp centroid = get_arg(ctx, ctx->args->persp_centroid); |
| |
| Temp dst = bld.tmp(v2); |
| select_vec2(ctx, dst, cond, center, centroid); |
| ctx->arg_temps[ctx->args->persp_centroid.arg_index] = dst; |
| } |
| |
| if (finfo->bc_optimize_for_linear) { |
| Temp center = get_arg(ctx, ctx->args->linear_center); |
| Temp centroid = get_arg(ctx, ctx->args->linear_centroid); |
| |
| Temp dst = bld.tmp(v2); |
| select_vec2(ctx, dst, cond, center, centroid); |
| ctx->arg_temps[ctx->args->linear_centroid.arg_index] = dst; |
| } |
| } |
| |
| if (finfo->force_persp_sample_interp) { |
| Temp persp_sample = get_arg(ctx, ctx->args->persp_sample); |
| ctx->arg_temps[ctx->args->persp_center.arg_index] = persp_sample; |
| ctx->arg_temps[ctx->args->persp_centroid.arg_index] = persp_sample; |
| } |
| |
| if (finfo->force_linear_sample_interp) { |
| Temp linear_sample = get_arg(ctx, ctx->args->linear_sample); |
| ctx->arg_temps[ctx->args->linear_center.arg_index] = linear_sample; |
| ctx->arg_temps[ctx->args->linear_centroid.arg_index] = linear_sample; |
| } |
| |
| if (finfo->force_persp_center_interp) { |
| Temp persp_center = get_arg(ctx, ctx->args->persp_center); |
| ctx->arg_temps[ctx->args->persp_sample.arg_index] = persp_center; |
| ctx->arg_temps[ctx->args->persp_centroid.arg_index] = persp_center; |
| } |
| |
| if (finfo->force_linear_center_interp) { |
| Temp linear_center = get_arg(ctx, ctx->args->linear_center); |
| ctx->arg_temps[ctx->args->linear_sample.arg_index] = linear_center; |
| ctx->arg_temps[ctx->args->linear_centroid.arg_index] = linear_center; |
| } |
| } |
| |
| void |
| overwrite_samplemask_arg(isel_context* ctx, const struct aco_ps_prolog_info* finfo) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec |
| * says: |
| * |
| * "When per-sample shading is active due to the use of a fragment |
| * input qualified by sample or due to the use of the gl_SampleID |
| * or gl_SamplePosition variables, only the bit for the current |
| * sample is set in gl_SampleMaskIn. When state specifies multiple |
| * fragment shader invocations for a given fragment, the sample |
| * mask for any single fragment shader invocation may specify a |
| * subset of the covered samples for the fragment. In this case, |
| * the bit corresponding to each covered sample will be set in |
| * exactly one fragment shader invocation." |
| * |
| * The samplemask loaded by hardware is always the coverage of the |
| * entire pixel/fragment, so mask bits out based on the sample ID. |
| */ |
| if (finfo->samplemask_log_ps_iter) { |
| Temp ancillary = get_arg(ctx, ctx->args->ancillary); |
| Temp sampleid = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), ancillary, Operand::c32(8u), |
| Operand::c32(4u)); |
| Temp samplemask = get_arg(ctx, ctx->args->sample_coverage); |
| |
| uint32_t ps_iter_mask = ac_get_ps_iter_mask(1 << finfo->samplemask_log_ps_iter); |
| Temp iter_mask = bld.copy(bld.def(v1), Operand::c32(ps_iter_mask)); |
| |
| Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sampleid, iter_mask); |
| samplemask = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), samplemask, mask); |
| |
| ctx->arg_temps[ctx->args->sample_coverage.arg_index] = samplemask; |
| } |
| } |
| |
| Temp |
| get_interp_color(isel_context* ctx, int interp_vgpr, unsigned attr_index, unsigned comp) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| Temp dst = bld.tmp(v1); |
| |
| Temp prim_mask = get_arg(ctx, ctx->args->prim_mask); |
| |
| if (interp_vgpr != -1) { |
| /* interp args are all 2 vgprs */ |
| int arg_index = ctx->args->persp_sample.arg_index + interp_vgpr / 2; |
| Temp interp_ij = ctx->arg_temps[arg_index]; |
| |
| emit_interp_instr(ctx, attr_index, comp, interp_ij, dst, prim_mask); |
| } else { |
| emit_interp_mov_instr(ctx, attr_index, comp, 0, dst, prim_mask); |
| } |
| |
| return dst; |
| } |
| |
| void |
| interpolate_color_args(isel_context* ctx, const struct aco_ps_prolog_info* finfo, |
| std::vector<Operand>& regs) |
| { |
| if (!finfo->colors_read) |
| return; |
| |
| Builder bld(ctx->program, ctx->block); |
| |
| unsigned vgpr = 256 + ctx->args->num_vgprs_used; |
| |
| if (finfo->color_two_side) { |
| Temp face = get_arg(ctx, ctx->args->front_face); |
| Temp is_face_positive = |
| bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), face); |
| |
| u_foreach_bit (i, finfo->colors_read) { |
| unsigned color_index = i / 4; |
| unsigned front_index = finfo->color_attr_index[color_index]; |
| int interp_vgpr = finfo->color_interp_vgpr_index[color_index]; |
| |
| /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1", |
| * otherwise it's at offset "num_inputs". |
| */ |
| unsigned back_index = finfo->num_interp_inputs; |
| if (color_index == 1 && finfo->colors_read & 0xf) |
| back_index++; |
| |
| Temp front = get_interp_color(ctx, interp_vgpr, front_index, i % 4); |
| Temp back = get_interp_color(ctx, interp_vgpr, back_index, i % 4); |
| |
| Temp color = |
| bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), back, front, is_face_positive); |
| |
| regs.emplace_back(Operand(color, PhysReg{vgpr++})); |
| } |
| } else { |
| u_foreach_bit (i, finfo->colors_read) { |
| unsigned color_index = i / 4; |
| unsigned attr_index = finfo->color_attr_index[color_index]; |
| int interp_vgpr = finfo->color_interp_vgpr_index[color_index]; |
| Temp color = get_interp_color(ctx, interp_vgpr, attr_index, i % 4); |
| |
| regs.emplace_back(Operand(color, PhysReg{vgpr++})); |
| } |
| } |
| } |
| |
| void |
| emit_clamp_alpha_test(isel_context* ctx, const struct aco_ps_epilog_info* info, Temp colors[4], |
| unsigned color_index) |
| { |
| Builder bld(ctx->program, ctx->block); |
| |
| if (info->clamp_color) { |
| for (unsigned i = 0; i < 4; i++) { |
| if (colors[i].regClass() == v2b) { |
| colors[i] = bld.vop3(aco_opcode::v_med3_f16, bld.def(v2b), Operand::c16(0u), |
| Operand::c16(0x3c00), colors[i]); |
| } else { |
| assert(colors[i].regClass() == v1); |
| colors[i] = bld.vop3(aco_opcode::v_med3_f32, bld.def(v1), Operand::zero(), |
| Operand::c32(0x3f800000u), colors[i]); |
| } |
| } |
| } |
| |
| if (info->alpha_to_one) { |
| if (colors[3].regClass() == v2b) |
| colors[3] = bld.copy(bld.def(v2b), Operand::c16(0x3c00)); |
| else |
| colors[3] = bld.copy(bld.def(v1), Operand::c32(0x3f800000u)); |
| } |
| |
| if (color_index == 0 && info->alpha_func != COMPARE_FUNC_ALWAYS) { |
| Operand cond = Operand::c32(-1u); |
| if (info->alpha_func != COMPARE_FUNC_NEVER) { |
| aco_opcode opcode = aco_opcode::num_opcodes; |
| |
| switch (info->alpha_func) { |
| case COMPARE_FUNC_LESS: opcode = aco_opcode::v_cmp_ngt_f32; break; |
| case COMPARE_FUNC_EQUAL: opcode = aco_opcode::v_cmp_neq_f32; break; |
| case COMPARE_FUNC_LEQUAL: opcode = aco_opcode::v_cmp_nge_f32; break; |
| case COMPARE_FUNC_GREATER: opcode = aco_opcode::v_cmp_nlt_f32; break; |
| case COMPARE_FUNC_NOTEQUAL: opcode = aco_opcode::v_cmp_nlg_f32; break; |
| case COMPARE_FUNC_GEQUAL: opcode = aco_opcode::v_cmp_nle_f32; break; |
| default: unreachable("invalid alpha func"); |
| } |
| |
| Temp ref = get_arg(ctx, info->alpha_reference); |
| |
| Temp alpha = colors[3].regClass() == v2b |
| ? bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), colors[3]) |
| : colors[3]; |
| |
| /* true if not pass */ |
| cond = bld.vopc(opcode, bld.def(bld.lm), ref, alpha); |
| } |
| |
| bld.pseudo(aco_opcode::p_discard_if, cond); |
| ctx->block->kind |= block_kind_uses_discard; |
| ctx->program->needs_exact = true; |
| } |
| } |
| |
| } /* end namespace */ |
| |
| void |
| select_program(Program* program, unsigned shader_count, struct nir_shader* const* shaders, |
| ac_shader_config* config, const struct aco_compiler_options* options, |
| const struct aco_shader_info* info, const struct ac_shader_args* args) |
| { |
| isel_context ctx = |
| setup_isel_context(program, shader_count, shaders, config, options, info, args); |
| |
| if (ctx.stage == raytracing_cs) |
| return select_program_rt(ctx, shader_count, shaders, args); |
| |
| if (shader_count >= 2) { |
| select_program_merged(ctx, shader_count, shaders); |
| } else { |
| bool need_barrier = false, check_merged_wave_info = false, endif_merged_wave_info = false; |
| if_context ic_merged_wave_info; |
| |
| /* Handle separate compilation of VS+TCS and {VS,TES}+GS on GFX9+. */ |
| if (ctx.program->info.merged_shader_compiled_separately) { |
| assert(ctx.program->gfx_level >= GFX9); |
| if (ctx.stage.sw == SWStage::VS || ctx.stage.sw == SWStage::TES) { |
| check_merged_wave_info = endif_merged_wave_info = true; |
| } else { |
| const bool ngg_gs = |
| ctx.stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER && ctx.stage.sw == SWStage::GS; |
| assert(ctx.stage == tess_control_hs || ctx.stage == geometry_gs || ngg_gs); |
| check_merged_wave_info = endif_merged_wave_info = !ngg_gs; |
| need_barrier = !ngg_gs; |
| } |
| } |
| |
| select_shader(ctx, shaders[0], true, true, need_barrier, &ic_merged_wave_info, |
| check_merged_wave_info, endif_merged_wave_info); |
| } |
| } |
| |
| void |
| select_trap_handler_shader(Program* program, struct nir_shader* shader, ac_shader_config* config, |
| const struct aco_compiler_options* options, |
| const struct aco_shader_info* info, const struct ac_shader_args* args) |
| { |
| assert(options->gfx_level == GFX8); |
| |
| init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode, |
| config); |
| |
| isel_context ctx = {}; |
| ctx.program = program; |
| ctx.args = args; |
| ctx.options = options; |
| ctx.stage = program->stage; |
| |
| ctx.block = ctx.program->create_and_insert_block(); |
| ctx.block->kind = block_kind_top_level; |
| |
| program->workgroup_size = 1; /* XXX */ |
| |
| add_startpgm(&ctx); |
| append_logical_start(ctx.block); |
| |
| Builder bld(ctx.program, ctx.block); |
| |
| /* Load the buffer descriptor from TMA. */ |
| bld.smem(aco_opcode::s_load_dwordx4, Definition(PhysReg{ttmp4}, s4), Operand(PhysReg{tma}, s2), |
| Operand::zero()); |
| |
| /* Store TTMP0-TTMP1. */ |
| bld.smem(aco_opcode::s_buffer_store_dwordx2, Operand(PhysReg{ttmp4}, s4), Operand::zero(), |
| Operand(PhysReg{ttmp0}, s2), memory_sync_info(), true); |
| |
| uint32_t hw_regs_idx[] = { |
| 2, /* HW_REG_STATUS */ |
| 3, /* HW_REG_TRAP_STS */ |
| 4, /* HW_REG_HW_ID */ |
| 7, /* HW_REG_IB_STS */ |
| }; |
| |
| /* Store some hardware registers. */ |
| for (unsigned i = 0; i < ARRAY_SIZE(hw_regs_idx); i++) { |
| /* "((size - 1) << 11) | register" */ |
| bld.sopk(aco_opcode::s_getreg_b32, Definition(PhysReg{ttmp8}, s1), |
| ((20 - 1) << 11) | hw_regs_idx[i]); |
| |
| bld.smem(aco_opcode::s_buffer_store_dword, Operand(PhysReg{ttmp4}, s4), |
| Operand::c32(8u + i * 4), Operand(PhysReg{ttmp8}, s1), memory_sync_info(), true); |
| } |
| |
| program->config->float_mode = program->blocks[0].fp_mode.val; |
| |
| append_logical_end(ctx.block); |
| ctx.block->kind |= block_kind_uniform; |
| bld.sopp(aco_opcode::s_endpgm); |
| |
| finish_program(&ctx); |
| } |
| |
| Operand |
| get_arg_fixed(const struct ac_shader_args* args, struct ac_arg arg) |
| { |
| enum ac_arg_regfile file = args->args[arg.arg_index].file; |
| unsigned size = args->args[arg.arg_index].size; |
| RegClass rc = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size); |
| return Operand(get_arg_reg(args, arg), rc); |
| } |
| |
| unsigned |
| load_vb_descs(Builder& bld, PhysReg dest, Operand base, unsigned start, unsigned max) |
| { |
| unsigned count = MIN2((bld.program->dev.sgpr_limit - dest.reg()) / 4u, max); |
| |
| unsigned num_loads = (count / 4u) + util_bitcount(count & 0x3); |
| if (bld.program->gfx_level >= GFX10 && num_loads > 1) |
| bld.sopp(aco_opcode::s_clause, -1, num_loads - 1); |
| |
| for (unsigned i = 0; i < count;) { |
| unsigned size = 1u << util_logbase2(MIN2(count - i, 4)); |
| |
| if (size == 4) |
| bld.smem(aco_opcode::s_load_dwordx16, Definition(dest, s16), base, |
| Operand::c32((start + i) * 16u)); |
| else if (size == 2) |
| bld.smem(aco_opcode::s_load_dwordx8, Definition(dest, s8), base, |
| Operand::c32((start + i) * 16u)); |
| else |
| bld.smem(aco_opcode::s_load_dwordx4, Definition(dest, s4), base, |
| Operand::c32((start + i) * 16u)); |
| |
| dest = dest.advance(size * 16u); |
| i += size; |
| } |
| |
| return count; |
| } |
| |
| Operand |
| calc_nontrivial_instance_id(Builder& bld, const struct ac_shader_args* args, |
| const struct aco_vs_prolog_info* pinfo, unsigned index, |
| Operand instance_id, Operand start_instance, PhysReg tmp_sgpr, |
| PhysReg tmp_vgpr0, PhysReg tmp_vgpr1) |
| { |
| bld.smem(aco_opcode::s_load_dwordx2, Definition(tmp_sgpr, s2), |
| get_arg_fixed(args, pinfo->inputs), Operand::c32(8u + index * 8u)); |
| |
| wait_imm lgkm_imm; |
| lgkm_imm.lgkm = 0; |
| bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(bld.program->gfx_level)); |
| |
| Definition fetch_index_def(tmp_vgpr0, v1); |
| Operand fetch_index(tmp_vgpr0, v1); |
| |
| Operand div_info(tmp_sgpr, s1); |
| if (bld.program->gfx_level >= GFX8 && bld.program->gfx_level < GFX11) { |
| /* use SDWA */ |
| if (bld.program->gfx_level < GFX9) { |
| bld.vop1(aco_opcode::v_mov_b32, Definition(tmp_vgpr1, v1), div_info); |
| div_info = Operand(tmp_vgpr1, v1); |
| } |
| |
| bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, instance_id); |
| |
| Instruction* instr; |
| if (bld.program->gfx_level >= GFX9) |
| instr = bld.vop2_sdwa(aco_opcode::v_add_u32, fetch_index_def, div_info, fetch_index).instr; |
| else |
| instr = bld.vop2_sdwa(aco_opcode::v_add_co_u32, fetch_index_def, Definition(vcc, bld.lm), |
| div_info, fetch_index) |
| .instr; |
| instr->sdwa().sel[0] = SubdwordSel::ubyte1; |
| |
| bld.vop3(aco_opcode::v_mul_hi_u32, fetch_index_def, Operand(tmp_sgpr.advance(4), s1), |
| fetch_index); |
| |
| instr = |
| bld.vop2_sdwa(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, fetch_index).instr; |
| instr->sdwa().sel[0] = SubdwordSel::ubyte2; |
| } else { |
| Operand tmp_op(tmp_vgpr1, v1); |
| Definition tmp_def(tmp_vgpr1, v1); |
| |
| bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, instance_id); |
| |
| bld.vop3(aco_opcode::v_bfe_u32, tmp_def, div_info, Operand::c32(8u), Operand::c32(8u)); |
| bld.vadd32(fetch_index_def, tmp_op, fetch_index, false, Operand(s2), true); |
| |
| bld.vop3(aco_opcode::v_mul_hi_u32, fetch_index_def, fetch_index, |
| Operand(tmp_sgpr.advance(4), s1)); |
| |
| bld.vop3(aco_opcode::v_bfe_u32, tmp_def, div_info, Operand::c32(16u), Operand::c32(8u)); |
| bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, tmp_op, fetch_index); |
| } |
| |
| bld.vadd32(fetch_index_def, start_instance, fetch_index, false, Operand(s2), true); |
| |
| return fetch_index; |
| } |
| |
| void |
| select_rt_prolog(Program* program, ac_shader_config* config, |
| const struct aco_compiler_options* options, const struct aco_shader_info* info, |
| const struct ac_shader_args* in_args, const struct ac_shader_args* out_args) |
| { |
| init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode, |
| config); |
| Block* block = program->create_and_insert_block(); |
| block->kind = block_kind_top_level; |
| program->workgroup_size = info->workgroup_size; |
| program->wave_size = info->workgroup_size; |
| calc_min_waves(program); |
| Builder bld(program, block); |
| block->instructions.reserve(32); |
| unsigned num_sgprs = MAX2(in_args->num_sgprs_used, out_args->num_sgprs_used); |
| unsigned num_vgprs = MAX2(in_args->num_vgprs_used, out_args->num_vgprs_used); |
| |
| /* Inputs: |
| * Ring offsets: s[0-1] |
| * Indirect descriptor sets: s[2] |
| * Push constants pointer: s[3] |
| * SBT descriptors: s[4-5] |
| * Traversal shader address: s[6-7] |
| * Ray launch size address: s[8-9] |
| * Dynamic callable stack base: s[10] |
| * Workgroup IDs (xyz): s[11], s[12], s[13] |
| * Scratch offset: s[14] |
| * Local invocation IDs: v[0-2] |
| */ |
| PhysReg in_ring_offsets = get_arg_reg(in_args, in_args->ring_offsets); |
| PhysReg in_sbt_desc = get_arg_reg(in_args, in_args->rt.sbt_descriptors); |
| PhysReg in_launch_size_addr = get_arg_reg(in_args, in_args->rt.launch_size_addr); |
| PhysReg in_stack_base = get_arg_reg(in_args, in_args->rt.dynamic_callable_stack_base); |
| PhysReg in_wg_id_x = get_arg_reg(in_args, in_args->workgroup_ids[0]); |
| PhysReg in_wg_id_y = get_arg_reg(in_args, in_args->workgroup_ids[1]); |
| PhysReg in_wg_id_z = get_arg_reg(in_args, in_args->workgroup_ids[2]); |
| PhysReg in_scratch_offset; |
| if (options->gfx_level < GFX11) |
| in_scratch_offset = get_arg_reg(in_args, in_args->scratch_offset); |
| PhysReg in_local_ids[2] = { |
| get_arg_reg(in_args, in_args->local_invocation_ids), |
| get_arg_reg(in_args, in_args->local_invocation_ids).advance(4), |
| }; |
| |
| /* Outputs: |
| * Callee shader PC: s[0-1] |
| * Indirect descriptor sets: s[2] |
| * Push constants pointer: s[3] |
| * SBT descriptors: s[4-5] |
| * Traversal shader address: s[6-7] |
| * Ray launch sizes (xyz): s[8], s[9], s[10] |
| * Scratch offset (<GFX9 only): s[11] |
| * Ring offsets (<GFX9 only): s[12-13] |
| * Ray launch IDs: v[0-2] |
| * Stack pointer: v[3] |
| * Shader VA: v[4-5] |
| * Shader Record Ptr: v[6-7] |
| */ |
| PhysReg out_uniform_shader_addr = get_arg_reg(out_args, out_args->rt.uniform_shader_addr); |
| PhysReg out_launch_size_x = get_arg_reg(out_args, out_args->rt.launch_size); |
| PhysReg out_launch_size_z = out_launch_size_x.advance(8); |
| PhysReg out_launch_ids[3]; |
| for (unsigned i = 0; i < 3; i++) |
| out_launch_ids[i] = get_arg_reg(out_args, out_args->rt.launch_id).advance(i * 4); |
| PhysReg out_stack_ptr = get_arg_reg(out_args, out_args->rt.dynamic_callable_stack_base); |
| PhysReg out_record_ptr = get_arg_reg(out_args, out_args->rt.shader_record); |
| |
| /* Temporaries: */ |
| num_sgprs = align(num_sgprs, 2) + 4; |
| PhysReg tmp_raygen_sbt = PhysReg{num_sgprs - 4}; |
| PhysReg tmp_ring_offsets = PhysReg{num_sgprs - 2}; |
| |
| /* Confirm some assumptions about register aliasing */ |
| assert(in_ring_offsets == out_uniform_shader_addr); |
| assert(get_arg_reg(in_args, in_args->push_constants) == |
| get_arg_reg(out_args, out_args->push_constants)); |
| assert(get_arg_reg(in_args, in_args->rt.sbt_descriptors) == |
| get_arg_reg(out_args, out_args->rt.sbt_descriptors)); |
| assert(in_launch_size_addr == out_launch_size_x); |
| assert(in_stack_base == out_launch_size_z); |
| assert(in_local_ids[0] == out_launch_ids[0]); |
| |
| /* load raygen sbt */ |
| bld.smem(aco_opcode::s_load_dwordx2, Definition(tmp_raygen_sbt, s2), Operand(in_sbt_desc, s2), |
| Operand::c32(0u)); |
| |
| /* init scratch */ |
| if (options->gfx_level < GFX9) { |
| /* copy ring offsets to temporary location*/ |
| bld.sop1(aco_opcode::s_mov_b64, Definition(tmp_ring_offsets, s2), |
| Operand(in_ring_offsets, s2)); |
| } else if (options->gfx_level < GFX11) { |
| hw_init_scratch(bld, Definition(in_ring_offsets, s1), Operand(in_ring_offsets, s2), |
| Operand(in_scratch_offset, s1)); |
| } |
| |
| /* set stack ptr */ |
| bld.vop1(aco_opcode::v_mov_b32, Definition(out_stack_ptr, v1), Operand(in_stack_base, s1)); |
| |
| /* load raygen address */ |
| bld.smem(aco_opcode::s_load_dwordx2, Definition(out_uniform_shader_addr, s2), |
| Operand(tmp_raygen_sbt, s2), Operand::c32(0u)); |
| |
| /* load ray launch sizes */ |
| bld.smem(aco_opcode::s_load_dword, Definition(out_launch_size_z, s1), |
| Operand(in_launch_size_addr, s2), Operand::c32(8u)); |
| bld.smem(aco_opcode::s_load_dwordx2, Definition(out_launch_size_x, s2), |
| Operand(in_launch_size_addr, s2), Operand::c32(0u)); |
| |
| /* calculate ray launch ids */ |
| if (options->gfx_level >= GFX11) { |
| /* Thread IDs are packed in VGPR0, 10 bits per component. */ |
| bld.vop3(aco_opcode::v_bfe_u32, Definition(in_local_ids[1], v1), Operand(in_local_ids[0], v1), |
| Operand::c32(10u), Operand::c32(3u)); |
| bld.vop2(aco_opcode::v_and_b32, Definition(in_local_ids[0], v1), Operand::c32(0x7), |
| Operand(in_local_ids[0], v1)); |
| } |
| /* Do this backwards to reduce some RAW hazards on GFX11+ */ |
| bld.vop1(aco_opcode::v_mov_b32, Definition(out_launch_ids[2], v1), Operand(in_wg_id_z, s1)); |
| bld.vop3(aco_opcode::v_mad_u32_u24, Definition(out_launch_ids[1], v1), Operand(in_wg_id_y, s1), |
| Operand::c32(program->workgroup_size == 32 ? 4 : 8), Operand(in_local_ids[1], v1)); |
| bld.vop3(aco_opcode::v_mad_u32_u24, Definition(out_launch_ids[0], v1), Operand(in_wg_id_x, s1), |
| Operand::c32(8), Operand(in_local_ids[0], v1)); |
| |
| if (options->gfx_level < GFX9) { |
| /* write scratch/ring offsets to outputs, if needed */ |
| bld.sop1(aco_opcode::s_mov_b32, |
| Definition(get_arg_reg(out_args, out_args->scratch_offset), s1), |
| Operand(in_scratch_offset, s1)); |
| bld.sop1(aco_opcode::s_mov_b64, Definition(get_arg_reg(out_args, out_args->ring_offsets), s2), |
| Operand(tmp_ring_offsets, s2)); |
| } |
| |
| /* calculate shader record ptr: SBT + RADV_RT_HANDLE_SIZE */ |
| if (options->gfx_level < GFX9) { |
| bld.vop2_e64(aco_opcode::v_add_co_u32, Definition(out_record_ptr, v1), Definition(vcc, s2), |
| Operand(tmp_raygen_sbt, s1), Operand::c32(32u)); |
| } else { |
| bld.vop2_e64(aco_opcode::v_add_u32, Definition(out_record_ptr, v1), |
| Operand(tmp_raygen_sbt, s1), Operand::c32(32u)); |
| } |
| bld.vop1(aco_opcode::v_mov_b32, Definition(out_record_ptr.advance(4), v1), |
| Operand(tmp_raygen_sbt.advance(4), s1)); |
| |
| /* jump to raygen */ |
| bld.sop1(aco_opcode::s_setpc_b64, Operand(out_uniform_shader_addr, s2)); |
| |
| program->config->float_mode = program->blocks[0].fp_mode.val; |
| program->config->num_vgprs = get_vgpr_alloc(program, num_vgprs); |
| program->config->num_sgprs = get_sgpr_alloc(program, num_sgprs); |
| } |
| |
| void |
| select_vs_prolog(Program* program, const struct aco_vs_prolog_info* pinfo, ac_shader_config* config, |
| const struct aco_compiler_options* options, const struct aco_shader_info* info, |
| const struct ac_shader_args* args) |
| { |
| assert(pinfo->num_attributes > 0); |
| |
| /* This should be enough for any shader/stage. */ |
| unsigned max_user_sgprs = options->gfx_level >= GFX9 ? 32 : 16; |
| |
| init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode, |
| config); |
| program->dev.vgpr_limit = 256; |
| |
| Block* block = program->create_and_insert_block(); |
| block->kind = block_kind_top_level; |
| |
| program->workgroup_size = 64; |
| calc_min_waves(program); |
| |
| Builder bld(program, block); |
| |
| block->instructions.reserve(16 + pinfo->num_attributes * 4); |
| |
| bld.sopp(aco_opcode::s_setprio, -1u, 0x3u); |
| |
| uint32_t attrib_mask = BITFIELD_MASK(pinfo->num_attributes); |
| bool has_nontrivial_divisors = pinfo->nontrivial_divisors; |
| |
| wait_imm lgkm_imm; |
| lgkm_imm.lgkm = 0; |
| |
| /* choose sgprs */ |
| PhysReg vertex_buffers(align(max_user_sgprs + 14, 2)); |
| PhysReg prolog_input = vertex_buffers.advance(8); |
| PhysReg desc( |
| align((has_nontrivial_divisors ? prolog_input : vertex_buffers).advance(8).reg(), 4)); |
| |
| Operand start_instance = get_arg_fixed(args, args->start_instance); |
| Operand instance_id = get_arg_fixed(args, args->instance_id); |
| |
| PhysReg attributes_start(256 + args->num_vgprs_used); |
| /* choose vgprs that won't be used for anything else until the last attribute load */ |
| PhysReg vertex_index(attributes_start.reg() + pinfo->num_attributes * 4 - 1); |
| PhysReg instance_index(attributes_start.reg() + pinfo->num_attributes * 4 - 2); |
| PhysReg start_instance_vgpr(attributes_start.reg() + pinfo->num_attributes * 4 - 3); |
| PhysReg nontrivial_tmp_vgpr0(attributes_start.reg() + pinfo->num_attributes * 4 - 4); |
| PhysReg nontrivial_tmp_vgpr1(attributes_start.reg() + pinfo->num_attributes * 4); |
| |
| bld.sop1(aco_opcode::s_mov_b32, Definition(vertex_buffers, s1), |
| get_arg_fixed(args, args->vertex_buffers)); |
| if (options->address32_hi >= 0xffff8000 || options->address32_hi <= 0x7fff) { |
| bld.sopk(aco_opcode::s_movk_i32, Definition(vertex_buffers.advance(4), s1), |
| options->address32_hi & 0xFFFF); |
| } else { |
| bld.sop1(aco_opcode::s_mov_b32, Definition(vertex_buffers.advance(4), s1), |
| Operand::c32((unsigned)options->address32_hi)); |
| } |
| |
| /* calculate vgpr requirements */ |
| unsigned num_vgprs = attributes_start.reg() - 256; |
| num_vgprs += pinfo->num_attributes * 4; |
| if (has_nontrivial_divisors && program->gfx_level <= GFX8) |
| num_vgprs++; /* make space for nontrivial_tmp_vgpr1 */ |
| unsigned num_sgprs = 0; |
| |
| const struct ac_vtx_format_info* vtx_info_table = |
| ac_get_vtx_format_info_table(GFX8, CHIP_POLARIS10); |
| |
| for (unsigned loc = 0; loc < pinfo->num_attributes;) { |
| unsigned num_descs = |
| load_vb_descs(bld, desc, Operand(vertex_buffers, s2), loc, pinfo->num_attributes - loc); |
| num_sgprs = MAX2(num_sgprs, desc.advance(num_descs * 16u).reg()); |
| |
| if (loc == 0) { |
| /* perform setup while we load the descriptors */ |
| if (pinfo->is_ngg || pinfo->next_stage != MESA_SHADER_VERTEX) { |
| Operand count = get_arg_fixed(args, args->merged_wave_info); |
| bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), count, Operand::c32(0u)); |
| if (program->wave_size == 64) { |
| bld.sopc(aco_opcode::s_bitcmp1_b32, Definition(scc, s1), count, |
| Operand::c32(6u /* log2(64) */)); |
| bld.sop2(aco_opcode::s_cselect_b64, Definition(exec, s2), Operand::c64(UINT64_MAX), |
| Operand(exec, s2), Operand(scc, s1)); |
| } |
| } |
| |
| /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */ |
| if (info->hw_stage == AC_HW_HULL_SHADER && options->has_ls_vgpr_init_bug) { |
| /* We don't want load_vb_descs() to write vcc. */ |
| assert(program->dev.sgpr_limit <= vcc.reg()); |
| |
| bld.sop2(aco_opcode::s_bfe_u32, Definition(vcc, s1), Definition(scc, s1), |
| get_arg_fixed(args, args->merged_wave_info), Operand::c32((8u << 16) | 8u)); |
| bld.sop2(Builder::s_cselect, Definition(vcc, bld.lm), Operand::c32(-1), Operand::zero(), |
| Operand(scc, s1)); |
| |
| /* These copies are ordered so that vertex_id=tcs_patch_id doesn't overwrite vertex_id |
| * before instance_id=vertex_id. */ |
| ac_arg src_args[] = {args->vertex_id, args->tcs_rel_ids, args->tcs_patch_id}; |
| ac_arg dst_args[] = {args->instance_id, args->vs_rel_patch_id, args->vertex_id}; |
| for (unsigned i = 0; i < 3; i++) { |
| bld.vop2(aco_opcode::v_cndmask_b32, Definition(get_arg_reg(args, dst_args[i]), v1), |
| get_arg_fixed(args, src_args[i]), get_arg_fixed(args, dst_args[i]), |
| Operand(vcc, bld.lm)); |
| } |
| } |
| |
| bool needs_instance_index = |
| pinfo->instance_rate_inputs & |
| ~(pinfo->zero_divisors | pinfo->nontrivial_divisors); /* divisor is 1 */ |
| bool needs_start_instance = pinfo->instance_rate_inputs & pinfo->zero_divisors; |
| bool needs_vertex_index = ~pinfo->instance_rate_inputs & attrib_mask; |
| if (needs_vertex_index) |
| bld.vadd32(Definition(vertex_index, v1), get_arg_fixed(args, args->base_vertex), |
| get_arg_fixed(args, args->vertex_id), false, Operand(s2), true); |
| if (needs_instance_index) |
| bld.vadd32(Definition(instance_index, v1), start_instance, instance_id, false, |
| Operand(s2), true); |
| if (needs_start_instance) |
| bld.vop1(aco_opcode::v_mov_b32, Definition(start_instance_vgpr, v1), start_instance); |
| } |
| |
| bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(program->gfx_level)); |
| |
| for (unsigned i = 0; i < num_descs;) { |
| PhysReg dest(attributes_start.reg() + loc * 4u); |
| |
| /* calculate index */ |
| Operand fetch_index = Operand(vertex_index, v1); |
| if (pinfo->instance_rate_inputs & (1u << loc)) { |
| if (!(pinfo->zero_divisors & (1u << loc))) { |
| fetch_index = instance_id; |
| if (pinfo->nontrivial_divisors & (1u << loc)) { |
| unsigned index = util_bitcount(pinfo->nontrivial_divisors & BITFIELD_MASK(loc)); |
| fetch_index = calc_nontrivial_instance_id( |
| bld, args, pinfo, index, instance_id, start_instance, prolog_input, |
| nontrivial_tmp_vgpr0, nontrivial_tmp_vgpr1); |
| } else { |
| fetch_index = Operand(instance_index, v1); |
| } |
| } else { |
| fetch_index = Operand(start_instance_vgpr, v1); |
| } |
| } |
| |
| /* perform load */ |
| PhysReg cur_desc = desc.advance(i * 16); |
| if ((pinfo->misaligned_mask & (1u << loc))) { |
| const struct ac_vtx_format_info* vtx_info = &vtx_info_table[pinfo->formats[loc]]; |
| |
| assert(vtx_info->has_hw_format & 0x1); |
| unsigned dfmt = vtx_info->hw_format[0] & 0xf; |
| unsigned nfmt = vtx_info->hw_format[0] >> 4; |
| |
| for (unsigned j = 0; j < vtx_info->num_channels; j++) { |
| bool post_shuffle = pinfo->post_shuffle & (1u << loc); |
| unsigned offset = vtx_info->chan_byte_size * (post_shuffle && j < 3 ? 2 - j : j); |
| |
| /* Use MUBUF to workaround hangs for byte-aligned dword loads. The Vulkan spec |
| * doesn't require this to work, but some GL CTS tests over Zink do this anyway. |
| * MTBUF can hang, but MUBUF doesn't (probably gives garbage, but GL CTS doesn't |
| * care). |
| */ |
| if (dfmt == V_008F0C_BUF_DATA_FORMAT_32) |
| bld.mubuf(aco_opcode::buffer_load_dword, Definition(dest.advance(j * 4u), v1), |
| Operand(cur_desc, s4), fetch_index, Operand::c32(0u), offset, false, |
| false, true); |
| else if (vtx_info->chan_byte_size == 8) |
| bld.mtbuf(aco_opcode::tbuffer_load_format_xy, |
| Definition(dest.advance(j * 8u), v2), Operand(cur_desc, s4), |
| fetch_index, Operand::c32(0u), dfmt, nfmt, offset, false, true); |
| else |
| bld.mtbuf(aco_opcode::tbuffer_load_format_x, Definition(dest.advance(j * 4u), v1), |
| Operand(cur_desc, s4), fetch_index, Operand::c32(0u), dfmt, nfmt, |
| offset, false, true); |
| } |
| uint32_t one = |
| nfmt == V_008F0C_BUF_NUM_FORMAT_UINT || nfmt == V_008F0C_BUF_NUM_FORMAT_SINT |
| ? 1u |
| : 0x3f800000u; |
| /* 22.1.1. Attribute Location and Component Assignment of Vulkan 1.3 specification: |
| * For 64-bit data types, no default attribute values are provided. Input variables must |
| * not use more components than provided by the attribute. |
| */ |
| for (unsigned j = vtx_info->num_channels; vtx_info->chan_byte_size != 8 && j < 4; j++) { |
| bld.vop1(aco_opcode::v_mov_b32, Definition(dest.advance(j * 4u), v1), |
| Operand::c32(j == 3 ? one : 0u)); |
| } |
| |
| unsigned slots = vtx_info->chan_byte_size == 8 && vtx_info->num_channels > 2 ? 2 : 1; |
| loc += slots; |
| i += slots; |
| } else { |
| bld.mubuf(aco_opcode::buffer_load_format_xyzw, Definition(dest, v4), |
| Operand(cur_desc, s4), fetch_index, Operand::c32(0u), 0u, false, false, true); |
| loc++; |
| i++; |
| } |
| } |
| } |
| |
| if (pinfo->alpha_adjust_lo | pinfo->alpha_adjust_hi) { |
| wait_imm vm_imm; |
| vm_imm.vm = 0; |
| bld.sopp(aco_opcode::s_waitcnt, -1, vm_imm.pack(program->gfx_level)); |
| } |
| |
| /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW. |
| * so we may need to fix it up. */ |
| u_foreach_bit (loc, (pinfo->alpha_adjust_lo | pinfo->alpha_adjust_hi)) { |
| PhysReg alpha(attributes_start.reg() + loc * 4u + 3); |
| |
| unsigned alpha_adjust = (pinfo->alpha_adjust_lo >> loc) & 0x1; |
| alpha_adjust |= ((pinfo->alpha_adjust_hi >> loc) & 0x1) << 1; |
| |
| if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) |
| bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(alpha, v1), Operand(alpha, v1)); |
| |
| /* For the integer-like cases, do a natural sign extension. |
| * |
| * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 |
| * and happen to contain 0, 1, 2, 3 as the two LSBs of the |
| * exponent. |
| */ |
| unsigned offset = alpha_adjust == AC_ALPHA_ADJUST_SNORM ? 23u : 0u; |
| bld.vop3(aco_opcode::v_bfe_i32, Definition(alpha, v1), Operand(alpha, v1), |
| Operand::c32(offset), Operand::c32(2u)); |
| |
| /* Convert back to the right type. */ |
| if (alpha_adjust == AC_ALPHA_ADJUST_SNORM) { |
| bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(alpha, v1), Operand(alpha, v1)); |
| bld.vop2(aco_opcode::v_max_f32, Definition(alpha, v1), Operand::c32(0xbf800000u), |
| Operand(alpha, v1)); |
| } else if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) { |
| bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(alpha, v1), Operand(alpha, v1)); |
| } |
| } |
| |
| block->kind |= block_kind_uniform; |
| |
| /* continue on to the main shader */ |
| Operand continue_pc = get_arg_fixed(args, pinfo->inputs); |
| if (has_nontrivial_divisors) { |
| bld.smem(aco_opcode::s_load_dwordx2, Definition(prolog_input, s2), |
| get_arg_fixed(args, pinfo->inputs), Operand::c32(0u)); |
| bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(program->gfx_level)); |
| continue_pc = Operand(prolog_input, s2); |
| } |
| |
| bld.sop1(aco_opcode::s_setpc_b64, continue_pc); |
| |
| program->config->float_mode = program->blocks[0].fp_mode.val; |
| /* addition on GFX6-8 requires a carry-out (we use VCC) */ |
| program->needs_vcc = program->gfx_level <= GFX8; |
| program->config->num_vgprs = std::min<uint16_t>(get_vgpr_alloc(program, num_vgprs), 256); |
| program->config->num_sgprs = get_sgpr_alloc(program, num_sgprs); |
| } |
| |
| void |
| select_ps_epilog(Program* program, void* pinfo, ac_shader_config* config, |
| const struct aco_compiler_options* options, const struct aco_shader_info* info, |
| const struct ac_shader_args* args) |
| { |
| const struct aco_ps_epilog_info* einfo = (const struct aco_ps_epilog_info*)pinfo; |
| isel_context ctx = |
| setup_isel_context(program, 0, NULL, config, options, info, args, SWStage::FS); |
| |
| ctx.block->fp_mode = program->next_fp_mode; |
| |
| add_startpgm(&ctx); |
| append_logical_start(ctx.block); |
| |
| Builder bld(ctx.program, ctx.block); |
| |
| Temp colors[MAX_DRAW_BUFFERS][4]; |
| for (unsigned i = 0; i < MAX_DRAW_BUFFERS; i++) { |
| if (!einfo->colors[i].used) |
| continue; |
| |
| Temp color = get_arg(&ctx, einfo->colors[i]); |
| unsigned col_types = (einfo->color_types >> (i * 2)) & 0x3; |
| |
| emit_split_vector(&ctx, color, col_types == ACO_TYPE_ANY32 ? 4 : 8); |
| for (unsigned c = 0; c < 4; ++c) { |
| colors[i][c] = emit_extract_vector(&ctx, color, c, col_types == ACO_TYPE_ANY32 ? v1 : v2b); |
| } |
| |
| emit_clamp_alpha_test(&ctx, einfo, colors[i], i); |
| } |
| |
| bool has_mrtz_depth = einfo->depth.used; |
| bool has_mrtz_stencil = einfo->stencil.used; |
| bool has_mrtz_samplemask = einfo->samplemask.used; |
| bool has_mrtz_alpha = einfo->alpha_to_coverage_via_mrtz && einfo->colors[0].used; |
| bool has_mrtz_export = |
| has_mrtz_depth || has_mrtz_stencil || has_mrtz_samplemask || has_mrtz_alpha; |
| if (has_mrtz_export) { |
| Temp depth = has_mrtz_depth ? get_arg(&ctx, einfo->depth) : Temp(); |
| Temp stencil = has_mrtz_stencil ? get_arg(&ctx, einfo->stencil) : Temp(); |
| Temp samplemask = has_mrtz_samplemask ? get_arg(&ctx, einfo->samplemask) : Temp(); |
| Temp alpha = has_mrtz_alpha ? colors[0][3] : Temp(); |
| |
| export_fs_mrtz(&ctx, depth, stencil, samplemask, alpha); |
| } |
| |
| /* Export all color render targets */ |
| struct aco_export_mrt mrts[MAX_DRAW_BUFFERS]; |
| unsigned mrt_num = 0; |
| |
| if (einfo->broadcast_last_cbuf) { |
| for (unsigned i = 0; i <= einfo->broadcast_last_cbuf; i++) { |
| struct aco_export_mrt* mrt = &mrts[mrt_num]; |
| if (export_fs_mrt_color(&ctx, einfo, colors[0], i, mrt)) |
| mrt->target += mrt_num++; |
| } |
| } else { |
| for (unsigned i = 0; i < MAX_DRAW_BUFFERS; i++) { |
| struct aco_export_mrt* mrt = &mrts[mrt_num]; |
| if (export_fs_mrt_color(&ctx, einfo, colors[i], i, mrt)) |
| mrt->target += mrt_num++; |
| } |
| } |
| |
| if (mrt_num) { |
| if (ctx.options->gfx_level >= GFX11 && einfo->mrt0_is_dual_src) { |
| assert(mrt_num == 2); |
| create_fs_dual_src_export_gfx11(&ctx, &mrts[0], &mrts[1]); |
| } else { |
| for (unsigned i = 0; i < mrt_num; i++) |
| export_mrt(&ctx, &mrts[i]); |
| } |
| } else if (!has_mrtz_export && !einfo->skip_null_export) { |
| create_fs_null_export(&ctx); |
| } |
| |
| program->config->float_mode = program->blocks[0].fp_mode.val; |
| |
| append_logical_end(ctx.block); |
| ctx.block->kind |= block_kind_export_end; |
| bld.reset(ctx.block); |
| bld.sopp(aco_opcode::s_endpgm); |
| |
| finish_program(&ctx); |
| } |
| |
| void |
| select_tcs_epilog(Program* program, void* pinfo, ac_shader_config* config, |
| const struct aco_compiler_options* options, const struct aco_shader_info* info, |
| const struct ac_shader_args* args) |
| { |
| const struct aco_tcs_epilog_info* einfo = (const struct aco_tcs_epilog_info*)pinfo; |
| isel_context ctx = |
| setup_isel_context(program, 0, NULL, config, options, info, args, SWStage::TCS); |
| |
| ctx.block->fp_mode = program->next_fp_mode; |
| |
| add_startpgm(&ctx); |
| append_logical_start(ctx.block); |
| |
| Builder bld(ctx.program, ctx.block); |
| |
| /* Add a barrier before loading tess factors from LDS. */ |
| if (!einfo->pass_tessfactors_by_reg) { |
| /* To generate s_waitcnt lgkmcnt(0) when waitcnt insertion. */ |
| program->pending_lds_access = true; |
| |
| sync_scope scope = einfo->tcs_out_patch_fits_subgroup ? scope_subgroup : scope_workgroup; |
| bld.barrier(aco_opcode::p_barrier, memory_sync_info(storage_shared, semantic_acqrel, scope), |
| scope); |
| } |
| |
| Temp invocation_id = get_arg(&ctx, einfo->invocation_id); |
| |
| Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand::zero(), invocation_id); |
| |
| if_context ic_invoc_0; |
| begin_divergent_if_then(&ctx, &ic_invoc_0, cond); |
| |
| int outer_comps, inner_comps; |
| switch (einfo->primitive_mode) { |
| case TESS_PRIMITIVE_ISOLINES: |
| outer_comps = 2; |
| inner_comps = 0; |
| break; |
| case TESS_PRIMITIVE_TRIANGLES: |
| outer_comps = 3; |
| inner_comps = 1; |
| break; |
| case TESS_PRIMITIVE_QUADS: |
| outer_comps = 4; |
| inner_comps = 2; |
| break; |
| default: unreachable("invalid primitive mode"); return; |
| } |
| |
| bld.reset(ctx.block); |
| |
| unsigned tess_lvl_out_loc = |
| ac_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_OUTER) * 16; |
| unsigned tess_lvl_in_loc = |
| ac_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_INNER) * 16; |
| |
| Temp outer[4]; |
| Temp inner[2]; |
| if (einfo->pass_tessfactors_by_reg) { |
| for (int i = 0; i < outer_comps; i++) |
| outer[i] = get_arg(&ctx, einfo->tess_lvl_out[i]); |
| |
| for (int i = 0; i < inner_comps; i++) |
| inner[i] = get_arg(&ctx, einfo->tess_lvl_in[i]); |
| } else { |
| Temp addr = get_arg(&ctx, einfo->tcs_out_current_patch_data_offset); |
| addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2), addr); |
| |
| Temp data = program->allocateTmp(RegClass(RegType::vgpr, outer_comps)); |
| load_lds(&ctx, 4, outer_comps, data, addr, tess_lvl_out_loc, 4); |
| for (int i = 0; i < outer_comps; i++) |
| outer[i] = emit_extract_vector(&ctx, data, i, v1); |
| |
| if (inner_comps) { |
| data = program->allocateTmp(RegClass(RegType::vgpr, inner_comps)); |
| load_lds(&ctx, 4, inner_comps, data, addr, tess_lvl_in_loc, 4); |
| for (int i = 0; i < inner_comps; i++) |
| inner[i] = emit_extract_vector(&ctx, data, i, v1); |
| } |
| } |
| |
| Temp tess_factor_ring_desc = get_tess_ring_descriptor(&ctx, einfo, true); |
| Temp tess_factor_ring_base = get_arg(&ctx, args->tcs_factor_offset); |
| Temp rel_patch_id = get_arg(&ctx, einfo->rel_patch_id); |
| unsigned tess_factor_ring_const_offset = 0; |
| |
| if (program->gfx_level <= GFX8) { |
| /* Store the dynamic HS control word. */ |
| cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand::zero(), rel_patch_id); |
| |
| if_context ic_patch_0; |
| begin_divergent_if_then(&ctx, &ic_patch_0, cond); |
| |
| bld.reset(ctx.block); |
| |
| Temp data = bld.copy(bld.def(v1), Operand::c32(0x80000000u)); |
| |
| emit_single_mubuf_store(&ctx, tess_factor_ring_desc, Temp(0, v1), tess_factor_ring_base, |
| Temp(), data, 0, memory_sync_info(), true, false, false); |
| |
| tess_factor_ring_const_offset += 4; |
| |
| begin_divergent_if_else(&ctx, &ic_patch_0); |
| end_divergent_if(&ctx, &ic_patch_0); |
| } |
| |
| bld.reset(ctx.block); |
| |
| Temp tess_factor_ring_offset = |
| bld.v_mul_imm(bld.def(v1), rel_patch_id, (inner_comps + outer_comps) * 4, false); |
| |
| switch (einfo->primitive_mode) { |
| case TESS_PRIMITIVE_ISOLINES: { |
| /* For isolines, the hardware expects tess factors in the reverse order. */ |
| Temp data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), outer[1], outer[0]); |
| emit_single_mubuf_store(&ctx, tess_factor_ring_desc, tess_factor_ring_offset, |
| tess_factor_ring_base, Temp(), data, tess_factor_ring_const_offset, |
| memory_sync_info(), true, false, false); |
| break; |
| } |
| case TESS_PRIMITIVE_TRIANGLES: { |
| Temp data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4), outer[0], outer[1], outer[2], |
| inner[0]); |
| emit_single_mubuf_store(&ctx, tess_factor_ring_desc, tess_factor_ring_offset, |
| tess_factor_ring_base, Temp(), data, tess_factor_ring_const_offset, |
| memory_sync_info(), true, false, false); |
| break; |
| } |
| case TESS_PRIMITIVE_QUADS: { |
| Temp data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4), outer[0], outer[1], outer[2], |
| outer[3]); |
| emit_single_mubuf_store(&ctx, tess_factor_ring_desc, tess_factor_ring_offset, |
| tess_factor_ring_base, Temp(), data, tess_factor_ring_const_offset, |
| memory_sync_info(), true, false, false); |
| |
| data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), inner[0], inner[1]); |
| emit_single_mubuf_store( |
| &ctx, tess_factor_ring_desc, tess_factor_ring_offset, tess_factor_ring_base, Temp(), data, |
| tess_factor_ring_const_offset + 16, memory_sync_info(), true, false, false); |
| break; |
| } |
| default: unreachable("invalid primitive mode"); break; |
| } |
| |
| if (einfo->tes_reads_tessfactors) { |
| Temp layout = get_arg(&ctx, einfo->tcs_offchip_layout); |
| Temp num_patches, patch_base; |
| |
| if (ctx.options->is_opengl) { |
| num_patches = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), layout, |
| Operand::c32(0x3f)); |
| num_patches = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), num_patches, |
| Operand::c32(1)); |
| |
| patch_base = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), layout, |
| Operand::c32(16)); |
| } else { |
| num_patches = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), layout, |
| Operand::c32(0x60006)); |
| |
| patch_base = get_arg(&ctx, einfo->patch_base); |
| } |
| |
| Temp tess_ring_desc = get_tess_ring_descriptor(&ctx, einfo, false); |
| Temp tess_ring_base = get_arg(&ctx, args->tess_offchip_offset); |
| |
| Temp sbase = |
| bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), tess_ring_base, patch_base); |
| |
| Temp voffset = |
| bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(4), rel_patch_id); |
| |
| store_tess_factor_to_tess_ring(&ctx, tess_ring_desc, outer, outer_comps, sbase, voffset, |
| num_patches, tess_lvl_out_loc); |
| |
| if (inner_comps) { |
| store_tess_factor_to_tess_ring(&ctx, tess_ring_desc, inner, inner_comps, sbase, voffset, |
| num_patches, tess_lvl_in_loc); |
| } |
| } |
| |
| begin_divergent_if_else(&ctx, &ic_invoc_0); |
| end_divergent_if(&ctx, &ic_invoc_0); |
| |
| program->config->float_mode = program->blocks[0].fp_mode.val; |
| |
| append_logical_end(ctx.block); |
| |
| bld.reset(ctx.block); |
| bld.sopp(aco_opcode::s_endpgm); |
| |
| finish_program(&ctx); |
| } |
| |
| void |
| select_gl_vs_prolog(Program* program, void* pinfo, ac_shader_config* config, |
| const struct aco_compiler_options* options, const struct aco_shader_info* info, |
| const struct ac_shader_args* args) |
| { |
| const struct aco_gl_vs_prolog_info* vinfo = (const struct aco_gl_vs_prolog_info*)pinfo; |
| isel_context ctx = |
| setup_isel_context(program, 0, NULL, config, options, info, args, SWStage::VS); |
| |
| ctx.block->fp_mode = program->next_fp_mode; |
| |
| add_startpgm(&ctx); |
| append_logical_start(ctx.block); |
| |
| Builder bld(ctx.program, ctx.block); |
| |
| bld.sopp(aco_opcode::s_setprio, -1u, 0x3u); |
| |
| if (vinfo->as_ls && options->has_ls_vgpr_init_bug) |
| fix_ls_vgpr_init_bug(&ctx); |
| |
| std::vector<Operand> regs; |
| passthrough_all_args(&ctx, regs); |
| |
| Temp instance_divisor_constbuf; |
| |
| if (vinfo->instance_divisor_is_fetched) { |
| Temp list = get_arg(&ctx, vinfo->internal_bindings); |
| list = convert_pointer_to_64_bit(&ctx, list); |
| |
| instance_divisor_constbuf = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), list, |
| Operand::c32(vinfo->instance_diviser_buf_offset)); |
| } |
| |
| unsigned vgpr = 256 + ctx.args->num_vgprs_used; |
| |
| for (unsigned i = 0; i < vinfo->num_inputs; i++) { |
| Temp index = get_gl_vs_prolog_vertex_index(&ctx, vinfo, i, instance_divisor_constbuf); |
| regs.emplace_back(Operand(index, PhysReg{vgpr + i})); |
| } |
| |
| program->config->float_mode = program->blocks[0].fp_mode.val; |
| |
| append_logical_end(ctx.block); |
| |
| build_end_with_regs(&ctx, regs); |
| |
| finish_program(&ctx); |
| } |
| |
| void |
| select_ps_prolog(Program* program, void* pinfo, ac_shader_config* config, |
| const struct aco_compiler_options* options, const struct aco_shader_info* info, |
| const struct ac_shader_args* args) |
| { |
| const struct aco_ps_prolog_info* finfo = (const struct aco_ps_prolog_info*)pinfo; |
| isel_context ctx = |
| setup_isel_context(program, 0, NULL, config, options, info, args, SWStage::FS); |
| |
| ctx.block->fp_mode = program->next_fp_mode; |
| |
| add_startpgm(&ctx); |
| append_logical_start(ctx.block); |
| |
| if (finfo->poly_stipple) |
| emit_polygon_stipple(&ctx, finfo); |
| |
| overwrite_interp_args(&ctx, finfo); |
| |
| overwrite_samplemask_arg(&ctx, finfo); |
| |
| std::vector<Operand> regs; |
| passthrough_all_args(&ctx, regs); |
| |
| interpolate_color_args(&ctx, finfo, regs); |
| |
| program->config->float_mode = program->blocks[0].fp_mode.val; |
| |
| append_logical_end(ctx.block); |
| |
| build_end_with_regs(&ctx, regs); |
| |
| /* To compute all end args in WQM mode if required by main part. */ |
| if (finfo->needs_wqm) |
| set_wqm(&ctx, true); |
| |
| /* Exit WQM mode finally. */ |
| program->needs_exact = true; |
| |
| finish_program(&ctx); |
| } |
| |
| } // namespace aco |