blob: bfb05e76cf84113171536c57cd4d90c69d889bb9 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_instruction_selection.h"
#include "aco_builder.h"
#include "aco_interface.h"
#include "aco_ir.h"
#include "common/ac_nir.h"
#include "common/sid.h"
#include "util/fast_idiv_by_const.h"
#include "util/memstream.h"
#include <array>
#include <functional>
#include <map>
#include <numeric>
#include <stack>
#include <utility>
#include <vector>
namespace aco {
namespace {
#define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__)
static void
_isel_err(isel_context* ctx, const char* file, unsigned line, const nir_instr* instr,
const char* msg)
{
char* out;
size_t outsize;
struct u_memstream mem;
u_memstream_open(&mem, &out, &outsize);
FILE* const memf = u_memstream_get(&mem);
fprintf(memf, "%s: ", msg);
nir_print_instr(instr, memf);
u_memstream_close(&mem);
_aco_err(ctx->program, file, line, out);
free(out);
}
struct if_context {
Temp cond;
bool divergent_old;
bool exec_potentially_empty_discard_old;
bool exec_potentially_empty_break_old;
bool had_divergent_discard_old;
bool had_divergent_discard_then;
uint16_t exec_potentially_empty_break_depth_old;
unsigned BB_if_idx;
unsigned invert_idx;
bool uniform_has_then_branch;
bool then_branch_divergent;
Block BB_invert;
Block BB_endif;
};
struct loop_context {
Block loop_exit;
unsigned header_idx_old;
Block* exit_old;
bool divergent_cont_old;
bool divergent_branch_old;
bool divergent_if_old;
};
static bool visit_cf_list(struct isel_context* ctx, struct exec_list* list);
static void
add_logical_edge(unsigned pred_idx, Block* succ)
{
succ->logical_preds.emplace_back(pred_idx);
}
static void
add_linear_edge(unsigned pred_idx, Block* succ)
{
succ->linear_preds.emplace_back(pred_idx);
}
static void
add_edge(unsigned pred_idx, Block* succ)
{
add_logical_edge(pred_idx, succ);
add_linear_edge(pred_idx, succ);
}
static void
append_logical_start(Block* b)
{
Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
}
static void
append_logical_end(Block* b)
{
Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
}
Temp
get_ssa_temp(struct isel_context* ctx, nir_def* def)
{
uint32_t id = ctx->first_temp_id + def->index;
return Temp(id, ctx->program->temp_rc[id]);
}
Temp
emit_mbcnt(isel_context* ctx, Temp dst, Operand mask = Operand(), Operand base = Operand::zero())
{
Builder bld(ctx->program, ctx->block);
assert(mask.isUndefined() || mask.isTemp() || (mask.isFixed() && mask.physReg() == exec));
assert(mask.isUndefined() || mask.bytes() == bld.lm.bytes());
if (ctx->program->wave_size == 32) {
Operand mask_lo = mask.isUndefined() ? Operand::c32(-1u) : mask;
return bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, Definition(dst), mask_lo, base);
}
Operand mask_lo = Operand::c32(-1u);
Operand mask_hi = Operand::c32(-1u);
if (mask.isTemp()) {
RegClass rc = RegClass(mask.regClass().type(), 1);
Builder::Result mask_split =
bld.pseudo(aco_opcode::p_split_vector, bld.def(rc), bld.def(rc), mask);
mask_lo = Operand(mask_split.def(0).getTemp());
mask_hi = Operand(mask_split.def(1).getTemp());
} else if (mask.physReg() == exec) {
mask_lo = Operand(exec_lo, s1);
mask_hi = Operand(exec_hi, s1);
}
Temp mbcnt_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), mask_lo, base);
if (ctx->program->gfx_level <= GFX7)
return bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, Definition(dst), mask_hi, mbcnt_lo);
else
return bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, Definition(dst), mask_hi, mbcnt_lo);
}
inline void
set_wqm(isel_context* ctx, bool enable_helpers = false)
{
if (ctx->program->stage == fragment_fs) {
ctx->wqm_block_idx = ctx->block->index;
ctx->wqm_instruction_idx = ctx->block->instructions.size();
ctx->program->needs_wqm |= enable_helpers;
}
}
static Temp
emit_bpermute(isel_context* ctx, Builder& bld, Temp index, Temp data)
{
if (index.regClass() == s1)
return bld.readlane(bld.def(s1), data, index);
/* Avoid using shared VGPRs for shuffle on GFX10 when the shader consists
* of multiple binaries, because the VGPR use is not known when choosing
* which registers to use for the shared VGPRs.
*/
const bool avoid_shared_vgprs =
ctx->options->gfx_level >= GFX10 && ctx->options->gfx_level < GFX11 &&
ctx->program->wave_size == 64 &&
(ctx->program->info.has_epilog || ctx->program->info.merged_shader_compiled_separately ||
ctx->stage == raytracing_cs);
if (ctx->options->gfx_level <= GFX7 || avoid_shared_vgprs) {
/* GFX6-7: there is no bpermute instruction */
Operand index_op(index);
Operand input_data(data);
index_op.setLateKill(true);
input_data.setLateKill(true);
return bld.pseudo(aco_opcode::p_bpermute_readlane, bld.def(v1), bld.def(bld.lm),
bld.def(bld.lm, vcc), index_op, input_data);
} else if (ctx->options->gfx_level >= GFX10 && ctx->program->wave_size == 64) {
/* GFX10 wave64 mode: emulate full-wave bpermute */
Temp index_is_lo =
bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand::c32(31u), index);
Builder::Result index_is_lo_split =
bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc),
index_is_lo_split.def(1).getTemp());
Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2u), index);
Operand input_data(data);
index_x4.setLateKill(true);
input_data.setLateKill(true);
same_half.setLateKill(true);
if (ctx->options->gfx_level <= GFX10_3) {
/* We need one pair of shared VGPRs:
* Note, that these have twice the allocation granularity of normal VGPRs
*/
ctx->program->config->num_shared_vgprs = 2 * ctx->program->dev.vgpr_alloc_granule;
return bld.pseudo(aco_opcode::p_bpermute_shared_vgpr, bld.def(v1), bld.def(s2),
bld.def(s1, scc), index_x4, input_data, same_half);
} else {
return bld.pseudo(aco_opcode::p_bpermute_permlane, bld.def(v1), bld.def(s2),
bld.def(s1, scc), Operand(v1.as_linear()), index_x4, input_data,
same_half);
}
} else {
/* GFX8-9 or GFX10 wave32: bpermute works normally */
Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2u), index);
return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
}
}
static Temp
emit_masked_swizzle(isel_context* ctx, Builder& bld, Temp src, unsigned mask, bool allow_fi)
{
if (ctx->options->gfx_level >= GFX8) {
unsigned and_mask = mask & 0x1f;
unsigned or_mask = (mask >> 5) & 0x1f;
unsigned xor_mask = (mask >> 10) & 0x1f;
/* Eliminate or_mask. */
and_mask &= ~or_mask;
xor_mask ^= or_mask;
uint16_t dpp_ctrl = 0xffff;
/* DPP16 before DPP8 before v_permlane(x)16_b32
* because DPP16 supports modifiers and v_permlane
* can't be folded into valu instructions.
*/
if ((and_mask & 0x1c) == 0x1c && xor_mask < 4) {
unsigned res[4];
for (unsigned i = 0; i < 4; i++)
res[i] = ((i & and_mask) ^ xor_mask);
dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
} else if (and_mask == 0x1f && xor_mask == 8) {
dpp_ctrl = dpp_row_rr(8);
} else if (and_mask == 0x1f && xor_mask == 0xf) {
dpp_ctrl = dpp_row_mirror;
} else if (and_mask == 0x1f && xor_mask == 0x7) {
dpp_ctrl = dpp_row_half_mirror;
} else if (ctx->options->gfx_level >= GFX11 && and_mask == 0x10 && xor_mask < 0x10) {
dpp_ctrl = dpp_row_share(xor_mask);
} else if (ctx->options->gfx_level >= GFX11 && and_mask == 0x1f && xor_mask < 0x10) {
dpp_ctrl = dpp_row_xmask(xor_mask);
} else if (ctx->options->gfx_level >= GFX10 && (and_mask & 0x18) == 0x18 && xor_mask < 8) {
uint32_t lane_sel = 0;
for (unsigned i = 0; i < 8; i++)
lane_sel |= ((i & and_mask) ^ xor_mask) << (i * 3);
return bld.vop1_dpp8(aco_opcode::v_mov_b32, bld.def(v1), src, lane_sel, allow_fi);
} else if (ctx->options->gfx_level >= GFX10 && (and_mask & 0x10) == 0x10) {
uint64_t lane_mask = 0;
for (unsigned i = 0; i < 16; i++)
lane_mask |= uint64_t((i & and_mask) ^ (xor_mask & 0xf)) << i * 4;
aco_opcode opcode =
xor_mask & 0x10 ? aco_opcode::v_permlanex16_b32 : aco_opcode::v_permlane16_b32;
Temp op1 = bld.copy(bld.def(s1), Operand::c32(lane_mask & 0xffffffff));
Temp op2 = bld.copy(bld.def(s1), Operand::c32(lane_mask >> 32));
Builder::Result ret = bld.vop3(opcode, bld.def(v1), src, op1, op2);
ret->valu().opsel[0] = allow_fi; /* set FETCH_INACTIVE */
ret->valu().opsel[1] = true; /* set BOUND_CTRL */
return ret;
}
if (dpp_ctrl != 0xffff)
return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl, 0xf, 0xf, true,
allow_fi);
}
return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
}
Temp
as_vgpr(Builder& bld, Temp val)
{
if (val.type() == RegType::sgpr)
return bld.copy(bld.def(RegType::vgpr, val.size()), val);
assert(val.type() == RegType::vgpr);
return val;
}
Temp
as_vgpr(isel_context* ctx, Temp val)
{
Builder bld(ctx->program, ctx->block);
return as_vgpr(bld, val);
}
void
emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
{
Builder bld(ctx->program, ctx->block);
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand::c32(idx));
}
Temp
emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
{
/* no need to extract the whole vector */
if (src.regClass() == dst_rc) {
assert(idx == 0);
return src;
}
assert(src.bytes() > (idx * dst_rc.bytes()));
Builder bld(ctx->program, ctx->block);
auto it = ctx->allocated_vec.find(src.id());
if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
if (it->second[idx].regClass() == dst_rc) {
return it->second[idx];
} else {
assert(!dst_rc.is_subdword());
assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
return bld.copy(bld.def(dst_rc), it->second[idx]);
}
}
if (dst_rc.is_subdword())
src = as_vgpr(ctx, src);
if (src.bytes() == dst_rc.bytes()) {
assert(idx == 0);
return bld.copy(bld.def(dst_rc), src);
} else {
Temp dst = bld.tmp(dst_rc);
emit_extract_vector(ctx, src, idx, dst);
return dst;
}
}
void
emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
{
if (num_components == 1)
return;
if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
return;
RegClass rc;
if (num_components > vec_src.size()) {
if (vec_src.type() == RegType::sgpr) {
/* should still help get_alu_src() */
emit_split_vector(ctx, vec_src, vec_src.size());
return;
}
/* sub-dword split */
rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
} else {
rc = RegClass(vec_src.type(), vec_src.size() / num_components);
}
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
split->operands[0] = Operand(vec_src);
std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
for (unsigned i = 0; i < num_components; i++) {
elems[i] = ctx->program->allocateTmp(rc);
split->definitions[i] = Definition(elems[i]);
}
ctx->block->instructions.emplace_back(std::move(split));
ctx->allocated_vec.emplace(vec_src.id(), elems);
}
/* This vector expansion uses a mask to determine which elements in the new vector
* come from the original vector. The other elements are undefined. */
void
expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask,
bool zero_padding = false)
{
assert(vec_src.type() == RegType::vgpr);
Builder bld(ctx->program, ctx->block);
if (dst.type() == RegType::sgpr && num_components > dst.size()) {
Temp tmp_dst = bld.tmp(RegClass::get(RegType::vgpr, 2 * num_components));
expand_vector(ctx, vec_src, tmp_dst, num_components, mask, zero_padding);
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp_dst);
ctx->allocated_vec[dst.id()] = ctx->allocated_vec[tmp_dst.id()];
return;
}
emit_split_vector(ctx, vec_src, util_bitcount(mask));
if (vec_src == dst)
return;
if (num_components == 1) {
if (dst.type() == RegType::sgpr)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
else
bld.copy(Definition(dst), vec_src);
return;
}
unsigned component_bytes = dst.bytes() / num_components;
RegClass src_rc = RegClass::get(RegType::vgpr, component_bytes);
RegClass dst_rc = RegClass::get(dst.type(), component_bytes);
assert(dst.type() == RegType::vgpr || !src_rc.is_subdword());
std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
Temp padding = Temp(0, dst_rc);
if (zero_padding)
padding = bld.copy(bld.def(dst_rc), Operand::zero(component_bytes));
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
vec->definitions[0] = Definition(dst);
unsigned k = 0;
for (unsigned i = 0; i < num_components; i++) {
if (mask & (1 << i)) {
Temp src = emit_extract_vector(ctx, vec_src, k++, src_rc);
if (dst.type() == RegType::sgpr)
src = bld.as_uniform(src);
vec->operands[i] = Operand(src);
elems[i] = src;
} else {
vec->operands[i] = Operand::zero(component_bytes);
elems[i] = padding;
}
}
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
}
/* adjust misaligned small bit size loads */
void
byte_align_scalar(isel_context* ctx, Temp vec, Operand offset, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Operand shift;
Temp select = Temp();
if (offset.isConstant()) {
assert(offset.constantValue() && offset.constantValue() < 4);
shift = Operand::c32(offset.constantValue() * 8);
} else {
/* bit_offset = 8 * (offset & 0x3) */
Temp tmp =
bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand::c32(3u));
select = bld.tmp(s1);
shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp,
Operand::c32(3u));
}
if (vec.size() == 1) {
bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
} else if (vec.size() == 2) {
Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
if (tmp == dst)
emit_split_vector(ctx, dst, 2);
else
emit_extract_vector(ctx, tmp, 0, dst);
} else if (vec.size() == 3 || vec.size() == 4) {
Temp lo = bld.tmp(s2), hi;
if (vec.size() == 3) {
/* this can happen if we use VMEM for a uniform load */
hi = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
} else {
hi = bld.tmp(s2);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand::zero());
}
if (select != Temp())
hi =
bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand::zero(), bld.scc(select));
lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
Temp mid = bld.tmp(s1);
lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
emit_split_vector(ctx, dst, 2);
}
}
void
byte_align_vector(isel_context* ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
{
Builder bld(ctx->program, ctx->block);
if (offset.isTemp()) {
Temp tmp[4] = {vec, vec, vec, vec};
if (vec.size() == 4) {
tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]),
Definition(tmp[2]), Definition(tmp[3]), vec);
} else if (vec.size() == 3) {
tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]),
Definition(tmp[2]), vec);
} else if (vec.size() == 2) {
tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
}
for (unsigned i = 0; i < dst.size(); i++)
tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
vec = tmp[0];
if (dst.size() == 2)
vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
offset = Operand::zero();
}
unsigned num_components = vec.bytes() / component_size;
if (vec.regClass() == dst.regClass()) {
assert(offset.constantValue() == 0);
bld.copy(Definition(dst), vec);
emit_split_vector(ctx, dst, num_components);
return;
}
emit_split_vector(ctx, vec, num_components);
std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
assert(offset.constantValue() % component_size == 0);
unsigned skip = offset.constantValue() / component_size;
for (unsigned i = skip; i < num_components; i++)
elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
if (dst.type() == RegType::vgpr) {
/* if dst is vgpr - split the src and create a shrunk version according to the mask. */
num_components = dst.bytes() / component_size;
aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
for (unsigned i = 0; i < num_components; i++)
create_vec->operands[i] = Operand(elems[i]);
create_vec->definitions[0] = Definition(dst);
bld.insert(std::move(create_vec));
} else if (skip) {
/* if dst is sgpr - split the src, but move the original to sgpr. */
vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
byte_align_scalar(ctx, vec, offset, dst);
} else {
assert(dst.size() == vec.size());
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
}
ctx->allocated_vec.emplace(dst.id(), elems);
}
Temp
get_ssa_temp_tex(struct isel_context* ctx, nir_def* def, bool is_16bit)
{
RegClass rc = RegClass::get(RegType::vgpr, (is_16bit ? 2 : 4) * def->num_components);
Temp tmp = get_ssa_temp(ctx, def);
if (tmp.bytes() != rc.bytes())
return emit_extract_vector(ctx, tmp, 0, rc);
else
return tmp;
}
Temp
bool_to_vector_condition(isel_context* ctx, Temp val, Temp dst = Temp(0, s2))
{
Builder bld(ctx->program, ctx->block);
if (!dst.id())
dst = bld.tmp(bld.lm);
assert(val.regClass() == s1);
assert(dst.regClass() == bld.lm);
return bld.sop2(Builder::s_cselect, Definition(dst), Operand::c32(-1), Operand::zero(),
bld.scc(val));
}
Temp
bool_to_scalar_condition(isel_context* ctx, Temp val, Temp dst = Temp(0, s1))
{
Builder bld(ctx->program, ctx->block);
if (!dst.id())
dst = bld.tmp(s1);
assert(val.regClass() == bld.lm);
assert(dst.regClass() == s1);
/* if we're currently in WQM mode, ensure that the source is also computed in WQM */
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(dst)), val, Operand(exec, bld.lm));
return dst;
}
/**
* Copies the first src_bits of the input to the output Temp. Input bits at positions larger than
* src_bits and dst_bits are truncated.
*
* Sign extension may be applied using the sign_extend parameter. The position of the input sign
* bit is indicated by src_bits in this case.
*
* If dst.bytes() is larger than dst_bits/8, the value of the upper bits is undefined.
*/
Temp
convert_int(isel_context* ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits,
bool sign_extend, Temp dst = Temp())
{
assert(!(sign_extend && dst_bits < src_bits) &&
"Shrinking integers is not supported for signed inputs");
if (!dst.id()) {
if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
else
dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
}
assert(src.type() == RegType::sgpr || src_bits == src.bytes() * 8);
assert(dst.type() == RegType::sgpr || dst_bits == dst.bytes() * 8);
if (dst.bytes() == src.bytes() && dst_bits < src_bits) {
/* Copy the raw value, leaving an undefined value in the upper bits for
* the caller to handle appropriately */
return bld.copy(Definition(dst), src);
} else if (dst.bytes() < src.bytes()) {
return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand::zero());
}
Temp tmp = dst;
if (dst_bits == 64)
tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
if (tmp == src) {
} else if (src.regClass() == s1) {
assert(src_bits < 32);
bld.pseudo(aco_opcode::p_extract, Definition(tmp), bld.def(s1, scc), src, Operand::zero(),
Operand::c32(src_bits), Operand::c32((unsigned)sign_extend));
} else {
assert(src_bits < 32);
bld.pseudo(aco_opcode::p_extract, Definition(tmp), src, Operand::zero(),
Operand::c32(src_bits), Operand::c32((unsigned)sign_extend));
}
if (dst_bits == 64) {
if (sign_extend && dst.regClass() == s2) {
Temp high =
bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand::c32(31u));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
} else if (sign_extend && dst.regClass() == v2) {
Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand::c32(31u), tmp);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
} else {
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand::zero());
}
}
return dst;
}
enum sgpr_extract_mode {
sgpr_extract_sext,
sgpr_extract_zext,
sgpr_extract_undef,
};
Temp
extract_8_16_bit_sgpr_element(isel_context* ctx, Temp dst, nir_alu_src* src, sgpr_extract_mode mode)
{
Temp vec = get_ssa_temp(ctx, src->src.ssa);
unsigned src_size = src->src.ssa->bit_size;
unsigned swizzle = src->swizzle[0];
if (vec.size() > 1) {
assert(src_size == 16);
vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
swizzle = swizzle & 1;
}
Builder bld(ctx->program, ctx->block);
Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst;
if (mode == sgpr_extract_undef && swizzle == 0)
bld.copy(Definition(tmp), vec);
else
bld.pseudo(aco_opcode::p_extract, Definition(tmp), bld.def(s1, scc), Operand(vec),
Operand::c32(swizzle), Operand::c32(src_size),
Operand::c32((mode == sgpr_extract_sext)));
if (dst.regClass() == s2)
convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst);
return dst;
}
Temp
get_alu_src(struct isel_context* ctx, nir_alu_src src, unsigned size = 1)
{
if (src.src.ssa->num_components == 1 && size == 1)
return get_ssa_temp(ctx, src.src.ssa);
Temp vec = get_ssa_temp(ctx, src.src.ssa);
unsigned elem_size = src.src.ssa->bit_size / 8u;
bool identity_swizzle = true;
for (unsigned i = 0; identity_swizzle && i < size; i++) {
if (src.swizzle[i] != i)
identity_swizzle = false;
}
if (identity_swizzle)
return emit_extract_vector(ctx, vec, 0, RegClass::get(vec.type(), elem_size * size));
assert(elem_size > 0);
assert(vec.bytes() % elem_size == 0);
if (elem_size < 4 && vec.type() == RegType::sgpr && size == 1) {
assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
return extract_8_16_bit_sgpr_element(ctx, ctx->program->allocateTmp(s1), &src,
sgpr_extract_undef);
}
bool as_uniform = elem_size < 4 && vec.type() == RegType::sgpr;
if (as_uniform)
vec = as_vgpr(ctx, vec);
RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword()
: RegClass(vec.type(), elem_size / 4);
if (size == 1) {
return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
} else {
assert(size <= 4);
std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
for (unsigned i = 0; i < size; ++i) {
elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
vec_instr->operands[i] = Operand{elems[i]};
}
Temp dst = ctx->program->allocateTmp(RegClass(vec.type(), elem_size * size / 4));
vec_instr->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec_instr));
ctx->allocated_vec.emplace(dst.id(), elems);
return vec.type() == RegType::sgpr ? Builder(ctx->program, ctx->block).as_uniform(dst) : dst;
}
}
Temp
get_alu_src_vop3p(struct isel_context* ctx, nir_alu_src src)
{
/* returns v2b or v1 for vop3p usage.
* The source expects exactly 2 16bit components
* which are within the same dword
*/
assert(src.src.ssa->bit_size == 16);
assert(src.swizzle[0] >> 1 == src.swizzle[1] >> 1);
Temp tmp = get_ssa_temp(ctx, src.src.ssa);
if (tmp.size() == 1)
return tmp;
/* the size is larger than 1 dword: check the swizzle */
unsigned dword = src.swizzle[0] >> 1;
/* extract a full dword if possible */
if (tmp.bytes() >= (dword + 1) * 4) {
/* if the source is split into components, use p_create_vector */
auto it = ctx->allocated_vec.find(tmp.id());
if (it != ctx->allocated_vec.end()) {
unsigned index = dword << 1;
Builder bld(ctx->program, ctx->block);
if (it->second[index].regClass() == v2b)
return bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), it->second[index],
it->second[index + 1]);
}
return emit_extract_vector(ctx, tmp, dword, v1);
} else {
/* This must be a swizzled access to %a.zz where %a is v6b */
assert(((src.swizzle[0] | src.swizzle[1]) & 1) == 0);
assert(tmp.regClass() == v6b && dword == 1);
return emit_extract_vector(ctx, tmp, dword * 2, v2b);
}
}
uint32_t
get_alu_src_ub(isel_context* ctx, nir_alu_instr* instr, int src_idx)
{
nir_scalar scalar = nir_scalar{instr->src[src_idx].src.ssa, instr->src[src_idx].swizzle[0]};
return nir_unsigned_upper_bound(ctx->shader, ctx->range_ht, scalar, &ctx->ub_config);
}
Temp
convert_pointer_to_64_bit(isel_context* ctx, Temp ptr, bool non_uniform = false)
{
if (ptr.size() == 2)
return ptr;
Builder bld(ctx->program, ctx->block);
if (ptr.type() == RegType::vgpr && !non_uniform)
ptr = bld.as_uniform(ptr);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(RegClass(ptr.type(), 2)), ptr,
Operand::c32((unsigned)ctx->options->address32_hi));
}
void
emit_sop2_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst,
bool writes_scc, uint8_t uses_ub = 0)
{
aco_ptr<SOP2_instruction> sop2{
create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
sop2->definitions[0] = Definition(dst);
if (instr->no_unsigned_wrap)
sop2->definitions[0].setNUW(true);
if (writes_scc)
sop2->definitions[1] = Definition(ctx->program->allocateId(s1), scc, s1);
for (int i = 0; i < 2; i++) {
if (uses_ub & (1 << i)) {
uint32_t src_ub = get_alu_src_ub(ctx, instr, i);
if (src_ub <= 0xffff)
sop2->operands[i].set16bit(true);
else if (src_ub <= 0xffffff)
sop2->operands[i].set24bit(true);
}
}
ctx->block->instructions.emplace_back(std::move(sop2));
}
void
emit_vop2_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode opc, Temp dst,
bool commutative, bool swap_srcs = false, bool flush_denorms = false,
bool nuw = false, uint8_t uses_ub = 0)
{
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
if (src1.type() == RegType::sgpr) {
if (commutative && src0.type() == RegType::vgpr) {
Temp t = src0;
src0 = src1;
src1 = t;
} else {
src1 = as_vgpr(ctx, src1);
}
}
Operand op[2] = {Operand(src0), Operand(src1)};
for (int i = 0; i < 2; i++) {
if (uses_ub & (1 << i)) {
uint32_t src_ub = get_alu_src_ub(ctx, instr, swap_srcs ? !i : i);
if (src_ub <= 0xffff)
op[i].set16bit(true);
else if (src_ub <= 0xffffff)
op[i].set24bit(true);
}
}
if (flush_denorms && ctx->program->gfx_level < GFX9) {
assert(dst.size() == 1);
Temp tmp = bld.vop2(opc, bld.def(v1), op[0], op[1]);
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0x3f800000u), tmp);
} else {
if (nuw) {
bld.nuw().vop2(opc, Definition(dst), op[0], op[1]);
} else {
bld.vop2(opc, Definition(dst), op[0], op[1]);
}
}
}
void
emit_vop2_instruction_logic64(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst)
{
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (src1.type() == RegType::sgpr) {
assert(src0.type() == RegType::vgpr);
std::swap(src0, src1);
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(src0.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(v1);
Temp src11 = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
}
void
emit_vop3a_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst,
bool flush_denorms = false, unsigned num_sources = 2, bool swap_srcs = false)
{
assert(num_sources == 2 || num_sources == 3);
Temp src[3] = {Temp(0, v1), Temp(0, v1), Temp(0, v1)};
bool has_sgpr = false;
for (unsigned i = 0; i < num_sources; i++) {
src[i] = get_alu_src(ctx, instr->src[swap_srcs ? 1 - i : i]);
if (has_sgpr)
src[i] = as_vgpr(ctx, src[i]);
else
has_sgpr = src[i].type() == RegType::sgpr;
}
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
if (flush_denorms && ctx->program->gfx_level < GFX9) {
Temp tmp;
if (num_sources == 3)
tmp = bld.vop3(op, bld.def(dst.regClass()), src[0], src[1], src[2]);
else
tmp = bld.vop3(op, bld.def(dst.regClass()), src[0], src[1]);
if (dst.size() == 1)
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0x3f800000u), tmp);
else
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand::c64(0x3FF0000000000000), tmp);
} else if (num_sources == 3) {
bld.vop3(op, Definition(dst), src[0], src[1], src[2]);
} else {
bld.vop3(op, Definition(dst), src[0], src[1]);
}
}
Builder::Result
emit_vop3p_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst,
bool swap_srcs = false)
{
Temp src0 = get_alu_src_vop3p(ctx, instr->src[swap_srcs]);
Temp src1 = get_alu_src_vop3p(ctx, instr->src[!swap_srcs]);
if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
src1 = as_vgpr(ctx, src1);
assert(instr->def.num_components == 2);
/* swizzle to opsel: all swizzles are either 0 (x) or 1 (y) */
unsigned opsel_lo =
(instr->src[!swap_srcs].swizzle[0] & 1) << 1 | (instr->src[swap_srcs].swizzle[0] & 1);
unsigned opsel_hi =
(instr->src[!swap_srcs].swizzle[1] & 1) << 1 | (instr->src[swap_srcs].swizzle[1] & 1);
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
Builder::Result res = bld.vop3p(op, Definition(dst), src0, src1, opsel_lo, opsel_hi);
return res;
}
void
emit_idot_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst, bool clamp,
unsigned neg_lo = 0)
{
Temp src[3] = {Temp(0, v1), Temp(0, v1), Temp(0, v1)};
bool has_sgpr = false;
for (unsigned i = 0; i < 3; i++) {
src[i] = get_alu_src(ctx, instr->src[i]);
if (has_sgpr)
src[i] = as_vgpr(ctx, src[i]);
else
has_sgpr = src[i].type() == RegType::sgpr;
}
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
VALU_instruction& vop3p =
bld.vop3p(op, Definition(dst), src[0], src[1], src[2], 0x0, 0x7)->valu();
vop3p.clamp = clamp;
vop3p.neg_lo = neg_lo;
}
void
emit_vop1_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst)
{
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
if (dst.type() == RegType::sgpr)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
else
bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
}
void
emit_vopc_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
assert(src0.size() == src1.size());
aco_ptr<Instruction> vopc;
if (src1.type() == RegType::sgpr) {
if (src0.type() == RegType::vgpr) {
/* to swap the operands, we might also have to change the opcode */
switch (op) {
case aco_opcode::v_cmp_lt_f16: op = aco_opcode::v_cmp_gt_f16; break;
case aco_opcode::v_cmp_ge_f16: op = aco_opcode::v_cmp_le_f16; break;
case aco_opcode::v_cmp_lt_i16: op = aco_opcode::v_cmp_gt_i16; break;
case aco_opcode::v_cmp_ge_i16: op = aco_opcode::v_cmp_le_i16; break;
case aco_opcode::v_cmp_lt_u16: op = aco_opcode::v_cmp_gt_u16; break;
case aco_opcode::v_cmp_ge_u16: op = aco_opcode::v_cmp_le_u16; break;
case aco_opcode::v_cmp_lt_f32: op = aco_opcode::v_cmp_gt_f32; break;
case aco_opcode::v_cmp_ge_f32: op = aco_opcode::v_cmp_le_f32; break;
case aco_opcode::v_cmp_lt_i32: op = aco_opcode::v_cmp_gt_i32; break;
case aco_opcode::v_cmp_ge_i32: op = aco_opcode::v_cmp_le_i32; break;
case aco_opcode::v_cmp_lt_u32: op = aco_opcode::v_cmp_gt_u32; break;
case aco_opcode::v_cmp_ge_u32: op = aco_opcode::v_cmp_le_u32; break;
case aco_opcode::v_cmp_lt_f64: op = aco_opcode::v_cmp_gt_f64; break;
case aco_opcode::v_cmp_ge_f64: op = aco_opcode::v_cmp_le_f64; break;
case aco_opcode::v_cmp_lt_i64: op = aco_opcode::v_cmp_gt_i64; break;
case aco_opcode::v_cmp_ge_i64: op = aco_opcode::v_cmp_le_i64; break;
case aco_opcode::v_cmp_lt_u64: op = aco_opcode::v_cmp_gt_u64; break;
case aco_opcode::v_cmp_ge_u64: op = aco_opcode::v_cmp_le_u64; break;
default: /* eq and ne are commutative */ break;
}
Temp t = src0;
src0 = src1;
src1 = t;
} else {
src1 = as_vgpr(ctx, src1);
}
}
Builder bld(ctx->program, ctx->block);
bld.vopc(op, Definition(dst), src0, src1);
}
void
emit_sopc_instruction(isel_context* ctx, nir_alu_instr* instr, aco_opcode op, Temp dst)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
Builder bld(ctx->program, ctx->block);
assert(dst.regClass() == bld.lm);
assert(src0.type() == RegType::sgpr);
assert(src1.type() == RegType::sgpr);
/* Emit the SALU comparison instruction */
Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
/* Turn the result into a per-lane bool */
bool_to_vector_condition(ctx, cmp, dst);
}
void
emit_comparison(isel_context* ctx, nir_alu_instr* instr, Temp dst, aco_opcode v16_op,
aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes,
aco_opcode s64_op = aco_opcode::num_opcodes)
{
aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op
: instr->src[0].src.ssa->bit_size == 32 ? s32_op
: aco_opcode::num_opcodes;
aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op
: instr->src[0].src.ssa->bit_size == 32 ? v32_op
: v16_op;
bool use_valu = s_op == aco_opcode::num_opcodes || instr->def.divergent ||
get_ssa_temp(ctx, instr->src[0].src.ssa).type() == RegType::vgpr ||
get_ssa_temp(ctx, instr->src[1].src.ssa).type() == RegType::vgpr;
aco_opcode op = use_valu ? v_op : s_op;
assert(op != aco_opcode::num_opcodes);
assert(dst.regClass() == ctx->program->lane_mask);
if (use_valu)
emit_vopc_instruction(ctx, instr, op, dst);
else
emit_sopc_instruction(ctx, instr, op, dst);
}
void
emit_boolean_logic(isel_context* ctx, nir_alu_instr* instr, Builder::WaveSpecificOpcode op,
Temp dst)
{
Builder bld(ctx->program, ctx->block);
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
assert(dst.regClass() == bld.lm);
assert(src0.regClass() == bld.lm);
assert(src1.regClass() == bld.lm);
bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
}
void
select_vec2(isel_context* ctx, Temp dst, Temp cond, Temp then, Temp els)
{
Builder bld(ctx->program, ctx->block);
Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
}
void
emit_bcsel(isel_context* ctx, nir_alu_instr* instr, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Temp cond = get_alu_src(ctx, instr->src[0]);
Temp then = get_alu_src(ctx, instr->src[1]);
Temp els = get_alu_src(ctx, instr->src[2]);
assert(cond.regClass() == bld.lm);
if (dst.type() == RegType::vgpr) {
aco_ptr<Instruction> bcsel;
if (dst.size() == 1) {
then = as_vgpr(ctx, then);
els = as_vgpr(ctx, els);
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
} else if (dst.size() == 2) {
select_vec2(ctx, dst, cond, then, els);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
return;
}
if (instr->def.bit_size == 1) {
assert(dst.regClass() == bld.lm);
assert(then.regClass() == bld.lm);
assert(els.regClass() == bld.lm);
}
if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
if (dst.regClass() == s1 || dst.regClass() == s2) {
assert((then.regClass() == s1 || then.regClass() == s2) &&
els.regClass() == then.regClass());
assert(dst.size() == then.size());
aco_opcode op =
dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
} else {
isel_err(&instr->instr, "Unimplemented uniform bcsel bit size");
}
return;
}
/* divergent boolean bcsel
* this implements bcsel on bools: dst = s0 ? s1 : s2
* are going to be: dst = (s0 & s1) | (~s0 & s2) */
assert(instr->def.bit_size == 1);
if (cond.id() != then.id())
then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
if (cond.id() == els.id())
bld.copy(Definition(dst), then);
else
bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
}
void
emit_scaled_op(isel_context* ctx, Builder& bld, Definition dst, Temp val, aco_opcode op,
uint32_t undo)
{
/* multiply by 16777216 to handle denormals */
Temp is_denormal = bld.tmp(bld.lm);
VALU_instruction& valu =
bld.vopc_e64(aco_opcode::v_cmp_class_f32, Definition(is_denormal), val, Operand::c32(1u << 4))
->valu();
valu.neg[0] = true;
valu.abs[0] = true;
Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::c32(0x4b800000u), val);
scaled = bld.vop1(op, bld.def(v1), scaled);
scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::c32(undo), scaled);
Temp not_scaled = bld.vop1(op, bld.def(v1), val);
bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
}
void
emit_rcp(isel_context* ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_rcp_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
}
void
emit_rsq(isel_context* ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_rsq_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
}
void
emit_sqrt(isel_context* ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
}
void
emit_log2(isel_context* ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_log_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
}
Temp
emit_trunc_f64(isel_context* ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->options->gfx_level >= GFX7)
return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
/* GFX6 doesn't support V_TRUNC_F64, lower it. */
/* TODO: create more efficient code! */
if (val.type() == RegType::sgpr)
val = as_vgpr(ctx, val);
/* Split the input value. */
Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
/* Extract the exponent and compute the unbiased value. */
Temp exponent =
bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand::c32(20u), Operand::c32(11u));
exponent = bld.vsub32(bld.def(v1), exponent, Operand::c32(1023u));
/* Extract the fractional part. */
Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::c32(-1u),
Operand::c32(0x000fffffu));
fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi),
fract_mask);
Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
/* Get the sign bit. */
Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x80000000u), val_hi);
/* Decide the operation to apply depending on the unbiased exponent. */
Temp exp_lt0 =
bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.def(bld.lm), exponent, Operand::zero());
Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo,
bld.copy(bld.def(v1), Operand::zero()), exp_lt0);
Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand::c32(51u));
dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
}
Temp
emit_floor_f64(isel_context* ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->options->gfx_level >= GFX7)
return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
/* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
* lowered at NIR level for precision reasons). */
Temp src0 = as_vgpr(ctx, val);
Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand::c32(-1u),
Operand::c32(0x3fefffffu));
Temp isnan = bld.vopc(aco_opcode::v_cmp_neq_f64, bld.def(bld.lm), src0, src0);
Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
add->valu().neg[1] = true;
return add->definitions[0].getTemp();
}
Temp
uadd32_sat(Builder& bld, Definition dst, Temp src0, Temp src1)
{
if (bld.program->gfx_level < GFX8) {
Builder::Result add = bld.vadd32(bld.def(v1), src0, src1, true);
return bld.vop2_e64(aco_opcode::v_cndmask_b32, dst, add.def(0).getTemp(), Operand::c32(-1),
add.def(1).getTemp());
}
Builder::Result add(NULL);
if (bld.program->gfx_level >= GFX9) {
add = bld.vop2_e64(aco_opcode::v_add_u32, dst, src0, src1);
} else {
add = bld.vop2_e64(aco_opcode::v_add_co_u32, dst, bld.def(bld.lm), src0, src1);
}
add->valu().clamp = 1;
return dst.getTemp();
}
Temp
usub32_sat(Builder& bld, Definition dst, Temp src0, Temp src1)
{
if (bld.program->gfx_level < GFX8) {
Builder::Result sub = bld.vsub32(bld.def(v1), src0, src1, true);
return bld.vop2_e64(aco_opcode::v_cndmask_b32, dst, sub.def(0).getTemp(), Operand::c32(0u),
sub.def(1).getTemp());
}
Builder::Result sub(NULL);
if (bld.program->gfx_level >= GFX9) {
sub = bld.vop2_e64(aco_opcode::v_sub_u32, dst, src0, src1);
} else {
sub = bld.vop2_e64(aco_opcode::v_sub_co_u32, dst, bld.def(bld.lm), src0, src1);
}
sub->valu().clamp = 1;
return dst.getTemp();
}
void
emit_vec2_f2f16(isel_context* ctx, nir_alu_instr* instr, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Temp src = get_ssa_temp(ctx, instr->src[0].src.ssa);
RegClass rc = RegClass(src.regClass().type(), instr->src[0].src.ssa->bit_size / 32);
Temp src0 = emit_extract_vector(ctx, src, instr->src[0].swizzle[0], rc);
Temp src1 = emit_extract_vector(ctx, src, instr->src[0].swizzle[1], rc);
src1 = as_vgpr(ctx, src1);
if (ctx->program->gfx_level == GFX8 || ctx->program->gfx_level == GFX9)
bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, Definition(dst), src0, src1);
else
bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
emit_split_vector(ctx, dst, 2);
}
void
visit_alu_instr(isel_context* ctx, nir_alu_instr* instr)
{
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
Temp dst = get_ssa_temp(ctx, &instr->def);
switch (instr->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
case nir_op_vec5:
case nir_op_vec8:
case nir_op_vec16: {
std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
unsigned num = instr->def.num_components;
for (unsigned i = 0; i < num; ++i)
elems[i] = get_alu_src(ctx, instr->src[i]);
if (instr->def.bit_size >= 32 || dst.type() == RegType::vgpr) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, instr->def.num_components, 1)};
RegClass elem_rc = RegClass::get(RegType::vgpr, instr->def.bit_size / 8u);
for (unsigned i = 0; i < num; ++i) {
if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
elems[i] = emit_extract_vector(ctx, elems[i], 0, elem_rc);
vec->operands[i] = Operand{elems[i]};
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
} else {
bool use_s_pack = ctx->program->gfx_level >= GFX9;
Temp mask = bld.copy(bld.def(s1), Operand::c32((1u << instr->def.bit_size) - 1));
std::array<Temp, NIR_MAX_VEC_COMPONENTS> packed;
uint32_t const_vals[NIR_MAX_VEC_COMPONENTS] = {};
for (unsigned i = 0; i < num; i++) {
unsigned packed_size = use_s_pack ? 16 : 32;
unsigned idx = i * instr->def.bit_size / packed_size;
unsigned offset = i * instr->def.bit_size % packed_size;
if (nir_src_is_const(instr->src[i].src)) {
const_vals[idx] |= nir_src_as_uint(instr->src[i].src) << offset;
continue;
}
if (nir_src_is_undef(instr->src[i].src))
continue;
if (offset != packed_size - instr->def.bit_size)
elems[i] =
bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
if (offset)
elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), elems[i],
Operand::c32(offset));
if (packed[idx].id())
packed[idx] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[i],
packed[idx]);
else
packed[idx] = elems[i];
}
if (use_s_pack) {
for (unsigned i = 0; i < dst.size(); i++) {
bool same = !!packed[i * 2].id() == !!packed[i * 2 + 1].id();
if (packed[i * 2].id() && packed[i * 2 + 1].id())
packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), packed[i * 2],
packed[i * 2 + 1]);
else if (packed[i * 2 + 1].id())
packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1),
Operand::c32(const_vals[i * 2]), packed[i * 2 + 1]);
else if (packed[i * 2].id())
packed[i] = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), packed[i * 2],
Operand::c32(const_vals[i * 2 + 1]));
else
packed[i] = Temp(); /* Both constants, so reset the entry */
if (same)
const_vals[i] = const_vals[i * 2] | (const_vals[i * 2 + 1] << 16);
else
const_vals[i] = 0;
}
}
for (unsigned i = 0; i < dst.size(); i++) {
if (const_vals[i] && packed[i].id())
packed[i] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc),
Operand::c32(const_vals[i]), packed[i]);
else if (!packed[i].id())
packed[i] = bld.copy(bld.def(s1), Operand::c32(const_vals[i]));
}
if (dst.size() == 1)
bld.copy(Definition(dst), packed[0]);
else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
vec->definitions[0] = Definition(dst);
for (unsigned i = 0; i < dst.size(); ++i)
vec->operands[i] = Operand(packed[i]);
bld.insert(std::move(vec));
}
}
break;
}
case nir_op_mov: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.type() == RegType::vgpr && dst.type() == RegType::sgpr) {
/* use size() instead of bytes() for 8/16-bit */
assert(src.size() == dst.size() && "wrong src or dst register class for nir_op_mov");
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
} else {
assert(src.bytes() == dst.bytes() && "wrong src or dst register class for nir_op_mov");
bld.copy(Definition(dst), src);
}
break;
}
case nir_op_inot: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
} else if (dst.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
} else if (dst.type() == RegType::sgpr) {
aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_iabs: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Temp src = get_alu_src_vop3p(ctx, instr->src[0]);
unsigned opsel_lo = (instr->src[0].swizzle[0] & 1) << 1;
unsigned opsel_hi = ((instr->src[0].swizzle[1] & 1) << 1) | 1;
Temp sub = bld.vop3p(aco_opcode::v_pk_sub_u16, Definition(bld.tmp(v1)), Operand::zero(),
src, opsel_lo, opsel_hi);
bld.vop3p(aco_opcode::v_pk_max_i16, Definition(dst), sub, src, opsel_lo, opsel_hi);
break;
}
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == s1) {
bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), src);
} else if (dst.regClass() == v1) {
bld.vop2(aco_opcode::v_max_i32, Definition(dst), src,
bld.vsub32(bld.def(v1), Operand::zero(), src));
} else if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) {
bld.vop3(
aco_opcode::v_max_i16_e64, Definition(dst), src,
bld.vop3(aco_opcode::v_sub_u16_e64, Definition(bld.tmp(v2b)), Operand::zero(2), src));
} else if (dst.regClass() == v2b) {
src = as_vgpr(ctx, src);
bld.vop2(aco_opcode::v_max_i16, Definition(dst), src,
bld.vop2(aco_opcode::v_sub_u16, Definition(bld.tmp(v2b)), Operand::zero(2), src));
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_isign: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == s1) {
Temp tmp =
bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand::c32(-1));
bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand::c32(1u));
} else if (dst.regClass() == s2) {
Temp neg =
bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand::c32(63u));
Temp neqz;
if (ctx->program->gfx_level >= GFX8)
neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand::zero());
else
neqz =
bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand::zero())
.def(1)
.getTemp();
/* SCC gets zero-extended to 64 bit */
bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand::c32(-1), src, Operand::c32(1u));
} else if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX9) {
bld.vop3(aco_opcode::v_med3_i16, Definition(dst), Operand::c16(-1), src, Operand::c16(1u));
} else if (dst.regClass() == v2b) {
src = as_vgpr(ctx, src);
bld.vop2(aco_opcode::v_max_i16, Definition(dst), Operand::c16(-1),
bld.vop2(aco_opcode::v_min_i16, Definition(bld.tmp(v1)), Operand::c16(1u), src));
} else if (dst.regClass() == v2) {
Temp upper = emit_extract_vector(ctx, src, 1, v1);
Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand::c32(31u), upper);
Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.def(bld.lm), Operand::zero(), src);
Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::c32(1u), neg, gtz);
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), neg, gtz);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imax: {
if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_i16_e64, dst);
} else if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_i16, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umax: {
if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_u16_e64, dst);
} else if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_u16, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imin: {
if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_i16_e64, dst);
} else if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_i16, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umin: {
if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_u16_e64, dst);
} else if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_u16, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ior: {
if (instr->def.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_or, dst);
} else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
} else if (dst.regClass() == v2) {
emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_iand: {
if (instr->def.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_and, dst);
} else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
} else if (dst.regClass() == v2) {
emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ixor: {
if (instr->def.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
} else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
} else if (dst.regClass() == v2) {
emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ushr: {
if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshrrev_b16_e64, dst, false, 2, true);
} else if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b16, dst, false, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_lshrrev_b16, dst, true);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
} else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) {
bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst), get_alu_src(ctx, instr->src[1]),
get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshr_b64, dst);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ishl: {
if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshlrev_b16_e64, dst, false, 2, true);
} else if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b16, dst, false, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_lshlrev_b16, dst, true);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true, false,
false, 2);
} else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) {
bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst), get_alu_src(ctx, instr->src[1]),
get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshl_b64, dst);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true, 1);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ishr: {
if (dst.regClass() == v2b && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_ashrrev_i16_e64, dst, false, 2, true);
} else if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i16, dst, false, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_ashrrev_i16, dst, true);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
} else if (dst.regClass() == v2 && ctx->program->gfx_level >= GFX8) {
bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst), get_alu_src(ctx, instr->src[1]),
get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_ashr_i64, dst);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_find_lsb: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
} else if (src.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
} else if (src.regClass() == s2) {
bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
} else if (src.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = bld.vop1(aco_opcode::v_ffbl_b32, bld.def(v1), lo);
hi = bld.vop1(aco_opcode::v_ffbl_b32, bld.def(v1), hi);
hi = uadd32_sat(bld, bld.def(v1), bld.copy(bld.def(s1), Operand::c32(32u)), hi);
bld.vop2(aco_opcode::v_min_u32, Definition(dst), lo, hi);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ufind_msb:
case nir_op_ifind_msb: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1 || src.regClass() == s2) {
aco_opcode op = src.regClass() == s2
? (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64
: aco_opcode::s_flbit_i32_i64)
: (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32
: aco_opcode::s_flbit_i32);
Temp msb_rev = bld.sop1(op, bld.def(s1), src);
Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
Operand::c32(src.size() * 32u - 1u), msb_rev);
Temp msb = sub.def(0).getTemp();
Temp carry = sub.def(1).getTemp();
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(-1), msb,
bld.scc(carry));
} else if (src.regClass() == v1) {
aco_opcode op =
instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
Temp msb_rev = bld.tmp(v1);
emit_vop1_instruction(ctx, instr, op, msb_rev);
Temp msb = bld.tmp(v1);
Temp carry =
bld.vsub32(Definition(msb), Operand::c32(31u), Operand(msb_rev), true).def(1).getTemp();
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), msb, msb_rev, carry);
} else if (src.regClass() == v2) {
aco_opcode op =
instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = uadd32_sat(bld, bld.def(v1), bld.copy(bld.def(s1), Operand::c32(32u)),
bld.vop1(op, bld.def(v1), lo));
hi = bld.vop1(op, bld.def(v1), hi);
Temp found_hi = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::c32(-1), hi);
Temp msb_rev = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lo, hi, found_hi);
Temp msb = bld.tmp(v1);
Temp carry =
bld.vsub32(Definition(msb), Operand::c32(63u), Operand(msb_rev), true).def(1).getTemp();
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), msb, msb_rev, carry);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ufind_msb_rev:
case nir_op_ifind_msb_rev: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1) {
aco_opcode op = instr->op == nir_op_ufind_msb_rev ? aco_opcode::s_flbit_i32_b32
: aco_opcode::s_flbit_i32;
bld.sop1(op, Definition(dst), src);
} else if (src.regClass() == v1) {
aco_opcode op =
instr->op == nir_op_ufind_msb_rev ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
emit_vop1_instruction(ctx, instr, op, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_bitfield_reverse: {
if (dst.regClass() == s1) {
bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v1) {
bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_iadd: {
if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
break;
} else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_add_u16_e64, dst);
break;
} else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_add_u16, dst, true);
break;
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_u16, dst);
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.type() == RegType::vgpr && dst.bytes() <= 4) {
if (instr->no_unsigned_wrap)
bld.nuw().vadd32(Definition(dst), Operand(src0), Operand(src1));
else
bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
break;
}
assert(src0.size() == 2 && src1.size() == 2);
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
Temp dst0 =
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11,
bld.scc(carry));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else if (dst.regClass() == v2) {
Temp dst0 = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_uadd_sat: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Instruction* add_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_u16, dst);
add_instr->valu().clamp = 1;
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)), src0, src1);
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(-1), tmp,
bld.scc(carry));
break;
} else if (dst.regClass() == v2b) {
Instruction* add_instr;
if (ctx->program->gfx_level >= GFX10) {
add_instr = bld.vop3(aco_opcode::v_add_u16_e64, Definition(dst), src0, src1).instr;
} else {
if (src1.type() == RegType::sgpr)
std::swap(src0, src1);
add_instr =
bld.vop2_e64(aco_opcode::v_add_u16, Definition(dst), src0, as_vgpr(ctx, src1)).instr;
}
add_instr->valu().clamp = 1;
break;
} else if (dst.regClass() == v1) {
uadd32_sat(bld, Definition(dst), src0, src1);
break;
}
assert(src0.size() == 2 && src1.size() == 2);
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(src0.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(src1.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry0 = bld.tmp(s1);
Temp carry1 = bld.tmp(s1);
Temp no_sat0 =
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry0)), src00, src10);
Temp no_sat1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(Definition(carry1)),
src01, src11, bld.scc(carry0));
Temp no_sat = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), no_sat0, no_sat1);
bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c64(-1), no_sat,
bld.scc(carry1));
} else if (dst.regClass() == v2) {
Temp no_sat0 = bld.tmp(v1);
Temp dst0 = bld.tmp(v1);
Temp dst1 = bld.tmp(v1);
Temp carry0 = bld.vadd32(Definition(no_sat0), src00, src10, true).def(1).getTemp();
Temp carry1;
if (ctx->program->gfx_level >= GFX8) {
carry1 = bld.tmp(bld.lm);
bld.vop2_e64(aco_opcode::v_addc_co_u32, Definition(dst1), Definition(carry1),
as_vgpr(ctx, src01), as_vgpr(ctx, src11), carry0)
->valu()
.clamp = 1;
} else {
Temp no_sat1 = bld.tmp(v1);
carry1 = bld.vadd32(Definition(no_sat1), src01, src11, true, carry0).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst1), no_sat1, Operand::c32(-1),
carry1);
}
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst0), no_sat0, Operand::c32(-1),
carry1);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_iadd_sat: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Instruction* add_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_i16, dst);
add_instr->valu().clamp = 1;
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
Temp cond = bld.sopc(aco_opcode::s_cmp_lt_i32, bld.def(s1, scc), src1, Operand::zero());
Temp bound = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(bld.def(s1, scc)),
Operand::c32(INT32_MAX), cond);
Temp overflow = bld.tmp(s1);
Temp add =
bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.scc(Definition(overflow)), src0, src1);
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bound, add, bld.scc(overflow));
break;
}
src1 = as_vgpr(ctx, src1);
if (dst.regClass() == v2b) {
Instruction* add_instr =
bld.vop3(aco_opcode::v_add_i16, Definition(dst), src0, src1).instr;
add_instr->valu().clamp = 1;
} else if (dst.regClass() == v1) {
Instruction* add_instr =
bld.vop3(aco_opcode::v_add_i32, Definition(dst), src0, src1).instr;
add_instr->valu().clamp = 1;
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_uadd_carry: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
break;
}
if (dst.regClass() == v1) {
Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(1u),
carry);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11,
bld.scc(carry))
.def(1)
.getTemp();
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand::zero());
} else if (dst.regClass() == v2) {
Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(),
Operand::c32(1u), carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand::zero());
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_isub: {
if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
break;
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_u16, dst);
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v1) {
bld.vsub32(Definition(dst), src0, src1);
break;
} else if (dst.bytes() <= 2) {
if (ctx->program->gfx_level >= GFX10)
bld.vop3(aco_opcode::v_sub_u16_e64, Definition(dst), src0, src1);
else if (src1.type() == RegType::sgpr)
bld.vop2(aco_opcode::v_subrev_u16, Definition(dst), src1, as_vgpr(ctx, src0));
else if (ctx->program->gfx_level >= GFX8)
bld.vop2(aco_opcode::v_sub_u16, Definition(dst), src0, as_vgpr(ctx, src1));
else
bld.vsub32(Definition(dst), src0, src1);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp borrow = bld.tmp(s1);
Temp dst0 =
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11,
bld.scc(borrow));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else if (dst.regClass() == v2) {
Temp lower = bld.tmp(v1);
Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_usub_borrow: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
break;
} else if (dst.regClass() == v1) {
Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(1u),
borrow);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp borrow = bld.tmp(s1);
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11,
bld.scc(borrow))
.def(1)
.getTemp();
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand::zero());
} else if (dst.regClass() == v2) {
Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(),
Operand::c32(1u), borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand::zero());
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_usub_sat: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Instruction* sub_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_u16, dst);
sub_instr->valu().clamp = 1;
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
bld.sop2(aco_opcode::s_sub_u32, Definition(tmp), bld.scc(Definition(carry)), src0, src1);
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand::c32(0), tmp, bld.scc(carry));
break;
} else if (dst.regClass() == v2b) {
Instruction* sub_instr;
if (ctx->program->gfx_level >= GFX10) {
sub_instr = bld.vop3(aco_opcode::v_sub_u16_e64, Definition(dst), src0, src1).instr;
} else {
aco_opcode op = aco_opcode::v_sub_u16;
if (src1.type() == RegType::sgpr) {
std::swap(src0, src1);
op = aco_opcode::v_subrev_u16;
}
sub_instr = bld.vop2_e64(op, Definition(dst), src0, as_vgpr(ctx, src1)).instr;
}
sub_instr->valu().clamp = 1;
break;
} else if (dst.regClass() == v1) {
usub32_sat(bld, Definition(dst), src0, as_vgpr(ctx, src1));
break;
}
assert(src0.size() == 2 && src1.size() == 2);
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(src0.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(src1.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry0 = bld.tmp(s1);
Temp carry1 = bld.tmp(s1);
Temp no_sat0 =
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry0)), src00, src10);
Temp no_sat1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(Definition(carry1)),
src01, src11, bld.scc(carry0));
Temp no_sat = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), no_sat0, no_sat1);
bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c64(0ull), no_sat,
bld.scc(carry1));
} else if (dst.regClass() == v2) {
Temp no_sat0 = bld.tmp(v1);
Temp dst0 = bld.tmp(v1);
Temp dst1 = bld.tmp(v1);
Temp carry0 = bld.vsub32(Definition(no_sat0), src00, src10, true).def(1).getTemp();
Temp carry1;
if (ctx->program->gfx_level >= GFX8) {
carry1 = bld.tmp(bld.lm);
bld.vop2_e64(aco_opcode::v_subb_co_u32, Definition(dst1), Definition(carry1),
as_vgpr(ctx, src01), as_vgpr(ctx, src11), carry0)
->valu()
.clamp = 1;
} else {
Temp no_sat1 = bld.tmp(v1);
carry1 = bld.vsub32(Definition(no_sat1), src01, src11, true, carry0).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst1), no_sat1, Operand::c32(0u),
carry1);
}
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst0), no_sat0, Operand::c32(0u),
carry1);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_isub_sat: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Instruction* sub_instr = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_sub_i16, dst);
sub_instr->valu().clamp = 1;
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
Temp cond = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src1, Operand::zero());
Temp bound = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(bld.def(s1, scc)),
Operand::c32(INT32_MAX), cond);
Temp overflow = bld.tmp(s1);
Temp sub =
bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.scc(Definition(overflow)), src0, src1);
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bound, sub, bld.scc(overflow));
break;
}
src1 = as_vgpr(ctx, src1);
if (dst.regClass() == v2b) {
Instruction* sub_instr =
bld.vop3(aco_opcode::v_sub_i16, Definition(dst), src0, src1).instr;
sub_instr->valu().clamp = 1;
} else if (dst.regClass() == v1) {
Instruction* sub_instr =
bld.vop3(aco_opcode::v_sub_i32, Definition(dst), src0, src1).instr;
sub_instr->valu().clamp = 1;
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imul: {
if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_lo_u16_e64, dst);
} else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_lo_u16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_mul_lo_u16, dst);
} else if (dst.type() == RegType::vgpr) {
uint32_t src0_ub = get_alu_src_ub(ctx, instr, 0);
uint32_t src1_ub = get_alu_src_ub(ctx, instr, 1);
if (src0_ub <= 0xffffff && src1_ub <= 0xffffff) {
bool nuw_16bit = src0_ub <= 0xffff && src1_ub <= 0xffff && src0_ub * src1_ub <= 0xffff;
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_u32_u24, dst,
true /* commutative */, false, false, nuw_16bit);
} else if (nir_src_is_const(instr->src[0].src)) {
bld.v_mul_imm(Definition(dst), get_alu_src(ctx, instr->src[1]),
nir_src_as_uint(instr->src[0].src), false);
} else if (nir_src_is_const(instr->src[1].src)) {
bld.v_mul_imm(Definition(dst), get_alu_src(ctx, instr->src[0]),
nir_src_as_uint(instr->src[1].src), false);
} else {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_lo_u32, dst);
}
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umul_high: {
if (dst.regClass() == s1 && ctx->options->gfx_level >= GFX9) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_hi_u32, dst, false);
} else if (dst.bytes() == 4) {
uint32_t src0_ub = get_alu_src_ub(ctx, instr, 0);
uint32_t src1_ub = get_alu_src_ub(ctx, instr, 1);
Temp tmp = dst.regClass() == s1 ? bld.tmp(v1) : dst;
if (src0_ub <= 0xffffff && src1_ub <= 0xffffff) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_hi_u32_u24, tmp, true);
} else {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_hi_u32, tmp);
}
if (dst.regClass() == s1)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imul_high: {
if (dst.regClass() == v1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_hi_i32, dst);
} else if (dst.regClass() == s1 && ctx->options->gfx_level >= GFX9) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_hi_i32, dst, false);
} else if (dst.regClass() == s1) {
Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmul: {
if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_mul_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmulz: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_legacy_f32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fadd: {
if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_add_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsub: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Instruction* add = emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_add_f16, dst);
VALU_instruction& sub = add->valu();
sub.neg_lo[1] = true;
sub.neg_hi[1] = true;
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v2b) {
if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
else
emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
} else if (dst.regClass() == v1) {
if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
else
emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
} else if (dst.regClass() == v2) {
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), as_vgpr(ctx, src0),
as_vgpr(ctx, src1));
add->valu().neg[1] = true;
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ffma: {
if (dst.regClass() == v2b) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f16, dst, false, 3);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
assert(instr->def.num_components == 2);
Temp src0 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[0]));
Temp src1 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[1]));
Temp src2 = as_vgpr(ctx, get_alu_src_vop3p(ctx, instr->src[2]));
/* swizzle to opsel: all swizzles are either 0 (x) or 1 (y) */
unsigned opsel_lo = 0, opsel_hi = 0;
for (unsigned i = 0; i < 3; i++) {
opsel_lo |= (instr->src[i].swizzle[0] & 1) << i;
opsel_hi |= (instr->src[i].swizzle[1] & 1) << i;
}
bld.vop3p(aco_opcode::v_pk_fma_f16, Definition(dst), src0, src1, src2, opsel_lo, opsel_hi);
} else if (dst.regClass() == v1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f32, dst,
ctx->block->fp_mode.must_flush_denorms32, 3);
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_f64, dst, false, 3);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ffmaz: {
if (dst.regClass() == v1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_fma_legacy_f32, dst,
ctx->block->fp_mode.must_flush_denorms32, 3);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmax: {
if (dst.regClass() == v2b) {
// TODO: check fp_mode.must_flush_denorms16_64
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_max_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false,
ctx->block->fp_mode.must_flush_denorms32);
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_f64, dst,
ctx->block->fp_mode.must_flush_denorms16_64);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmin: {
if (dst.regClass() == v2b) {
// TODO: check fp_mode.must_flush_denorms16_64
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
} else if (dst.regClass() == v1 && instr->def.bit_size == 16) {
emit_vop3p_instruction(ctx, instr, aco_opcode::v_pk_min_f16, dst, true);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false,
ctx->block->fp_mode.must_flush_denorms32);
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_f64, dst,
ctx->block->fp_mode.must_flush_denorms16_64);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_sdot_4x8_iadd: {
if (ctx->options->gfx_level >= GFX11)
emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, false, 0x3);
else
emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_i8, dst, false);
break;
}
case nir_op_sdot_4x8_iadd_sat: {
if (ctx->options->gfx_level >= GFX11)
emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, true, 0x3);
else
emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_i8, dst, true);
break;
}
case nir_op_sudot_4x8_iadd: {
emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, false, 0x1);
break;
}
case nir_op_sudot_4x8_iadd_sat: {
emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_i32_iu8, dst, true, 0x1);
break;
}
case nir_op_udot_4x8_uadd: {
emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_u32_u8, dst, false);
break;
}
case nir_op_udot_4x8_uadd_sat: {
emit_idot_instruction(ctx, instr, aco_opcode::v_dot4_u32_u8, dst, true);
break;
}
case nir_op_sdot_2x16_iadd: {
emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_i32_i16, dst, false);
break;
}
case nir_op_sdot_2x16_iadd_sat: {
emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_i32_i16, dst, true);
break;
}
case nir_op_udot_2x16_uadd: {
emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_u32_u16, dst, false);
break;
}
case nir_op_udot_2x16_uadd_sat: {
emit_idot_instruction(ctx, instr, aco_opcode::v_dot2_u32_u16, dst, true);
break;
}
case nir_op_cube_amd: {
Temp in = get_alu_src(ctx, instr->src[0], 3);
Temp src[3] = {emit_extract_vector(ctx, in, 0, v1), emit_extract_vector(ctx, in, 1, v1),
emit_extract_vector(ctx, in, 2, v1)};
Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
Temp id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), src[0], src[1], src[2]);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tc, sc, ma, id);
break;
}
case nir_op_bcsel: {
emit_bcsel(ctx, instr, dst);
break;
}
case nir_op_frsq: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
} else if (dst.regClass() == v1) {
Temp src = get_alu_src(ctx, instr->src[0]);
emit_rsq(ctx, bld, Definition(dst), src);
} else if (dst.regClass() == v2) {
/* Lowered at NIR level for precision reasons. */
emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fneg: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Temp src = get_alu_src_vop3p(ctx, instr->src[0]);
Instruction* vop3p =
bld.vop3p(aco_opcode::v_pk_mul_f16, Definition(dst), src, Operand::c16(0x3C00),
instr->src[0].swizzle[0] & 1, instr->src[0].swizzle[1] & 1);
vop3p->valu().neg_lo[0] = true;
vop3p->valu().neg_hi[0] = true;
break;
}
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
bld.vop2(aco_opcode::v_mul_f16, Definition(dst), Operand::c16(0xbc00u), as_vgpr(ctx, src));
} else if (dst.regClass() == v1) {
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand::c32(0xbf800000u),
as_vgpr(ctx, src));
} else if (dst.regClass() == v2) {
if (ctx->block->fp_mode.must_flush_denorms16_64)
src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand::c64(0x3FF0000000000000),
as_vgpr(ctx, src));
Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand::c32(0x80000000u), upper);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fabs: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Temp src = get_alu_src_vop3p(ctx, instr->src[0]);
Instruction* vop3p =
bld.vop3p(aco_opcode::v_pk_max_f16, Definition(dst), src, src,
instr->src[0].swizzle[0] & 1 ? 3 : 0, instr->src[0].swizzle[1] & 1 ? 3 : 0)
.instr;
vop3p->valu().neg_lo[1] = true;
vop3p->valu().neg_hi[1] = true;
break;
}
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
Instruction* mul = bld.vop2_e64(aco_opcode::v_mul_f16, Definition(dst),
Operand::c16(0x3c00), as_vgpr(ctx, src))
.instr;
mul->valu().abs[1] = true;
} else if (dst.regClass() == v1) {
Instruction* mul = bld.vop2_e64(aco_opcode::v_mul_f32, Definition(dst),
Operand::c32(0x3f800000u), as_vgpr(ctx, src))
.instr;
mul->valu().abs[1] = true;
} else if (dst.regClass() == v2) {
if (ctx->block->fp_mode.must_flush_denorms16_64)
src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand::c64(0x3FF0000000000000),
as_vgpr(ctx, src));
Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x7FFFFFFFu), upper);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsat: {
if (dst.regClass() == v1 && instr->def.bit_size == 16) {
Temp src = get_alu_src_vop3p(ctx, instr->src[0]);
Instruction* vop3p =
bld.vop3p(aco_opcode::v_pk_mul_f16, Definition(dst), src, Operand::c16(0x3C00),
instr->src[0].swizzle[0] & 1, instr->src[0].swizzle[1] & 1);
vop3p->valu().clamp = true;
break;
}
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand::c16(0u), Operand::c16(0x3c00),
src);
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand::zero(),
Operand::c32(0x3f800000u), src);
/* apparently, it is not necessary to flush denorms if this instruction is used with these
* operands */
// TODO: confirm that this holds under any circumstances
} else if (dst.regClass() == v2) {
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand::zero());
add->valu().clamp = true;
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_flog2: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
} else if (dst.regClass() == v1) {
Temp src = get_alu_src(ctx, instr->src[0]);
emit_log2(ctx, bld, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_frcp: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
} else if (dst.regClass() == v1) {
Temp src = get_alu_src(ctx, instr->src[0]);
emit_rcp(ctx, bld, Definition(dst), src);
} else if (dst.regClass() == v2) {
/* Lowered at NIR level for precision reasons. */
emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fexp2: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsqrt: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
} else if (dst.regClass() == v1) {
Temp src = get_alu_src(ctx, instr->src[0]);
emit_sqrt(ctx, bld, Definition(dst), src);
} else if (dst.regClass() == v2) {
/* Lowered at NIR level for precision reasons. */
emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ffract: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
} else if (dst.regClass() == v2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ffloor: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
} else if (dst.regClass() == v2) {
Temp src = get_alu_src(ctx, instr->src[0]);
emit_floor_f64(ctx, bld, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fceil: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
} else if (dst.regClass() == v2) {
if (ctx->options->gfx_level >= GFX7) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
} else {
/* GFX6 doesn't support V_CEIL_F64, lower it. */
/* trunc = trunc(src0)
* if (src0 > 0.0 && src0 != trunc)
* trunc += 1.0
*/
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
Temp tmp0 =
bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand::zero());
Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.def(bld.lm), src0, trunc);
Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), tmp0, tmp1);
Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
bld.copy(bld.def(v1), Operand::zero()),
bld.copy(bld.def(v1), Operand::c32(0x3ff00000u)), cond);
add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
bld.copy(bld.def(v1), Operand::zero()), add);
bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ftrunc: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
} else if (dst.regClass() == v2) {
Temp src = get_alu_src(ctx, instr->src[0]);
emit_trunc_f64(ctx, bld, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fround_even: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
} else if (dst.regClass() == v2) {
if (ctx->options->gfx_level >= GFX7) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
} else {
/* GFX6 doesn't support V_RNDNE_F64, lower it. */
Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
Temp src0 = get_alu_src(ctx, instr->src[0]);
bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1),
bld.copy(bld.def(s1), Operand::c32(-2u)));
Temp bfi =
bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask,
bld.copy(bld.def(v1), Operand::c32(0x43300000u)), as_vgpr(ctx, src0_hi));
Temp tmp =
bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0,
bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::zero(), bfi));
Instruction* sub =
bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp,
bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::zero(), bfi));
sub->valu().neg[1] = true;
tmp = sub->definitions[0].getTemp();
Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand::c32(-1u),
Operand::c32(0x432fffffu));
Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, v);
vop3->valu().abs[0] = true;
Temp cond = vop3->definitions[0].getTemp();
Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo,
as_vgpr(ctx, src0_lo), cond);
Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi,
as_vgpr(ctx, src0_hi), cond);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsin_amd:
case nir_op_fcos_amd: {
Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
aco_ptr<Instruction> norm;
if (dst.regClass() == v2b) {
aco_opcode opcode =
instr->op == nir_op_fsin_amd ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
bld.vop1(opcode, Definition(dst), src);
} else if (dst.regClass() == v1) {
/* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
if (ctx->options->gfx_level < GFX9)
src = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), src);
aco_opcode opcode =
instr->op == nir_op_fsin_amd ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
bld.vop1(opcode, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ldexp: {
if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
} else if (dst.regClass() == v1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_ldexp_f32, dst);
} else if (dst.regClass() == v2) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_ldexp_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_frexp_sig: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f32, dst);
} else if (dst.regClass() == v2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_frexp_exp: {
if (instr->src[0].src.ssa->bit_size == 16) {
Temp src = get_alu_src(ctx, instr->src[0]);
Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand::zero());
convert_int(ctx, bld, tmp, 8, 32, true, dst);
} else if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_exp_i32_f32, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_exp_i32_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsign: {
Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
if (dst.regClass() == v2b) {
assert(ctx->program->gfx_level >= GFX9);
/* replace negative zero with positive zero */
src = bld.vop2(aco_opcode::v_add_f16, bld.def(v2b), Operand::zero(), src);
src =
bld.vop3(aco_opcode::v_med3_i16, bld.def(v2b), Operand::c16(-1), src, Operand::c16(1u));
bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
} else if (dst.regClass() == v1) {
if (ctx->block->fp_mode.denorm32 == fp_denorm_flush) {
/* If denormals are flushed, then v_mul_legacy_f32(2.0, src) can become omod. */
src =
bld.vop2(aco_opcode::v_mul_legacy_f32, bld.def(v1), Operand::c32(0x40000000), src);
} else {
src = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand::zero(), src);
}
src =
bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand::c32(-1), src, Operand::c32(1u));
bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
} else if (dst.regClass() == v2) {
Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.def(bld.lm), Operand::zero(), src);
Temp tmp = bld.copy(bld.def(v1), Operand::c32(0x3FF00000u));
Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp,
emit_extract_vector(ctx, src, 1, v1), cond);
cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.def(bld.lm), Operand::zero(), src);
tmp = bld.copy(bld.def(v1), Operand::c32(0xBFF00000u));
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(), upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2f16:
case nir_op_f2f16_rtne: {
assert(instr->src[0].src.ssa->bit_size == 32);
if (instr->def.num_components == 2) {
/* Vectorizing f2f16 is only possible with rtz. */
assert(instr->op != nir_op_f2f16_rtne);
assert(ctx->block->fp_mode.round16_64 == fp_round_tz ||
!ctx->block->fp_mode.care_about_round16_64);
emit_vec2_f2f16(ctx, instr, dst);
break;
}
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
/* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
* keep value numbering and the scheduler simpler.
*/
bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
else
bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
break;
}
case nir_op_f2f16_rtz: {
assert(instr->src[0].src.ssa->bit_size == 32);
if (instr->def.num_components == 2) {
emit_vec2_f2f16(ctx, instr, dst);
break;
}
Temp src = get_alu_src(ctx, instr->src[0]);
if (ctx->block->fp_mode.round16_64 == fp_round_tz)
bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
else if (ctx->program->gfx_level == GFX8 || ctx->program->gfx_level == GFX9)
bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, Definition(dst), src, Operand::zero());
else
bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, as_vgpr(ctx, src));
break;
}
case nir_op_f2f32: {
if (instr->src[0].src.ssa->bit_size == 16) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2f64: {
assert(instr->src[0].src.ssa->bit_size == 32);
Temp src = get_alu_src(ctx, instr->src[0]);
bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
break;
}
case nir_op_i2f16: {
assert(dst.regClass() == v2b);
Temp src = get_alu_src(ctx, instr->src[0]);
const unsigned input_size = instr->src[0].src.ssa->bit_size;
if (input_size <= 16) {
/* Expand integer to the size expected by the uint→float converter used below */
unsigned target_size = (ctx->program->gfx_level >= GFX8 ? 16 : 32);
if (input_size != target_size) {
src = convert_int(ctx, bld, src, input_size, target_size, true);
}
}
if (ctx->program->gfx_level >= GFX8 && input_size <= 16) {
bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
} else {
/* Large 32bit inputs need to return +-inf/FLOAT_MAX.
*
* This is also the fallback-path taken on GFX7 and earlier, which
* do not support direct f16⟷i16 conversions.
*/
src = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), src);
bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
}
break;
}
case nir_op_i2f32: {
assert(dst.size() == 1);
Temp src = get_alu_src(ctx, instr->src[0]);
const unsigned input_size = instr->src[0].src.ssa->bit_size;
if (input_size <= 32) {
if (input_size <= 16) {
/* Sign-extend to 32-bits */
src = convert_int(ctx, bld, src, input_size, 32, true);
}
bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_i2f64: {
if (instr->src[0].src.ssa->bit_size <= 32) {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size <= 16)
src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_u2f16: {
assert(dst.regClass() == v2b);
Temp src = get_alu_src(ctx, instr->src[0]);
const unsigned input_size = instr->src[0].src.ssa->bit_size;
if (input_size <= 16) {
/* Expand integer to the size expected by the uint→float converter used below */
unsigned target_size = (ctx->program->gfx_level >= GFX8 ? 16 : 32);
if (input_size != target_size) {
src = convert_int(ctx, bld, src, input_size, target_size, false);
}
}
if (ctx->program->gfx_level >= GFX8 && input_size <= 16) {
bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
} else {
/* Large 32bit inputs need to return inf/FLOAT_MAX.
*
* This is also the fallback-path taken on GFX7 and earlier, which
* do not support direct f16⟷u16 conversions.
*/
src = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), src);
bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
}
break;
}
case nir_op_u2f32: {
assert(dst.size() == 1);
Temp src = get_alu_src(ctx, instr->src[0]);
const unsigned input_size = instr->src[0].src.ssa->bit_size;
if (input_size == 8) {
bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
} else if (input_size <= 32) {
if (input_size == 16)
src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_u2f64: {
if (instr->src[0].src.ssa->bit_size <= 32) {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size <= 16)
src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2i8:
case nir_op_f2i16: {
if (instr->src[0].src.ssa->bit_size == 16) {
if (ctx->program->gfx_level >= GFX8) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
} else {
/* GFX7 and earlier do not support direct f16⟷i16 conversions */
Temp tmp = bld.tmp(v1);
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, tmp);
tmp = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp);
tmp = convert_int(ctx, bld, tmp, 32, instr->def.bit_size, false,
(dst.type() == RegType::sgpr) ? Temp() : dst);
if (dst.type() == RegType::sgpr) {
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
}
}
} else if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
} else {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
}
break;
}
case nir_op_f2u8:
case nir_op_f2u16: {
if (instr->src[0].src.ssa->bit_size == 16) {
if (ctx->program->gfx_level >= GFX8) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
} else {
/* GFX7 and earlier do not support direct f16⟷u16 conversions */
Temp tmp = bld.tmp(v1);
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, tmp);
tmp = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp);
tmp = convert_int(ctx, bld, tmp, 32, instr->def.bit_size, false,
(dst.type() == RegType::sgpr) ? Temp() : dst);
if (dst.type() == RegType::sgpr) {
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
}
}
} else if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
} else {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
}
break;
}
case nir_op_f2i32: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16) {
Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
if (dst.type() == RegType::vgpr) {
bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
} else {
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
}
} else if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2u32: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16) {
Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
if (dst.type() == RegType::vgpr) {
bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
} else {
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
}
} else if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_b2f16: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s1) {
src = bool_to_scalar_condition(ctx, src);
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand::c32(0x3c00u), src);
} else if (dst.regClass() == v2b) {
Temp one = bld.copy(bld.def(v1), Operand::c32(0x3c00u));
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), one, src);
} else {
unreachable("Wrong destination register class for nir_op_b2f16.");
}
break;
}
case nir_op_b2f32: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s1) {
src = bool_to_scalar_condition(ctx, src);
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand::c32(0x3f800000u), src);
} else if (dst.regClass() == v1) {
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(),
Operand::c32(0x3f800000u), src);
} else {
unreachable("Wrong destination register class for nir_op_b2f32.");
}
break;
}
case nir_op_b2f64: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s2) {
src = bool_to_scalar_condition(ctx, src);
bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand::c32(0x3f800000u),
Operand::zero(), bld.scc(src));
} else if (dst.regClass() == v2) {
Temp one = bld.copy(bld.def(v1), Operand::c32(0x3FF00000u));
Temp upper =
bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), one, src);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(), upper);
} else {
unreachable("Wrong destination register class for nir_op_b2f64.");
}
break;
}
case nir_op_i2i8:
case nir_op_i2i16:
case nir_op_i2i32: {
if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
/* no need to do the extract in get_alu_src() */
sgpr_extract_mode mode = instr->def.bit_size > instr->src[0].src.ssa->bit_size
? sgpr_extract_sext
: sgpr_extract_undef;
extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
} else {
const unsigned input_bitsize = instr->src[0].src.ssa->bit_size;
const unsigned output_bitsize = instr->def.bit_size;
convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]), input_bitsize, output_bitsize,
output_bitsize > input_bitsize, dst);
}
break;
}
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2u32: {
if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
/* no need to do the extract in get_alu_src() */
sgpr_extract_mode mode = instr->def.bit_size > instr->src[0].src.ssa->bit_size
? sgpr_extract_zext
: sgpr_extract_undef;
extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
} else {
convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]), instr->src[0].src.ssa->bit_size,
instr->def.bit_size, false, dst);
}
break;
}
case nir_op_b2b32:
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s1) {
bool_to_scalar_condition(ctx, src, dst);
} else if (dst.type() == RegType::vgpr) {
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), Operand::c32(1u),
src);
} else {
unreachable("Invalid register class for b2i32");
}
break;
}
case nir_op_b2b1: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(dst.regClass() == bld.lm);
if (src.type() == RegType::vgpr) {
assert(src.regClass() == v1 || src.regClass() == v2);
assert(dst.regClass() == bld.lm);
bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
Definition(dst), Operand::zero(), src);
} else {
assert(src.regClass() == s1 || src.regClass() == s2);
Temp tmp;
if (src.regClass() == s2 && ctx->program->gfx_level <= GFX7) {
tmp =
bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand::zero(), src)
.def(1)
.getTemp();
} else {
tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
bld.scc(bld.def(s1)), Operand::zero(), src);
}
bool_to_vector_condition(ctx, tmp, dst);
}
break;
}
case nir_op_unpack_64_2x32:
case nir_op_unpack_32_2x16:
case nir_op_unpack_64_4x16:
case nir_op_unpack_32_4x8:
bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
emit_split_vector(
ctx, dst, instr->op == nir_op_unpack_32_4x8 || instr->op == nir_op_unpack_64_4x16 ? 4 : 2);
break;
case nir_op_pack_64_2x32_split: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
break;
}
case nir_op_unpack_64_2x32_split_x:
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()),
get_alu_src(ctx, instr->src[0]));
break;
case nir_op_unpack_64_2x32_split_y:
bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst),
get_alu_src(ctx, instr->src[0]));
break;
case nir_op_unpack_32_2x16_split_x:
if (dst.type() == RegType::vgpr) {
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()),
get_alu_src(ctx, instr->src[0]));
} else {
bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
}
break;
case nir_op_unpack_32_2x16_split_y:
if (dst.type() == RegType::vgpr) {
bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst),
get_alu_src(ctx, instr->src[0]));
} else {
bld.pseudo(aco_opcode::p_extract, Definition(dst), bld.def(s1, scc),
get_alu_src(ctx, instr->src[0]), Operand::c32(1u), Operand::c32(16u),
Operand::zero());
}
break;
case nir_op_pack_32_2x16_split: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v1) {
src0 = emit_extract_vector(ctx, src0, 0, v2b);
src1 = emit_extract_vector(ctx, src1, 0, v2b);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
} else {
src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0,
Operand::c32(0xFFFFu));
src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1,
Operand::c32(16u));
bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
}
break;
}
case nir_op_pack_32_4x8: bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0], 4)); break;
case nir_op_pack_half_2x16_rtz_split:
case nir_op_pack_half_2x16_split: {
if (dst.regClass() == v1) {
if (ctx->program->gfx_level == GFX8 || ctx->program->gfx_level == GFX9)
emit_vop3a_instruction(ctx, instr, aco_opcode::v_cvt_pkrtz_f16_f32_e64, dst);
else
emit_vop2_instruction(ctx, instr, aco_opcode::v_cvt_pkrtz_f16_f32, dst, false);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_pack_unorm_2x16:
case nir_op_pack_snorm_2x16: {
unsigned bit_size = instr->src[0].src.ssa->bit_size;
/* Only support 16 and 32bit. */
assert(bit_size == 32 || bit_size == 16);
RegClass src_rc = bit_size == 32 ? v1 : v2b;
Temp src = get_alu_src(ctx, instr->src[0], 2);
Temp src0 = emit_extract_vector(ctx, src, 0, src_rc);
Temp src1 = emit_extract_vector(ctx, src, 1, src_rc);
/* Work around for pre-GFX9 GPU which don't have fp16 pknorm instruction. */
if (bit_size == 16 && ctx->program->gfx_level < GFX9) {
src0 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0);
src1 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1);
bit_size = 32;
}
aco_opcode opcode;
if (bit_size == 32) {
opcode = instr->op == nir_op_pack_unorm_2x16 ? aco_opcode::v_cvt_pknorm_u16_f32
: aco_opcode::v_cvt_pknorm_i16_f32;
} else {
opcode = instr->op == nir_op_pack_unorm_2x16 ? aco_opcode::v_cvt_pknorm_u16_f16
: aco_opcode::v_cvt_pknorm_i16_f16;
}
bld.vop3(opcode, Definition(dst), src0, src1);
break;
}
case nir_op_pack_uint_2x16:
case nir_op_pack_sint_2x16: {
Temp src = get_alu_src(ctx, instr->src[0], 2);
Temp src0 = emit_extract_vector(ctx, src, 0, v1);
Temp src1 = emit_extract_vector(ctx, src, 1, v1);
aco_opcode opcode = instr->op == nir_op_pack_uint_2x16 ? aco_opcode::v_cvt_pk_u16_u32
: aco_opcode::v_cvt_pk_i16_i32;
bld.vop3(opcode, Definition(dst), src0, src1);
break;
}
case nir_op_unpack_half_2x16_split_x_flush_to_zero:
case nir_op_unpack_half_2x16_split_x: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == v1)
src = bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), src);
if (dst.regClass() == v1) {
assert(ctx->block->fp_mode.must_flush_denorms16_64 ==
(instr->op == nir_op_unpack_half_2x16_split_x_flush_to_zero));
bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_unpack_half_2x16_split_y_flush_to_zero:
case nir_op_unpack_half_2x16_split_y: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1)
src = bld.pseudo(aco_opcode::p_extract, bld.def(s1), bld.def(s1, scc), src,
Operand::c32(1u), Operand::c32(16u), Operand::zero());
else
src =
bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), src).def(1).getTemp();
if (dst.regClass() == v1) {
assert(ctx->block->fp_mode.must_flush_denorms16_64 ==
(instr->op == nir_op_unpack_half_2x16_split_y_flush_to_zero));
bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_sad_u8x4: {
assert(dst.regClass() == v1);
emit_vop3a_instruction(ctx, instr, aco_opcode::v_sad_u8, dst, false, 3u, false);
break;
}
case nir_op_fquantize2f16: {
Temp src = get_alu_src(ctx, instr->src[0]);
Temp f16;
if (ctx->block->fp_mode.round16_64 != fp_round_ne)
f16 = bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, bld.def(v2b), src);
else
f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v2b), src);
Temp f32, cmp_res;
if (ctx->program->gfx_level >= GFX8) {
Temp mask = bld.copy(
bld.def(s1), Operand::c32(0x36Fu)); /* value is NOT negative/positive denormal value */
cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.def(bld.lm), f16, mask);
f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
} else {
/* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
* so compare the result and flush to 0 if it's smaller.
*/
f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
Temp smallest = bld.copy(bld.def(s1), Operand::c32(0x38800000u));
Instruction* tmp0 = bld.vopc_e64(aco_opcode::v_cmp_lt_f32, bld.def(bld.lm), f32, smallest);
tmp0->valu().abs[0] = true;
Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f32, bld.def(bld.lm), Operand::zero(), f32);
cmp_res = bld.sop2(aco_opcode::s_nand_b64, bld.def(s2), bld.def(s1, scc),
tmp0->definitions[0].getTemp(), tmp1);
}
if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32) {
Temp copysign_0 =
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand::zero(), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
} else {
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand::zero(), f32, cmp_res);
}
break;
}
case nir_op_bfm: {
Temp bits = get_alu_src(ctx, instr->src[0]);
Temp offset = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_bitfield_select: {
/* dst = (insert & bitmask) | (base & ~bitmask) */
if (dst.regClass() == s1) {
Temp bitmask = get_alu_src(ctx, instr->src[0]);
Temp insert = get_alu_src(ctx, instr->src[1]);
Temp base = get_alu_src(ctx, instr->src[2]);
aco_ptr<Instruction> sop2;
nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
Operand lhs;
if (const_insert && const_bitmask) {
lhs = Operand::c32(const_insert->u32 & const_bitmask->u32);
} else {
insert =
bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
lhs = Operand(insert);
}
Operand rhs;
nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
if (const_base && const_bitmask) {
rhs = Operand::c32(const_base->u32 & ~const_bitmask->u32);
} else {
base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
rhs = Operand(base);
}
bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
} else if (dst.regClass() == v1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_bfi_b32, dst, false, 3);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ubfe:
case nir_op_ibfe: {
if (dst.bytes() != 4)
unreachable("Unsupported BFE bit size");
if (dst.type() == RegType::sgpr) {
Temp base = get_alu_src(ctx, instr->src[0]);
nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
aco_opcode opcode =
instr->op == nir_op_ubfe ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
if (const_offset && const_bits) {
uint32_t extract = ((const_bits->u32 & 0x1f) << 16) | (const_offset->u32 & 0x1f);
bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, Operand::c32(extract));
break;
}
Temp offset = get_alu_src(ctx, instr->src[1]);
Temp bits = get_alu_src(ctx, instr->src[2]);
if (ctx->program->gfx_level >= GFX9) {
Operand bits_op = const_bits ? Operand::c32(const_bits->u32 & 0x1f)
: bld.sop2(aco_opcode::s_and_b32, bld.def(s1),
bld.def(s1, scc), bits, Operand::c32(0x1fu));
Temp extract = bld.sop2(aco_opcode::s_pack_ll_b32_b16, bld.def(s1), offset, bits_op);
bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
} else if (instr->op == nir_op_ubfe) {
Temp mask = bld.sop2(aco_opcode::s_bfm_b32, bld.def(s1), bits, offset);
Temp masked =
bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), base, mask);
bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), masked, offset);
} else {
Operand bits_op = const_bits
? Operand::c32((const_bits->u32 & 0x1f) << 16)
: bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
bld.sop2(aco_opcode::s_and_b32, bld.def(s1),
bld.def(s1, scc), bits, Operand::c32(0x1fu)),
Operand::c32(16u));
Operand offset_op = const_offset
? Operand::c32(const_offset->u32 & 0x1fu)
: bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc),
offset, Operand::c32(0x1fu));
Temp extract =
bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), bits_op, offset_op);
bld.sop2(aco_opcode::s_bfe_i32, Definition(dst), bld.def(s1, scc), base, extract);
}
} else {
aco_opcode opcode =
instr->op == nir_op_ubfe ? aco_opcode::v_bfe_u32 : aco_opcode::v_bfe_i32;
emit_vop3a_instruction(ctx, instr, opcode, dst, false, 3);
}
break;
}
case nir_op_extract_u8:
case nir_op_extract_i8:
case nir_op_extract_u16:
case nir_op_extract_i16: {
bool is_signed = instr->op == nir_op_extract_i16 || instr->op == nir_op_extract_i8;
unsigned comp = instr->op == nir_op_extract_u8 || instr->op == nir_op_extract_i8 ? 4 : 2;
uint32_t bits = comp == 4 ? 8 : 16;
unsigned index = nir_src_as_uint(instr->src[1].src);
if (bits >= instr->def.bit_size || index * bits >= instr->def.bit_size) {
assert(index == 0);
bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == s1 && instr->def.bit_size == 16) {
Temp vec = get_ssa_temp(ctx, instr->src[0].src.ssa);
unsigned swizzle = instr->src[0].swizzle[0];
if (vec.size() > 1) {
vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
swizzle = swizzle & 1;
}
index += swizzle * instr->def.bit_size / bits;
bld.pseudo(aco_opcode::p_extract, Definition(dst), bld.def(s1, scc), Operand(vec),
Operand::c32(index), Operand::c32(bits), Operand::c32(is_signed));
} else {
Temp src = get_alu_src(ctx, instr->src[0]);
Definition def(dst);
if (dst.bytes() == 8) {
src = emit_extract_vector(ctx, src, index / comp, RegClass(src.type(), 1));
index %= comp;
def = bld.def(src.type(), 1);
}
assert(def.bytes() <= 4);
if (def.regClass() == s1) {
bld.pseudo(aco_opcode::p_extract, def, bld.def(s1, scc), Operand(src),
Operand::c32(index), Operand::c32(bits), Operand::c32(is_signed));
} else {
src = emit_extract_vector(ctx, src, 0, def.regClass());
bld.pseudo(aco_opcode::p_extract, def, Operand(src), Operand::c32(index),
Operand::c32(bits), Operand::c32(is_signed));
}
if (dst.size() == 2)
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), def.getTemp(),
Operand::zero());
}
break;
}
case nir_op_insert_u8:
case nir_op_insert_u16: {
unsigned comp = instr->op == nir_op_insert_u8 ? 4 : 2;
uint32_t bits = comp == 4 ? 8 : 16;
unsigned index = nir_src_as_uint(instr->src[1].src);
if (bits >= instr->def.bit_size || index * bits >= instr->def.bit_size) {
assert(index == 0);
bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
} else {
Temp src = get_alu_src(ctx, instr->src[0]);
Definition def(dst);
bool swap = false;
if (dst.bytes() == 8) {
src = emit_extract_vector(ctx, src, 0u, RegClass(src.type(), 1));
swap = index >= comp;
index %= comp;
def = bld.def(src.type(), 1);
}
if (def.regClass() == s1) {
bld.pseudo(aco_opcode::p_insert, def, bld.def(s1, scc), Operand(src),
Operand::c32(index), Operand::c32(bits));
} else {
src = emit_extract_vector(ctx, src, 0, def.regClass());
bld.pseudo(aco_opcode::p_insert, def, Operand(src), Operand::c32(index),
Operand::c32(bits));
}
if (dst.size() == 2 && swap)
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand::zero(),
def.getTemp());
else if (dst.size() == 2)
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), def.getTemp(),
Operand::zero());
}
break;
}
case nir_op_bit_count: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
} else if (src.regClass() == v1) {
bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand::zero());
} else if (src.regClass() == v2) {
bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), emit_extract_vector(ctx, src, 1, v1),
bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
emit_extract_vector(ctx, src, 0, v1), Operand::zero()));
} else if (src.regClass() == s2) {
bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_flt: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32,
aco_opcode::v_cmp_lt_f64);
break;
}
case nir_op_fge: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32,
aco_opcode::v_cmp_ge_f64);
break;
}
case nir_op_feq: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32,
aco_opcode::v_cmp_eq_f64);
break;
}
case nir_op_fneu: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32,
aco_opcode::v_cmp_neq_f64);
break;
}
case nir_op_ilt: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32,
aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
break;
}
case nir_op_ige: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32,
aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
break;
}
case nir_op_ieq: {
if (instr->src[0].src.ssa->bit_size == 1)
emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
else
emit_comparison(
ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32,
aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
ctx->program->gfx_level >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
break;
}
case nir_op_ine: {
if (instr->src[0].src.ssa->bit_size == 1)
emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
else
emit_comparison(
ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32,
aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
ctx->program->gfx_level >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
break;
}
case nir_op_ult: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32,
aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
break;
}
case nir_op_uge: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32,
aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
break;
}
case nir_op_bitz:
case nir_op_bitnz: {
assert(instr->src[0].src.ssa->bit_size != 1);
bool test0 = instr->op == nir_op_bitz;
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
bool use_valu = src0.type() == RegType::vgpr || src1.type() == RegType::vgpr;
if (!use_valu) {
aco_opcode op = instr->src[0].src.ssa->bit_size == 64 ? aco_opcode::s_bitcmp1_b64
: aco_opcode::s_bitcmp1_b32;
if (test0)
op = instr->src[0].src.ssa->bit_size == 64 ? aco_opcode::s_bitcmp0_b64
: aco_opcode::s_bitcmp0_b32;
emit_sopc_instruction(ctx, instr, op, dst);
break;
}
/* We do not have a VALU version of s_bitcmp.
* But if the second source is constant, we can use
* v_cmp_class_f32's LUT to check the bit.
* The LUT only has 10 entries, so extract a higher byte if we have to.
* For sign bits comparision with 0 is better because v_cmp_class
* can't be inverted.
*/
if (nir_src_is_const(instr->src[1].src)) {
uint32_t bit = nir_alu_src_as_uint(instr->src[1]);
bit &= instr->src[0].src.ssa->bit_size - 1;
src0 = as_vgpr(ctx, src0);
if (src0.regClass() == v2) {
src0 = emit_extract_vector(ctx, src0, (bit & 32) != 0, v1);
bit &= 31;
}
if (bit == 31) {
bld.vopc(test0 ? aco_opcode::v_cmp_le_i32 : aco_opcode::v_cmp_gt_i32, Definition(dst),
Operand::c32(0), src0);
break;
}
if (bit == 15 && ctx->program->gfx_level >= GFX8) {
bld.vopc(test0 ? aco_opcode::v_cmp_le_i16 : aco_opcode::v_cmp_gt_i16, Definition(dst),
Operand::c32(0), src0);
break;
}
/* Set max_bit lower to avoid +inf if we can use sdwa+qnan instead. */
const bool can_sdwa = ctx->program->gfx_level >= GFX8 && ctx->program->gfx_level < GFX11;
const unsigned max_bit = can_sdwa ? 0x8 : 0x9;
const bool use_opsel = bit > 0xf && (bit & 0xf) <= max_bit;
if (use_opsel) {
src0 = bld.pseudo(aco_opcode::p_extract, bld.def(v1), src0, Operand::c32(1),
Operand::c32(16), Operand::c32(0));
bit &= 0xf;
}
/* If we can use sdwa the extract is free, while test0's s_not is not. */
if (bit == 7 && test0 && can_sdwa) {
src0 = bld.pseudo(aco_opcode::p_extract, bld.def(v1), src0, Operand::c32(bit / 8),
Operand::c32(8), Operand::c32(1));
bld.vopc(test0 ? aco_opcode::v_cmp_le_i32 : aco_opcode::v_cmp_gt_i32, Definition(dst),
Operand::c32(0), src0);
break;
}
if (bit > max_bit) {
src0 = bld.pseudo(aco_opcode::p_extract, bld.def(v1), src0, Operand::c32(bit / 8),
Operand::c32(8), Operand::c32(0));
bit &= 0x7;
}
/* denorm and snan/qnan inputs are preserved using all float control modes. */
static const struct {
uint32_t fp32;
uint32_t fp16;
bool negate;
} float_lut[10] = {
{0x7f800001, 0x7c01, false}, /* snan */
{~0u, ~0u, false}, /* qnan */
{0xff800000, 0xfc00, false}, /* -inf */
{0xbf800000, 0xbc00, false}, /* -normal (-1.0) */
{1, 1, true}, /* -denormal */
{0, 0, true}, /* -0.0 */
{0, 0, false}, /* +0.0 */
{1, 1, false}, /* +denormal */
{0x3f800000, 0x3c00, false}, /* +normal (+1.0) */
{0x7f800000, 0x7c00, false}, /* +inf */
};
Temp tmp = test0 ? bld.tmp(bld.lm) : dst;
/* fp16 can use s_movk for bit 0. It also supports opsel on gfx11. */
const bool use_fp16 = (ctx->program->gfx_level >= GFX8 && bit == 0) ||
(ctx->program->gfx_level >= GFX11 && use_opsel);
const aco_opcode op = use_fp16 ? aco_opcode::v_cmp_class_f16 : aco_opcode::v_cmp_class_f32;
const uint32_t c = use_fp16 ? float_lut[bit].fp16 : float_lut[bit].fp32;
VALU_instruction& res =
bld.vopc(op, Definition(tmp), bld.copy(bld.def(s1), Operand::c32(c)), src0)->valu();
if (float_lut[bit].negate) {
res.format = asVOP3(res.format);
res.neg[0] = true;
}
if (test0)
bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), tmp);
break;
}
Temp res;
aco_opcode op = test0 ? aco_opcode::v_cmp_eq_i32 : aco_opcode::v_cmp_lg_i32;
if (instr->src[0].src.ssa->bit_size == 16) {
op = test0 ? aco_opcode::v_cmp_eq_i16 : aco_opcode::v_cmp_lg_i16;
if (ctx->program->gfx_level < GFX10)
res = bld.vop2_e64(aco_opcode::v_lshlrev_b16, bld.def(v2b), src1, Operand::c32(1));
else
res = bld.vop3(aco_opcode::v_lshlrev_b16_e64, bld.def(v2b), src1, Operand::c32(1));
res = bld.vop2(aco_opcode::v_and_b32, bld.def(v2b), src0, res);
} else if (instr->src[0].src.ssa->bit_size == 32) {
res = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), src0, src1, Operand::c32(1));
} else if (instr->src[0].src.ssa->bit_size == 64) {
if (ctx->program->gfx_level < GFX8)
res = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src0, src1);
else
res = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), src1, src0);
res = emit_extract_vector(ctx, res, 0, v1);
res = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x1), res);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
bld.vopc(op, Definition(dst), Operand::c32(0), res);
break;
}
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse: {
if (!nir_src_is_divergent(instr->src[0].src)) {
/* Source is the same in all lanes, so the derivative is zero.
* This also avoids emitting invalid IR.
*/
bld.copy(Definition(dst), Operand::zero());
break;
}
Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
uint16_t dpp_ctrl1, dpp_ctrl2;
if (instr->op == nir_op_fddx_fine) {
dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
} else if (instr->op == nir_op_fddy_fine) {
dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
} else {
dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
else
dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
}
Temp tmp;
if (ctx->program->gfx_level >= GFX8) {
Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
bld.vop2_dpp(aco_opcode::v_sub_f32, Definition(dst), src, tl, dpp_ctrl2);
} else {
Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
bld.vop2(aco_opcode::v_sub_f32, Definition(dst), tr, tl);
}
set_wqm(ctx, true);
break;
}
default: isel_err(&instr->instr, "Unknown NIR ALU instr");
}
}
void
visit_load_const(isel_context* ctx, nir_load_const_instr* instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
// TODO: we really want to have the resulting type as this would allow for 64bit literals
// which get truncated the lsb if double and msb if int
// for now, we only use s_mov_b64 with 64bit inline constants
assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
assert(dst.type() == RegType::sgpr);
Builder bld(ctx->program, ctx->block);
if (instr->def.bit_size == 1) {
assert(dst.regClass() == bld.lm);
int val = instr->value[0].b ? -1 : 0;
Operand op = bld.lm.size() == 1 ? Operand::c32(val) : Operand::c64(val);
bld.copy(Definition(dst), op);
} else if (instr->def.bit_size == 8) {
bld.copy(Definition(dst), Operand::c32(instr->value[0].u8));
} else if (instr->def.bit_size == 16) {
/* sign-extend to use s_movk_i32 instead of a literal */
bld.copy(Definition(dst), Operand::c32(instr->value[0].i16));
} else if (dst.size() == 1) {
bld.copy(Definition(dst), Operand::c32(instr->value[0].u32));
} else {
assert(dst.size() != 1);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
if (instr->def.bit_size == 64)
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand::c32(instr->value[0].u64 >> i * 32);
else {
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand::c32(instr->value[i].u32);
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
Temp
emit_readfirstlane(isel_context* ctx, Temp src, Temp dst)
{
Builder bld(ctx->program, ctx->block);
if (src.regClass().type() == RegType::sgpr) {
bld.copy(Definition(dst), src);
} else if (src.size() == 1) {
bld.vop1(aco_opcode::v_readfirstlane_b32, Definition(dst), src);
} else {
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
aco_opcode::p_split_vector, Format::PSEUDO, 1, src.size())};
split->operands[0] = Operand(src);
for (unsigned i = 0; i < src.size(); i++) {
split->definitions[i] =
bld.def(RegClass::get(RegType::vgpr, MIN2(src.bytes() - i * 4, 4)));
}
Instruction* split_raw = split.get();
ctx->block->instructions.emplace_back(std::move(split));
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, src.size(), 1)};
vec->definitions[0] = Definition(dst);
for (unsigned i = 0; i < src.size(); i++) {
vec->operands[i] = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1),
split_raw->definitions[i].getTemp());
}
ctx->block->instructions.emplace_back(std::move(vec));
if (src.bytes() % 4 == 0)
emit_split_vector(ctx, dst, src.size());
}
return dst;
}
bool
can_use_byte_align_for_global_load(unsigned num_components, unsigned component_size,
unsigned align_, bool support_12_byte)
{
/* Only use byte-align for 8/16-bit loads if we won't have to increase it's size and won't have
* to use unsupported load sizes.
*/
assert(util_is_power_of_two_nonzero(align_));
if (align_ < 4) {
assert(component_size < 4);
unsigned load_size = num_components * component_size;
uint32_t new_size = align(load_size + (4 - align_), 4);
return new_size == align(load_size, 4) && (new_size != 12 || support_12_byte);
}
return true;
}
struct LoadEmitInfo {
Operand offset;
Temp dst;
unsigned num_components;
unsigned component_size;
Temp resource = Temp(0, s1); /* buffer resource or base 64-bit address */
Temp idx = Temp(0, v1); /* buffer index */
unsigned component_stride = 0;
unsigned const_offset = 0;
unsigned align_mul = 0;
unsigned align_offset = 0;
pipe_format format;
bool glc = false;
bool slc = false;
bool split_by_component_stride = true;
bool readfirstlane_for_uniform = false;
unsigned swizzle_component_size = 0;
memory_sync_info sync;
Temp soffset = Temp(0, s1);
};
struct EmitLoadParameters {
using Callback = Temp (*)(Builder& bld, const LoadEmitInfo& info, Temp offset,
unsigned bytes_needed, unsigned align, unsigned const_offset,
Temp dst_hint);
Callback callback;
bool byte_align_loads;
bool supports_8bit_16bit_loads;
unsigned max_const_offset_plus_one;
};
void
emit_load(isel_context* ctx, Builder& bld, const LoadEmitInfo& info,
const EmitLoadParameters& params)
{
unsigned load_size = info.num_components * info.component_size;
unsigned component_size = info.component_size;
unsigned num_vals = 0;
Temp* const vals = (Temp*)alloca(info.dst.bytes() * sizeof(Temp));
unsigned const_offset = info.const_offset;
const unsigned align_mul = info.align_mul ? info.align_mul : component_size;
unsigned align_offset = info.align_offset % align_mul;
unsigned bytes_read = 0;
while (bytes_read < load_size) {
unsigned bytes_needed = load_size - bytes_read;
/* add buffer for unaligned loads */
int byte_align = 0;
if (params.byte_align_loads) {
byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
}
if (byte_align) {
if (bytes_needed > 2 || (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
!params.supports_8bit_16bit_loads) {
if (info.component_stride) {
assert(params.supports_8bit_16bit_loads && "unimplemented");
bytes_needed = 2;
byte_align = 0;
} else {
bytes_needed += byte_align == -1 ? 4 - info.align_mul : byte_align;
bytes_needed = align(bytes_needed, 4);
}
} else {
byte_align = 0;
}
}
if (info.split_by_component_stride) {
if (info.swizzle_component_size)
bytes_needed = MIN2(bytes_needed, info.swizzle_component_size);
if (info.component_stride)
bytes_needed = MIN2(bytes_needed, info.component_size);
}
bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
/* reduce constant offset */
Operand offset = info.offset;
unsigned reduced_const_offset = const_offset;
bool remove_const_offset_completely = need_to_align_offset;
if (const_offset &&
(remove_const_offset_completely || const_offset >= params.max_const_offset_plus_one)) {
unsigned to_add = const_offset;
if (remove_const_offset_completely) {
reduced_const_offset = 0;
} else {
to_add =
const_offset / params.max_const_offset_plus_one * params.max_const_offset_plus_one;
reduced_const_offset %= params.max_const_offset_plus_one;
}
Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
if (offset.isConstant()) {
offset = Operand::c32(offset.constantValue() + to_add);
} else if (offset.isUndefined()) {
offset = Operand::c32(to_add);
} else if (offset_tmp.regClass() == s1) {
offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), offset_tmp,
Operand::c32(to_add));
} else if (offset_tmp.regClass() == v1) {
offset = bld.vadd32(bld.def(v1), offset_tmp, Operand::c32(to_add));
} else {
Temp lo = bld.tmp(offset_tmp.type(), 1);
Temp hi = bld.tmp(offset_tmp.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
if (offset_tmp.regClass() == s2) {
Temp carry = bld.tmp(s1);
lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo,
Operand::c32(to_add));
hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
} else {
Temp new_lo = bld.tmp(v1);
Temp carry =
bld.vadd32(Definition(new_lo), lo, Operand::c32(to_add), true).def(1).getTemp();
hi = bld.vadd32(bld.def(v1), hi, Operand::zero(), false, carry);
offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
}
}
}
/* align offset down if needed */
Operand aligned_offset = offset;
unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
if (need_to_align_offset) {
align = 4;
Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
if (offset.isConstant()) {
aligned_offset = Operand::c32(offset.constantValue() & 0xfffffffcu);
} else if (offset.isUndefined()) {
aligned_offset = Operand::zero();
} else if (offset_tmp.regClass() == s1) {
aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc),
Operand::c32(0xfffffffcu), offset_tmp);
} else if (offset_tmp.regClass() == s2) {
aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc),
Operand::c64(0xfffffffffffffffcllu), offset_tmp);
} else if (offset_tmp.regClass() == v1) {
aligned_offset =
bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0xfffffffcu), offset_tmp);
} else if (offset_tmp.regClass() == v2) {
Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0xfffffffcu), lo);
aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
}
}
Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp()
: aligned_offset.isConstant()
? bld.copy(bld.def(s1), aligned_offset)
: Temp(0, s1);
Temp val = params.callback(bld, info, aligned_offset_tmp, bytes_needed, align,
reduced_const_offset, byte_align ? Temp() : info.dst);
/* the callback wrote directly to dst */
if (val == info.dst) {
assert(num_vals == 0);
emit_split_vector(ctx, info.dst, info.num_components);
return;
}
/* shift result right if needed */
if (params.byte_align_loads && info.component_size < 4) {
Operand byte_align_off = Operand::c32(byte_align);
if (byte_align == -1) {
if (offset.isConstant())
byte_align_off = Operand::c32(offset.constantValue() % 4u);
else if (offset.isUndefined())
byte_align_off = Operand::zero();
else if (offset.size() == 2)
byte_align_off = Operand(emit_extract_vector(ctx, offset.getTemp(), 0,
RegClass(offset.getTemp().type(), 1)));
else
byte_align_off = offset;
}
assert(val.bytes() >= load_size && "unimplemented");
if (val.type() == RegType::sgpr)
byte_align_scalar(ctx, val, byte_align_off, info.dst);
else
byte_align_vector(ctx, val, byte_align_off, info.dst, component_size);
return;
}
/* add result to list and advance */
if (info.component_stride) {
assert(val.bytes() % info.component_size == 0);
unsigned num_loaded_components = val.bytes() / info.component_size;
unsigned advance_bytes = info.component_stride * num_loaded_components;
const_offset += advance_bytes;
align_offset = (align_offset + advance_bytes) % align_mul;
} else {
const_offset += val.bytes();
align_offset = (align_offset + val.bytes()) % align_mul;
}
bytes_read += val.bytes();
vals[num_vals++] = val;
}
/* create array of components */
unsigned components_split = 0;
std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
bool has_vgprs = false;
for (unsigned i = 0; i < num_vals;) {
Temp* const tmp = (Temp*)alloca(num_vals * sizeof(Temp));
unsigned num_tmps = 0;
unsigned tmp_size = 0;
RegType reg_type = RegType::sgpr;
while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
if (vals[i].type() == RegType::vgpr)
reg_type = RegType::vgpr;
tmp_size += vals[i].bytes();
tmp[num_tmps++] = vals[i++];
}
if (num_tmps > 1) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
for (unsigned j = 0; j < num_tmps; j++)
vec->operands[j] = Operand(tmp[j]);
tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
vec->definitions[0] = Definition(tmp[0]);
bld.insert(std::move(vec));
}
if (tmp[0].bytes() % component_size) {
/* trim tmp[0] */
assert(i == num_vals);
RegClass new_rc =
RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
tmp[0] =
bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand::zero());
}
RegClass elem_rc = RegClass::get(reg_type, component_size);
unsigned start = components_split;
if (tmp_size == elem_rc.bytes()) {
allocated_vec[components_split++] = tmp[0];
} else {
assert(tmp_size % elem_rc.bytes() == 0);
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
for (auto& def : split->definitions) {
Temp component = bld.tmp(elem_rc);
allocated_vec[components_split++] = component;
def = Definition(component);
}
split->operands[0] = Operand(tmp[0]);
bld.insert(std::move(split));
}
/* try to p_as_uniform early so we can create more optimizable code and
* also update allocated_vec */
for (unsigned j = start; j < components_split; j++) {
if (allocated_vec[j].bytes() % 4 == 0 && info.dst.type() == RegType::sgpr) {
if (info.readfirstlane_for_uniform) {
allocated_vec[j] = emit_readfirstlane(
ctx, allocated_vec[j], bld.tmp(RegClass(RegType::sgpr, allocated_vec[j].size())));
} else {
allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
}
}
has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
}
}
/* concatenate components and p_as_uniform() result if needed */
if (info.dst.type() == RegType::vgpr || !has_vgprs)
ctx->allocated_vec.emplace(info.dst.id(), allocated_vec);
int padding_bytes =
MAX2((int)info.dst.bytes() - int(allocated_vec[0].bytes() * info.num_components), 0);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, info.num_components + !!padding_bytes, 1)};
for (unsigned i = 0; i < info.num_components; i++)
vec->operands[i] = Operand(allocated_vec[i]);
if (padding_bytes)
vec->operands[info.num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
if (info.dst.type() == RegType::sgpr && has_vgprs) {
Temp tmp = bld.tmp(RegType::vgpr, info.dst.size());
vec->definitions[0] = Definition(tmp);
bld.insert(std::move(vec));
if (info.readfirstlane_for_uniform)
emit_readfirstlane(ctx, tmp, info.dst);
else
bld.pseudo(aco_opcode::p_as_uniform, Definition(info.dst), tmp);
} else {
vec->definitions[0] = Definition(info.dst);
bld.insert(std::move(vec));
}
}
Operand
load_lds_size_m0(Builder& bld)
{
/* m0 does not need to be initialized on GFX9+ */
if (bld.program->gfx_level >= GFX9)
return Operand(s1);
return bld.m0((Temp)bld.copy(bld.def(s1, m0), Operand::c32(0xffffffffu)));
}
Temp
lds_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed,
unsigned align, unsigned const_offset, Temp dst_hint)
{
offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
Operand m = load_lds_size_m0(bld);
bool large_ds_read = bld.program->gfx_level >= GFX7;
bool usable_read2 = bld.program->gfx_level >= GFX7;
bool read2 = false;
unsigned size = 0;
aco_opcode op;
if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
size = 16;
op = aco_opcode::ds_read_b128;
} else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
size = 16;
read2 = true;
op = aco_opcode::ds_read2_b64;
} else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
size = 12;
op = aco_opcode::ds_read_b96;
} else if (bytes_needed >= 8 && align % 8 == 0) {
size = 8;
op = aco_opcode::ds_read_b64;
} else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0 && usable_read2) {
size = 8;
read2 = true;
op = aco_opcode::ds_read2_b32;
} else if (bytes_needed >= 4 && align % 4 == 0) {
size = 4;
op = aco_opcode::ds_read_b32;
} else if (bytes_needed >= 2 && align % 2 == 0) {
size = 2;
op = bld.program->gfx_level >= GFX9 ? aco_opcode::ds_read_u16_d16 : aco_opcode::ds_read_u16;
} else {
size = 1;
op = bld.program->gfx_level >= GFX9 ? aco_opcode::ds_read_u8_d16 : aco_opcode::ds_read_u8;
}
unsigned const_offset_unit = read2 ? size / 2u : 1u;
unsigned const_offset_range = read2 ? 255 * const_offset_unit : 65536;
if (const_offset > (const_offset_range - const_offset_unit)) {
unsigned excess = const_offset - (const_offset % const_offset_range);
offset = bld.vadd32(bld.def(v1), offset, Operand::c32(excess));
const_offset -= excess;
}
const_offset /= const_offset_unit;
RegClass rc = RegClass::get(RegType::vgpr, size);
Temp val = rc == info.dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
Instruction* instr;
if (read2)
instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
else
instr = bld.ds(op, Definition(val), offset, m, const_offset);
instr->ds().sync = info.sync;
if (m.isUndefined())
instr->operands.pop_back();
return val;
}
const EmitLoadParameters lds_load_params{lds_load_callback, false, true, UINT32_MAX};
Temp
smem_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed,
unsigned align, unsigned const_offset, Temp dst_hint)
{
assert(align >= 4u);
bld.program->has_smem_buffer_or_global_loads = true;
bool buffer = info.resource.id() && info.resource.bytes() == 16;
Temp addr = info.resource;
if (!buffer && !addr.id()) {
addr = offset;
offset = Temp();
}
bytes_needed = MIN2(bytes_needed, 64);
unsigned needed_round_up = util_next_power_of_two(bytes_needed);
unsigned needed_round_down = needed_round_up >> (needed_round_up != bytes_needed ? 1 : 0);
/* Only round-up global loads if it's aligned so that it won't cross pages */
bytes_needed = buffer || align % needed_round_up == 0 ? needed_round_up : needed_round_down;
aco_opcode op;
if (bytes_needed <= 4) {
op = buffer ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
} else if (bytes_needed <= 8) {
op = buffer ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
} else if (bytes_needed <= 16) {
op = buffer ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
} else if (bytes_needed <= 32) {
op = buffer ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
} else {
assert(bytes_needed == 64);
op = buffer ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
}
aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
if (buffer) {
if (const_offset)
offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset,
Operand::c32(const_offset));
load->operands[0] = Operand(info.resource);
load->operands[1] = Operand(offset);
} else {
load->operands[0] = Operand(addr);
if (offset.id() && const_offset)
load->operands[1] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset,
Operand::c32(const_offset));
else if (offset.id())
load->operands[1] = Operand(offset);
else
load->operands[1] = Operand::c32(const_offset);
}
RegClass rc(RegType::sgpr, DIV_ROUND_UP(bytes_needed, 4u));
Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
load->definitions[0] = Definition(val);
load->glc = info.glc;
load->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3);
load->sync = info.sync;
bld.insert(std::move(load));
return val;
}
const EmitLoadParameters smem_load_params{smem_load_callback, true, false, 1024};
Temp
mubuf_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed,
unsigned align_, unsigned const_offset, Temp dst_hint)
{
Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0);
if (info.soffset.id()) {
if (soffset.isTemp())
vaddr = bld.copy(bld.def(v1), soffset);
soffset = Operand(info.soffset);
}
if (soffset.isUndefined())
soffset = Operand::zero();
bool offen = !vaddr.isUndefined();
bool idxen = info.idx.id();
if (offen && idxen)
vaddr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), info.idx, vaddr);
else if (idxen)
vaddr = Operand(info.idx);
unsigned bytes_size = 0;
aco_opcode op;
if (bytes_needed == 1 || align_ % 2) {
bytes_size = 1;
op = aco_opcode::buffer_load_ubyte;
} else if (bytes_needed == 2 || align_ % 4) {
bytes_size = 2;
op = aco_opcode::buffer_load_ushort;
} else if (bytes_needed <= 4) {
bytes_size = 4;
op = aco_opcode::buffer_load_dword;
} else if (bytes_needed <= 8) {
bytes_size = 8;
op = aco_opcode::buffer_load_dwordx2;
} else if (bytes_needed <= 12 && bld.program->gfx_level > GFX6) {
bytes_size = 12;
op = aco_opcode::buffer_load_dwordx3;
} else {
bytes_size = 16;
op = aco_opcode::buffer_load_dwordx4;
}
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = Operand(info.resource);
mubuf->operands[1] = vaddr;
mubuf->operands[2] = soffset;
mubuf->offen = offen;
mubuf->idxen = idxen;
mubuf->glc = info.glc;
mubuf->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3);
mubuf->slc = info.slc;
mubuf->sync = info.sync;
mubuf->offset = const_offset;
mubuf->swizzled = info.swizzle_component_size != 0;
RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
mubuf->definitions[0] = Definition(val);
bld.insert(std::move(mubuf));
return val;
}
const EmitLoadParameters mubuf_load_params{mubuf_load_callback, true, true, 4096};
Temp
mubuf_load_format_callback(Builder& bld, const LoadEmitInfo& info, Temp offset,
unsigned bytes_needed, unsigned align_, unsigned const_offset,
Temp dst_hint)
{
Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0);
if (info.soffset.id()) {
if (soffset.isTemp())
vaddr = bld.copy(bld.def(v1), soffset);
soffset = Operand(info.soffset);
}
if (soffset.isUndefined())
soffset = Operand::zero();
bool offen = !vaddr.isUndefined();
bool idxen = info.idx.id();
if (offen && idxen)
vaddr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), info.idx, vaddr);
else if (idxen)
vaddr = Operand(info.idx);
aco_opcode op = aco_opcode::num_opcodes;
if (info.component_size == 2) {
switch (bytes_needed) {
case 2: op = aco_opcode::buffer_load_format_d16_x; break;
case 4: op = aco_opcode::buffer_load_format_d16_xy; break;
case 6: op = aco_opcode::buffer_load_format_d16_xyz; break;
case 8: op = aco_opcode::buffer_load_format_d16_xyzw; break;
default: unreachable("invalid buffer load format size"); break;
}
} else {
assert(info.component_size == 4);
switch (bytes_needed) {
case 4: op = aco_opcode::buffer_load_format_x; break;
case 8: op = aco_opcode::buffer_load_format_xy; break;
case 12: op = aco_opcode::buffer_load_format_xyz; break;
case 16: op = aco_opcode::buffer_load_format_xyzw; break;
default: unreachable("invalid buffer load format size"); break;
}
}
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = Operand(info.resource);
mubuf->operands[1] = vaddr;
mubuf->operands[2] = soffset;
mubuf->offen = offen;
mubuf->idxen = idxen;
mubuf->glc = info.glc;
mubuf->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3);
mubuf->slc = info.slc;
mubuf->sync = info.sync;
mubuf->offset = const_offset;
RegClass rc = RegClass::get(RegType::vgpr, bytes_needed);
Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
mubuf->definitions[0] = Definition(val);
bld.insert(std::move(mubuf));
return val;
}
const EmitLoadParameters mubuf_load_format_params{mubuf_load_format_callback, false, true, 4096};
Temp
scratch_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed,
unsigned align_, unsigned const_offset, Temp dst_hint)
{
unsigned bytes_size = 0;
aco_opcode op;
if (bytes_needed == 1 || align_ % 2u) {
bytes_size = 1;
op = aco_opcode::scratch_load_ubyte;
} else if (bytes_needed == 2 || align_ % 4u) {
bytes_size = 2;
op = aco_opcode::scratch_load_ushort;
} else if (bytes_needed <= 4) {
bytes_size = 4;
op = aco_opcode::scratch_load_dword;
} else if (bytes_needed <= 8) {
bytes_size = 8;
op = aco_opcode::scratch_load_dwordx2;
} else if (bytes_needed <= 12) {
bytes_size = 12;
op = aco_opcode::scratch_load_dwordx3;
} else {
bytes_size = 16;
op = aco_opcode::scratch_load_dwordx4;
}
RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, Format::SCRATCH, 2, 1)};
flat->operands[0] = offset.regClass() == s1 ? Operand(v1) : Operand(offset);
flat->operands[1] = offset.regClass() == s1 ? Operand(offset) : Operand(s1);
flat->sync = info.sync;
flat->offset = const_offset;
flat->definitions[0] = Definition(val);
bld.insert(std::move(flat));
return val;
}
const EmitLoadParameters scratch_mubuf_load_params{mubuf_load_callback, false, true, 4096};
const EmitLoadParameters scratch_flat_load_params{scratch_load_callback, false, true, 2048};
Temp
get_gfx6_global_rsrc(Builder& bld, Temp addr)
{
uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
if (addr.type() == RegType::vgpr)
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand::zero(), Operand::zero(),
Operand::c32(-1u), Operand::c32(rsrc_conf));
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand::c32(-1u),
Operand::c32(rsrc_conf));
}
Temp
add64_32(Builder& bld, Temp src0, Temp src1)
{
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(src0.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
if (src0.type() == RegType::vgpr || src1.type() == RegType::vgpr) {
Temp dst0 = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(dst0), src00, src1, true).def(1).getTemp();
Temp dst1 = bld.vadd32(bld.def(v1), src01, Operand::zero(), false, carry);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
} else {
Temp carry = bld.tmp(s1);
Temp dst0 =
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src1);
Temp dst1 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), src01, carry);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), dst0, dst1);
}
}
void
lower_global_address(Builder& bld, uint32_t offset_in, Temp* address_inout,
uint32_t* const_offset_inout, Temp* offset_inout)
{
Temp address = *address_inout;
uint64_t const_offset = *const_offset_inout + offset_in;
Temp offset = *offset_inout;
uint64_t max_const_offset_plus_one =
1; /* GFX7/8/9: FLAT loads do not support constant offsets */
if (bld.program->gfx_level >= GFX9)
max_const_offset_plus_one = bld.program->dev.scratch_global_offset_max;
else if (bld.program->gfx_level == GFX6)
max_const_offset_plus_one = 4096; /* MUBUF has a 12-bit unsigned offset field */
uint64_t excess_offset = const_offset - (const_offset % max_const_offset_plus_one);
const_offset %= max_const_offset_plus_one;
if (!offset.id()) {
while (unlikely(excess_offset > UINT32_MAX)) {
address = add64_32(bld, address, bld.copy(bld.def(s1), Operand::c32(UINT32_MAX)));
excess_offset -= UINT32_MAX;
}
if (excess_offset)
offset = bld.copy(bld.def(s1), Operand::c32(excess_offset));
} else {
/* If we add to "offset", we would transform the indended
* "address + u2u64(offset) + u2u64(const_offset)" into
* "address + u2u64(offset + const_offset)", so add to the address.
* This could be more efficient if excess_offset>UINT32_MAX by doing a full 64-bit addition,
* but that should be really rare.
*/
while (excess_offset) {
uint32_t src2 = MIN2(excess_offset, UINT32_MAX);
address = add64_32(bld, address, bld.copy(bld.def(s1), Operand::c32(src2)));
excess_offset -= src2;
}
}
if (bld.program->gfx_level == GFX6) {
/* GFX6 (MUBUF): (SGPR address, SGPR offset) or (VGPR address, SGPR offset) */
if (offset.type() != RegType::sgpr) {
address = add64_32(bld, address, offset);
offset = Temp();
}
offset = offset.id() ? offset : bld.copy(bld.def(s1), Operand::zero());
} else if (bld.program->gfx_level <= GFX8) {
/* GFX7,8 (FLAT): VGPR address */
if (offset.id()) {
address = add64_32(bld, address, offset);
offset = Temp();
}
address = as_vgpr(bld, address);
} else {
/* GFX9+ (GLOBAL): (VGPR address), or (SGPR address and VGPR offset) */
if (address.type() == RegType::vgpr && offset.id()) {
address = add64_32(bld, address, offset);
offset = Temp();
} else if (address.type() == RegType::sgpr && offset.id()) {
offset = as_vgpr(bld, offset);
}
if (address.type() == RegType::sgpr && !offset.id())
offset = bld.copy(bld.def(v1), bld.copy(bld.def(s1), Operand::zero()));
}
*address_inout = address;
*const_offset_inout = const_offset;
*offset_inout = offset;
}
Temp
global_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed,
unsigned align_, unsigned const_offset, Temp dst_hint)
{
Temp addr = info.resource;
if (!addr.id()) {
addr = offset;
offset = Temp();
}
lower_global_address(bld, 0, &addr, &const_offset, &offset);
unsigned bytes_size = 0;
bool use_mubuf = bld.program->gfx_level == GFX6;
bool global = bld.program->gfx_level >= GFX9;
aco_opcode op;
if (bytes_needed == 1 || align_ % 2u) {
bytes_size = 1;
op = use_mubuf ? aco_opcode::buffer_load_ubyte
: global ? aco_opcode::global_load_ubyte
: aco_opcode::flat_load_ubyte;
} else if (bytes_needed == 2 || align_ % 4u) {
bytes_size = 2;
op = use_mubuf ? aco_opcode::buffer_load_ushort
: global ? aco_opcode::global_load_ushort
: aco_opcode::flat_load_ushort;
} else if (bytes_needed <= 4) {
bytes_size = 4;
op = use_mubuf ? aco_opcode::buffer_load_dword
: global ? aco_opcode::global_load_dword
: aco_opcode::flat_load_dword;
} else if (bytes_needed <= 8 || (bytes_needed <= 12 && use_mubuf)) {
bytes_size = 8;
op = use_mubuf ? aco_opcode::buffer_load_dwordx2
: global ? aco_opcode::global_load_dwordx2
: aco_opcode::flat_load_dwordx2;
} else if (bytes_needed <= 12 && !use_mubuf) {
bytes_size = 12;
op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
} else {
bytes_size = 16;
op = use_mubuf ? aco_opcode::buffer_load_dwordx4
: global ? aco_opcode::global_load_dwordx4
: aco_opcode::flat_load_dwordx4;
}
RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
if (use_mubuf) {
aco_ptr<MUBUF_instruction> mubuf{
create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, addr));
mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
mubuf->operands[2] = Operand(offset);
mubuf->glc = info.glc;
mubuf->dlc = false;
mubuf->offset = const_offset;
mubuf->addr64 = addr.type() == RegType::vgpr;
mubuf->disable_wqm = false;
mubuf->sync = info.sync;
mubuf->definitions[0] = Definition(val);
bld.insert(std::move(mubuf));
} else {
aco_ptr<FLAT_instruction> flat{
create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
if (addr.regClass() == s2) {
assert(global && offset.id() && offset.type() == RegType::vgpr);
flat->operands[0] = Operand(offset);
flat->operands[1] = Operand(addr);
} else {
assert(addr.type() == RegType::vgpr && !offset.id());
flat->operands[0] = Operand(addr);
flat->operands[1] = Operand(s1);
}
flat->glc = info.glc;
flat->dlc =
info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3);
flat->sync = info.sync;
assert(global || !const_offset);
flat->offset = const_offset;
flat->definitions[0] = Definition(val);
bld.insert(std::move(flat));
}
return val;
}
const EmitLoadParameters global_load_params{global_load_callback, true, true, UINT32_MAX};
Temp
load_lds(isel_context* ctx, unsigned elem_size_bytes, unsigned num_components, Temp dst,
Temp address, unsigned base_offset, unsigned align)
{
assert(util_is_power_of_two_nonzero(align));
Builder bld(ctx->program, ctx->block);
LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
info.align_mul = align;
info.align_offset = 0;
info.sync = memory_sync_info(storage_shared);
info.const_offset = base_offset;
/* The 2 separate loads for gfx10+ wave64 can see different values, even for uniform addresses,
* if another wave writes LDS in between. Use v_readfirstlane instead of p_as_uniform in order
* to avoid copy-propagation.
*/
info.readfirstlane_for_uniform = ctx->options->gfx_level >= GFX10 &&
ctx->program->wave_size == 64 &&
ctx->program->workgroup_size > 64;
emit_load(ctx, bld, info, lds_load_params);
return dst;
}
void
split_store_data(isel_context* ctx, RegType dst_type, unsigned count, Temp* dst, unsigned* bytes,
Temp src)
{
if (!count)
return;
Builder bld(ctx->program, ctx->block);
/* count == 1 fast path */
if (count == 1) {
if (dst_type == RegType::sgpr)
dst[0] = bld.as_uniform(src);
else
dst[0] = as_vgpr(ctx, src);
return;
}
/* elem_size_bytes is the greatest common divisor which is a power of 2 */
unsigned elem_size_bytes =
1u << (ffs(std::accumulate(bytes, bytes + count, 8, std::bit_or<>{})) - 1);
ASSERTED bool is_subdword = elem_size_bytes < 4;
assert(!is_subdword || dst_type == RegType::vgpr);
for (unsigned i = 0; i < count; i++)
dst[i] = bld.tmp(RegClass::get(dst_type, bytes[i]));
std::vector<Temp> temps;
/* use allocated_vec if possible */
auto it = ctx->allocated_vec.find(src.id());
if (it != ctx->allocated_vec.end()) {
if (!it->second[0].id())
goto split;
unsigned elem_size = it->second[0].bytes();
assert(src.bytes() % elem_size == 0);
for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
if (!it->second[i].id())
goto split;
}
if (elem_size_bytes % elem_size)
goto split;
temps.insert(temps.end(), it->second.begin(), it->second.begin() + src.bytes() / elem_size);
elem_size_bytes = elem_size;
}
split:
/* split src if necessary */
if (temps.empty()) {
if (is_subdword && src.type() == RegType::sgpr)
src = as_vgpr(ctx, src);
if (dst_type == RegType::sgpr)
src = bld.as_uniform(src);
unsigned num_elems = src.bytes() / elem_size_bytes;
aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(
aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elems)};
split->operands[0] = Operand(src);
for (unsigned i = 0; i < num_elems; i++) {
temps.emplace_back(bld.tmp(RegClass::get(dst_type, elem_size_bytes)));
split->definitions[i] = Definition(temps.back());
}
bld.insert(std::move(split));
}
unsigned idx = 0;
for (unsigned i = 0; i < count; i++) {
unsigned op_count = dst[i].bytes() / elem_size_bytes;
if (op_count == 1) {
if (dst_type == RegType::sgpr)
dst[i] = bld.as_uniform(temps[idx++]);
else
dst[i] = as_vgpr(ctx, temps[idx++]);
continue;
}
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
Format::PSEUDO, op_count, 1)};
for (unsigned j = 0; j < op_count; j++) {
Temp tmp = temps[idx++];
if (dst_type == RegType::sgpr)
tmp = bld.as_uniform(tmp);
vec->operands[j] = Operand(tmp);
}
vec->definitions[0] = Definition(dst[i]);
bld.insert(std::move(vec));
}
return;
}
bool
scan_write_mask(uint32_t mask, uint32_t todo_mask, int* start, int* count)
{
unsigned start_elem = ffs(todo_mask) - 1;
bool skip = !(mask & (1 << start_elem));
if (skip)
mask = ~mask & todo_mask;
mask &= todo_mask;
u_bit_scan_consecutive_range(&mask, start, count);
return !skip;
}
void
advance_write_mask(uint32_t* todo_mask, int start, int count)
{
*todo_mask &= ~u_bit_consecutive(0, count) << start;
}
void
store_lds(isel_context* ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask, Temp address,
unsigned base_offset, unsigned align)
{
assert(util_is_power_of_two_nonzero(align));
assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
Builder bld(ctx->program, ctx->block);
bool large_ds_write = ctx->options->gfx_level >= GFX7;
bool usable_write2 = ctx->options->gfx_level >= GFX7;
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
unsigned bytes[32];
aco_opcode opcodes[32];
wrmask = util_widen_mask(wrmask, elem_size_bytes);
const unsigned wrmask_bitcnt = util_bitcount(wrmask);
uint32_t todo = u_bit_consecutive(0, data.bytes());
if (u_bit_consecutive(0, wrmask_bitcnt) == wrmask)
todo = MIN2(todo, wrmask);
while (todo) {
int offset, byte;
if (!scan_write_mask(wrmask, todo, &offset, &byte)) {
offsets[write_count] = offset;
bytes[write_count] = byte;
opcodes[write_count] = aco_opcode::num_opcodes;
write_count++;
advance_write_mask(&todo, offset, byte);
continue;
}
bool aligned2 = offset % 2 == 0 && align % 2 == 0;
bool aligned4 = offset % 4 == 0 && align % 4 == 0;
bool aligned8 = offset % 8 == 0 && align % 8 == 0;
bool aligned16 = offset % 16 == 0 && align % 16 == 0;
// TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
aco_opcode op = aco_opcode::num_opcodes;
if (byte >= 16 && aligned16 && large_ds_write) {
op = aco_opcode::ds_write_b128;
byte = 16;
} else if (byte >= 12 && aligned16 && large_ds_write) {
op = aco_opcode::ds_write_b96;
byte = 12;
} else if (byte >= 8 && aligned8) {
op = aco_opcode::ds_write_b64;
byte = 8;
} else if (byte >= 4 && aligned4) {
op = aco_opcode::ds_write_b32;
byte = 4;
} else if (byte >= 2 && aligned2) {
op = aco_opcode::ds_write_b16;
byte = 2;
} else if (byte >= 1) {
op = aco_opcode::ds_write_b8;
byte = 1;
} else {
assert(false);
}
offsets[write_count] = offset;
bytes[write_count] = byte;
opcodes[write_count] = op;
write_count++;
advance_write_mask(&todo, offset, byte);
}
Operand m = load_lds_size_m0(bld);
split_store_data(ctx, RegType::vgpr, write_count, write_datas, bytes, data);
for (unsigned i = 0; i < write_count; i++) {
aco_opcode op = opcodes[i];
if (op == aco_opcode::num_opcodes)
continue;
Temp split_data = write_datas[i];
unsigned second = write_count;
if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
for (second = i + 1; second < write_count; second++) {
if (opcodes[second] == op && (offsets[second] - offsets[i]) % split_data.bytes() == 0) {
op = split_data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
opcodes[second] = aco_opcode::num_opcodes;
break;
}
}
}
bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
unsigned write2_off = (offsets[second] - offsets[i]) / split_data.bytes();
unsigned inline_offset = base_offset + offsets[i];
unsigned max_offset = write2 ? (255 - write2_off) * split_data.bytes() : 65535;
Temp address_offset = address;
if (inline_offset > max_offset) {
address_offset = bld.vadd32(bld.def(v1), Operand::c32(base_offset), address_offset);
inline_offset = offsets[i];
}
/* offsets[i] shouldn't be large enough for this to happen */
assert(inline_offset <= max_offset);
Instruction* instr;
if (write2) {
Temp second_data = write_datas[second];
inline_offset /= split_data.bytes();
instr = bld.ds(op, address_offset, split_data, second_data, m, inline_offset,
inline_offset + write2_off);
} else {
instr = bld.ds(op, address_offset, split_data, m, inline_offset);
}
instr->ds().sync = memory_sync_info(storage_shared);
if (m.isUndefined())
instr->operands.pop_back();
}
}
aco_opcode
get_buffer_store_op(unsigned bytes)
{
switch (bytes) {
case 1: return aco_opcode::buffer_store_byte;
case 2: return aco_opcode::buffer_store_short;
case 4: return aco_opcode::buffer_store_dword;
case 8: return aco_opcode::buffer_store_dwordx2;
case 12: return aco_opcode::buffer_store_dwordx3;
case 16: return aco_opcode::buffer_store_dwordx4;
}
unreachable("Unexpected store size");
return aco_opcode::num_opcodes;
}
void
split_buffer_store(isel_context* ctx, nir_intrinsic_instr* instr, bool smem, RegType dst_type,
Temp data, unsigned writemask, int swizzle_element_size, unsigned* write_count,
Temp* write_datas, unsigned* offsets)
{
unsigned write_count_with_skips = 0;
bool skips[16];
unsigned bytes[16];
/* determine how to split the data */
unsigned todo = u_bit_consecutive(0, data.bytes());
while (todo) {
int offset, byte;
skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &byte);
offsets[write_count_with_skips] = offset;
if (skips[write_count_with_skips]) {
bytes[write_count_with_skips] = byte;
advance_write_mask(&todo, offset, byte);
write_count_with_skips++;
continue;
}
/* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
* larger than swizzle_element_size */
byte = MIN2(byte, swizzle_element_size);
if (byte % 4)
byte = byte > 4 ? byte & ~0x3 : MIN2(byte, 2);
/* SMEM and GFX6 VMEM can't emit 12-byte stores */
if ((ctx->program->gfx_level == GFX6 || smem) && byte == 12)
byte = 8;
/* dword or larger stores have to be dword-aligned */
unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
if (!dword_aligned)
byte = MIN2(byte, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
bytes[write_count_with_skips] = byte;
advance_write_mask(&todo, offset, byte);
write_count_with_skips++;
}
/* actually split data */
split_store_data(ctx, dst_type, write_count_with_skips, write_datas, bytes, data);
/* remove skips */
for (unsigned i = 0; i < write_count_with_skips; i++) {
if (skips[i])
continue;
write_datas[*write_count] = write_datas[i];
offsets[*write_count] = offsets[i];
(*write_count)++;
}
}
Temp
create_vec_from_array(isel_context* ctx, Temp arr[], unsigned cnt, RegType reg_type,
unsigned elem_size_bytes, unsigned split_cnt = 0u, Temp dst = Temp())
{
Builder bld(ctx->program, ctx->block);
unsigned dword_size = elem_size_bytes / 4;
if (!dst.id())
dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
aco_ptr<Pseudo_instruction> instr{
create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
instr->definitions[0] = Definition(dst);
for (unsigned i = 0; i < cnt; ++i) {
if (arr[i].id()) {
assert(arr[i].size() == dword_size);
allocated_vec[i] = arr[i];
instr->operands[i] = Operand(arr[i]);
} else {
Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)),
Operand::zero(dword_size == 2 ? 8 : 4));
allocated_vec[i] = zero;
instr->operands[i] = Operand(zero);
}
}
bld.insert(std::move(instr));
if (split_cnt)
emit_split_vector(ctx, dst, split_cnt);
else
ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
return dst;
}
inline unsigned
resolve_excess_vmem_const_offset(Builder& bld, Temp& voffset, unsigned const_offset)
{
if (const_offset >= 4096) {
unsigned excess_const_offset = const_offset / 4096u * 4096u;
const_offset %= 4096u;
if (!voffset.id())
voffset = bld.copy(bld.def(v1), Operand::c32(excess_const_offset));
else if (unlikely(voffset.regClass() == s1))
voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc),
Operand::c32(excess_const_offset), Operand(voffset));
else if (likely(voffset.regClass() == v1))
voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand::c32(excess_const_offset));
else
unreachable("Unsupported register class of voffset");
}
return const_offset;
}
void
emit_single_mubuf_store(isel_context* ctx, Temp descriptor, Temp voffset, Temp soffset, Temp idx,
Temp vdata, unsigned const_offset, memory_sync_info sync, bool glc,
bool slc, bool swizzled)
{
assert(vdata.id());
assert(vdata.size() != 3 || ctx->program->gfx_level != GFX6);
assert(vdata.size() >= 1 && vdata.size() <= 4);
Builder bld(ctx->program, ctx->block);
aco_opcode op = get_buffer_store_op(vdata.bytes());
const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
bool offen = voffset.id();
bool idxen = idx.id();
Operand soffset_op = soffset.id() ? Operand(soffset) : Operand::zero();
glc &= ctx->program->gfx_level < GFX11;
Operand vaddr_op(v1);
if (offen && idxen)
vaddr_op = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), idx, voffset);
else if (offen)
vaddr_op = Operand(voffset);
else if (idxen)
vaddr_op = Operand(idx);
Builder::Result r =
bld.mubuf(op, Operand(descriptor), vaddr_op, soffset_op, Operand(vdata), const_offset, offen,
swizzled, idxen, /* addr64 */ false, /* disable_wqm */ false, glc,
/* dlc*/ false, slc);
r->mubuf().sync = sync;
}
void
store_vmem_mubuf(isel_context* ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset, Temp idx,
unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
bool swizzled, memory_sync_info sync, bool glc, bool slc)
{
Builder bld(ctx->program, ctx->block);
assert(elem_size_bytes == 1 || elem_size_bytes == 2 || elem_size_bytes == 4 ||
elem_size_bytes == 8);
assert(write_mask);
write_mask = util_widen_mask(write_mask, elem_size_bytes);
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
swizzled && ctx->program->gfx_level <= GFX8 ? 4 : 16, &write_count,
write_datas, offsets);
for (unsigned i = 0; i < write_count; i++) {
unsigned const_offset = offsets[i] + base_const_offset;
emit_single_mubuf_store(ctx, descriptor, voffset, soffset, idx, write_datas[i], const_offset,
sync, glc, slc, swizzled);
}
}
Temp
wave_id_in_threadgroup(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
return bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(24u | (4u << 16)));
}
Temp
thread_id_in_threadgroup(isel_context* ctx)
{
/* tid_in_tg = wave_id * wave_size + tid_in_wave */
Builder bld(ctx->program, ctx->block);
Temp tid_in_wave = emit_mbcnt(ctx, bld.tmp(v1));
if (ctx->program->workgroup_size <= ctx->program->wave_size)
return tid_in_wave;
Temp wave_id_in_tg = wave_id_in_threadgroup(ctx);
Temp num_pre_threads =
bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), wave_id_in_tg,
Operand::c32(ctx->program->wave_size == 64 ? 6u : 5u));
return bld.vadd32(bld.def(v1), Operand(num_pre_threads), Operand(tid_in_wave));
}
bool
store_output_to_temps(isel_context* ctx, nir_intrinsic_instr* instr)
{
unsigned write_mask = nir_intrinsic_write_mask(instr);
unsigned component = nir_intrinsic_component(instr);
nir_src offset = *nir_get_io_offset_src(instr);
if (!nir_src_is_const(offset) || nir_src_as_uint(offset))
return false;
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (instr->src[0].ssa->bit_size == 64)
write_mask = util_widen_mask(write_mask, 2);
RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
/* Use semantic location as index. radv already uses it as intrinsic base
* but radeonsi does not. We need to make LS output and TCS input index
* match each other, so need to use semantic location explicitly. Also for
* TCS epilog to index tess factor temps using semantic location directly.
*/
nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
unsigned base = sem.location;
if (ctx->stage == fragment_fs) {
/* color result is a legacy slot which won't appear with data result
* at the same time. Here we just use the data slot for it to simplify
* code handling for both of them.
*/
if (base == FRAG_RESULT_COLOR)
base = FRAG_RESULT_DATA0;
/* Sencond output of dual source blend just use data1 slot for simplicity,
* because dual source blend does not support multi render target.
*/
base += sem.dual_source_blend_index;
}
unsigned idx = base * 4u + component;
for (unsigned i = 0; i < 8; ++i) {
if (write_mask & (1 << i)) {
ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
}
idx++;
}
if (ctx->stage == fragment_fs && ctx->program->info.has_epilog && base >= FRAG_RESULT_DATA0) {
unsigned index = base - FRAG_RESULT_DATA0;
if (nir_intrinsic_src_type(instr) == nir_type_float16) {
ctx->output_color_types |= ACO_TYPE_FLOAT16 << (index * 2);
} else if (nir_intrinsic_src_type(instr) == nir_type_int16) {
ctx->output_color_types |= ACO_TYPE_INT16 << (index * 2);
} else if (nir_intrinsic_src_type(instr) == nir_type_uint16) {
ctx->output_color_types |= ACO_TYPE_UINT16 << (index * 2);
}
}
return true;
}
bool
load_input_from_temps(isel_context* ctx, nir_intrinsic_instr* instr, Temp dst)
{
/* Only TCS per-vertex inputs are supported by this function.
* Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations
* is the same.
*/
if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
return false;
nir_src* off_src = nir_get_io_offset_src(instr);
nir_src* vertex_index_src = nir_get_io_arrayed_index_src(instr);
nir_instr* vertex_index_instr = vertex_index_src->ssa->parent_instr;
bool can_use_temps =
nir_src_is_const(*off_src) && vertex_index_instr->type == nir_instr_type_intrinsic &&
nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
if (!can_use_temps)
return false;
nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
unsigned idx =
sem.location * 4u + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
Temp* src = &ctx->inputs.temps[idx];
create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
return true;
}
void
visit_store_output(isel_context* ctx, nir_intrinsic_instr* instr)
{
/* LS pass output to TCS by temp if they have same in/out patch size. */
bool ls_need_output = ctx->stage == vertex_tess_control_hs &&
ctx->shader->info.stage == MESA_SHADER_VERTEX && ctx->tcs_in_out_eq;
bool tcs_need_output = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL &&
ctx->program->info.has_epilog &&
ctx->program->info.tcs.pass_tessfactors_by_reg;
bool ps_need_output = ctx->stage == fragment_fs;
if (ls_need_output || tcs_need_output || ps_need_output) {
bool stored_to_temps = store_output_to_temps(ctx, instr);
if (!stored_to_temps) {
isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction");
abort();
}
} else {
unreachable("Shader stage not implemented");
}
}
bool
in_exec_divergent_or_in_loop(isel_context* ctx)
{
return ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent ||
ctx->cf_info.had_divergent_discard;
}
void
emit_interp_instr_gfx11(isel_context* ctx, unsigned idx, unsigned component, Temp src, Temp dst,
Temp prim_mask)
{
Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
Builder bld(ctx->program, ctx->block);
if (in_exec_divergent_or_in_loop(ctx)) {
Operand prim_mask_op = bld.m0(prim_mask);
prim_mask_op.setLateKill(true); /* we don't want the bld.lm definition to use m0 */
Operand coord2_op(coord2);
coord2_op.setLateKill(true); /* we re-use the destination reg in the middle */
bld.pseudo(aco_opcode::p_interp_gfx11, Definition(dst), Operand(v1.as_linear()),
Operand::c32(idx), Operand::c32(component), coord1, coord2_op, prim_mask_op);
return;
}
Temp p = bld.ldsdir(aco_opcode::lds_param_load, bld.def(v1), bld.m0(prim_mask), idx, component);
Temp res;
if (dst.regClass() == v2b) {
Temp p10 =
bld.vinterp_inreg(aco_opcode::v_interp_p10_f16_f32_inreg, bld.def(v1), p, coord1, p);
res = bld.vinterp_inreg(aco_opcode::v_interp_p2_f16_f32_inreg, bld.def(v1), p, coord2, p10);
emit_extract_vector(ctx, res, 0, dst);
} else {
Temp p10 = bld.vinterp_inreg(aco_opcode::v_interp_p10_f32_inreg, bld.def(v1), p, coord1, p);
bld.vinterp_inreg(aco_opcode::v_interp_p2_f32_inreg, Definition(dst), p, coord2, p10);
}
/* lds_param_load must be done in WQM, and the result kept valid for helper lanes. */
set_wqm(ctx, true);
}
void
emit_interp_instr(isel_context* ctx, unsigned idx, unsigned component, Temp src, Temp dst,
Temp prim_mask)
{
if (ctx->options->gfx_level >= GFX11) {
emit_interp_instr_gfx11(ctx, idx, component, src, dst, prim_mask);
return;
}
Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
Builder bld(ctx->program, ctx->block);
if (dst.regClass() == v2b) {
if (ctx->program->dev.has_16bank_lds) {
assert(ctx->options->gfx_level <= GFX8);
Builder::Result interp_p1 =
bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand::c32(2u) /* P0 */,
bld.m0(prim_mask), idx, component);
interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b), coord1,
bld.m0(prim_mask), interp_p1, idx, component);
bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2, bld.m0(prim_mask),
interp_p1, idx, component);
} else {
aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
if (ctx->options->gfx_level == GFX8)
interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1), coord1,
bld.m0(prim_mask), idx, component);
bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx,
component);
}
} else {
Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
bld.m0(prim_mask), idx, component);
if (ctx->program->dev.has_16bank_lds)
interp_p1->operands[0].setLateKill(true);
bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1,
idx, component);
}
}
void
emit_interp_mov_instr(isel_context* ctx, unsigned idx, unsigned component, unsigned vertex_id,
Temp dst, Temp prim_mask)
{
Builder bld(ctx->program, ctx->block);
if (ctx->options->gfx_level >= GFX11) {
uint16_t dpp_ctrl = dpp_quad_perm(vertex_id, vertex_id, vertex_id, vertex_id);
if (in_exec_divergent_or_in_loop(ctx)) {
Operand prim_mask_op = bld.m0(prim_mask);
prim_mask_op.setLateKill(true); /* we don't want the bld.lm definition to use m0 */
bld.pseudo(aco_opcode::p_interp_gfx11, Definition(dst), Operand(v1.as_linear()),
Operand::c32(idx), Operand::c32(component), Operand::c32(dpp_ctrl),
prim_mask_op);
} else {
Temp p =
bld.ldsdir(aco_opcode::lds_param_load, bld.def(v1), bld.m0(prim_mask), idx, component);
if (dst.regClass() == v2b) {
Temp res = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p, dpp_ctrl);
emit_extract_vector(ctx, res, 0, dst);
} else {
bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(dst), p, dpp_ctrl);
}
/* lds_param_load must be done in WQM, and the result kept valid for helper lanes. */
set_wqm(ctx, true);
}
} else {
bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand::c32((vertex_id + 2) % 3),
bld.m0(prim_mask), idx, component);
}
}
void
emit_load_frag_coord(isel_context* ctx, Temp dst, unsigned num_components)
{
Builder bld(ctx->program, ctx->block);
aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
for (unsigned i = 0; i < num_components; i++) {
if (ctx->args->frag_pos[i].used)
vec->operands[i] = Operand(get_arg(ctx, ctx->args->frag_pos[i]));
else
vec->operands[i] = Operand(v1);
}
if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
assert(num_components == 4);
vec->operands[3] =
bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->frag_pos[3]));
}
for (Operand& op : vec->operands)
op = op.isUndefined() ? Operand::zero() : op;
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
emit_split_vector(ctx, dst, num_components);
return;
}
void
emit_load_frag_shading_rate(isel_context* ctx, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Temp cond;
/* VRS Rate X = Ancillary[2:3]
* VRS Rate Y = Ancillary[4:5]
*/
Temp x_rate = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->ancillary),
Operand::c32(2u), Operand::c32(2u));
Temp y_rate = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->ancillary),
Operand::c32(4u), Operand::c32(2u));
/* xRate = xRate == 0x1 ? Horizontal2Pixels : None. */
cond = bld.vopc(aco_opcode::v_cmp_eq_i32, bld.def(bld.lm), Operand::c32(1u), Operand(x_rate));
x_rate = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand::zero()),
bld.copy(bld.def(v1), Operand::c32(4u)), cond);
/* yRate = yRate == 0x1 ? Vertical2Pixels : None. */
cond = bld.vopc(aco_opcode::v_cmp_eq_i32, bld.def(bld.lm), Operand::c32(1u), Operand(y_rate));
y_rate = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand::zero()),
bld.copy(bld.def(v1), Operand::c32(1u)), cond);
bld.vop2(aco_opcode::v_or_b32, Definition(dst), Operand(x_rate), Operand(y_rate));
}
void
visit_load_interpolated_input(isel_context* ctx, nir_intrinsic_instr* instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned idx = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
Temp prim_mask = get_arg(ctx, ctx->args->prim_mask);
assert(nir_src_is_const(instr->src[1]) && !nir_src_as_uint(instr->src[1]));
if (instr->def.num_components == 1) {
emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
} else {
aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, instr->def.num_components, 1));
for (unsigned i = 0; i < instr->def.num_components; i++) {
Temp tmp = ctx->program->allocateTmp(instr->def.bit_size == 16 ? v2b : v1);
emit_interp_instr(ctx, idx, component + i, coords, tmp, prim_mask);
vec->operands[i] = Operand(tmp);
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
Temp
mtbuf_load_callback(Builder& bld, const LoadEmitInfo& info, Temp offset, unsigned bytes_needed,
unsigned alignment, unsigned const_offset, Temp dst_hint)
{
Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0);
if (info.soffset.id()) {
if (soffset.isTemp())
vaddr = bld.copy(bld.def(v1), soffset);
soffset = Operand(info.soffset);
}
if (soffset.isUndefined())
soffset = Operand::zero();
const bool offen = !vaddr.isUndefined();
const bool idxen = info.idx.id();
if (offen && idxen)
vaddr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), info.idx, vaddr);
else if (idxen)
vaddr = Operand(info.idx);
/* Determine number of fetched components.
* Note, ACO IR works with GFX6-8 nfmt + dfmt fields, these are later converted for GFX10+.
*/
const struct ac_vtx_format_info* vtx_info =
ac_get_vtx_format_info(GFX8, CHIP_POLARIS10, info.format);
/* The number of channels in the format determines the memory range. */
const unsigned max_components = vtx_info->num_channels;
/* Calculate maximum number of components loaded according to alignment. */
unsigned max_fetched_components = bytes_needed / info.component_size;
max_fetched_components =
ac_get_safe_fetch_size(bld.program->gfx_level, vtx_info, const_offset, max_components,
alignment, max_fetched_components);
const unsigned fetch_fmt = vtx_info->hw_format[max_fetched_components - 1];
/* Adjust bytes needed in case we need to do a smaller load due to alignment.
* If a larger format is selected, it's still OK to load a smaller amount from it.
*/
bytes_needed = MIN2(bytes_needed, max_fetched_components * info.component_size);
unsigned bytes_size = 0;
const unsigned bit_size = info.component_size * 8;
aco_opcode op = aco_opcode::num_opcodes;
if (bytes_needed == 2) {
bytes_size = 2;
op = aco_opcode::tbuffer_load_format_d16_x;
} else if (bytes_needed <= 4) {
bytes_size = 4;
if (bit_size == 16)
op = aco_opcode::tbuffer_load_format_d16_xy;
else
op = aco_opcode::tbuffer_load_format_x;
} else if (bytes_needed <= 6) {
bytes_size = 6;
if (bit_size == 16)
op = aco_opcode::tbuffer_load_format_d16_xyz;
else
op = aco_opcode::tbuffer_load_format_xy;
} else if (bytes_needed <= 8) {
bytes_size = 8;
if (bit_size == 16)
op = aco_opcode::tbuffer_load_format_d16_xyzw;
else
op = aco_opcode::tbuffer_load_format_xy;
} else if (bytes_needed <= 12) {
bytes_size = 12;
op = aco_opcode::tbuffer_load_format_xyz;
} else {
bytes_size = 16;
op = aco_opcode::tbuffer_load_format_xyzw;
}
/* Abort when suitable opcode wasn't found so we don't compile buggy shaders. */
if (op == aco_opcode::num_opcodes) {
aco_err(bld.program, "unsupported bit size for typed buffer load");
abort();
}
aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(op, Format::MTBUF, 3, 1)};
mtbuf->operands[0] = Operand(info.resource);
mtbuf->operands[1] = vaddr;
mtbuf->operands[2] = soffset;
mtbuf->offen = offen;
mtbuf->idxen = idxen;
mtbuf->glc = info.glc;
mtbuf->dlc = info.glc && (bld.program->gfx_level == GFX10 || bld.program->gfx_level == GFX10_3);
mtbuf->slc = info.slc;
mtbuf->sync = info.sync;
mtbuf->offset = const_offset;
mtbuf->dfmt = fetch_fmt & 0xf;
mtbuf->nfmt = fetch_fmt >> 4;
RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
mtbuf->definitions[0] = Definition(val);
bld.insert(std::move(mtbuf));
return val;
}
const EmitLoadParameters mtbuf_load_params{mtbuf_load_callback, false, true, 4096};
void
visit_load_fs_input(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->def);
nir_src offset = *nir_get_io_offset_src(instr);
if (!nir_src_is_const(offset) || nir_src_as_uint(offset))
isel_err(offset.ssa->parent_instr, "Unimplemented non-zero nir_intrinsic_load_input offset");
Temp prim_mask = get_arg(ctx, ctx->args->prim_mask);
unsigned idx = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
unsigned vertex_id = 0; /* P0 */
if (instr->intrinsic == nir_intrinsic_load_input_vertex)
vertex_id = nir_src_as_uint(instr->src[0]);
if (instr->def.num_components == 1 && instr->def.bit_size != 64) {
emit_interp_mov_instr(ctx, idx, component, vertex_id, dst, prim_mask);
} else {
unsigned num_components = instr->def.num_components;
if (instr->def.bit_size == 64)
num_components *= 2;
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
for (unsigned i = 0; i < num_components; i++) {
unsigned chan_component = (component + i) % 4;
unsigned chan_idx = idx + (component + i) / 4;
vec->operands[i] = Operand(bld.tmp(instr->def.bit_size == 16 ? v2b : v1));
emit_interp_mov_instr(ctx, chan_idx, chan_component, vertex_id, vec->operands[i].getTemp(),
prim_mask);
}
vec->definitions[0] = Definition(dst);
bld.insert(std::move(vec));
}
}
void
visit_load_tcs_per_vertex_input(isel_context* ctx, nir_intrinsic_instr* instr)
{
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->def);
if (load_input_from_temps(ctx, instr, dst))
return;
unreachable("LDS-based TCS input should have been lowered in NIR.");
}
void
visit_load_per_vertex_input(isel_context* ctx, nir_intrinsic_instr* instr)
{
switch (ctx->shader->info.stage) {
case MESA_SHADER_TESS_CTRL: visit_load_tcs_per_vertex_input(ctx, instr); break;
default: unreachable("Unimplemented shader stage");
}
}
void
visit_load_tess_coord(isel_context* ctx, nir_intrinsic_instr* instr)
{
assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->def);
Operand tes_u(get_arg(ctx, ctx->args->tes_u));
Operand tes_v(get_arg(ctx, ctx->args->tes_v));
Operand tes_w = Operand::zero();
if (ctx->shader->info.tess._primitive_mode == TESS_PRIMITIVE_TRIANGLES) {
Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand::c32(0x3f800000u /* 1.0f */), tmp);
tes_w = Operand(tmp);
}
Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
emit_split_vector(ctx, tess_coord, 3);
}
void
load_buffer(isel_context* ctx, unsigned num_components, unsigned component_size, Temp dst,
Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset, bool glc = false,
bool allow_smem = true, memory_sync_info sync = memory_sync_info())
{
Builder bld(ctx->program, ctx->block);
bool use_smem =
dst.type() != RegType::vgpr && (!glc || ctx->options->gfx_level >= GFX8) && allow_smem;
if (use_smem)
offset = bld.as_uniform(offset);
else {
/* GFX6-7 are affected by a hw bug that prevents address clamping to
* work correctly when the SGPR offset is used.
*/
if (offset.type() == RegType::sgpr && ctx->options->gfx_level < GFX8)
offset = as_vgpr(ctx, offset);
}
LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
info.glc = glc;
info.sync = sync;
info.align_mul = align_mul;
info.align_offset = align_offset;
if (use_smem)
emit_load(ctx, bld, info, smem_load_params);
else
emit_load(ctx, bld, info, mubuf_load_params);
}
void
visit_load_ubo(isel_context* ctx, nir_intrinsic_instr* instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
Builder bld(ctx->program, ctx->block);
Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
unsigned size = instr->def.bit_size / 8;
load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
}
void
visit_load_push_constant(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->def);
unsigned offset = nir_intrinsic_base(instr);
unsigned count = instr->def.num_components;
nir_const_value* index_cv = nir_src_as_const_value(instr->src[0]);
if (instr->def.bit_size == 64)
count *= 2;
if (index_cv && instr->def.bit_size >= 32) {
unsigned start = (offset + index_cv->u32) / 4u;
uint64_t mask = BITFIELD64_MASK(count) << start;
if ((ctx->args->inline_push_const_mask | mask) == ctx->args->inline_push_const_mask &&
start + count <= (sizeof(ctx->args->inline_push_const_mask) * 8u)) {
std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
unsigned arg_index =
util_bitcount64(ctx->args->inline_push_const_mask & BITFIELD64_MASK(start));
for (unsigned i = 0; i < count; ++i) {
elems[i] = get_arg(ctx, ctx->args->inline_push_consts[arg_index++]);
vec->operands[i] = Operand{elems[i]};
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
return;
}
}
Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
if (offset != 0) // TODO check if index != 0 as well
index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
Operand::c32(offset), index);
Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->push_constants));
Temp vec = dst;
bool trim = false;
bool aligned = true;
if (instr->def.bit_size == 8) {
aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
if (!aligned)
vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
} else if (instr->def.bit_size == 16) {
aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
if (!aligned)
vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
}
aco_opcode op;
switch (vec.size()) {
case 1: op = aco_opcode::s_load_dword; break;
case 2: op = aco_opcode::s_load_dwordx2; break;
case 3:
vec = bld.tmp(s4);
trim = true;
FALLTHROUGH;
case 4: op = aco_opcode::s_load_dwordx4; break;
case 6:
vec = bld.tmp(s8);
trim = true;
FALLTHROUGH;
case 8: op = aco_opcode::s_load_dwordx8; break;
default: unreachable("unimplemented or forbidden load_push_constant.");
}
bld.smem(op, Definition(vec), ptr, index);
if (!aligned) {
Operand byte_offset = index_cv ? Operand::c32((offset + index_cv->u32) % 4) : Operand(index);
byte_align_scalar(ctx, vec, byte_offset, dst);
return;
}
if (trim) {
emit_split_vector(ctx, vec, 4);
RegClass rc = dst.size() == 3 ? s1 : s2;
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), emit_extract_vector(ctx, vec, 0, rc),
emit_extract_vector(ctx, vec, 1, rc), emit_extract_vector(ctx, vec, 2, rc));
}
emit_split_vector(ctx, dst, instr->def.num_components);
}
void
visit_load_constant(isel_context* ctx, nir_intrinsic_instr* instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
Builder bld(ctx->program, ctx->block);
uint32_t desc_type =
S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (ctx->options->gfx_level >= GFX10) {
desc_type |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(ctx->options->gfx_level < GFX11);
} else {
desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
unsigned base = nir_intrinsic_base(instr);
unsigned range = nir_intrinsic_range(instr);
Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
if (base && offset.type() == RegType::sgpr)
offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset,
Operand::c32(base));
else if (base && offset.type() == RegType::vgpr)
offset = bld.vadd32(bld.def(v1), Operand::c32(base), offset);
Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
bld.pseudo(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc),
Operand::c32(ctx->constant_data_offset)),
Operand::c32(MIN2(base + range, ctx->shader->constant_data_size)),
Operand::c32(desc_type));
unsigned size = instr->def.bit_size / 8;
// TODO: get alignment information for subdword constants
load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
}
/* Packs multiple Temps of different sizes in to a vector of v1 Temps.
* The byte count of each input Temp must be a multiple of 2.
*/
static std::vector<Temp>
emit_pack_v1(isel_context* ctx, const std::vector<Temp>& unpacked)
{
Builder bld(ctx->program, ctx->block);
std::vector<Temp> packed;
Temp low = Temp();
for (Temp tmp : unpacked) {
assert(tmp.bytes() % 2 == 0);
unsigned byte_idx = 0;
while (byte_idx < tmp.bytes()) {
if (low != Temp()) {
Temp high = emit_extract_vector(ctx, tmp, byte_idx / 2, v2b);
Temp dword = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), low, high);
low = Temp();
packed.push_back(dword);
byte_idx += 2;
} else if (byte_idx % 4 == 0 && (byte_idx + 4) <= tmp.bytes()) {
packed.emplace_back(emit_extract_vector(ctx, tmp, byte_idx / 4, v1));
byte_idx += 4;
} else {
low = emit_extract_vector(ctx, tmp, byte_idx / 2, v2b);
byte_idx += 2;
}
}
}
if (low != Temp()) {
Temp dword = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), low, Operand(v2b));
packed.push_back(dword);
}
return packed;
}
static bool
should_declare_array(ac_image_dim dim)
{
return dim == ac_image_cube || dim == ac_image_1darray || dim == ac_image_2darray ||
dim == ac_image_2darraymsaa;
}
static int
image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_BUF: return 1;
case GLSL_SAMPLER_DIM_1D: return array ? 2 : 1;
case GLSL_SAMPLER_DIM_2D: return array ? 3 : 2;
case GLSL_SAMPLER_DIM_MS: return array ? 3 : 2;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE: return 3;
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS: return 2;
case GLSL_SAMPLER_DIM_SUBPASS_MS: return 2;
default: break;
}
return 0;
}
static MIMG_instruction*
emit_mimg(Builder& bld, aco_opcode op, Temp dst, Temp rsrc, Operand samp, std::vector<Temp> coords,
Operand vdata = Operand(v1))
{
size_t nsa_size = bld.program->dev.max_nsa_vgprs;
nsa_size = bld.program->gfx_level >= GFX11 || coords.size() <= nsa_size ? nsa_size : 0;
const bool strict_wqm = coords[0].regClass().is_linear_vgpr();
if (strict_wqm)
nsa_size = coords.size();
for (unsigned i = 0; i < std::min(coords.size(), nsa_size); i++) {
if (!coords[i].id())
continue;
coords[i] = as_vgpr(bld, coords[i]);
}
if (nsa_size < coords.size()) {
Temp coord = coords[nsa_size];
if (coords.size() - nsa_size > 1) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, coords.size() - nsa_size, 1)};
unsigned coord_size = 0;
for (unsigned i = nsa_size; i < coords.size(); i++) {
vec->operands[i - nsa_size] = Operand(coords[i]);
coord_size += coords[i].size();
}
coord = bld.tmp(RegType::vgpr, coord_size);
vec->definitions[0] = Definition(coord);
bld.insert(std::move(vec));
} else {
coord = as_vgpr(bld, coord);
}
coords[nsa_size] = coord;
coords.resize(nsa_size + 1);
}
bool has_dst = dst.id() != 0;
aco_ptr<MIMG_instruction> mimg{
create_instruction<MIMG_instruction>(op, Format::MIMG, 3 + coords.size(), has_dst)};
if (has_dst)
mimg->definitions[0] = Definition(dst);
mimg->operands[0] = Operand(rsrc);
mimg->operands[1] = samp;
mimg->operands[2] = vdata;
for (unsigned i = 0; i < coords.size(); i++)
mimg->operands[3 + i] = Operand(coords[i]);
mimg->strict_wqm = strict_wqm;
MIMG_instruction* res = mimg.get();
bld.insert(std::move(mimg));
return res;
}
void
visit_bvh64_intersect_ray_amd(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp resource = get_ssa_temp(ctx, instr->src[0].ssa);
Temp node = get_ssa_temp(ctx, instr->src[1].ssa);
Temp tmax = get_ssa_temp(ctx, instr->src[2].ssa);
Temp origin = get_ssa_temp(ctx, instr->src[3].ssa);
Temp dir = get_ssa_temp(ctx, instr->src[4].ssa);
Temp inv_dir = get_ssa_temp(ctx, instr->src[5].ssa);
/* On GFX11 image_bvh64_intersect_ray has a special vaddr layout with NSA:
* There are five smaller vector groups:
* node_pointer, ray_extent, ray_origin, ray_dir, ray_inv_dir.
* These directly match the NIR intrinsic sources.
*/
std::vector<Temp> args = {
node, tmax, origin, dir, inv_dir,
};
if (bld.program->gfx_level == GFX10_3) {
std::vector<Temp> scalar_args;
for (Temp tmp : args) {
for (unsigned i = 0; i < tmp.size(); i++)
scalar_args.push_back(emit_extract_vector(ctx, tmp, i, v1));
}
args = std::move(scalar_args);
}
MIMG_instruction* mimg =
emit_mimg(bld, aco_opcode::image_bvh64_intersect_ray, dst, resource, Operand(s4), args);
mimg->dim = ac_image_1d;
mimg->dmask = 0xf;
mimg->unrm = true;
mimg->r128 = true;
emit_split_vector(ctx, dst, instr->def.num_components);
}
static std::vector<Temp>
get_image_coords(isel_context* ctx, const nir_intrinsic_instr* instr)
{
Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
bool a16 = instr->src[1].ssa->bit_size == 16;
RegClass rc = a16 ? v2b : v1;
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
bool is_array = nir_intrinsic_image_array(instr);
ASSERTED bool add_frag_pos =
(dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
assert(!add_frag_pos && "Input attachments should be lowered.");
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool gfx9_1d = ctx->options->gfx_level == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
int count = image_type_to_components_count(dim, is_array);
std::vector<Temp> coords;
Builder bld(ctx->program, ctx->block);
if (gfx9_1d) {
coords.emplace_back(emit_extract_vector(ctx, src0, 0, rc));
coords.emplace_back(bld.copy(bld.def(rc), Operand::zero(a16 ? 2 : 4)));
if (is_array)
coords.emplace_back(emit_extract_vector(ctx, src0, 1, rc));
} else {
for (int i = 0; i < count; i++)
coords.emplace_back(emit_extract_vector(ctx, src0, i, rc));
}
bool has_lod = false;
Temp lod;
if (instr->intrinsic == nir_intrinsic_bindless_image_load ||
instr->intrinsic == nir_intrinsic_bindless_image_sparse_load ||
instr->intrinsic == nir_intrinsic_bindless_image_store) {
int lod_index = instr->intrinsic == nir_intrinsic_bindless_image_store ? 4 : 3;
assert(instr->src[lod_index].ssa->bit_size == (a16 ? 16 : 32));
has_lod =
!nir_src_is_const(instr->src[lod_index]) || nir_src_as_uint(instr->src[lod_index]) != 0;
if (has_lod)
lod = get_ssa_temp_tex(ctx, instr->src[lod_index].ssa, a16);
}
if (ctx->program->info.image_2d_view_of_3d && dim == GLSL_SAMPLER_DIM_2D && !is_array) {
/* The hw can't bind a slice of a 3D image as a 2D image, because it
* ignores BASE_ARRAY if the target is 3D. The workaround is to read
* BASE_ARRAY and set it as the 3rd address operand for all 2D images.
*/
assert(ctx->options->gfx_level == GFX9);
Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
Temp rsrc_word5 = emit_extract_vector(ctx, rsrc, 5, v1);
/* Extract the BASE_ARRAY field [0:12] from the descriptor. */
Temp first_layer = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), rsrc_word5, Operand::c32(0u),
Operand::c32(13u));
if (has_lod) {
/* If there's a lod parameter it matter if the image is 3d or 2d because
* the hw reads either the fourth or third component as lod. So detect
* 3d images and place the lod at the third component otherwise.
* For non 3D descriptors we effectively add lod twice to coords,
* but the hw will only read the first one, the second is ignored.
*/
Temp rsrc_word3 = emit_extract_vector(ctx, rsrc, 3, s1);
Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), rsrc_word3,
Operand::c32(28 | (4 << 16))); /* extract last 4 bits */
Temp is_3d = bld.vopc_e64(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), type,
Operand::c32(V_008F1C_SQ_RSRC_IMG_3D));
first_layer =
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), as_vgpr(ctx, lod), first_layer, is_3d);
}
if (a16)
coords.emplace_back(emit_extract_vector(ctx, first_layer, 0, v2b));
else
coords.emplace_back(first_layer);
}
if (is_ms && instr->intrinsic != nir_intrinsic_bindless_image_fragment_mask_load_amd) {
assert(instr->src[2].ssa->bit_size == (a16 ? 16 : 32));
coords.emplace_back(get_ssa_temp_tex(ctx, instr->src[2].ssa, a16));
}
if (has_lod)
coords.emplace_back(lod);
return emit_pack_v1(ctx, coords);
}
memory_sync_info
get_memory_sync_info(nir_intrinsic_instr* instr, storage_class storage, unsigned semantics)
{
/* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
if (semantics & semantic_atomicrmw)
return memory_sync_info(storage, semantics);
unsigned access = nir_intrinsic_access(instr);
if (access & ACCESS_VOLATILE)
semantics |= semantic_volatile;
if (access & ACCESS_CAN_REORDER)
semantics |= semantic_can_reorder | semantic_private;
return memory_sync_info(storage, semantics);
}
Operand
emit_tfe_init(Builder& bld, Temp dst)
{
Temp tmp = bld.tmp(dst.regClass());
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand::zero();
vec->definitions[0] = Definition(tmp);
/* Since this is fixed to an instruction's definition register, any CSE will
* just create copies. Copying costs about the same as zero-initialization,
* but these copies can break up clauses.
*/
vec->definitions[0].setNoCSE(true);
bld.insert(std::move(vec));
return Operand(tmp);
}
void
visit_image_load(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
bool is_array = nir_intrinsic_image_array(instr);
bool is_sparse = instr->intrinsic == nir_intrinsic_bindless_image_sparse_load;
Temp dst = get_ssa_temp(ctx, &instr->def);
memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
unsigned access = nir_intrinsic_access(instr);
unsigned result_size = instr->def.num_components - is_sparse;
unsigned expand_mask = nir_def_components_read(&instr->def) & u_bit_consecutive(0, result_size);
expand_mask = MAX2(expand_mask, 1); /* this can be zero in the case of sparse image loads */
if (dim == GLSL_SAMPLER_DIM_BUF)
expand_mask = (1u << util_last_bit(expand_mask)) - 1u;
unsigned dmask = expand_mask;
if (instr->def.bit_size == 64) {
expand_mask &= 0x9;
/* only R64_UINT and R64_SINT supported. x is in xy of the result, w in zw */
dmask = ((expand_mask & 0x1) ? 0x3 : 0) | ((expand_mask & 0x8) ? 0xc : 0);
}
if (is_sparse)
expand_mask |= 1 << result_size;
bool d16 = instr->def.bit_size == 16;
assert(!d16 || !is_sparse);
unsigned num_bytes = util_bitcount(dmask) * (d16 ? 2 : 4) + is_sparse * 4;
Temp tmp;
if (num_bytes == dst.bytes() && dst.type() == RegType::vgpr)
tmp = dst;
else
tmp = bld.tmp(RegClass::get(RegType::vgpr, num_bytes));
Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
if (dim == GLSL_SAMPLER_DIM_BUF) {
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
aco_opcode opcode;
if (!d16) {
switch (util_bitcount(dmask)) {
case 1: opcode = aco_opcode::buffer_load_format_x; break;
case 2: opcode = aco_opcode::buffer_load_format_xy; break;
case 3: opcode = aco_opcode::buffer_load_format_xyz; break;
case 4: opcode = aco_opcode::buffer_load_format_xyzw; break;
default: unreachable(">4 channel buffer image load");
}
} else {
switch (util_bitcount(dmask)) {
case 1: opcode = aco_opcode::buffer_load_format_d16_x; break;
case 2: opcode = aco_opcode::buffer_load_format_d16_xy; break;
case 3: opcode = aco_opcode::buffer_load_format_d16_xyz; break;
case 4: opcode = aco_opcode::buffer_load_format_d16_xyzw; break;
default: unreachable(">4 channel buffer image load");
}
}
aco_ptr<MUBUF_instruction> load{
create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3 + is_sparse, 1)};
load->operands[0] = Operand(resource);
load->operands[1] = Operand(vindex);
load->operands[2] = Operand::c32(0);
load->definitions[0] = Definition(tmp);
load->idxen = true;
load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
load->dlc =
load->glc && (ctx->options->gfx_level == GFX10 || ctx->options->gfx_level == GFX10_3);
load->sync = sync;
load->tfe = is_sparse;
if (load->tfe)
load->operands[3] = emit_tfe_init(bld, tmp);
ctx->block->instructions.emplace_back(std::move(load));
} else {
std::vector<Temp> coords = get_image_coords(ctx, instr);
aco_opcode opcode;
if (instr->intrinsic == nir_intrinsic_bindless_image_fragment_mask_load_amd) {
opcode = aco_opcode::image_load;
} else {
bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
}
Operand vdata = is_sparse ? emit_tfe_init(bld, tmp) : Operand(v1);
MIMG_instruction* load = emit_mimg(bld, opcode, tmp, resource, Operand(s4), coords, vdata);
load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
load->dlc =
load->glc && (ctx->options->gfx_level == GFX10 || ctx->options->gfx_level == GFX10_3);
load->a16 = instr->src[1].ssa->bit_size == 16;
load->d16 = d16;
load->dmask = dmask;
load->unrm = true;
load->tfe = is_sparse;
if (instr->intrinsic == nir_intrinsic_bindless_image_fragment_mask_load_amd) {
load->dim = is_array ? ac_image_2darray : ac_image_2d;
load->da = is_array;
load->sync = memory_sync_info();
} else {
ac_image_dim sdim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array);
load->dim = sdim;
load->da = should_declare_array(sdim);
load->sync = sync;
}
}
if (is_sparse && instr->def.bit_size == 64) {
/* The result components are 64-bit but the sparse residency code is
* 32-bit. So add a zero to the end so expand_vector() works correctly.
*/
tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, tmp.size() + 1), tmp,
Operand::zero());
}
expand_vector(ctx, tmp, dst, instr->def.num_components, expand_mask, instr->def.bit_size == 64);
}
void
visit_image_store(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
bool is_array = nir_intrinsic_image_array(instr);
Temp data = get_ssa_temp(ctx, instr->src[3].ssa);
bool d16 = instr->src[3].ssa->bit_size == 16;
/* only R64_UINT and R64_SINT supported */
if (instr->src[3].ssa->bit_size == 64 && data.bytes() > 8)
data = emit_extract_vector(ctx, data, 0, RegClass(data.type(), 2));
data = as_vgpr(ctx, data);
uint32_t num_components = d16 ? instr->src[3].ssa->num_components : data.size();
memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
unsigned access = nir_intrinsic_access(instr);
bool glc = ctx->options->gfx_level == GFX6 ||
((access & (ACCESS_VOLATILE | ACCESS_COHERENT)) && ctx->program->gfx_level < GFX11);
if (dim == GLSL_SAMPLER_DIM_BUF) {
Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
aco_opcode opcode;
if (!d16) {
switch (num_components) {
case 1: opcode = aco_opcode::buffer_store_format_x; break;
case 2: opcode = aco_opcode::buffer_store_format_xy; break;
case 3: opcode = aco_opcode::buffer_store_format_xyz; break;
case 4: opcode = aco_opcode::buffer_store_format_xyzw; break;
default: unreachable(">4 channel buffer image store");
}
} else {
switch (num_components) {
case 1: opcode = aco_opcode::buffer_store_format_d16_x; break;
case 2: opcode = aco_opcode::buffer_store_format_d16_xy; break;
case 3: opcode = aco_opcode::buffer_store_format_d16_xyz; break;
case 4: opcode = aco_opcode::buffer_store_format_d16_xyzw; break;
default: unreachable(">4 channel buffer image store");
}
}
aco_ptr<MUBUF_instruction> store{
create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
store->operands[0] = Operand(rsrc);
store->operands[1] = Operand(vindex);
store->operands[2] = Operand::c32(0);
store->operands[3] = Operand(data);
store->idxen = true;
store->glc = glc;
store->dlc = false;
store->disable_wqm = true;
store->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(store));
return;
}
assert(data.type() == RegType::vgpr);
std::vector<Temp> coords = get_image_coords(ctx, instr);
Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
uint32_t dmask = BITFIELD_MASK(num_components);
/* remove zero/undef elements from data, components which aren't in dmask
* are zeroed anyway
*/
if (instr->src[3].ssa->bit_size == 32 || instr->src[3].ssa->bit_size == 16) {
for (uint32_t i = 0; i < instr->num_components; i++) {
nir_scalar comp = nir_scalar_resolved(instr->src[3].ssa, i);
if ((nir_scalar_is_const(comp) && nir_scalar_as_uint(comp) == 0) ||
nir_scalar_is_undef(comp))
dmask &= ~BITFIELD_BIT(i);
}
/* dmask cannot be 0, at least one vgpr is always read */
if (dmask == 0)
dmask = 1;
if (dmask != BITFIELD_MASK(num_components)) {
uint32_t dmask_count = util_bitcount(dmask);
RegClass rc = d16 ? v2b : v1;
if (dmask_count == 1) {
data = emit_extract_vector(ctx, data, ffs(dmask) - 1, rc);
} else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, dmask_count, 1)};
uint32_t index = 0;
u_foreach_bit (bit, dmask) {
vec->operands[index++] = Operand(emit_extract_vector(ctx, data, bit, rc));
}
data = bld.tmp(RegClass::get(RegType::vgpr, dmask_count * rc.bytes()));
vec->definitions[0] = Definition(data);
bld.insert(std::move(vec));
}
}
}
MIMG_instruction* store =
emit_mimg(bld, opcode, Temp(0, v1), resource, Operand(s4), coords, Operand(data));
store->glc = glc;
store->dlc = false;
store->a16 = instr->src[1].ssa->bit_size == 16;
store->d16 = d16;
store->dmask = dmask;
store->unrm = true;
ac_image_dim sdim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array);
store->dim = sdim;
store->da = should_declare_array(sdim);
store->disable_wqm = true;
store->sync = sync;
ctx->program->needs_exact = true;
return;
}
void
translate_buffer_image_atomic_op(const nir_atomic_op op, aco_opcode* buf_op, aco_opcode* buf_op64,
aco_opcode* image_op)
{
switch (op) {
case nir_atomic_op_iadd:
*buf_op = aco_opcode::buffer_atomic_add;
*buf_op64 = aco_opcode::buffer_atomic_add_x2;
*image_op = aco_opcode::image_atomic_add;
break;
case nir_atomic_op_umin:
*buf_op = aco_opcode::buffer_atomic_umin;
*buf_op64 = aco_opcode::buffer_atomic_umin_x2;
*image_op = aco_opcode::image_atomic_umin;
break;
case nir_atomic_op_imin:
*buf_op = aco_opcode::buffer_atomic_smin;
*buf_op64 = aco_opcode::buffer_atomic_smin_x2;
*image_op = aco_opcode::image_atomic_smin;
break;
case nir_atomic_op_umax:
*buf_op = aco_opcode::buffer_atomic_umax;
*buf_op64 = aco_opcode::buffer_atomic_umax_x2;
*image_op = aco_opcode::image_atomic_umax;
break;
case nir_atomic_op_imax:
*buf_op = aco_opcode::buffer_atomic_smax;
*buf_op64 = aco_opcode::buffer_atomic_smax_x2;
*image_op = aco_opcode::image_atomic_smax;
break;
case nir_atomic_op_iand:
*buf_op = aco_opcode::buffer_atomic_and;
*buf_op64 = aco_opcode::buffer_atomic_and_x2;
*image_op = aco_opcode::image_atomic_and;
break;
case nir_atomic_op_ior:
*buf_op = aco_opcode::buffer_atomic_or;
*buf_op64 = aco_opcode::buffer_atomic_or_x2;
*image_op = aco_opcode::image_atomic_or;
break;
case nir_atomic_op_ixor:
*buf_op = aco_opcode::buffer_atomic_xor;
*buf_op64 = aco_opcode::buffer_atomic_xor_x2;
*image_op = aco_opcode::image_atomic_xor;
break;
case nir_atomic_op_xchg:
*buf_op = aco_opcode::buffer_atomic_swap;
*buf_op64 = aco_opcode::buffer_atomic_swap_x2;
*image_op = aco_opcode::image_atomic_swap;
break;
case nir_atomic_op_cmpxchg:
*buf_op = aco_opcode::buffer_atomic_cmpswap;
*buf_op64 = aco_opcode::buffer_atomic_cmpswap_x2;
*image_op = aco_opcode::image_atomic_cmpswap;
break;
case nir_atomic_op_inc_wrap:
*buf_op = aco_opcode::buffer_atomic_inc;
*buf_op64 = aco_opcode::buffer_atomic_inc_x2;
*image_op = aco_opcode::image_atomic_inc;
break;
case nir_atomic_op_dec_wrap:
*buf_op = aco_opcode::buffer_atomic_dec;
*buf_op64 = aco_opcode::buffer_atomic_dec_x2;
*image_op = aco_opcode::image_atomic_dec;
break;
case nir_atomic_op_fadd:
*buf_op = aco_opcode::buffer_atomic_add_f32;
*buf_op64 = aco_opcode::num_opcodes;
*image_op = aco_opcode::num_opcodes;
break;
case nir_atomic_op_fmin:
*buf_op = aco_opcode::buffer_atomic_fmin;
*buf_op64 = aco_opcode::buffer_atomic_fmin_x2;
*image_op = aco_opcode::image_atomic_fmin;
break;
case nir_atomic_op_fmax:
*buf_op = aco_opcode::buffer_atomic_fmax;
*buf_op64 = aco_opcode::buffer_atomic_fmax_x2;
*image_op = aco_opcode::image_atomic_fmax;
break;
default: unreachable("unsupported atomic operation");
}
}
void
visit_image_atomic(isel_context* ctx, nir_intrinsic_instr* instr)
{
bool return_previous = !nir_def_is_unused(&instr->def);
const enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
bool is_array = nir_intrinsic_image_array(instr);
Builder bld(ctx->program, ctx->block);
const nir_atomic_op op = nir_intrinsic_atomic_op(instr);
const bool cmpswap = op == nir_atomic_op_cmpxchg;
aco_opcode buf_op, buf_op64, image_op;
translate_buffer_image_atomic_op(op, &buf_op, &buf_op64, &image_op);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
bool is_64bit = data.bytes() == 8;
assert((data.bytes() == 4 || data.bytes() == 8) && "only 32/64-bit image atomics implemented.");
if (cmpswap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(is_64bit ? v4 : v2),
get_ssa_temp(ctx, instr->src[4].ssa), data);
Temp dst = get_ssa_temp(ctx, &instr->def);
memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
if (dim == GLSL_SAMPLER_DIM_BUF) {
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
// assert(ctx->options->gfx_level < GFX9 && "GFX9 stride size workaround not yet
// implemented.");
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(
is_64bit ? buf_op64 : buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
mubuf->operands[0] = Operand(resource);
mubuf->operands[1] = Operand(vindex);
mubuf->operands[2] = Operand::c32(0);
mubuf->operands[3] = Operand(data);
Definition def =
return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition();
if (return_previous)
mubuf->definitions[0] = def;
mubuf->offset = 0;
mubuf->idxen = true;
mubuf->glc = return_previous;
mubuf->dlc = false; /* Not needed for atomics */
mubuf->disable_wqm = true;
mubuf->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
if (return_previous && cmpswap)
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero());
return;
}
std::vector<Temp> coords = get_image_coords(ctx, instr);
Temp resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
Temp tmp = return_previous ? (cmpswap ? bld.tmp(data.regClass()) : dst) : Temp(0, v1);
MIMG_instruction* mimg =
emit_mimg(bld, image_op, tmp, resource, Operand(s4), coords, Operand(data));
mimg->glc = return_previous;
mimg->dlc = false; /* Not needed for atomics */
mimg->dmask = (1 << data.size()) - 1;
mimg->a16 = instr->src[1].ssa->bit_size == 16;
mimg->unrm = true;
ac_image_dim sdim = ac_get_image_dim(ctx->options->gfx_level, dim, is_array);
mimg->dim = sdim;
mimg->da = should_declare_array(sdim);
mimg->disable_wqm = true;
mimg->sync = sync;
ctx->program->needs_exact = true;
if (return_previous && cmpswap)
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), tmp, Operand::zero());
return;
}
void
visit_load_ssbo(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
unsigned num_components = instr->num_components;
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
unsigned access = nir_intrinsic_access(instr);
bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
unsigned size = instr->def.bit_size / 8;
bool allow_smem = access & ACCESS_CAN_REORDER;
load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
get_memory_sync_info(instr, storage_buffer, 0));
}
void
visit_store_ssbo(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
bool glc = (nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT)) &&
ctx->program->gfx_level < GFX11;
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, 16, &write_count,
write_datas, offsets);
/* GFX6-7 are affected by a hw bug that prevents address clamping to work
* correctly when the SGPR offset is used.
*/
if (offset.type() == RegType::sgpr && ctx->options->gfx_level < GFX8)
offset = as_vgpr(ctx, offset);
for (unsigned i = 0; i < write_count; i++) {
aco_opcode op = get_buffer_store_op(write_datas[i].bytes());
aco_ptr<MUBUF_instruction> store{
create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
store->operands[0] = Operand(rsrc);
store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0);
store->operands[3] = Operand(write_datas[i]);
store->offset = offsets[i];
store->offen = (offset.type() == RegType::vgpr);
store->glc = glc;
store->dlc = false;
store->disable_wqm = true;
store->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(store));
}
}
void
visit_atomic_ssbo(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
bool return_previous = !nir_def_is_unused(&instr->def);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
const nir_atomic_op nir_op = nir_intrinsic_atomic_op(instr);
const bool cmpswap = nir_op == nir_atomic_op_cmpxchg;
aco_opcode op32, op64, image_op;
translate_buffer_image_atomic_op(nir_op, &op32, &op64, &image_op);
if (cmpswap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
get_ssa_temp(ctx, instr->src[3].ssa), data);
Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
Temp rsrc = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
Temp dst = get_ssa_temp(ctx, &instr->def);
aco_opcode op = instr->def.bit_size == 32 ? op32 : op64;
aco_ptr<MUBUF_instruction> mubuf{
create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
mubuf->operands[0] = Operand(rsrc);
mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand::c32(0);
mubuf->operands[3] = Operand(data);
Definition def =
return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition();
if (return_previous)
mubuf->definitions[0] = def;
mubuf->offset = 0;
mubuf->offen = (offset.type() == RegType::vgpr);
mubuf->glc = return_previous;
mubuf->dlc = false; /* Not needed for atomics */
mubuf->disable_wqm = true;
mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
if (return_previous && cmpswap)
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero());
}
void
parse_global(isel_context* ctx, nir_intrinsic_instr* intrin, Temp* address, uint32_t* const_offset,
Temp* offset)
{
bool is_store = intrin->intrinsic == nir_intrinsic_store_global_amd;
*address = get_ssa_temp(ctx, intrin->src[is_store ? 1 : 0].ssa);
*const_offset = nir_intrinsic_base(intrin);
unsigned num_src = nir_intrinsic_infos[intrin->intrinsic].num_srcs;
nir_src offset_src = intrin->src[num_src - 1];
if (!nir_src_is_const(offset_src) || nir_src_as_uint(offset_src))
*offset = get_ssa_temp(ctx, offset_src.ssa);
else
*offset = Temp();
}
void
visit_load_global(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
unsigned num_components = instr->num_components;
unsigned component_size = instr->def.bit_size / 8;
Temp addr, offset;
uint32_t const_offset;
parse_global(ctx, instr, &addr, &const_offset, &offset);
LoadEmitInfo info = {Operand(addr), get_ssa_temp(ctx, &instr->def), num_components,
component_size};
if (offset.id()) {
info.resource = addr;
info.offset = Operand(offset);
}
info.const_offset = const_offset;
info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
info.align_mul = nir_intrinsic_align_mul(instr);
info.align_offset = nir_intrinsic_align_offset(instr);
info.sync = get_memory_sync_info(instr, storage_buffer, 0);
/* Don't expand global loads when they use MUBUF or SMEM.
* Global loads don't have the bounds checking that buffer loads have that
* makes this safe.
*/
unsigned align = nir_intrinsic_align(instr);
bool byte_align_for_smem_mubuf =
can_use_byte_align_for_global_load(num_components, component_size, align, false);
/* VMEM stores don't update the SMEM cache and it's difficult to prove that
* it's safe to use SMEM */
bool can_use_smem =
(nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE) && byte_align_for_smem_mubuf;
if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->gfx_level < GFX8) ||
!can_use_smem) {
EmitLoadParameters params = global_load_params;
params.byte_align_loads = ctx->options->gfx_level > GFX6 || byte_align_for_smem_mubuf;
emit_load(ctx, bld, info, params);
} else {
if (info.resource.id())
info.resource = bld.as_uniform(info.resource);
info.offset = Operand(bld.as_uniform(info.offset));
emit_load(ctx, bld, info, smem_load_params);
}
}
void
visit_store_global(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
bool glc = (nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT)) &&
ctx->program->gfx_level < GFX11;
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, 16, &write_count,
write_datas, offsets);
Temp addr, offset;
uint32_t const_offset;
parse_global(ctx, instr, &addr, &const_offset, &offset);
for (unsigned i = 0; i < write_count; i++) {
Temp write_address = addr;
uint32_t write_const_offset = const_offset;
Temp write_offset = offset;
lower_global_address(bld, offsets[i], &write_address, &write_const_offset, &write_offset);
if (ctx->options->gfx_level >= GFX7) {
bool global = ctx->options->gfx_level >= GFX9;
aco_opcode op;
switch (write_datas[i].bytes()) {
case 1: op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte; break;
case 2: op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short; break;
case 4: op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword; break;
case 8:
op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
break;
case 12:
op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
break;
case 16:
op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
break;
default: unreachable("store_global not implemented for this size.");
}
aco_ptr<FLAT_instruction> flat{
create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
if (write_address.regClass() == s2) {
assert(global && write_offset.id() && write_offset.type() == RegType::vgpr);
flat->operands[0] = Operand(write_offset);
flat->operands[1] = Operand(write_address);
} else {
assert(write_address.type() == RegType::vgpr && !write_offset.id());
flat->operands[0] = Operand(write_address);
flat->operands[1] = Operand(s1);
}
flat->operands[2] = Operand(write_datas[i]);
flat->glc = glc;
flat->dlc = false;
assert(global || !write_const_offset);
flat->offset = write_const_offset;
flat->disable_wqm = true;
flat->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(flat));
} else {
assert(ctx->options->gfx_level == GFX6);
aco_opcode op = get_buffer_store_op(write_datas[i].bytes());
Temp rsrc = get_gfx6_global_rsrc(bld, write_address);
aco_ptr<MUBUF_instruction> mubuf{
create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
mubuf->operands[0] = Operand(rsrc);
mubuf->operands[1] =
write_address.type() == RegType::vgpr ? Operand(write_address) : Operand(v1);
mubuf->operands[2] = Operand(write_offset);
mubuf->operands[3] = Operand(write_datas[i]);
mubuf->glc = glc;
mubuf->dlc = false;
mubuf->offset = write_const_offset;
mubuf->addr64 = write_address.type() == RegType::vgpr;
mubuf->disable_wqm = true;
mubuf->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
}
}
}
void
visit_global_atomic(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
bool return_previous = !nir_def_is_unused(&instr->def);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
const nir_atomic_op nir_op = nir_intrinsic_atomic_op(instr);
const bool cmpswap = nir_op == nir_atomic_op_cmpxchg;
if (cmpswap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
get_ssa_temp(ctx, instr->src[2].ssa), data);
Temp dst = get_ssa_temp(ctx, &instr->def);
aco_opcode op32, op64;
Temp addr, offset;
uint32_t const_offset;
parse_global(ctx, instr, &addr, &const_offset, &offset);
lower_global_address(bld, 0, &addr, &const_offset, &offset);
if (ctx->options->gfx_level >= GFX7) {
bool global = ctx->options->gfx_level >= GFX9;
switch (nir_op) {
case nir_atomic_op_iadd:
op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
break;
case nir_atomic_op_imin:
op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
break;
case nir_atomic_op_umin:
op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
break;
case nir_atomic_op_imax:
op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
break;
case nir_atomic_op_umax:
op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
break;
case nir_atomic_op_iand:
op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
break;
case nir_atomic_op_ior:
op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
break;
case nir_atomic_op_ixor:
op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
break;
case nir_atomic_op_xchg:
op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
break;
case nir_atomic_op_cmpxchg:
op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
break;
case nir_atomic_op_fadd:
op32 = global ? aco_opcode::global_atomic_add_f32 : aco_opcode::flat_atomic_add_f32;
op64 = aco_opcode::num_opcodes;
break;
case nir_atomic_op_fmin:
op32 = global ? aco_opcode::global_atomic_fmin : aco_opcode::flat_atomic_fmin;
op64 = global ? aco_opcode::global_atomic_fmin_x2 : aco_opcode::flat_atomic_fmin_x2;
break;
case nir_atomic_op_fmax:
op32 = global ? aco_opcode::global_atomic_fmax : aco_opcode::flat_atomic_fmax;
op64 = global ? aco_opcode::global_atomic_fmax_x2 : aco_opcode::flat_atomic_fmax_x2;
break;
default: unreachable("unsupported atomic operation");
}
aco_opcode op = instr->def.bit_size == 32 ? op32 : op64;
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(
op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
if (addr.regClass() == s2) {
assert(global && offset.id() && offset.type() == RegType::vgpr);
flat->operands[0] = Operand(offset);
flat->operands[1] = Operand(addr);
} else {
assert(addr.type() == RegType::vgpr && !offset.id());
flat->operands[0] = Operand(addr);
flat->operands[1] = Operand(s1);
}
flat->operands[2] = Operand(data);
if (return_previous)
flat->definitions[0] = Definition(dst);
flat->glc = return_previous;
flat->dlc = false; /* Not needed for atomics */
assert(global || !const_offset);
flat->offset = const_offset;
flat->disable_wqm = true;
flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(flat));
} else {
assert(ctx->options->gfx_level == GFX6);
UNUSED aco_opcode image_op;
translate_buffer_image_atomic_op(nir_op, &op32, &op64, &image_op);
Temp rsrc = get_gfx6_global_rsrc(bld, addr);
aco_opcode op = instr->def.bit_size == 32 ? op32 : op64;
aco_ptr<MUBUF_instruction> mubuf{
create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
mubuf->operands[0] = Operand(rsrc);
mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
mubuf->operands[2] = Operand(offset);
mubuf->operands[3] = Operand(data);
Definition def =
return_previous ? (cmpswap ? bld.def(data.regClass()) : Definition(dst)) : Definition();
if (return_previous)
mubuf->definitions[0] = def;
mubuf->glc = return_previous;
mubuf->dlc = false;
mubuf->offset = const_offset;
mubuf->addr64 = addr.type() == RegType::vgpr;
mubuf->disable_wqm = true;
mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
if (return_previous && cmpswap)
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), def.getTemp(), Operand::zero());
}
}
unsigned
aco_storage_mode_from_nir_mem_mode(unsigned mem_mode)
{
unsigned storage = storage_none;
if (mem_mode & nir_var_shader_out)
storage |= storage_vmem_output;
if ((mem_mode & nir_var_mem_ssbo) || (mem_mode & nir_var_mem_global))
storage |= storage_buffer;
if (mem_mode & nir_var_mem_task_payload)
storage |= storage_task_payload;
if (mem_mode & nir_var_mem_shared)
storage |= storage_shared;
if (mem_mode & nir_var_image)
storage |= storage_image;
return storage;
}
void
visit_load_buffer(isel_context* ctx, nir_intrinsic_instr* intrin)
{
Builder bld(ctx->program, ctx->block);
/* Swizzled buffer addressing seems to be broken on GFX11 without the idxen bit. */
bool swizzled = nir_intrinsic_access(intrin) & ACCESS_IS_SWIZZLED_AMD;
bool idxen = (swizzled && ctx->program->gfx_level >= GFX11) ||
!nir_src_is_const(intrin->src[3]) || nir_src_as_uint(intrin->src[3]);
bool v_offset_zero = nir_src_is_const(intrin->src[1]) && !nir_src_as_uint(intrin->src[1]);
bool s_offset_zero = nir_src_is_const(intrin->src[2]) && !nir_src_as_uint(intrin->src[2]);
Temp dst = get_ssa_temp(ctx, &intrin->def);
Temp descriptor = bld.as_uniform(get_ssa_temp(ctx, intrin->src[0].ssa));
Temp v_offset =
v_offset_zero ? Temp(0, v1) : as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[1].ssa));
Temp s_offset =
s_offset_zero ? Temp(0, s1) : bld.as_uniform(get_ssa_temp(ctx, intrin->src[2].ssa));
Temp idx = idxen ? as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[3].ssa)) : Temp();
bool glc = nir_intrinsic_access(intrin) & ACCESS_COHERENT;
bool slc = nir_intrinsic_access(intrin) & ACCESS_NON_TEMPORAL;
unsigned const_offset = nir_intrinsic_base(intrin);
unsigned elem_size_bytes = intrin->def.bit_size / 8u;
unsigned num_components = intrin->def.num_components;
nir_variable_mode mem_mode = nir_intrinsic_memory_modes(intrin);
memory_sync_info sync(aco_storage_mode_from_nir_mem_mode(mem_mode));
LoadEmitInfo info = {Operand(v_offset), dst, num_components, elem_size_bytes, descriptor};
info.idx = idx;
info.glc = glc;
info.slc = slc;
info.soffset = s_offset;
info.const_offset = const_offset;
info.sync = sync;
if (intrin->intrinsic == nir_intrinsic_load_typed_buffer_amd) {
const pipe_format format = nir_intrinsic_format(intrin);
const struct ac_vtx_format_info* vtx_info =
ac_get_vtx_format_info(ctx->program->gfx_level, ctx->program->family, format);
const struct util_format_description* f = util_format_description(format);
const unsigned align_mul = nir_intrinsic_align_mul(intrin);
const unsigned align_offset = nir_intrinsic_align_offset(intrin);
/* Avoid splitting:
* - non-array formats because that would result in incorrect code
* - when element size is same as component size (to reduce instruction count)
*/
const bool can_split = f->is_array && elem_size_bytes != vtx_info->chan_byte_size;
info.align_mul = align_mul;
info.align_offset = align_offset;
info.format = format;
info.component_stride = can_split ? vtx_info->chan_byte_size : 0;
info.split_by_component_stride = false;
emit_load(ctx, bld, info, mtbuf_load_params);
} else {
assert(intrin->intrinsic == nir_intrinsic_load_buffer_amd);
if (nir_intrinsic_access(intrin) & ACCESS_USES_FORMAT_AMD) {
assert(!swizzled);
emit_load(ctx, bld, info, mubuf_load_format_params);
} else {
const unsigned swizzle_element_size =
swizzled ? (ctx->program->gfx_level <= GFX8 ? 4 : 16) : 0;
info.component_stride = swizzle_element_size;
info.swizzle_component_size = swizzle_element_size ? 4 : 0;
info.align_mul = MIN2(elem_size_bytes, 4);
info.align_offset = 0;
emit_load(ctx, bld, info, mubuf_load_params);
}
}
}
void
visit_store_buffer(isel_context* ctx, nir_intrinsic_instr* intrin)
{
Builder bld(ctx->program, ctx->block);
/* Swizzled buffer addressing seems to be broken on GFX11 without the idxen bit. */
bool swizzled = nir_intrinsic_access(intrin) & ACCESS_IS_SWIZZLED_AMD;
bool idxen = (swizzled && ctx->program->gfx_level >= GFX11) ||
!nir_src_is_const(intrin->src[4]) || nir_src_as_uint(intrin->src[4]);
bool v_offset_zero = nir_src_is_const(intrin->src[2]) && !nir_src_as_uint(intrin->src[2]);
bool s_offset_zero = nir_src_is_const(intrin->src[3]) && !nir_src_as_uint(intrin->src[3]);
Temp store_src = get_ssa_temp(ctx, intrin->src[0].ssa);
Temp descriptor = bld.as_uniform(get_ssa_temp(ctx, intrin->src[1].ssa));
Temp v_offset =
v_offset_zero ? Temp(0, v1) : as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[2].ssa));
Temp s_offset =
s_offset_zero ? Temp(0, s1) : bld.as_uniform(get_ssa_temp(ctx, intrin->src[3].ssa));
Temp idx = idxen ? as_vgpr(ctx, get_ssa_temp(ctx, intrin->src[4].ssa)) : Temp();
bool glc = nir_intrinsic_access(intrin) & ACCESS_COHERENT;
bool slc = nir_intrinsic_access(intrin) & ACCESS_NON_TEMPORAL;
unsigned const_offset = nir_intrinsic_base(intrin);
unsigned write_mask = nir_intrinsic_write_mask(intrin);
unsigned elem_size_bytes = intrin->src[0].ssa->bit_size / 8u;
nir_variable_mode mem_mode = nir_intrinsic_memory_modes(intrin);
/* GS outputs are only written once. */
const bool written_once =
mem_mode == nir_var_shader_out && ctx->shader->info.stage == MESA_SHADER_GEOMETRY;
memory_sync_info sync(aco_storage_mode_from_nir_mem_mode(mem_mode),
written_once ? semantic_can_reorder : semantic_none);
store_vmem_mubuf(ctx, store_src, descriptor, v_offset, s_offset, idx, const_offset,
elem_size_bytes, write_mask, swizzled, sync, glc, slc);
}
void
visit_load_smem(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp base = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
Temp offset = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
/* If base address is 32bit, convert to 64bit with the high 32bit part. */
if (base.bytes() == 4) {
base = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), base,
Operand::c32(ctx->options->address32_hi));
}
aco_opcode opcode = aco_opcode::s_load_dword;
unsigned size = 1;
assert(dst.bytes() <= 64);
if (dst.bytes() > 32) {
opcode = aco_opcode::s_load_dwordx16;
size = 16;
} else if (dst.bytes() > 16) {
opcode = aco_opcode::s_load_dwordx8;
size = 8;
} else if (dst.bytes() > 8) {
opcode = aco_opcode::s_load_dwordx4;
size = 4;
} else if (dst.bytes() > 4) {
opcode = aco_opcode::s_load_dwordx2;
size = 2;
}
if (dst.size() != size) {
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst),
bld.smem(opcode, bld.def(RegType::sgpr, size), base, offset), Operand::c32(0u));
} else {
bld.smem(opcode, Definition(dst), base, offset);
}
emit_split_vector(ctx, dst, instr->def.num_components);
}
sync_scope
translate_nir_scope(mesa_scope scope)
{
switch (scope) {
case SCOPE_NONE:
case SCOPE_INVOCATION: return scope_invocation;
case SCOPE_SUBGROUP: return scope_subgroup;
case SCOPE_WORKGROUP: return scope_workgroup;
case SCOPE_QUEUE_FAMILY: return scope_queuefamily;
case SCOPE_DEVICE: return scope_device;
case SCOPE_SHADER_CALL: return scope_invocation;
}
unreachable("invalid scope");
}
void
emit_barrier(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
unsigned storage_allowed = storage_buffer | storage_image;
unsigned semantics = 0;
sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr));
sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr));
/* We use shared storage for the following:
* - compute shaders expose it in their API
* - when tessellation is used, TCS and VS I/O is lowered to shared memory
* - when GS is used on GFX9+, VS->GS and TES->GS I/O is lowered to shared memory
* - additionally, when NGG is used on GFX10+, shared memory is used for certain features
*/
bool shared_storage_used =
ctx->stage.hw == AC_HW_COMPUTE_SHADER || ctx->stage.hw == AC_HW_LOCAL_SHADER ||
ctx->stage.hw == AC_HW_HULL_SHADER ||
(ctx->stage.hw == AC_HW_LEGACY_GEOMETRY_SHADER && ctx->program->gfx_level >= GFX9) ||
ctx->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER;
if (shared_storage_used)
storage_allowed |= storage_shared;
/* Task payload: Task Shader output, Mesh Shader input */
if (ctx->stage.has(SWStage::MS) || ctx->stage.has(SWStage::TS))
storage_allowed |= storage_task_payload;
/* Allow VMEM output for all stages that can have outputs. */
if ((ctx->stage.hw != AC_HW_COMPUTE_SHADER && ctx->stage.hw != AC_HW_PIXEL_SHADER) ||
ctx->stage.has(SWStage::TS))
storage_allowed |= storage_vmem_output;
/* Workgroup barriers can hang merged shaders that can potentially have 0 threads in either half.
* They are allowed in CS, TCS, and in any NGG shader.
*/
ASSERTED bool workgroup_scope_allowed = ctx->stage.hw == AC_HW_COMPUTE_SHADER ||
ctx->stage.hw == AC_HW_HULL_SHADER ||
ctx->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER;
unsigned nir_storage = nir_intrinsic_memory_modes(instr);
unsigned storage = aco_storage_mode_from_nir_mem_mode(nir_storage);
storage &= storage_allowed;
unsigned nir_semantics = nir_intrinsic_memory_semantics(instr);
if (nir_semantics & NIR_MEMORY_ACQUIRE)
semantics |= semantic_acquire | semantic_release;
if (nir_semantics & NIR_MEMORY_RELEASE)
semantics |= semantic_acquire | semantic_release;
assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
assert(exec_scope != scope_workgroup || workgroup_scope_allowed);
bld.barrier(aco_opcode::p_barrier,
memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope),
exec_scope);
}
void
visit_load_shared(isel_context* ctx, nir_intrinsic_instr* instr)
{
// TODO: implement sparse reads using ds_read2_b32 and nir_def_components_read()
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Builder bld(ctx->program, ctx->block);
unsigned elem_size_bytes = instr->def.bit_size / 8;
unsigned num_components = instr->def.num_components;
unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
load_lds(ctx, elem_size_bytes, num_components, dst, address, nir_intrinsic_base(instr), align);
}
void
visit_store_shared(isel_context* ctx, nir_intrinsic_instr* instr)
{
unsigned writemask = nir_intrinsic_write_mask(instr);
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
}
void
visit_shared_atomic(isel_context* ctx, nir_intrinsic_instr* instr)
{
unsigned offset = nir_intrinsic_base(instr);
Builder bld(ctx->program, ctx->block);
Operand m = load_lds_size_m0(bld);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
unsigned num_operands = 3;
aco_opcode op32, op64, op32_rtn, op64_rtn;
switch (nir_intrinsic_atomic_op(instr)) {
case nir_atomic_op_iadd:
op32 = aco_opcode::ds_add_u32;
op64 = aco_opcode::ds_add_u64;
op32_rtn = aco_opcode::ds_add_rtn_u32;
op64_rtn = aco_opcode::ds_add_rtn_u64;
break;
case nir_atomic_op_imin:
op32 = aco_opcode::ds_min_i32;
op64 = aco_opcode::ds_min_i64;
op32_rtn = aco_opcode::ds_min_rtn_i32;
op64_rtn = aco_opcode::ds_min_rtn_i64;
break;
case nir_atomic_op_umin:
op32 = aco_opcode::ds_min_u32;
op64 = aco_opcode::ds_min_u64;
op32_rtn = aco_opcode::ds_min_rtn_u32;
op64_rtn = aco_opcode::ds_min_rtn_u64;
break;
case nir_atomic_op_imax:
op32 = aco_opcode::ds_max_i32;
op64 = aco_opcode::ds_max_i64;
op32_rtn = aco_opcode::ds_max_rtn_i32;
op64_rtn = aco_opcode::ds_max_rtn_i64;
break;
case nir_atomic_op_umax:
op32 = aco_opcode::ds_max_u32;
op64 = aco_opcode::ds_max_u64;
op32_rtn = aco_opcode::ds_max_rtn_u32;
op64_rtn = aco_opcode::ds_max_rtn_u64;
break;
case nir_atomic_op_iand:
op32 = aco_opcode::ds_and_b32;
op64 = aco_opcode::ds_and_b64;
op32_rtn = aco_opcode::ds_and_rtn_b32;
op64_rtn = aco_opcode::ds_and_rtn_b64;
break;
case nir_atomic_op_ior:
op32 = aco_opcode::ds_or_b32;
op64 = aco_opcode::ds_or_b64;
op32_rtn = aco_opcode::ds_or_rtn_b32;
op64_rtn = aco_opcode::ds_or_rtn_b64;
break;
case nir_atomic_op_ixor:
op32 = aco_opcode::ds_xor_b32;
op64 = aco_opcode::ds_xor_b64;
op32_rtn = aco_opcode::ds_xor_rtn_b32;
op64_rtn = aco_opcode::ds_xor_rtn_b64;
break;
case nir_atomic_op_xchg:
op32 = aco_opcode::ds_write_b32;
op64 = aco_opcode::ds_write_b64;
op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
break;
case nir_atomic_op_cmpxchg:
op32 = aco_opcode::ds_cmpst_b32;
op64 = aco_opcode::ds_cmpst_b64;
op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
num_operands = 4;
break;
case nir_atomic_op_fadd:
op32 = aco_opcode::ds_add_f32;
op32_rtn = aco_opcode::ds_add_rtn_f32;
op64 = aco_opcode::num_opcodes;
op64_rtn = aco_opcode::num_opcodes;
break;
case nir_atomic_op_fmin:
op32 = aco_opcode::ds_min_f32;
op32_rtn = aco_opcode::ds_min_rtn_f32;
op64 = aco_opcode::ds_min_f64;
op64_rtn = aco_opcode::ds_min_rtn_f64;
break;
case nir_atomic_op_fmax:
op32 = aco_opcode::ds_max_f32;
op32_rtn = aco_opcode::ds_max_rtn_f32;
op64 = aco_opcode::ds_max_f64;
op64_rtn = aco_opcode::ds_max_rtn_f64;
break;
default: unreachable("Unhandled shared atomic intrinsic");
}
bool return_previous = !nir_def_is_unused(&instr->def);
aco_opcode op;
if (data.size() == 1) {
assert(instr->def.bit_size == 32);
op = return_previous ? op32_rtn : op32;
} else {
assert(instr->def.bit_size == 64);
op = return_previous ? op64_rtn : op64;
}
if (offset > 65535) {
address = bld.vadd32(bld.def(v1), Operand::c32(offset), address);
offset = 0;
}
aco_ptr<DS_instruction> ds;
ds.reset(
create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
ds->operands[0] = Operand(address);
ds->operands[1] = Operand(data);
if (num_operands == 4) {
Temp data2 = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
ds->operands[2] = Operand(data2);
if (bld.program->gfx_level >= GFX11)
std::swap(ds->operands[1], ds->operands[2]);
}
ds->operands[num_operands - 1] = m;
ds->offset0 = offset;
if (return_previous)
ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->def));
ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
if (m.isUndefined())
ds->operands.pop_back();
ctx->block->instructions.emplace_back(std::move(ds));
}
void
visit_access_shared2_amd(isel_context* ctx, nir_intrinsic_instr* instr)
{
bool is_store = instr->intrinsic == nir_intrinsic_store_shared2_amd;
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[is_store].ssa));
Builder bld(ctx->program, ctx->block);
assert(bld.program->gfx_level >= GFX7);
bool is64bit = (is_store ? instr->src[0].ssa->bit_size : instr->def.bit_size) == 64;
uint8_t offset0 = nir_intrinsic_offset0(instr);
uint8_t offset1 = nir_intrinsic_offset1(instr);
bool st64 = nir_intrinsic_st64(instr);
Operand m = load_lds_size_m0(bld);
Instruction* ds;
if (is_store) {
aco_opcode op = st64
? (is64bit ? aco_opcode::ds_write2st64_b64 : aco_opcode::ds_write2st64_b32)
: (is64bit ? aco_opcode::ds_write2_b64 : aco_opcode::ds_write2_b32);
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
RegClass comp_rc = is64bit ? v2 : v1;
Temp data0 = emit_extract_vector(ctx, data, 0, comp_rc);
Temp data1 = emit_extract_vector(ctx, data, 1, comp_rc);
ds = bld.ds(op, address, data0, data1, m, offset0, offset1);
} else {
Temp dst = get_ssa_temp(ctx, &instr->def);
Definition tmp_dst(dst.type() == RegType::vgpr ? dst : bld.tmp(is64bit ? v4 : v2));
aco_opcode op = st64 ? (is64bit ? aco_opcode::ds_read2st64_b64 : aco_opcode::ds_read2st64_b32)
: (is64bit ? aco_opcode::ds_read2_b64 : aco_opcode::ds_read2_b32);
ds = bld.ds(op, tmp_dst, address, m, offset0, offset1);
}
ds->ds().sync = memory_sync_info(storage_shared);
if (m.isUndefined())
ds->operands.pop_back();
if (!is_store) {
Temp dst = get_ssa_temp(ctx, &instr->def);
if (dst.type() == RegType::sgpr) {
emit_split_vector(ctx, ds->definitions[0].getTemp(), dst.size());
Temp comp[4];
/* Use scalar v_readfirstlane_b32 for better 32-bit copy propagation */
for (unsigned i = 0; i < dst.size(); i++)
comp[i] = bld.as_uniform(emit_extract_vector(ctx, ds->definitions[0].getTemp(), i, v1));
if (is64bit) {
Temp comp0 = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), comp[0], comp[1]);
Temp comp1 = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), comp[2], comp[3]);
ctx->allocated_vec[comp0.id()] = {comp[0], comp[1]};
ctx->allocated_vec[comp1.id()] = {comp[2], comp[3]};
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), comp0, comp1);
ctx->allocated_vec[dst.id()] = {comp0, comp1};
} else {
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), comp[0], comp[1]);
}
}
emit_split_vector(ctx, dst, 2);
}
}
Temp
get_scratch_resource(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
Temp scratch_addr = ctx->program->private_segment_buffer;
if (!scratch_addr.bytes()) {
Temp addr_lo =
bld.sop1(aco_opcode::p_load_symbol, bld.def(s1), Operand::c32(aco_symbol_scratch_addr_lo));
Temp addr_hi =
bld.sop1(aco_opcode::p_load_symbol, bld.def(s1), Operand::c32(aco_symbol_scratch_addr_hi));
scratch_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), addr_lo, addr_hi);
} else if (ctx->stage.hw != AC_HW_COMPUTE_SHADER) {
scratch_addr =
bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand::zero());
}
uint32_t rsrc_conf =
S_008F0C_ADD_TID_ENABLE(1) | S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
if (ctx->program->gfx_level >= GFX10) {
rsrc_conf |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(ctx->program->gfx_level < GFX11);
} else if (ctx->program->gfx_level <=
GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
/* older generations need element size = 4 bytes. element size removed in GFX9 */
if (ctx->program->gfx_level <= GFX8)
rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand::c32(-1u),
Operand::c32(rsrc_conf));
}
void
visit_load_scratch(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->def);
LoadEmitInfo info = {Operand(v1), dst, instr->def.num_components, instr->def.bit_size / 8u};
info.align_mul = nir_intrinsic_align_mul(instr);
info.align_offset = nir_intrinsic_align_offset(instr);
info.swizzle_component_size = ctx->program->gfx_level <= GFX8 ? 4 : 0;
info.sync = memory_sync_info(storage_scratch, semantic_private);
if (ctx->program->gfx_level >= GFX9) {
if (nir_src_is_const(instr->src[0])) {
uint32_t max = ctx->program->dev.scratch_global_offset_max + 1;
info.offset =
bld.copy(bld.def(s1), Operand::c32(ROUND_DOWN_TO(nir_src_as_uint(instr->src[0]), max)));
info.const_offset = nir_src_as_uint(instr->src[0]) % max;
} else {
info.offset = Operand(get_ssa_temp(ctx, instr->src[0].ssa));
}
EmitLoadParameters params = scratch_flat_load_params;
params.max_const_offset_plus_one = ctx->program->dev.scratch_global_offset_max + 1;
emit_load(ctx, bld, info, params);
} else {
info.resource = get_scratch_resource(ctx);
info.offset = Operand(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)));
info.soffset = ctx->program->scratch_offset;
emit_load(ctx, bld, info, scratch_mubuf_load_params);
}
}
void
visit_store_scratch(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned writemask = util_widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
unsigned swizzle_component_size = ctx->program->gfx_level <= GFX8 ? 4 : 16;
split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask, swizzle_component_size,
&write_count, write_datas, offsets);
if (ctx->program->gfx_level >= GFX9) {
uint32_t max = ctx->program->dev.scratch_global_offset_max + 1;
offset = nir_src_is_const(instr->src[1]) ? Temp(0, s1) : offset;
uint32_t base_const_offset =
nir_src_is_const(instr->src[1]) ? nir_src_as_uint(instr->src[1]) : 0;
for (unsigned i = 0; i < write_count; i++) {
aco_opcode op;
switch (write_datas[i].bytes()) {
case 1: op = aco_opcode::scratch_store_byte; break;
case 2: op = aco_opcode::scratch_store_short; break;
case 4: op = aco_opcode::scratch_store_dword; break;
case 8: op = aco_opcode::scratch_store_dwordx2; break;
case 12: op = aco_opcode::scratch_store_dwordx3; break;
case 16: op = aco_opcode::scratch_store_dwordx4; break;
default: unreachable("Unexpected store size");
}
uint32_t const_offset = base_const_offset + offsets[i];
assert(const_offset < max || offset.id() == 0);
Operand addr = offset.regClass() == s1 ? Operand(v1) : Operand(offset);
Operand saddr = offset.regClass() == s1 ? Operand(offset) : Operand(s1);
if (offset.id() == 0)
saddr = bld.copy(bld.def(s1), Operand::c32(ROUND_DOWN_TO(const_offset, max)));
bld.scratch(op, addr, saddr, write_datas[i], const_offset % max,
memory_sync_info(storage_scratch, semantic_private));
}
} else {
Temp rsrc = get_scratch_resource(ctx);
offset = as_vgpr(ctx, offset);
for (unsigned i = 0; i < write_count; i++) {
aco_opcode op = get_buffer_store_op(write_datas[i].bytes());
Instruction* mubuf = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset,
write_datas[i], offsets[i], true, true);
mubuf->mubuf().sync = memory_sync_info(storage_scratch, semantic_private);
}
}
}
ReduceOp
get_reduce_op(nir_op op, unsigned bit_size)
{
switch (op) {
#define CASEI(name) \
case nir_op_##name: \
return (bit_size == 32) ? name##32 \
: (bit_size == 16) ? name##16 \
: (bit_size == 8) ? name##8 \
: name##64;
#define CASEF(name) \
case nir_op_##name: return (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64;
CASEI(iadd)
CASEI(imul)
CASEI(imin)
CASEI(umin)
CASEI(imax)
CASEI(umax)
CASEI(iand)
CASEI(ior)
CASEI(ixor)
CASEF(fadd)
CASEF(fmul)
CASEF(fmin)
CASEF(fmax)
default: unreachable("unknown reduction op");
#undef CASEI
#undef CASEF
}
}
void
emit_uniform_subgroup(isel_context* ctx, nir_intrinsic_instr* instr, Temp src)
{
Builder bld(ctx->program, ctx->block);
Definition dst(get_ssa_temp(ctx, &instr->def));
assert(dst.regClass().type() != RegType::vgpr);
if (src.regClass().type() == RegType::vgpr)
bld.pseudo(aco_opcode::p_as_uniform, dst, src);
else
bld.copy(dst, src);
}
void
emit_addition_uniform_reduce(isel_context* ctx, nir_op op, Definition dst, nir_src src, Temp count)
{
Builder bld(ctx->program, ctx->block);
Temp src_tmp = get_ssa_temp(ctx, src.ssa);
if (op == nir_op_fadd) {
src_tmp = as_vgpr(ctx, src_tmp);
Temp tmp = dst.regClass() == s1 ? bld.tmp(RegClass::get(RegType::vgpr, src.ssa->bit_size / 8))
: dst.getTemp();
if (src.ssa->bit_size == 16) {
count = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v2b), count);
bld.vop2(aco_opcode::v_mul_f16, Definition(tmp), count, src_tmp);
} else {
assert(src.ssa->bit_size == 32);
count = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), count);
bld.vop2(aco_opcode::v_mul_f32, Definition(tmp), count, src_tmp);
}
if (tmp != dst.getTemp())
bld.pseudo(aco_opcode::p_as_uniform, dst, tmp);
return;
}
if (dst.regClass() == s1)
src_tmp = bld.as_uniform(src_tmp);
if (op == nir_op_ixor && count.type() == RegType::sgpr)
count =
bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), count, Operand::c32(1u));
else if (op == nir_op_ixor)
count = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(1u), count);
assert(dst.getTemp().type() == count.type());
if (nir_src_is_const(src)) {
if (nir_src_as_uint(src) == 1 && dst.bytes() <= 2)
bld.pseudo(aco_opcode::p_extract_vector, dst, count, Operand::zero());
else if (nir_src_as_uint(src) == 1)
bld.copy(dst, count);
else if (nir_src_as_uint(src) == 0)
bld.copy(dst, Operand::zero(dst.bytes()));
else if (count.type() == RegType::vgpr)
bld.v_mul_imm(dst, count, nir_src_as_uint(src));
else
bld.sop2(aco_opcode::s_mul_i32, dst, src_tmp, count);
} else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX10) {
bld.vop3(aco_opcode::v_mul_lo_u16_e64, dst, src_tmp, count);
} else if (dst.bytes() <= 2 && ctx->program->gfx_level >= GFX8) {
bld.vop2(aco_opcode::v_mul_lo_u16, dst, src_tmp, count);
} else if (dst.getTemp().type() == RegType::vgpr) {
bld.vop3(aco_opcode::v_mul_lo_u32, dst, src_tmp, count);
} else {
bld.sop2(aco_opcode::s_mul_i32, dst, src_tmp, count);
}
}
bool
emit_uniform_reduce(isel_context* ctx, nir_intrinsic_instr* instr)
{
nir_op op = (nir_op)nir_intrinsic_reduction_op(instr);
if (op == nir_op_imul || op == nir_op_fmul)
return false;
if (op == nir_op_iadd || op == nir_op_ixor || op == nir_op_fadd) {
Builder bld(ctx->program, ctx->block);
Definition dst(get_ssa_temp(ctx, &instr->def));
unsigned bit_size = instr->src[0].ssa->bit_size;
if (bit_size > 32)
return false;
Temp thread_count =
bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), Operand(exec, bld.lm));
set_wqm(ctx);
emit_addition_uniform_reduce(ctx, op, dst, instr->src[0], thread_count);
} else {
emit_uniform_subgroup(ctx, instr, get_ssa_temp(ctx, instr->src[0].ssa));
}
return true;
}
bool
emit_uniform_scan(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
Definition dst(get_ssa_temp(ctx, &instr->def));
nir_op op = (nir_op)nir_intrinsic_reduction_op(instr);
bool inc = instr->intrinsic == nir_intrinsic_inclusive_scan;
if (op == nir_op_imul || op == nir_op_fmul)
return false;
if (op == nir_op_iadd || op == nir_op_ixor || op == nir_op_fadd) {
if (instr->src[0].ssa->bit_size > 32)
return false;
Temp packed_tid;
if (inc)
packed_tid = emit_mbcnt(ctx, bld.tmp(v1), Operand(exec, bld.lm), Operand::c32(1u));
else
packed_tid = emit_mbcnt(ctx, bld.tmp(v1), Operand(exec, bld.lm));
set_wqm(ctx);
emit_addition_uniform_reduce(ctx, op, dst, instr->src[0], packed_tid);
return true;
}
assert(op == nir_op_imin || op == nir_op_umin || op == nir_op_imax || op == nir_op_umax ||
op == nir_op_iand || op == nir_op_ior || op == nir_op_fmin || op == nir_op_fmax);
if (inc) {
emit_uniform_subgroup(ctx, instr, get_ssa_temp(ctx, instr->src[0].ssa));
return true;
}
/* Copy the source and write the reduction operation identity to the first lane. */
Temp lane = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
ReduceOp reduce_op = get_reduce_op(op, instr->src[0].ssa->bit_size);
if (dst.bytes() == 8) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
uint32_t identity_lo = get_reduction_identity(reduce_op, 0);
uint32_t identity_hi = get_reduction_identity(reduce_op, 1);
lo =
bld.writelane(bld.def(v1), bld.copy(bld.def(s1, m0), Operand::c32(identity_lo)), lane, lo);
hi =
bld.writelane(bld.def(v1), bld.copy(bld.def(s1, m0), Operand::c32(identity_hi)), lane, hi);
bld.pseudo(aco_opcode::p_create_vector, dst, lo, hi);
} else {
uint32_t identity = get_reduction_identity(reduce_op, 0);
bld.writelane(dst, bld.copy(bld.def(s1, m0), Operand::c32(identity)), lane,
as_vgpr(ctx, src));
}
set_wqm(ctx);
return true;
}
Temp
emit_reduction_instr(isel_context* ctx, aco_opcode aco_op, ReduceOp op, unsigned cluster_size,
Definition dst, Temp src)
{
assert(src.bytes() <= 8);
assert(src.type() == RegType::vgpr);
Builder bld(ctx->program, ctx->block);
unsigned num_defs = 0;
Definition defs[5];
defs[num_defs++] = dst;
defs[num_defs++] = bld.def(bld.lm); /* used internally to save/restore exec */
/* scalar identity temporary */
bool need_sitmp = (ctx->program->gfx_level <= GFX7 || ctx->program->gfx_level >= GFX10) &&
aco_op != aco_opcode::p_reduce;
if (aco_op == aco_opcode::p_exclusive_scan) {
need_sitmp |= (op == imin8 || op == imin16 || op == imin32 || op == imin64 || op == imax8 ||
op == imax16 || op == imax32 || op == imax64 || op == fmin16 || op == fmin32 ||
op == fmin64 || op == fmax16 || op == fmax32 || op == fmax64 || op == fmul16 ||
op == fmul64);
}
if (need_sitmp)
defs[num_defs++] = bld.def(RegType::sgpr, dst.size());
/* scc clobber */
defs[num_defs++] = bld.def(s1, scc);
/* vcc clobber */
bool clobber_vcc = false;
if ((op == iadd32 || op == imul64) && ctx->program->gfx_level < GFX9)
clobber_vcc = true;
if ((op == iadd8 || op == iadd16) && ctx->program->gfx_level < GFX8)
clobber_vcc = true;
if (op == iadd64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)
clobber_vcc = true;
if (clobber_vcc)
defs[num_defs++] = bld.def(bld.lm, vcc);
Pseudo_reduction_instruction* reduce = create_instruction<Pseudo_reduction_instruction>(
aco_op, Format::PSEUDO_REDUCTION, 3, num_defs);
reduce->operands[0] = Operand(src);
/* setup_reduce_temp will update these undef operands if needed */
reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
reduce->operands[2] = Operand(v1.as_linear());
std::copy(defs, defs + num_defs, reduce->definitions.begin());
reduce->reduce_op = op;
reduce->cluster_size = cluster_size;
bld.insert(std::move(reduce));
return dst.getTemp();
}
Temp
inclusive_scan_to_exclusive(isel_context* ctx, ReduceOp op, Definition dst, Temp src)
{
Builder bld(ctx->program, ctx->block);
Temp scan = emit_reduction_instr(ctx, aco_opcode::p_inclusive_scan, op, ctx->program->wave_size,
bld.def(dst.regClass()), src);
switch (op) {
case iadd8:
case iadd16:
case iadd32: return bld.vsub32(dst, scan, src);
case ixor64:
case iadd64: {
Temp src00 = bld.tmp(v1);
Temp src01 = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), scan);
Temp src10 = bld.tmp(v1);
Temp src11 = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src);
Temp lower = bld.tmp(v1);
Temp upper = bld.tmp(v1);
if (op == iadd64) {
Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
bld.vsub32(Definition(upper), src01, src11, false, borrow);
} else {
bld.vop2(aco_opcode::v_xor_b32, Definition(lower), src00, src10);
bld.vop2(aco_opcode::v_xor_b32, Definition(upper), src01, src11);
}
return bld.pseudo(aco_opcode::p_create_vector, dst, lower, upper);
}
case ixor8:
case ixor16:
case ixor32: return bld.vop2(aco_opcode::v_xor_b32, dst, scan, src);
default: unreachable("Unsupported op");
}
}
void
emit_interp_center(isel_context* ctx, Temp dst, Temp bary, Temp pos1, Temp pos2)
{
Builder bld(ctx->program, ctx->block);
Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
Temp ddx_1, ddx_2, ddy_1, ddy_2;
uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
/* Build DD X/Y */
if (ctx->program->gfx_level >= GFX8) {
Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
} else {
Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_1);
Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_2);
ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
}
/* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
aco_opcode mad =
ctx->program->gfx_level >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1);
Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2);
tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1);
tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp1, tmp2);
set_wqm(ctx, true);
return;
}
Temp merged_wave_info_to_mask(isel_context* ctx, unsigned i);
Temp lanecount_to_mask(isel_context* ctx, Temp count);
void pops_await_overlapped_waves(isel_context* ctx);
Temp
get_interp_param(isel_context* ctx, nir_intrinsic_op intrin, enum glsl_interp_mode interp)
{
bool linear = interp == INTERP_MODE_NOPERSPECTIVE;
if (intrin == nir_intrinsic_load_barycentric_pixel ||
intrin == nir_intrinsic_load_barycentric_at_offset) {
return get_arg(ctx, linear ? ctx->args->linear_center : ctx->args->persp_center);
} else if (intrin == nir_intrinsic_load_barycentric_centroid) {
return get_arg(ctx, linear ? ctx->args->linear_centroid : ctx->args->persp_centroid);
} else {
assert(intrin == nir_intrinsic_load_barycentric_sample);
return get_arg(ctx, linear ? ctx->args->linear_sample : ctx->args->persp_sample);
}
}
void
ds_ordered_count_offsets(isel_context* ctx, unsigned index_operand, unsigned wave_release,
unsigned wave_done, unsigned* offset0, unsigned* offset1)
{
unsigned ordered_count_index = index_operand & 0x3f;
unsigned count_dword = (index_operand >> 24) & 0xf;
assert(ctx->options->gfx_level >= GFX10);
assert(count_dword >= 1 && count_dword <= 4);
*offset0 = ordered_count_index << 2;
*offset1 = wave_release | (wave_done << 1) | ((count_dword - 1) << 6);
if (ctx->options->gfx_level < GFX11)
*offset1 |= 3 /* GS shader type */ << 2;
}
struct aco_export_mrt {
Operand out[4];
unsigned enabled_channels;
unsigned target;
bool compr;
};
static void
create_fs_dual_src_export_gfx11(isel_context* ctx, const struct aco_export_mrt* mrt0,
const struct aco_export_mrt* mrt1)
{
Builder bld(ctx->program, ctx->block);
aco_ptr<Pseudo_instruction> exp{create_instruction<Pseudo_instruction>(
aco_opcode::p_dual_src_export_gfx11, Format::PSEUDO, 8, 6)};
for (unsigned i = 0; i < 4; i++) {
exp->operands[i] = mrt0 ? mrt0->out[i] : Operand(v1);
exp->operands[i].setLateKill(true);
exp->operands[i + 4] = mrt1 ? mrt1->out[i] : Operand(v1);
exp->operands[i + 4].setLateKill(true);
}
RegClass type = RegClass(RegType::vgpr, util_bitcount(mrt0->enabled_channels));
exp->definitions[0] = bld.def(type); /* mrt0 */
exp->definitions[1] = bld.def(type); /* mrt1 */
exp->definitions[2] = bld.def(bld.lm);
exp->definitions[3] = bld.def(bld.lm);
exp->definitions[4] = bld.def(bld.lm, vcc);
exp->definitions[5] = bld.def(s1, scc);
ctx->block->instructions.emplace_back(std::move(exp));
ctx->program->has_color_exports = true;
}
static void
visit_cmat_muladd(isel_context* ctx, nir_intrinsic_instr* instr)
{
aco_opcode opcode = aco_opcode::num_opcodes;
unsigned signed_mask = 0;
bool clamp = false;
switch (instr->src[0].ssa->bit_size) {
case 16:
switch (instr->def.bit_size) {
case 32: opcode = aco_opcode::v_wmma_f32_16x16x16_f16; break;
case 16: opcode = aco_opcode::v_wmma_f16_16x16x16_f16; break;
}
break;
case 8:
opcode = aco_opcode::v_wmma_i32_16x16x16_iu8;
signed_mask = nir_intrinsic_cmat_signed_mask(instr);
clamp = nir_intrinsic_saturate(instr);
break;
}
if (opcode == aco_opcode::num_opcodes)
unreachable("visit_cmat_muladd: invalid bit size combination");
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->def);
Operand A(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa)));
Operand B(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa)));
Operand C(as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa)));
A.setLateKill(true);
B.setLateKill(true);
VALU_instruction& vop3p = bld.vop3p(opcode, Definition(dst), A, B, C, 0, 0)->valu();
vop3p.neg_lo[0] = (signed_mask & 0x1) != 0;
vop3p.neg_lo[1] = (signed_mask & 0x2) != 0;
vop3p.clamp = clamp;
emit_split_vector(ctx, dst, instr->def.num_components);
}
void
visit_intrinsic(isel_context* ctx, nir_intrinsic_instr* instr)
{
Builder bld(ctx->program, ctx->block);
switch (instr->intrinsic) {
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid: {
glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
Temp bary = get_interp_param(ctx, instr->intrinsic, mode);
assert(bary.size() == 2);
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), bary);
emit_split_vector(ctx, dst, 2);
break;
}
case nir_intrinsic_load_barycentric_model: {
Temp model = get_arg(ctx, ctx->args->pull_model);
assert(model.size() == 3);
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), model);
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_barycentric_at_offset: {
Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
RegClass rc = RegClass(offset.type(), 1);
Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
Temp bary = get_interp_param(ctx, instr->intrinsic,
(glsl_interp_mode)nir_intrinsic_interp_mode(instr));
emit_interp_center(ctx, get_ssa_temp(ctx, &instr->def), bary, pos1, pos2);
break;
}
case nir_intrinsic_load_front_face: {
bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->def)),
Operand::zero(), get_arg(ctx, ctx->args->front_face));
break;
}
case nir_intrinsic_load_view_index: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->view_index)));
break;
}
case nir_intrinsic_load_frag_coord: {
emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->def), 4);
break;
}
case nir_intrinsic_load_frag_shading_rate:
emit_load_frag_shading_rate(ctx, get_ssa_temp(ctx, &instr->def));
break;
case nir_intrinsic_load_sample_pos: {
Temp posx = get_arg(ctx, ctx->args->frag_pos[0]);
Temp posy = get_arg(ctx, ctx->args->frag_pos[1]);
bld.pseudo(
aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->def)),
posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand::zero(),
posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand::zero());
break;
}
case nir_intrinsic_load_tess_coord: visit_load_tess_coord(ctx, instr); break;
case nir_intrinsic_load_interpolated_input: visit_load_interpolated_input(ctx, instr); break;
case nir_intrinsic_store_output: visit_store_output(ctx, instr); break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_input_vertex:
if (ctx->program->stage == fragment_fs)
visit_load_fs_input(ctx, instr);
else
isel_err(&instr->instr, "Shader inputs should have been lowered in NIR.");
break;
case nir_intrinsic_load_per_vertex_input: visit_load_per_vertex_input(ctx, instr); break;
case nir_intrinsic_load_ubo: visit_load_ubo(ctx, instr); break;
case nir_intrinsic_load_push_constant: visit_load_push_constant(ctx, instr); break;
case nir_intrinsic_load_constant: visit_load_constant(ctx, instr); break;
case nir_intrinsic_load_shared: visit_load_shared(ctx, instr); break;
case nir_intrinsic_store_shared: visit_store_shared(ctx, instr); break;
case nir_intrinsic_shared_atomic:
case nir_intrinsic_shared_atomic_swap: visit_shared_atomic(ctx, instr); break;
case nir_intrinsic_load_shared2_amd:
case nir_intrinsic_store_shared2_amd: visit_access_shared2_amd(ctx, instr); break;
case nir_intrinsic_bindless_image_load:
case nir_intrinsic_bindless_image_fragment_mask_load_amd:
case nir_intrinsic_bindless_image_sparse_load: visit_image_load(ctx, instr); break;
case nir_intrinsic_bindless_image_store: visit_image_store(ctx, instr); break;
case nir_intrinsic_bindless_image_atomic:
case nir_intrinsic_bindless_image_atomic_swap: visit_image_atomic(ctx, instr); break;
case nir_intrinsic_load_ssbo: visit_load_ssbo(ctx, instr); break;
case nir_intrinsic_store_ssbo: visit_store_ssbo(ctx, instr); break;
case nir_intrinsic_load_typed_buffer_amd:
case nir_intrinsic_load_buffer_amd: visit_load_buffer(ctx, instr); break;
case nir_intrinsic_store_buffer_amd: visit_store_buffer(ctx, instr); break;
case nir_intrinsic_load_smem_amd: visit_load_smem(ctx, instr); break;
case nir_intrinsic_load_global_amd: visit_load_global(ctx, instr); break;
case nir_intrinsic_store_global_amd: visit_store_global(ctx, instr); break;
case nir_intrinsic_global_atomic_amd:
case nir_intrinsic_global_atomic_swap_amd: visit_global_atomic(ctx, instr); break;
case nir_intrinsic_ssbo_atomic:
case nir_intrinsic_ssbo_atomic_swap: visit_atomic_ssbo(ctx, instr); break;
case nir_intrinsic_load_scratch: visit_load_scratch(ctx, instr); break;
case nir_intrinsic_store_scratch: visit_store_scratch(ctx, instr); break;
case nir_intrinsic_barrier: emit_barrier(ctx, instr); break;
case nir_intrinsic_load_num_workgroups: {
Temp dst = get_ssa_temp(ctx, &instr->def);
if (ctx->options->load_grid_size_from_user_sgpr) {
bld.copy(Definition(dst), get_arg(ctx, ctx->args->num_work_groups));
} else {
Temp addr = get_arg(ctx, ctx->args->num_work_groups);
assert(addr.regClass() == s2);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), addr, Operand::zero()),
bld.smem(aco_opcode::s_load_dword, bld.def(s1), addr, Operand::c32(8)));
}
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_ray_launch_size: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->rt.launch_size)));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_ray_launch_id: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->rt.launch_id)));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_ray_launch_size_addr_amd: {
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp addr = get_arg(ctx, ctx->args->rt.launch_size_addr);
assert(addr.regClass() == s2);
bld.copy(Definition(dst), Operand(addr));
break;
}
case nir_intrinsic_load_local_invocation_id: {
Temp dst = get_ssa_temp(ctx, &instr->def);
if (ctx->options->gfx_level >= GFX11) {
Temp local_ids[3];
/* Thread IDs are packed in VGPR0, 10 bits per component. */
for (uint32_t i = 0; i < 3; i++) {
if (i == 0 && ctx->shader->info.workgroup_size[1] == 1 &&
ctx->shader->info.workgroup_size[2] == 1 &&
!ctx->shader->info.workgroup_size_variable) {
local_ids[i] = get_arg(ctx, ctx->args->local_invocation_ids);
} else if (i == 2 || (i == 1 && ctx->shader->info.workgroup_size[2] == 1 &&
!ctx->shader->info.workgroup_size_variable)) {
local_ids[i] =
bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand::c32(i * 10u),
get_arg(ctx, ctx->args->local_invocation_ids));
} else {
local_ids[i] = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
get_arg(ctx, ctx->args->local_invocation_ids),
Operand::c32(i * 10u), Operand::c32(10u));
}
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), local_ids[0], local_ids[1],
local_ids[2]);
} else {
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->local_invocation_ids)));
}
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_workgroup_id: {
Temp dst = get_ssa_temp(ctx, &instr->def);
if (ctx->stage.hw == AC_HW_COMPUTE_SHADER) {
const struct ac_arg* ids = ctx->args->workgroup_ids;
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
ids[0].used ? Operand(get_arg(ctx, ids[0])) : Operand::zero(),
ids[1].used ? Operand(get_arg(ctx, ids[1])) : Operand::zero(),
ids[2].used ? Operand(get_arg(ctx, ids[2])) : Operand::zero());
emit_split_vector(ctx, dst, 3);
} else {
isel_err(&instr->instr, "Unsupported stage for load_workgroup_id");
}
break;
}
case nir_intrinsic_load_local_invocation_index: {
if (ctx->stage.hw == AC_HW_LOCAL_SHADER || ctx->stage.hw == AC_HW_HULL_SHADER) {
if (ctx->options->gfx_level >= GFX11) {
/* On GFX11, RelAutoIndex is WaveID * WaveSize + ThreadID. */
Temp wave_id =
bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->tcs_wave_id), Operand::c32(0u | (3u << 16)));
Temp temp = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), wave_id,
Operand::c32(ctx->program->wave_size));
emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->def), Operand(), Operand(temp));
} else {
bld.copy(Definition(get_ssa_temp(ctx, &instr->def)),
get_arg(ctx, ctx->args->vs_rel_patch_id));
}
break;
} else if (ctx->stage.hw == AC_HW_LEGACY_GEOMETRY_SHADER ||
ctx->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER) {
bld.copy(Definition(get_ssa_temp(ctx, &instr->def)), thread_id_in_threadgroup(ctx));
break;
} else if (ctx->program->workgroup_size <= ctx->program->wave_size) {
emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->def));
break;
}
Temp id = emit_mbcnt(ctx, bld.tmp(v1));
/* The tg_size bits [6:11] contain the subgroup id,
* we need this multiplied by the wave size, and then OR the thread id to it.
*/
if (ctx->program->wave_size == 64) {
/* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just
* feed that to v_or */
Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc),
Operand::c32(0xfc0u), get_arg(ctx, ctx->args->tg_size));
bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->def)), tg_num, id);
} else {
/* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
Temp tg_num =
bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->tg_size), Operand::c32(0x6u | (0x6u << 16)));
bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->def)), tg_num,
Operand::c32(0x5u), id);
}
break;
}
case nir_intrinsic_load_subgroup_invocation: {
emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->def));
break;
}
case nir_intrinsic_ballot: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->def);
if (instr->src[0].ssa->bit_size == 1) {
assert(src.regClass() == bld.lm);
} else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
src = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), src);
} else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
src = bld.vopc(aco_opcode::v_cmp_lg_u64, bld.def(bld.lm), Operand::zero(), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
/* Make sure that all inactive lanes return zero.
* Value-numbering might remove the comparison above */
Definition def = dst.size() == bld.lm.size() ? Definition(dst) : bld.def(bld.lm);
src = bld.sop2(Builder::s_and, def, bld.def(s1, scc), src, Operand(exec, bld.lm));
if (dst.size() != bld.lm.size()) {
/* Wave32 with ballot size set to 64 */
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand::zero());
}
set_wqm(ctx);
break;
}
case nir_intrinsic_inverse_ballot: {
Temp src = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
Temp dst = get_ssa_temp(ctx, &instr->def);
assert(dst.size() == bld.lm.size());
if (src.size() > dst.size()) {
emit_extract_vector(ctx, src, 0, dst);
} else if (src.size() < dst.size()) {
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand::zero());
} else {
bld.copy(Definition(dst), src);
}
break;
}
case nir_intrinsic_shuffle:
case nir_intrinsic_read_invocation: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!nir_src_is_divergent(instr->src[0])) {
emit_uniform_subgroup(ctx, instr, src);
} else {
Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
if (instr->intrinsic == nir_intrinsic_read_invocation ||
!nir_src_is_divergent(instr->src[1]))
tid = bld.as_uniform(tid);
Temp dst = get_ssa_temp(ctx, &instr->def);
if (instr->def.bit_size != 1)
src = as_vgpr(ctx, src);
if (src.regClass() == v1b || src.regClass() == v2b) {
Temp tmp = bld.tmp(v1);
tmp = emit_bpermute(ctx, bld, tid, src);
if (dst.type() == RegType::vgpr)
bld.pseudo(aco_opcode::p_split_vector, Definition(dst),
bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
else
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
} else if (src.regClass() == v1) {
Temp tmp = emit_bpermute(ctx, bld, tid, src);
bld.copy(Definition(dst), tmp);
} else if (src.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = emit_bpermute(ctx, bld, tid, lo);
hi = emit_bpermute(ctx, bld, tid, hi);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else if (instr->def.bit_size == 1 && tid.regClass() == s1) {
assert(src.regClass() == bld.lm);
Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
bool_to_vector_condition(ctx, tmp, dst);
} else if (instr->def.bit_size == 1 && tid.regClass() == v1) {
assert(src.regClass() == bld.lm);
Temp tmp;
if (ctx->program->gfx_level <= GFX7)
tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
else if (ctx->program->wave_size == 64)
tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
else
tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
tmp = emit_extract_vector(ctx, tmp, 0, v1);
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(1u), tmp);
bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(dst), Operand::zero(), tmp);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
set_wqm(ctx);
}
break;
}
case nir_intrinsic_load_sample_id: {
bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->def)),
get_arg(ctx, ctx->args->ancillary), Operand::c32(8u), Operand::c32(4u));
break;
}
case nir_intrinsic_read_first_invocation: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->def);
if (instr->def.bit_size == 1) {
assert(src.regClass() == bld.lm);
Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
bool_to_vector_condition(ctx, tmp, dst);
} else {
emit_readfirstlane(ctx, src, dst);
}
set_wqm(ctx);
break;
}
case nir_intrinsic_vote_all: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->def);
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, Operand(exec, bld.lm))
.def(1)
.getTemp();
Temp cond = bool_to_vector_condition(ctx, tmp);
bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
set_wqm(ctx);
break;
}
case nir_intrinsic_vote_any: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->def);
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
Temp tmp = bool_to_scalar_condition(ctx, src);
bool_to_vector_condition(ctx, tmp, dst);
set_wqm(ctx);
break;
}
case nir_intrinsic_quad_vote_any: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
bld.sop1(Builder::s_wqm, Definition(get_ssa_temp(ctx, &instr->def)), bld.def(s1, scc), src);
set_wqm(ctx, true);
break;
}
case nir_intrinsic_quad_vote_all: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
src = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
src = bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), src);
bld.sop1(Builder::s_not, Definition(get_ssa_temp(ctx, &instr->def)), bld.def(s1, scc), src);
set_wqm(ctx, true);
break;
}
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->def);
nir_op op = (nir_op)nir_intrinsic_reduction_op(instr);
unsigned cluster_size =
instr->intrinsic == nir_intrinsic_reduce ? nir_intrinsic_cluster_size(instr) : 0;
cluster_size = util_next_power_of_two(
MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
const unsigned bit_size = instr->src[0].ssa->bit_size;
assert(bit_size != 1);
if (!nir_src_is_divergent(instr->src[0]) && cluster_size == ctx->program->wave_size) {
/* We use divergence analysis to assign the regclass, so check if it's
* working as expected */
ASSERTED bool expected_divergent = instr->intrinsic == nir_intrinsic_exclusive_scan;
if (instr->intrinsic == nir_intrinsic_inclusive_scan)
expected_divergent = op == nir_op_iadd || op == nir_op_fadd || op == nir_op_ixor;
assert(instr->def.divergent == expected_divergent);
if (instr->intrinsic == nir_intrinsic_reduce) {
if (emit_uniform_reduce(ctx, instr))
break;
} else if (emit_uniform_scan(ctx, instr)) {
break;
}
}
src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
ReduceOp reduce_op = get_reduce_op(op, bit_size);
aco_opcode aco_op;
switch (instr->intrinsic) {
case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
default: unreachable("unknown reduce intrinsic");
}
/* Avoid whole wave shift. */
const bool use_inclusive_for_exclusive = aco_op == aco_opcode::p_exclusive_scan &&
(op == nir_op_iadd || op == nir_op_ixor) &&
dst.type() == RegType::vgpr;
if (use_inclusive_for_exclusive)
inclusive_scan_to_exclusive(ctx, reduce_op, Definition(dst), src);
else
emit_reduction_instr(ctx, aco_op, reduce_op, cluster_size, Definition(dst), src);
set_wqm(ctx);
break;
}
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_quad_swizzle_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!instr->def.divergent) {
emit_uniform_subgroup(ctx, instr, src);
break;
}
/* Quad broadcast lane. */
unsigned lane = 0;
/* Use VALU for the bool instructions that don't have a SALU-only special case. */
bool bool_use_valu = instr->def.bit_size == 1;
uint16_t dpp_ctrl = 0;
bool allow_fi = true;
switch (instr->intrinsic) {
case nir_intrinsic_quad_swap_horizontal: dpp_ctrl = dpp_quad_perm(1, 0, 3, 2); break;
case nir_intrinsic_quad_swap_vertical: dpp_ctrl = dpp_quad_perm(2, 3, 0, 1); break;
case nir_intrinsic_quad_swap_diagonal: dpp_ctrl = dpp_quad_perm(3, 2, 1, 0); break;
case nir_intrinsic_quad_swizzle_amd:
dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
allow_fi &= nir_intrinsic_fetch_inactive(instr);
break;
case nir_intrinsic_quad_broadcast:
lane = nir_src_as_const_value(instr->src[1])->u32;
dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
bool_use_valu = false;
break;
default: break;
}
Temp dst = get_ssa_temp(ctx, &instr->def);
/* Setup source. */
if (bool_use_valu)
src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(),
Operand::c32(-1), src);
else if (instr->def.bit_size != 1)
src = as_vgpr(ctx, src);
if (instr->def.bit_size == 1 && instr->intrinsic == nir_intrinsic_quad_broadcast) {
/* Special case for quad broadcast using SALU only. */
assert(src.regClass() == bld.lm && dst.regClass() == bld.lm);
uint32_t half_mask = 0x11111111u << lane;
Operand mask_tmp = bld.lm.bytes() == 4
? Operand::c32(half_mask)
: bld.pseudo(aco_opcode::p_create_vector, bld.def(bld.lm),
Operand::c32(half_mask), Operand::c32(half_mask));
src =
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp, src);
bld.sop1(Builder::s_wqm, Definition(dst), bld.def(s1, scc), src);
} else if (instr->def.bit_size <= 32 || bool_use_valu) {
unsigned excess_bytes = bool_use_valu ? 0 : 4 - instr->def.bit_size / 8;
Definition def = (excess_bytes || bool_use_valu) ? bld.def(v1) : Definition(dst);
if (ctx->program->gfx_level >= GFX8)
bld.vop1_dpp(aco_opcode::v_mov_b32, def, src, dpp_ctrl, 0xf, 0xf, true, allow_fi);
else
bld.ds(aco_opcode::ds_swizzle_b32, def, src, (1 << 15) | dpp_ctrl);
if (excess_bytes)
bld.pseudo(aco_opcode::p_split_vector, Definition(dst),
bld.def(RegClass::get(dst.type(), excess_bytes)), def.getTemp());
if (bool_use_valu)
bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(dst), Operand::zero(), def.getTemp());
} else if (instr->def.bit_size == 64) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
if (ctx->program->gfx_level >= GFX8) {
lo = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl, 0xf, 0xf, true,
allow_fi);
hi = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl, 0xf, 0xf, true,
allow_fi);
} else {
lo = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl);
hi = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl);
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
isel_err(&instr->instr, "Unimplemented NIR quad group instruction bit size.");
}
/* Vulkan spec 9.25: Helper invocations must be active for quad group instructions. */
set_wqm(ctx, true);
break;
}
case nir_intrinsic_masked_swizzle_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!instr->def.divergent) {
emit_uniform_subgroup(ctx, instr, src);
break;
}
Temp dst = get_ssa_temp(ctx, &instr->def);
uint32_t mask = nir_intrinsic_swizzle_mask(instr);
bool allow_fi = nir_intrinsic_fetch_inactive(instr);
if (instr->def.bit_size != 1)
src = as_vgpr(ctx, src);
if (instr->def.bit_size == 1) {
assert(src.regClass() == bld.lm);
src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(),
Operand::c32(-1), src);
src = emit_masked_swizzle(ctx, bld, src, mask, allow_fi);
bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(dst), Operand::zero(), src);
} else if (dst.regClass() == v1b) {
Temp tmp = emit_masked_swizzle(ctx, bld, src, mask, allow_fi);
emit_extract_vector(ctx, tmp, 0, dst);
} else if (dst.regClass() == v2b) {
Temp tmp = emit_masked_swizzle(ctx, bld, src, mask, allow_fi);
emit_extract_vector(ctx, tmp, 0, dst);
} else if (dst.regClass() == v1) {
bld.copy(Definition(dst), emit_masked_swizzle(ctx, bld, src, mask, allow_fi));
} else if (dst.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = emit_masked_swizzle(ctx, bld, lo, mask, allow_fi);
hi = emit_masked_swizzle(ctx, bld, hi, mask, allow_fi);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
set_wqm(ctx);
break;
}
case nir_intrinsic_write_invocation_amd: {
Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
Temp dst = get_ssa_temp(ctx, &instr->def);
if (dst.regClass() == v1) {
/* src2 is ignored for writelane. RA assigns the same reg for dst */
bld.writelane(Definition(dst), val, lane, src);
} else if (dst.regClass() == v2) {
Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
Temp lo = bld.writelane(bld.def(v1), val_lo, lane, src_hi);
Temp hi = bld.writelane(bld.def(v1), val_hi, lane, src_hi);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_intrinsic_mbcnt_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp add_src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
Temp dst = get_ssa_temp(ctx, &instr->def);
/* Fit 64-bit mask for wave32 */
src = emit_extract_vector(ctx, src, 0, RegClass(src.type(), bld.lm.size()));
emit_mbcnt(ctx, dst, Operand(src), Operand(add_src));
set_wqm(ctx);
break;
}
case nir_intrinsic_lane_permute_16_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->def);
assert(ctx->program->gfx_level >= GFX10);
if (src.regClass() == s1) {
bld.copy(Definition(dst), src);
} else if (dst.regClass() == v1 && src.regClass() == v1) {
bld.vop3(aco_opcode::v_permlane16_b32, Definition(dst), src,
bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa)),
bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa)));
} else {
isel_err(&instr->instr, "Unimplemented lane_permute_16_amd");
}
break;
}
case nir_intrinsic_load_helper_invocation:
case nir_intrinsic_is_helper_invocation: {
/* load_helper() after demote() get lowered to is_helper().
* Otherwise, these two behave the same. */
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.pseudo(aco_opcode::p_is_helper, Definition(dst), Operand(exec, bld.lm));
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_demote:
case nir_intrinsic_demote_if: {
Operand cond = Operand::c32(-1u);
if (instr->intrinsic == nir_intrinsic_demote_if) {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
assert(src.regClass() == bld.lm);
cond =
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
}
bld.pseudo(aco_opcode::p_demote_to_helper, cond);
if (ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty_discard = true;
ctx->block->kind |= block_kind_uses_discard;
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_terminate:
case nir_intrinsic_terminate_if:
case nir_intrinsic_discard:
case nir_intrinsic_discard_if: {
Operand cond = Operand::c32(-1u);
if (instr->intrinsic == nir_intrinsic_discard_if ||
instr->intrinsic == nir_intrinsic_terminate_if) {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
assert(src.regClass() == bld.lm);
cond =
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
ctx->cf_info.had_divergent_discard |= nir_src_is_divergent(instr->src[0]);
}
bld.pseudo(aco_opcode::p_discard_if, cond);
if (ctx->block->loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty_discard = true;
ctx->cf_info.had_divergent_discard |= in_exec_divergent_or_in_loop(ctx);
ctx->block->kind |= block_kind_uses_discard;
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_first_invocation: {
bld.sop1(Builder::s_ff1_i32, Definition(get_ssa_temp(ctx, &instr->def)),
Operand(exec, bld.lm));
set_wqm(ctx);
break;
}
case nir_intrinsic_last_invocation: {
Temp flbit = bld.sop1(Builder::s_flbit_i32, bld.def(s1), Operand(exec, bld.lm));
bld.sop2(aco_opcode::s_sub_i32, Definition(get_ssa_temp(ctx, &instr->def)), bld.def(s1, scc),
Operand::c32(ctx->program->wave_size - 1u), flbit);
set_wqm(ctx);
break;
}
case nir_intrinsic_elect: {
/* p_elect is lowered in aco_insert_exec_mask.
* Use exec as an operand so value numbering and the pre-RA optimizer won't recognize
* two p_elect with different exec masks as the same.
*/
bld.pseudo(aco_opcode::p_elect, Definition(get_ssa_temp(ctx, &instr->def)),
Operand(exec, bld.lm));
set_wqm(ctx);
break;
}
case nir_intrinsic_shader_clock: {
Temp dst = get_ssa_temp(ctx, &instr->def);
if (nir_intrinsic_memory_scope(instr) == SCOPE_SUBGROUP &&
ctx->options->gfx_level >= GFX10_3) {
/* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */
Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand::zero());
} else if (nir_intrinsic_memory_scope(instr) == SCOPE_DEVICE &&
ctx->options->gfx_level >= GFX11) {
bld.sop1(aco_opcode::s_sendmsg_rtn_b64, Definition(dst),
Operand::c32(sendmsg_rtn_get_realtime));
} else {
aco_opcode opcode = nir_intrinsic_memory_scope(instr) == SCOPE_DEVICE
? aco_opcode::s_memrealtime
: aco_opcode::s_memtime;
bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile));
}
emit_split_vector(ctx, dst, 2);
break;
}
case nir_intrinsic_load_vertex_id_zero_base: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->vertex_id));
break;
}
case nir_intrinsic_load_first_vertex: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->base_vertex));
break;
}
case nir_intrinsic_load_base_instance: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->start_instance));
break;
}
case nir_intrinsic_load_instance_id: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->instance_id));
break;
}
case nir_intrinsic_load_draw_id: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->draw_id));
break;
}
case nir_intrinsic_load_invocation_id: {
Temp dst = get_ssa_temp(ctx, &instr->def);
if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
if (ctx->options->gfx_level >= GFX10)
bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand::c32(127u),
get_arg(ctx, ctx->args->gs_invocation_id));
else
bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_invocation_id));
} else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
bld.vop3(aco_opcode::v_bfe_u32, Definition(dst), get_arg(ctx, ctx->args->tcs_rel_ids),
Operand::c32(8u), Operand::c32(5u));
} else {
unreachable("Unsupported stage for load_invocation_id");
}
break;
}
case nir_intrinsic_load_primitive_id: {
Temp dst = get_ssa_temp(ctx, &instr->def);
switch (ctx->shader->info.stage) {
case MESA_SHADER_GEOMETRY:
bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_prim_id));
break;
case MESA_SHADER_TESS_CTRL:
bld.copy(Definition(dst), get_arg(ctx, ctx->args->tcs_patch_id));
break;
case MESA_SHADER_TESS_EVAL:
bld.copy(Definition(dst), get_arg(ctx, ctx->args->tes_patch_id));
break;
default:
if (ctx->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER && !ctx->stage.has(SWStage::GS)) {
/* In case of NGG, the GS threads always have the primitive ID
* even if there is no SW GS. */
bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_prim_id));
break;
} else if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
bld.copy(Definition(dst), get_arg(ctx, ctx->args->vs_prim_id));
break;
}
unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
}
break;
}
case nir_intrinsic_sendmsg_amd: {
unsigned imm = nir_intrinsic_base(instr);
Temp m0_content = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
bld.sopp(aco_opcode::s_sendmsg, bld.m0(m0_content), -1, imm);
break;
}
case nir_intrinsic_load_gs_wave_id_amd: {
Temp dst = get_ssa_temp(ctx, &instr->def);
if (ctx->args->merged_wave_info.used)
bld.pseudo(aco_opcode::p_extract, Definition(dst), bld.def(s1, scc),
get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(2u), Operand::c32(8u),
Operand::zero());
else if (ctx->args->gs_wave_id.used)
bld.copy(Definition(dst), get_arg(ctx, ctx->args->gs_wave_id));
else
unreachable("Shader doesn't have GS wave ID.");
break;
}
case nir_intrinsic_is_subgroup_invocation_lt_amd: {
Temp src = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
bld.copy(Definition(get_ssa_temp(ctx, &instr->def)), lanecount_to_mask(ctx, src));
break;
}
case nir_intrinsic_gds_atomic_add_amd: {
Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
Temp gds_addr = get_ssa_temp(ctx, instr->src[1].ssa);
Temp m0_val = get_ssa_temp(ctx, instr->src[2].ssa);
Operand m = bld.m0((Temp)bld.copy(bld.def(s1, m0), bld.as_uniform(m0_val)));
bld.ds(aco_opcode::ds_add_u32, as_vgpr(ctx, gds_addr), as_vgpr(ctx, store_val), m, 0u, 0u,
true);
break;
}
case nir_intrinsic_load_sbt_base_amd: {
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp addr = get_arg(ctx, ctx->args->rt.sbt_descriptors);
assert(addr.regClass() == s2);
bld.copy(Definition(dst), Operand(addr));
break;
}
case nir_intrinsic_bvh64_intersect_ray_amd: visit_bvh64_intersect_ray_amd(ctx, instr); break;
case nir_intrinsic_load_rt_dynamic_callable_stack_base_amd:
bld.copy(Definition(get_ssa_temp(ctx, &instr->def)),
get_arg(ctx, ctx->args->rt.dynamic_callable_stack_base));
break;
case nir_intrinsic_load_resume_shader_address_amd: {
bld.pseudo(aco_opcode::p_resume_shader_address, Definition(get_ssa_temp(ctx, &instr->def)),
bld.def(s1, scc), Operand::c32(nir_intrinsic_call_idx(instr)));
break;
}
case nir_intrinsic_overwrite_vs_arguments_amd: {
ctx->arg_temps[ctx->args->vertex_id.arg_index] = get_ssa_temp(ctx, instr->src[0].ssa);
ctx->arg_temps[ctx->args->instance_id.arg_index] = get_ssa_temp(ctx, instr->src[1].ssa);
break;
}
case nir_intrinsic_overwrite_tes_arguments_amd: {
ctx->arg_temps[ctx->args->tes_u.arg_index] = get_ssa_temp(ctx, instr->src[0].ssa);
ctx->arg_temps[ctx->args->tes_v.arg_index] = get_ssa_temp(ctx, instr->src[1].ssa);
ctx->arg_temps[ctx->args->tes_rel_patch_id.arg_index] = get_ssa_temp(ctx, instr->src[3].ssa);
ctx->arg_temps[ctx->args->tes_patch_id.arg_index] = get_ssa_temp(ctx, instr->src[2].ssa);
break;
}
case nir_intrinsic_load_scalar_arg_amd:
case nir_intrinsic_load_vector_arg_amd: {
assert(nir_intrinsic_base(instr) < ctx->args->arg_count);
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp src = ctx->arg_temps[nir_intrinsic_base(instr)];
assert(src.id());
assert(src.type() == (instr->intrinsic == nir_intrinsic_load_scalar_arg_amd ? RegType::sgpr
: RegType::vgpr));
bld.copy(Definition(dst), src);
emit_split_vector(ctx, dst, dst.size());
break;
}
case nir_intrinsic_ordered_xfb_counter_add_amd: {
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp ordered_id = get_ssa_temp(ctx, instr->src[0].ssa);
Temp counter = get_ssa_temp(ctx, instr->src[1].ssa);
Temp gds_base = bld.copy(bld.def(v1), Operand::c32(0u));
unsigned offset0, offset1;
Instruction* ds_instr;
Operand m;
/* Lock a GDS mutex. */
ds_ordered_count_offsets(ctx, 1 << 24u, false, false, &offset0, &offset1);
m = bld.m0(bld.as_uniform(ordered_id));
ds_instr =
bld.ds(aco_opcode::ds_ordered_count, bld.def(v1), gds_base, m, offset0, offset1, true);
ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_volatile);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, instr->num_components, 1)};
unsigned write_mask = nir_intrinsic_write_mask(instr);
for (unsigned i = 0; i < instr->num_components; i++) {
if (write_mask & (1 << i)) {
Temp chan_counter = emit_extract_vector(ctx, counter, i, v1);
ds_instr = bld.ds(aco_opcode::ds_add_gs_reg_rtn, bld.def(v1), Operand(), chan_counter,
i * 4, 0u, true);
ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_atomicrmw);
vec->operands[i] = Operand(ds_instr->definitions[0].getTemp());
} else {
vec->operands[i] = Operand::zero();
}
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
/* Unlock a GDS mutex. */
ds_ordered_count_offsets(ctx, 1 << 24u, true, true, &offset0, &offset1);
m = bld.m0(bld.as_uniform(ordered_id));
ds_instr =
bld.ds(aco_opcode::ds_ordered_count, bld.def(v1), gds_base, m, offset0, offset1, true);
ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_volatile);
emit_split_vector(ctx, dst, instr->num_components);
break;
}
case nir_intrinsic_xfb_counter_sub_amd: {
unsigned write_mask = nir_intrinsic_write_mask(instr);
Temp counter = get_ssa_temp(ctx, instr->src[0].ssa);
u_foreach_bit (i, write_mask) {
Temp chan_counter = emit_extract_vector(ctx, counter, i, v1);
Instruction* ds_instr;
ds_instr = bld.ds(aco_opcode::ds_sub_gs_reg_rtn, bld.def(v1), Operand(), chan_counter,
i * 4, 0u, true);
ds_instr->ds().sync = memory_sync_info(storage_gds, semantic_atomicrmw);
}
break;
}
case nir_intrinsic_export_amd:
case nir_intrinsic_export_row_amd: {
unsigned flags = nir_intrinsic_flags(instr);
unsigned target = nir_intrinsic_base(instr);
unsigned write_mask = nir_intrinsic_write_mask(instr);
/* Mark vertex export block. */
if (target == V_008DFC_SQ_EXP_POS || target <= V_008DFC_SQ_EXP_NULL)
ctx->block->kind |= block_kind_export_end;
if (target < V_008DFC_SQ_EXP_MRTZ)
ctx->program->has_color_exports = true;
const bool row_en = instr->intrinsic == nir_intrinsic_export_row_amd;
aco_ptr<Export_instruction> exp{
create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4 + row_en, 0)};
exp->dest = target;
exp->enabled_mask = write_mask;
exp->compressed = flags & AC_EXP_FLAG_COMPRESSED;
/* ACO may reorder position/mrt export instructions, then mark done for last
* export instruction. So don't respect the nir AC_EXP_FLAG_DONE for position/mrt
* exports here and leave it to ACO.
*/
if (target == V_008DFC_SQ_EXP_PRIM)
exp->done = flags & AC_EXP_FLAG_DONE;
else
exp->done = false;
/* ACO may reorder mrt export instructions, then mark valid mask for last
* export instruction. So don't respect the nir AC_EXP_FLAG_VALID_MASK for mrt
* exports here and leave it to ACO.
*/
if (target > V_008DFC_SQ_EXP_NULL)
exp->valid_mask = flags & AC_EXP_FLAG_VALID_MASK;
else
exp->valid_mask = false;
exp->row_en = row_en;
/* Compressed export uses two bits for a channel. */
uint32_t channel_mask =
exp->compressed ? (write_mask & 0x3 ? 1 : 0) | (write_mask & 0xc ? 2 : 0) : write_mask;
Temp value = get_ssa_temp(ctx, instr->src[0].ssa);
for (unsigned i = 0; i < 4; i++) {
exp->operands[i] = channel_mask & BITFIELD_BIT(i)
? Operand(emit_extract_vector(ctx, value, i, v1))
: Operand(v1);
}
if (row_en) {
Temp row = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
/* Hack to prevent the RA from moving the source into m0 and then back to a normal SGPR. */
row = bld.copy(bld.def(s1, m0), row);
exp->operands[4] = bld.m0(row);
}
ctx->block->instructions.emplace_back(std::move(exp));
break;
}
case nir_intrinsic_export_dual_src_blend_amd: {
Temp val0 = get_ssa_temp(ctx, instr->src[0].ssa);
Temp val1 = get_ssa_temp(ctx, instr->src[1].ssa);
unsigned write_mask = nir_intrinsic_write_mask(instr);
struct aco_export_mrt mrt0, mrt1;
for (unsigned i = 0; i < 4; i++) {
mrt0.out[i] = write_mask & BITFIELD_BIT(i) ? Operand(emit_extract_vector(ctx, val0, i, v1))
: Operand(v1);
mrt1.out[i] = write_mask & BITFIELD_BIT(i) ? Operand(emit_extract_vector(ctx, val1, i, v1))
: Operand(v1);
}
mrt0.enabled_channels = mrt1.enabled_channels = write_mask;
create_fs_dual_src_export_gfx11(ctx, &mrt0, &mrt1);
ctx->block->kind |= block_kind_export_end;
break;
}
case nir_intrinsic_strict_wqm_coord_amd: {
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp tmp = bld.tmp(RegClass::get(RegType::vgpr, dst.bytes()));
unsigned begin_size = nir_intrinsic_base(instr);
unsigned num_src = 1;
auto it = ctx->allocated_vec.find(src.id());
if (it != ctx->allocated_vec.end())
num_src = src.bytes() / it->second[0].bytes();
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, num_src + !!begin_size, 1)};
if (begin_size)
vec->operands[0] = Operand(RegClass::get(RegType::vgpr, begin_size));
for (unsigned i = 0; i < num_src; i++) {
Temp comp = it != ctx->allocated_vec.end() ? it->second[i] : src;
vec->operands[i + !!begin_size] = Operand(comp);
}
vec->definitions[0] = Definition(tmp);
ctx->block->instructions.emplace_back(std::move(vec));
bld.pseudo(aco_opcode::p_start_linear_vgpr, Definition(dst), tmp);
break;
}
case nir_intrinsic_load_lds_ngg_scratch_base_amd: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.sop1(aco_opcode::p_load_symbol, Definition(dst),
Operand::c32(aco_symbol_lds_ngg_scratch_base));
break;
}
case nir_intrinsic_load_lds_ngg_gs_out_vertex_base_amd: {
Temp dst = get_ssa_temp(ctx, &instr->def);
bld.sop1(aco_opcode::p_load_symbol, Definition(dst),
Operand::c32(aco_symbol_lds_ngg_gs_out_vertex_base));
break;
}
case nir_intrinsic_store_scalar_arg_amd: {
ctx->arg_temps[nir_intrinsic_base(instr)] =
bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
break;
}
case nir_intrinsic_store_vector_arg_amd: {
ctx->arg_temps[nir_intrinsic_base(instr)] =
as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
break;
}
case nir_intrinsic_begin_invocation_interlock: {
pops_await_overlapped_waves(ctx);
break;
}
case nir_intrinsic_end_invocation_interlock: {
if (ctx->options->gfx_level < GFX11)
bld.pseudo(aco_opcode::p_pops_gfx9_ordered_section_done);
break;
}
case nir_intrinsic_cmat_muladd_amd: visit_cmat_muladd(ctx, instr); break;
default:
isel_err(&instr->instr, "Unimplemented intrinsic instr");
abort();
break;
}
}
void
get_const_vec(nir_def* vec, nir_const_value* cv[4])
{
if (vec->parent_instr->type != nir_instr_type_alu)
return;
nir_alu_instr* vec_instr = nir_instr_as_alu(vec->parent_instr);
if (vec_instr->op != nir_op_vec(vec->num_components))
return;
for (unsigned i = 0; i < vec->num_components; i++) {
cv[i] =
vec_instr->src[i].swizzle[0] == 0 ? nir_src_as_const_value(vec_instr->src[i].src) : NULL;
}
}
void
visit_tex(isel_context* ctx, nir_tex_instr* instr)
{
assert(instr->op != nir_texop_samples_identical);
Builder bld(ctx->program, ctx->block);
bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false,
has_sample_index = false, has_clamped_lod = false, has_wqm_coord = false;
Temp resource, sampler, bias = Temp(), compare = Temp(), sample_index = Temp(), lod = Temp(),
offset = Temp(), ddx = Temp(), ddy = Temp(), clamped_lod = Temp(),
coord = Temp(), wqm_coord = Temp();
std::vector<Temp> coords;
std::vector<Temp> derivs;
nir_const_value* const_offset[4] = {NULL, NULL, NULL, NULL};
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_texture_handle:
resource = bld.as_uniform(get_ssa_temp(ctx, instr->src[i].src.ssa));
break;
case nir_tex_src_sampler_handle:
sampler = bld.as_uniform(get_ssa_temp(ctx, instr->src[i].src.ssa));
break;
default: break;
}
}
bool tg4_integer_workarounds = ctx->options->gfx_level <= GFX8 && instr->op == nir_texop_tg4 &&
(instr->dest_type & (nir_type_int | nir_type_uint));
bool tg4_integer_cube_workaround =
tg4_integer_workarounds && instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
bool a16 = false, g16 = false;
int coord_idx = nir_tex_instr_src_index(instr, nir_tex_src_coord);
if (coord_idx > 0)
a16 = instr->src[coord_idx].src.ssa->bit_size == 16;
int ddx_idx = nir_tex_instr_src_index(instr, nir_tex_src_ddx);
if (ddx_idx > 0)
g16 = instr->src[ddx_idx].src.ssa->bit_size == 16;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord: {
assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32));
coord = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16);
break;
}
case nir_tex_src_backend1: {
assert(instr->src[i].src.ssa->bit_size == 32);
wqm_coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_wqm_coord = true;
break;
}
case nir_tex_src_bias:
assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32));
/* Doesn't need get_ssa_temp_tex because we pack it into its own dword anyway. */
bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_bias = true;
break;
case nir_tex_src_lod: {
if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0) {
level_zero = true;
} else {
assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32));
lod = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16);
has_lod = true;
}
break;
}
case nir_tex_src_min_lod:
assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32));
clamped_lod = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16);
has_clamped_lod = true;
break;
case nir_tex_src_comparator:
if (instr->is_shadow) {
assert(instr->src[i].src.ssa->bit_size == 32);
compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_compare = true;
}
break;
case nir_tex_src_offset:
case nir_tex_src_backend2:
assert(instr->src[i].src.ssa->bit_size == 32);
offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
get_const_vec(instr->src[i].src.ssa, const_offset);
has_offset = true;
break;
case nir_tex_src_ddx:
assert(instr->src[i].src.ssa->bit_size == (g16 ? 16 : 32));
ddx = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, g16);
has_ddx = true;
break;
case nir_tex_src_ddy:
assert(instr->src[i].src.ssa->bit_size == (g16 ? 16 : 32));
ddy = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, g16);
has_ddy = true;
break;
case nir_tex_src_ms_index:
assert(instr->src[i].src.ssa->bit_size == (a16 ? 16 : 32));
sample_index = get_ssa_temp_tex(ctx, instr->src[i].src.ssa, a16);
has_sample_index = true;
break;
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
default: break;
}
}
if (has_wqm_coord) {
assert(instr->op == nir_texop_tex || instr->op == nir_texop_txb ||
instr->op == nir_texop_lod);
assert(wqm_coord.regClass().is_linear_vgpr());
assert(!a16 && !g16);
}
if (instr->op == nir_texop_tg4 && !has_lod && !instr->is_gather_implicit_lod)
level_zero = true;
if (has_offset) {
assert(instr->op != nir_texop_txf);
aco_ptr<Instruction> tmp_instr;
Temp acc, pack = Temp();
uint32_t pack_const = 0;
for (unsigned i = 0; i < offset.size(); i++) {
if (!const_offset[i])
continue;
pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
}
if (offset.type() == RegType::sgpr) {
for (unsigned i = 0; i < offset.size(); i++) {
if (const_offset[i])
continue;
acc = emit_extract_vector(ctx, offset, i, s1);
acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc,
Operand::c32(0x3Fu));
if (i) {
acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc,
Operand::c32(8u * i));
}
if (pack == Temp()) {
pack = acc;
} else {
pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
}
}
if (pack_const && pack != Temp())
pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc),
Operand::c32(pack_const), pack);
} else {
for (unsigned i = 0; i < offset.size(); i++) {
if (const_offset[i])
continue;
acc = emit_extract_vector(ctx, offset, i, v1);
acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x3Fu), acc);
if (i) {
acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(8u * i), acc);
}
if (pack == Temp()) {
pack = acc;
} else {
pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
}
}
if (pack_const && pack != Temp())
pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand::c32(pack_const), pack);
}
if (pack == Temp())
offset = bld.copy(bld.def(v1), Operand::c32(pack_const));
else
offset = pack;
}
std::vector<Temp> unpacked_coord;
if (coord != Temp())
unpacked_coord.push_back(coord);
if (has_sample_index)
unpacked_coord.push_back(sample_index);
if (has_lod)
unpacked_coord.push_back(lod);
if (has_clamped_lod)
unpacked_coord.push_back(clamped_lod);
coords = emit_pack_v1(ctx, unpacked_coord);
/* pack derivatives */
if (has_ddx || has_ddy) {
assert(a16 == g16 || ctx->options->gfx_level >= GFX10);
std::array<Temp, 2> ddxddy = {ddx, ddy};
for (Temp tmp : ddxddy) {
if (tmp == Temp())
continue;
std::vector<Temp> unpacked = {tmp};
for (Temp derv : emit_pack_v1(ctx, unpacked))
derivs.push_back(derv);
}
has_derivs = true;
}
unsigned dim = 0;
bool da = false;
if (instr->sampler_dim != GLSL_SAMPLER_DIM_BUF) {
dim = ac_get_sampler_dim(ctx->options->gfx_level, instr->sampler_dim, instr->is_array);
da = should_declare_array((ac_image_dim)dim);
}
/* Build tex instruction */
unsigned dmask = nir_def_components_read(&instr->def) & 0xf;
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
dmask = u_bit_consecutive(0, util_last_bit(dmask));
if (instr->is_sparse)
dmask = MAX2(dmask, 1) | 0x10;
bool d16 = instr->def.bit_size == 16;
Temp dst = get_ssa_temp(ctx, &instr->def);
Temp tmp_dst = dst;
/* gather4 selects the component by dmask and always returns vec4 (vec5 if sparse) */
if (instr->op == nir_texop_tg4) {
assert(instr->def.num_components == (4 + instr->is_sparse));
if (instr->is_shadow)
dmask = 1;
else
dmask = 1 << instr->component;
if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
tmp_dst = bld.tmp(instr->is_sparse ? v5 : (d16 ? v2 : v4));
} else if (instr->op == nir_texop_fragment_mask_fetch_amd) {
tmp_dst = bld.tmp(v1);
} else if (util_bitcount(dmask) != instr->def.num_components || dst.type() == RegType::sgpr) {
unsigned bytes = util_bitcount(dmask) * instr->def.bit_size / 8;
tmp_dst = bld.tmp(RegClass::get(RegType::vgpr, bytes));
}
Temp tg4_compare_cube_wa64 = Temp();
if (tg4_integer_workarounds) {
Temp half_texel[2];
if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
half_texel[0] = half_texel[1] = bld.copy(bld.def(v1), Operand::c32(0xbf000000 /*-0.5*/));
} else {
Temp tg4_lod = bld.copy(bld.def(v1), Operand::zero());
Temp size = bld.tmp(v2);
MIMG_instruction* tex = emit_mimg(bld, aco_opcode::image_get_resinfo, size, resource,
Operand(s4), std::vector<Temp>{tg4_lod});
tex->dim = dim;
tex->dmask = 0x3;
tex->da = da;
emit_split_vector(ctx, size, size.size());
for (unsigned i = 0; i < 2; i++) {
half_texel[i] = emit_extract_vector(ctx, size, i, v1);
half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1),
Operand::c32(0xbf000000 /*-0.5*/), half_texel[i]);
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D && !instr->is_array) {
/* In vulkan, whether the sampler uses unnormalized
* coordinates or not is a dynamic property of the
* sampler. Hence, to figure out whether or not we
* need to divide by the texture size, we need to test
* the sampler at runtime. This tests the bit set by
* radv_init_sampler().
*/
unsigned bit_idx = ffs(S_008F30_FORCE_UNNORMALIZED(1)) - 1;
Temp dword0 = emit_extract_vector(ctx, sampler, 0, s1);
Temp not_needed =
bld.sopc(aco_opcode::s_bitcmp0_b32, bld.def(s1, scc), dword0, Operand::c32(bit_idx));
not_needed = bool_to_vector_condition(ctx, not_needed);
half_texel[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
Operand::c32(0xbf000000 /*-0.5*/), half_texel[0], not_needed);
half_texel[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
Operand::c32(0xbf000000 /*-0.5*/), half_texel[1], not_needed);
}
}
Temp new_coords[2] = {bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])};
if (tg4_integer_cube_workaround) {
/* see comment in ac_nir_to_llvm.c's lower_gather4_integer() */
Temp* const desc = (Temp*)alloca(resource.size() * sizeof(Temp));
aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(
aco_opcode::p_split_vector, Format::PSEUDO, 1, resource.size())};
split->operands[0] = Operand(resource);
for (unsigned i = 0; i < resource.size(); i++) {
desc[i] = bld.tmp(s1);
split->definitions[i] = Definition(desc[i]);
}
ctx->block->instructions.emplace_back(std::move(split));
Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1],
Operand::c32(20u | (6u << 16)));
Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
Operand::c32(V_008F14_IMG_DATA_FORMAT_8_8_8_8));
Temp nfmt;
if (instr->dest_type & nir_type_uint) {
nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
Operand::c32(V_008F14_IMG_NUM_FORMAT_USCALED),
Operand::c32(V_008F14_IMG_NUM_FORMAT_UINT), bld.scc(compare_cube_wa));
} else {
nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
Operand::c32(V_008F14_IMG_NUM_FORMAT_SSCALED),
Operand::c32(V_008F14_IMG_NUM_FORMAT_SINT), bld.scc(compare_cube_wa));
}
tg4_compare_cube_wa64 = bld.tmp(bld.lm);
bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt,
Operand::c32(26u));
desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
Operand::c32(C_008F14_NUM_FORMAT));
desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, resource.size(), 1)};
for (unsigned i = 0; i < resource.size(); i++)
vec->operands[i] = Operand(desc[i]);
resource = bld.tmp(resource.regClass());
vec->definitions[0] = Definition(resource);
ctx->block->instructions.emplace_back(std::move(vec));
new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), new_coords[0], coords[0],
tg4_compare_cube_wa64);
new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), new_coords[1], coords[1],
tg4_compare_cube_wa64);
}
coords[0] = new_coords[0];
coords[1] = new_coords[1];
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
// FIXME: if (ctx->abi->gfx9_stride_size_workaround) return
// ac_build_buffer_load_format_gfx9_safe()
assert(coords.size() == 1);
aco_opcode op;
if (d16) {
switch (util_last_bit(dmask & 0xf)) {
case 1: op = aco_opcode::buffer_load_format_d16_x; break;
case 2: op = aco_opcode::buffer_load_format_d16_xy; break;
case 3: op = aco_opcode::buffer_load_format_d16_xyz; break;
case 4: op = aco_opcode::buffer_load_format_d16_xyzw; break;
default: unreachable("Tex instruction loads more than 4 components.");
}
} else {
switch (util_last_bit(dmask & 0xf)) {
case 1: op = aco_opcode::buffer_load_format_x; break;
case 2: op = aco_opcode::buffer_load_format_xy; break;
case 3: op = aco_opcode::buffer_load_format_xyz; break;
case 4: op = aco_opcode::buffer_load_format_xyzw; break;
default: unreachable("Tex instruction loads more than 4 components.");
}
}
aco_ptr<MUBUF_instruction> mubuf{
create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3 + instr->is_sparse, 1)};
mubuf->operands[0] = Operand(resource);
mubuf->operands[1] = Operand(coords[0]);
mubuf->operands[2] = Operand::c32(0);
mubuf->definitions[0] = Definition(tmp_dst);
mubuf->idxen = true;
mubuf->tfe = instr->is_sparse;
if (mubuf->tfe)
mubuf->operands[3] = emit_tfe_init(bld, tmp_dst);
ctx->block->instructions.emplace_back(std::move(mubuf));
expand_vector(ctx, tmp_dst, dst, instr->def.num_components, dmask);
return;
}
/* gather MIMG address components */
std::vector<Temp> args;
if (has_wqm_coord) {
args.emplace_back(wqm_coord);
if (!(ctx->block->kind & block_kind_top_level))
ctx->unended_linear_vgprs.push_back(wqm_coord);
}
if (has_offset)
args.emplace_back(offset);
if (has_bias)
args.emplace_back(emit_pack_v1(ctx, {bias})[0]);
if (has_compare)
args.emplace_back(compare);
if (has_derivs)
args.insert(args.end(), derivs.begin(), derivs.end());
args.insert(args.end(), coords.begin(), coords.end());
if (instr->op == nir_texop_txf || instr->op == nir_texop_fragment_fetch_amd ||
instr->op == nir_texop_fragment_mask_fetch_amd || instr->op == nir_texop_txf_ms) {
aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS
? aco_opcode::image_load
: aco_opcode::image_load_mip;
Operand vdata = instr->is_sparse ? emit_tfe_init(bld, tmp_dst) : Operand(v1);
MIMG_instruction* tex = emit_mimg(bld, op, tmp_dst, resource, Operand(s4), args, vdata);
if (instr->op == nir_texop_fragment_mask_fetch_amd)
tex->dim = da ? ac_image_2darray : ac_image_2d;
else
tex->dim = dim;
tex->dmask = dmask & 0xf;
tex->unrm = true;
tex->da = da;
tex->tfe = instr->is_sparse;
tex->d16 = d16;
tex->a16 = a16;
if (instr->op == nir_texop_fragment_mask_fetch_amd) {
/* Use 0x76543210 if the image doesn't have FMASK. */
assert(dmask == 1 && dst.bytes() == 4);
assert(dst.id() != tmp_dst.id());
if (dst.regClass() == s1) {
Temp is_not_null = bld.sopc(aco_opcode::s_cmp_lg_u32, bld.def(s1, scc), Operand::zero(),
emit_extract_vector(ctx, resource, 1, s1));
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), bld.as_uniform(tmp_dst),
Operand::c32(0x76543210), bld.scc(is_not_null));
} else {
Temp is_not_null = bld.tmp(bld.lm);
bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(is_not_null), Operand::zero(),
emit_extract_vector(ctx, resource, 1, s1));
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst),
bld.copy(bld.def(v1), Operand::c32(0x76543210)), tmp_dst, is_not_null);
}
} else {
expand_vector(ctx, tmp_dst, dst, instr->def.num_components, dmask);
}
return;
}
bool separate_g16 = ctx->options->gfx_level >= GFX10 && g16;
// TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
aco_opcode opcode = aco_opcode::image_sample;
if (has_offset) { /* image_sample_*_o */
if (has_clamped_lod) {
if (has_compare) {
opcode = aco_opcode::image_sample_c_cl_o;
if (separate_g16)
opcode = aco_opcode::image_sample_c_d_cl_o_g16;
else if (has_derivs)
opcode = aco_opcode::image_sample_c_d_cl_o;
if (has_bias)
opcode = aco_opcode::image_sample_c_b_cl_o;
} else {
opcode = aco_opcode::image_sample_cl_o;
if (separate_g16)
opcode = aco_opcode::image_sample_d_cl_o_g16;
else if (has_derivs)
opcode = aco_opcode::image_sample_d_cl_o;
if (has_bias)
opcode = aco_opcode::image_sample_b_cl_o;
}
} else if (has_compare) {
opcode = aco_opcode::image_sample_c_o;
if (separate_g16)
opcode = aco_opcode::image_sample_c_d_o_g16;
else if (has_derivs)
opcode = aco_opcode::image_sample_c_d_o;
if (has_bias)
opcode = aco_opcode::image_sample_c_b_o;
if (level_zero)
opcode = aco_opcode::image_sample_c_lz_o;
if (has_lod)
opcode = aco_opcode::image_sample_c_l_o;
} else {
opcode = aco_opcode::image_sample_o;
if (separate_g16)
opcode = aco_opcode::image_sample_d_o_g16;
else if (has_derivs)
opcode = aco_opcode::image_sample_d_o;
if (has_bias)
opcode = aco_opcode::image_sample_b_o;
if (level_zero)
opcode = aco_opcode::image_sample_lz_o;
if (has_lod)
opcode = aco_opcode::image_sample_l_o;
}
} else if (has_clamped_lod) { /* image_sample_*_cl */
if (has_compare) {
opcode = aco_opcode::image_sample_c_cl;
if (separate_g16)
opcode = aco_opcode::image_sample_c_d_cl_g16;
else if (has_derivs)
opcode = aco_opcode::image_sample_c_d_cl;
if (has_bias)
opcode = aco_opcode::image_sample_c_b_cl;
} else {
opcode = aco_opcode::image_sample_cl;
if (separate_g16)
opcode = aco_opcode::image_sample_d_cl_g16;
else if (has_derivs)
opcode = aco_opcode::image_sample_d_cl;
if (has_bias)
opcode = aco_opcode::image_sample_b_cl;
}
} else { /* no offset */
if (has_compare) {
opcode = aco_opcode::image_sample_c;
if (separate_g16)
opcode = aco_opcode::image_sample_c_d_g16;
else if (has_derivs)
opcode = aco_opcode::image_sample_c_d;
if (has_bias)
opcode = aco_opcode::image_sample_c_b;
if (level_zero)
opcode = aco_opcode::image_sample_c_lz;
if (has_lod)
opcode = aco_opcode::image_sample_c_l;
} else {
opcode = aco_opcode::image_sample;
if (separate_g16)
opcode = aco_opcode::image_sample_d_g16;
else if (has_derivs)
opcode = aco_opcode::image_sample_d;
if (has_bias)
opcode = aco_opcode::image_sample_b;
if (level_zero)
opcode = aco_opcode::image_sample_lz;
if (has_lod)
opcode = aco_opcode::image_sample_l;
}
}
if (instr->op == nir_texop_tg4) {
/* GFX11 supports implicit LOD, but the extension is unsupported. */
assert(level_zero || ctx->options->gfx_level < GFX11);
if (has_offset) { /* image_gather4_*_o */
if (has_compare) {
opcode = aco_opcode::image_gather4_c_o;
if (level_zero)
opcode = aco_opcode::image_gather4_c_lz_o;
if (has_lod)
opcode = aco_opcode::image_gather4_c_l_o;
if (has_bias)
opcode = aco_opcode::image_gather4_c_b_o;
} else {
opcode = aco_opcode::image_gather4_o;
if (level_zero)
opcode = aco_opcode::image_gather4_lz_o;
if (has_lod)
opcode = aco_opcode::image_gather4_l_o;
if (has_bias)
opcode = aco_opcode::image_gather4_b_o;
}
} else {
if (has_compare) {
opcode = aco_opcode::image_gather4_c;
if (level_zero)
opcode = aco_opcode::image_gather4_c_lz;
if (has_lod)
opcode = aco_opcode::image_gather4_c_l;
if (has_bias)
opcode = aco_opcode::image_gather4_c_b;
} else {
opcode = aco_opcode::image_gather4;
if (level_zero)
opcode = aco_opcode::image_gather4_lz;
if (has_lod)
opcode = aco_opcode::image_gather4_l;
if (has_bias)
opcode = aco_opcode::image_gather4_b;
}
}
} else if (instr->op == nir_texop_lod) {
opcode = aco_opcode::image_get_lod;
}
bool implicit_derivs = bld.program->stage == fragment_fs && !has_derivs && !has_lod &&
!level_zero && instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS;
Operand vdata = instr->is_sparse ? emit_tfe_init(bld, tmp_dst) : Operand(v1);
MIMG_instruction* tex = emit_mimg(bld, opcode, tmp_dst, resource, Operand(sampler), args, vdata);
tex->dim = dim;
tex->dmask = dmask & 0xf;
tex->da = da;
tex->unrm = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
tex->tfe = instr->is_sparse;
tex->d16 = d16;
tex->a16 = a16;
if (implicit_derivs)
set_wqm(ctx, true);
if (tg4_integer_cube_workaround) {
assert(tmp_dst.id() != dst.id());
assert(tmp_dst.size() == dst.size());
emit_split_vector(ctx, tmp_dst, tmp_dst.size());
Temp val[4];
for (unsigned i = 0; i < 4; i++) {
val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
Temp cvt_val;
if (instr->dest_type & nir_type_uint)
cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
else
cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val,
tg4_compare_cube_wa64);
}
Temp tmp = dst.regClass() == tmp_dst.regClass() ? dst : bld.tmp(tmp_dst.regClass());
if (instr->is_sparse)
tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), val[0], val[1], val[2],
val[3], emit_extract_vector(ctx, tmp_dst, 4, v1));
else
tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), val[0], val[1], val[2],
val[3]);
}
unsigned mask = instr->op == nir_texop_tg4 ? (instr->is_sparse ? 0x1F : 0xF) : dmask;
expand_vector(ctx, tmp_dst, dst, instr->def.num_components, mask);
}
Operand
get_phi_operand(isel_context* ctx, nir_def* ssa, RegClass rc, bool logical)
{
Temp tmp = get_ssa_temp(ctx, ssa);
if (ssa->parent_instr->type == nir_instr_type_undef) {
return Operand(rc);
} else if (logical && ssa->bit_size == 1 &&
ssa->parent_instr->type == nir_instr_type_load_const) {
bool val = nir_instr_as_load_const(ssa->parent_instr)->value[0].b;
return Operand::c32_or_c64(val ? -1 : 0, ctx->program->lane_mask == s2);
} else {
return Operand(tmp);
}
}
void
visit_phi(isel_context* ctx, nir_phi_instr* instr)
{
aco_ptr<Pseudo_instruction> phi;
Temp dst = get_ssa_temp(ctx, &instr->def);
assert(instr->def.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
bool logical = !dst.is_linear() || instr->def.divergent;
logical |= (ctx->block->kind & block_kind_merge) != 0;
aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
/* we want a sorted list of sources, since the predecessor list is also sorted */
std::map<unsigned, nir_def*> phi_src;
nir_foreach_phi_src (src, instr)
phi_src[src->pred->index] = src->src.ssa;
std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
unsigned num_operands = 0;
Operand* const operands = (Operand*)alloca(
(std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1) * sizeof(Operand));
unsigned num_defined = 0;
unsigned cur_pred_idx = 0;
for (std::pair<unsigned, nir_def*> src : phi_src) {
if (cur_pred_idx < preds.size()) {
/* handle missing preds (IF merges with discard/break) and extra preds
* (loop exit with discard) */
unsigned block = ctx->cf_info.nir_to_aco[src.first];
unsigned skipped = 0;
while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
skipped++;
if (cur_pred_idx + skipped < preds.size()) {
for (unsigned i = 0; i < skipped; i++)
operands[num_operands++] = Operand(dst.regClass());
cur_pred_idx += skipped;
} else {
continue;
}
}
/* Handle missing predecessors at the end. This shouldn't happen with loop
* headers and we can't ignore these sources for loop header phis. */
if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
continue;
cur_pred_idx++;
Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
operands[num_operands++] = op;
num_defined += !op.isUndefined();
}
/* handle block_kind_continue_or_break at loop exit blocks */
while (cur_pred_idx++ < preds.size())
operands[num_operands++] = Operand(dst.regClass());
/* If the loop ends with a break, still add a linear continue edge in case
* that break is divergent or continue_or_break is used. We'll either remove
* this operand later in visit_loop() if it's not necessary or replace the
* undef with something correct. */
if (!logical && ctx->block->kind & block_kind_loop_header) {
nir_loop* loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
nir_block* last = nir_loop_last_block(loop);
if (last->successors[0] != instr->instr.block)
operands[num_operands++] = Operand(RegClass());
}
/* we can use a linear phi in some cases if one src is undef */
if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO,
num_operands, 1));
Block* linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
Block* invert = &ctx->program->blocks[linear_else->linear_preds[0]];
assert(invert->kind & block_kind_invert);
unsigned then_block = invert->linear_preds[0];
Block* insert_block = NULL;
for (unsigned i = 0; i < num_operands; i++) {
Operand op = operands[i];
if (op.isUndefined())
continue;
insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
phi->operands[0] = op;
break;
}
assert(insert_block); /* should be handled by the "num_defined == 0" case above */
phi->operands[1] = Operand(dst.regClass());
phi->definitions[0] = Definition(dst);
insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
return;
}
phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
for (unsigned i = 0; i < num_operands; i++)
phi->operands[i] = operands[i];
phi->definitions[0] = Definition(dst);
ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
}
void
visit_undef(isel_context* ctx, nir_undef_instr* instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
assert(dst.type() == RegType::sgpr);
if (dst.size() == 1) {
Builder(ctx->program, ctx->block).copy(Definition(dst), Operand::zero());
} else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand::zero();
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
void
begin_loop(isel_context* ctx, loop_context* lc)
{
// TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
Builder bld(ctx->program, ctx->block);
bld.branch(aco_opcode::p_branch, bld.def(s2));
unsigned loop_preheader_idx = ctx->block->index;
lc->loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
ctx->program->next_loop_depth++;
Block* loop_header = ctx->program->create_and_insert_block();
loop_header->kind |= block_kind_loop_header;
add_edge(loop_preheader_idx, loop_header);
ctx->block = loop_header;
append_logical_start(ctx->block);
lc->header_idx_old = std::exchange(ctx->cf_info.parent_loop.header_idx, loop_header->index);
lc->exit_old = std::exchange(ctx->cf_info.parent_loop.exit, &lc->loop_exit);
lc->divergent_cont_old = std::exchange(ctx->cf_info.parent_loop.has_divergent_continue, false);
lc->divergent_branch_old = std::exchange(ctx->cf_info.parent_loop.has_divergent_branch, false);
lc->divergent_if_old = std::exchange(ctx->cf_info.parent_if.is_divergent, false);
}
void
end_loop(isel_context* ctx, loop_context* lc)
{
// TODO: what if a loop ends with a unconditional or uniformly branched continue
// and this branch is never taken?
if (!ctx->cf_info.has_branch) {
unsigned loop_header_idx = ctx->cf_info.parent_loop.header_idx;
Builder bld(ctx->program, ctx->block);
append_logical_end(ctx->block);
if (ctx->cf_info.exec_potentially_empty_discard ||
ctx->cf_info.exec_potentially_empty_break) {
/* Discards can result in code running with an empty exec mask.
* This would result in divergent breaks not ever being taken. As a
* workaround, break the loop when the loop mask is empty instead of
* always continuing. */
ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
unsigned block_idx = ctx->block->index;
/* create helper blocks to avoid critical edges */
Block* break_block = ctx->program->create_and_insert_block();
break_block->kind = block_kind_uniform;
bld.reset(break_block);
bld.branch(aco_opcode::p_branch, bld.def(s2));
add_linear_edge(block_idx, break_block);
add_linear_edge(break_block->index, &lc->loop_exit);
Block* continue_block = ctx->program->create_and_insert_block();
continue_block->kind = block_kind_uniform;
bld.reset(continue_block);
bld.branch(aco_opcode::p_branch, bld.def(s2));
add_linear_edge(block_idx, continue_block);
add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
ctx->block = &ctx->program->blocks[block_idx];
} else {
ctx->block->kind |= (block_kind_continue | block_kind_uniform);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
else
add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
}
bld.reset(ctx->block);
bld.branch(aco_opcode::p_branch, bld.def(s2));
}
ctx->cf_info.has_branch = false;
ctx->program->next_loop_depth--;
// TODO: if the loop has not a single exit, we must add one °°
/* emit loop successor block */
ctx->block = ctx->program->insert_block(std::move(lc->loop_exit));
append_logical_start(ctx->block);
#if 0
// TODO: check if it is beneficial to not branch on continues
/* trim linear phis in loop header */
for (auto&& instr : loop_entry->instructions) {
if (instr->opcode == aco_opcode::p_linear_phi) {
aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
new_phi->definitions[0] = instr->definitions[0];
for (unsigned i = 0; i < new_phi->operands.size(); i++)
new_phi->operands[i] = instr->operands[i];
/* check that the remaining operands are all the same */
for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
assert(instr->operands[i].tempId() == instr->operands.back().tempId());
instr.swap(new_phi);
} else if (instr->opcode == aco_opcode::p_phi) {
continue;
} else {
break;
}
}
#endif
ctx->cf_info.parent_loop.header_idx = lc->header_idx_old;
ctx->cf_info.parent_loop.exit = lc->exit_old;
ctx->cf_info.parent_loop.has_divergent_continue = lc->divergent_cont_old;
ctx->cf_info.parent_loop.has_divergent_branch = lc->divergent_branch_old;
ctx->cf_info.parent_if.is_divergent = lc->divergent_if_old;
if (!ctx->block->loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty_discard = false;
}
void
emit_loop_jump(isel_context* ctx, bool is_break)
{
Builder bld(ctx->program, ctx->block);
Block* logical_target;
append_logical_end(ctx->block);
unsigned idx = ctx->block->index;
if (is_break) {
logical_target = ctx->cf_info.parent_loop.exit;
add_logical_edge(idx, logical_target);
ctx->block->kind |= block_kind_break;
if (!ctx->cf_info.parent_if.is_divergent &&
!ctx->cf_info.parent_loop.has_divergent_continue) {
/* uniform break - directly jump out of the loop */
ctx->block->kind |= block_kind_uniform;
ctx->cf_info.has_branch = true;
bld.branch(aco_opcode::p_branch, bld.def(s2));
add_linear_edge(idx, logical_target);
return;
}
ctx->cf_info.parent_loop.has_divergent_branch = true;
} else {
logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
add_logical_edge(idx, logical_target);
ctx->block->kind |= block_kind_continue;
if (!ctx->cf_info.parent_if.is_divergent) {
/* uniform continue - directly jump to the loop header */
ctx->block->kind |= block_kind_uniform;
ctx->cf_info.has_branch = true;
bld.branch(aco_opcode::p_branch, bld.def(s2));
add_linear_edge(idx, logical_target);
return;
}
/* for potential uniform breaks after this continue,
we must ensure that they are handled correctly */
ctx->cf_info.parent_loop.has_divergent_continue = true;
ctx->cf_info.parent_loop.has_divergent_branch = true;
}
if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
ctx->cf_info.exec_potentially_empty_break = true;
ctx->cf_info.exec_potentially_empty_break_depth = ctx->block->loop_nest_depth;
}
/* remove critical edges from linear CFG */
bld.branch(aco_opcode::p_branch, bld.def(s2));
Block* break_block = ctx->program->create_and_insert_block();
break_block->kind |= block_kind_uniform;
add_linear_edge(idx, break_block);
/* the loop_header pointer might be invalidated by this point */
if (!is_break)
logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
add_linear_edge(break_block->index, logical_target);
bld.reset(break_block);
bld.branch(aco_opcode::p_branch, bld.def(s2));
Block* continue_block = ctx->program->create_and_insert_block();
add_linear_edge(idx, continue_block);
append_logical_start(continue_block);
ctx->block = continue_block;
}
void
emit_loop_break(isel_context* ctx)
{
emit_loop_jump(ctx, true);
}
void
emit_loop_continue(isel_context* ctx)
{
emit_loop_jump(ctx, false);
}
void
visit_jump(isel_context* ctx, nir_jump_instr* instr)
{
/* visit_block() would usually do this but divergent jumps updates ctx->block */
ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
switch (instr->type) {
case nir_jump_break: emit_loop_break(ctx); break;
case nir_jump_continue: emit_loop_continue(ctx); break;
default: isel_err(&instr->instr, "Unknown NIR jump instr"); abort();
}
}
void
visit_block(isel_context* ctx, nir_block* block)
{
if (ctx->block->kind & block_kind_top_level) {
Builder bld(ctx->program, ctx->block);
for (Temp tmp : ctx->unended_linear_vgprs)
bld.pseudo(aco_opcode::p_end_linear_vgpr, tmp);
ctx->unended_linear_vgprs.clear();
}
ctx->block->instructions.reserve(ctx->block->instructions.size() +
exec_list_length(&block->instr_list) * 2);
nir_foreach_instr (instr, block) {
switch (instr->type) {
case nir_instr_type_alu: visit_alu_instr(ctx, nir_instr_as_alu(instr)); break;
case nir_instr_type_load_const: visit_load_const(ctx, nir_instr_as_load_const(instr)); break;
case nir_instr_type_intrinsic: visit_intrinsic(ctx, nir_instr_as_intrinsic(instr)); break;
case nir_instr_type_tex: visit_tex(ctx, nir_instr_as_tex(instr)); break;
case nir_instr_type_phi: visit_phi(ctx, nir_instr_as_phi(instr)); break;
case nir_instr_type_undef: visit_undef(ctx, nir_instr_as_undef(instr)); break;
case nir_instr_type_deref: break;
case nir_instr_type_jump: visit_jump(ctx, nir_instr_as_jump(instr)); break;
default: isel_err(instr, "Unknown NIR instr type");
}
}
if (!ctx->cf_info.parent_loop.has_divergent_branch)
ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
}
static Operand
create_continue_phis(isel_context* ctx, unsigned first, unsigned last,
aco_ptr<Instruction>& header_phi, Operand* vals)
{
vals[0] = Operand(header_phi->definitions[0].getTemp());
RegClass rc = vals[0].regClass();
unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
unsigned next_pred = 1;
for (unsigned idx = first + 1; idx <= last; idx++) {
Block& block = ctx->program->blocks[idx];
if (block.loop_nest_depth != loop_nest_depth) {
vals[idx - first] = vals[idx - 1 - first];
continue;
}
if ((block.kind & block_kind_continue) && block.index != last) {
vals[idx - first] = header_phi->operands[next_pred];
next_pred++;
continue;
}
bool all_same = true;
for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
Operand val;
if (all_same) {
val = vals[block.linear_preds[0] - first];
} else {
aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
for (unsigned i = 0; i < block.linear_preds.size(); i++)
phi->operands[i] = vals[block.linear_preds[i] - first];
val = Operand(ctx->program->allocateTmp(rc));
phi->definitions[0] = Definition(val.getTemp());
block.instructions.emplace(block.instructions.begin(), std::move(phi));
}
vals[idx - first] = val;
}
return vals[last - first];
}
static void begin_uniform_if_then(isel_context* ctx, if_context* ic, Temp cond);
static void begin_uniform_if_else(isel_context* ctx, if_context* ic);
static void end_uniform_if(isel_context* ctx, if_context* ic);
static void
visit_loop(isel_context* ctx, nir_loop* loop)
{
assert(!nir_loop_has_continue_construct(loop));
loop_context lc;
begin_loop(ctx, &lc);
bool unreachable = visit_cf_list(ctx, &loop->body);
unsigned loop_header_idx = ctx->cf_info.parent_loop.header_idx;
/* Fixup phis in loop header from unreachable blocks.
* has_branch/has_divergent_branch also indicates if the loop ends with a
* break/continue instruction, but we don't emit those if unreachable=true */
if (unreachable) {
assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
bool linear = ctx->cf_info.has_branch;
bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
if ((logical && instr->opcode == aco_opcode::p_phi) ||
(linear && instr->opcode == aco_opcode::p_linear_phi)) {
/* the last operand should be the one that needs to be removed */
instr->operands.pop_back();
} else if (!is_phi(instr)) {
break;
}
}
}
/* Fixup linear phis in loop header from expecting a continue. Both this fixup
* and the previous one shouldn't both happen at once because a break in the
* merge block would get CSE'd */
if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
Operand* const vals = (Operand*)alloca(num_vals * sizeof(Operand));
for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
if (instr->opcode == aco_opcode::p_linear_phi) {
if (ctx->cf_info.has_branch)
instr->operands.pop_back();
else
instr->operands.back() =
create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
} else if (!is_phi(instr)) {
break;
}
}
}
/* NIR seems to allow this, and even though the loop exit has no predecessors, SSA defs from the
* loop header are live. Handle this without complicating the ACO IR by creating a dummy break.
*/
if (nir_cf_node_cf_tree_next(&loop->cf_node)->predecessors->entries == 0) {
Builder bld(ctx->program, ctx->block);
Temp cond = bld.copy(bld.def(s1, scc), Operand::zero());
if_context ic;
begin_uniform_if_then(ctx, &ic, cond);
emit_loop_break(ctx);
begin_uniform_if_else(ctx, &ic);
end_uniform_if(ctx, &ic);
}
end_loop(ctx, &lc);
}
static void
begin_divergent_if_then(isel_context* ctx, if_context* ic, Temp cond,
nir_selection_control sel_ctrl = nir_selection_control_none)
{
ic->cond = cond;
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_branch;
/* branch to linear then block */
assert(cond.regClass() == ctx->program->lane_mask);
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z,
Format::PSEUDO_BRANCH, 1, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
branch->operands[0] = Operand(cond);
branch->selection_control_remove = sel_ctrl == nir_selection_control_flatten ||
sel_ctrl == nir_selection_control_divergent_always_taken;
ctx->block->instructions.push_back(std::move(branch));
ic->BB_if_idx = ctx->block->index;
ic->BB_invert = Block();
/* Invert blocks are intentionally not marked as top level because they
* are not part of the logical cfg. */
ic->BB_invert.kind |= block_kind_invert;
ic->BB_endif = Block();
ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
ic->had_divergent_discard_old = ctx->cf_info.had_divergent_discard;
ctx->cf_info.parent_if.is_divergent = true;
/* divergent branches use cbranch_execz */
ctx->cf_info.exec_potentially_empty_discard = false;
ctx->cf_info.exec_potentially_empty_break = false;
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
/** emit logical then block */
ctx->program->next_divergent_if_logical_depth++;
Block* BB_then_logical = ctx->program->create_and_insert_block();
add_edge(ic->BB_if_idx, BB_then_logical);
ctx->block = BB_then_logical;
append_logical_start(BB_then_logical);
}
static void
begin_divergent_if_else(isel_context* ctx, if_context* ic,
nir_selection_control sel_ctrl = nir_selection_control_none)
{
Block* BB_then_logical = ctx->block;
append_logical_end(BB_then_logical);
/* branch from logical then block to invert block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch,
Format::PSEUDO_BRANCH, 0, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
BB_then_logical->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then_logical->index, &ic->BB_invert);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_then_logical->index, &ic->BB_endif);
BB_then_logical->kind |= block_kind_uniform;
assert(!ctx->cf_info.has_branch);
ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
ctx->cf_info.parent_loop.has_divergent_branch = false;
ctx->program->next_divergent_if_logical_depth--;
/** emit linear then block */
Block* BB_then_linear = ctx->program->create_and_insert_block();
BB_then_linear->kind |= block_kind_uniform;
add_linear_edge(ic->BB_if_idx, BB_then_linear);
/* branch from linear then block to invert block */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch,
Format::PSEUDO_BRANCH, 0, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
BB_then_linear->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then_linear->index, &ic->BB_invert);
/** emit invert merge block */
ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
ic->invert_idx = ctx->block->index;
/* branch to linear else block (skip else) */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch,
Format::PSEUDO_BRANCH, 0, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
branch->selection_control_remove = sel_ctrl == nir_selection_control_flatten ||
sel_ctrl == nir_selection_control_divergent_always_taken;
ctx->block->instructions.push_back(std::move(branch));
ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
ic->exec_potentially_empty_break_depth_old = std::min(
ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
/* divergent branches use cbranch_execz */
ctx->cf_info.exec_potentially_empty_discard = false;
ctx->cf_info.exec_potentially_empty_break = false;
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
ic->had_divergent_discard_then = ctx->cf_info.had_divergent_discard;
ctx->cf_info.had_divergent_discard = ic->had_divergent_discard_old;
/** emit logical else block */
ctx->program->next_divergent_if_logical_depth++;
Block* BB_else_logical = ctx->program->create_and_insert_block();
add_logical_edge(ic->BB_if_idx, BB_else_logical);
add_linear_edge(ic->invert_idx, BB_else_logical);
ctx->block = BB_else_logical;
append_logical_start(BB_else_logical);
}
static void
end_divergent_if(isel_context* ctx, if_context* ic)
{
Block* BB_else_logical = ctx->block;
append_logical_end(BB_else_logical);
/* branch from logical else block to endif block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch,
Format::PSEUDO_BRANCH, 0, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
BB_else_logical->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else_logical->index, &ic->BB_endif);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_else_logical->index, &ic->BB_endif);
BB_else_logical->kind |= block_kind_uniform;
ctx->program->next_divergent_if_logical_depth--;
assert(!ctx->cf_info.has_branch);
ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
/** emit linear else block */
Block* BB_else_linear = ctx->program->create_and_insert_block();
BB_else_linear->kind |= block_kind_uniform;
add_linear_edge(ic->invert_idx, BB_else_linear);
/* branch from linear else block to endif block */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch,
Format::PSEUDO_BRANCH, 0, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
BB_else_linear->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else_linear->index, &ic->BB_endif);
/** emit endif merge block */
ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
append_logical_start(ctx->block);
ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
ctx->cf_info.exec_potentially_empty_break_depth = std::min(
ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
if (ctx->block->loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
!ctx->cf_info.parent_if.is_divergent) {
ctx->cf_info.exec_potentially_empty_break = false;
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
}
/* uniform control flow never has an empty exec-mask */
if (!ctx->block->loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
ctx->cf_info.exec_potentially_empty_discard = false;
ctx->cf_info.exec_potentially_empty_break = false;
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
}
ctx->cf_info.had_divergent_discard |= ic->had_divergent_discard_then;
}
static void
begin_uniform_if_then(isel_context* ctx, if_context* ic, Temp cond)
{
assert(cond.regClass() == s1);
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_uniform;
aco_ptr<Pseudo_branch_instruction> branch;
aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
branch.reset(
create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
branch->operands[0] = Operand(cond);
branch->operands[0].setFixed(scc);
ctx->block->instructions.emplace_back(std::move(branch));
ic->BB_if_idx = ctx->block->index;
ic->BB_endif = Block();
ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
ctx->cf_info.has_branch = false;
ctx->cf_info.parent_loop.has_divergent_branch = false;
ic->had_divergent_discard_old = ctx->cf_info.had_divergent_discard;
/** emit then block */
ctx->program->next_uniform_if_depth++;
Block* BB_then = ctx->program->create_and_insert_block();
add_edge(ic->BB_if_idx, BB_then);
append_logical_start(BB_then);
ctx->block = BB_then;
}
static void
begin_uniform_if_else(isel_context* ctx, if_context* ic)
{
Block* BB_then = ctx->block;
ic->uniform_has_then_branch = ctx->cf_info.has_branch;
ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
if (!ic->uniform_has_then_branch) {
append_logical_end(BB_then);
/* branch from then block to endif block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch,
Format::PSEUDO_BRANCH, 0, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
BB_then->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then->index, &ic->BB_endif);
if (!ic->then_branch_divergent)
add_logical_edge(BB_then->index, &ic->BB_endif);
BB_then->kind |= block_kind_uniform;
}
ctx->cf_info.has_branch = false;
ctx->cf_info.parent_loop.has_divergent_branch = false;
ic->had_divergent_discard_then = ctx->cf_info.had_divergent_discard;
ctx->cf_info.had_divergent_discard = ic->had_divergent_discard_old;
/** emit else block */
Block* BB_else = ctx->program->create_and_insert_block();
add_edge(ic->BB_if_idx, BB_else);
append_logical_start(BB_else);
ctx->block = BB_else;
}
static void
end_uniform_if(isel_context* ctx, if_context* ic)
{
Block* BB_else = ctx->block;
if (!ctx->cf_info.has_branch) {
append_logical_end(BB_else);
/* branch from then block to endif block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch,
Format::PSEUDO_BRANCH, 0, 1));
branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
BB_else->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else->index, &ic->BB_endif);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_else->index, &ic->BB_endif);
BB_else->kind |= block_kind_uniform;
}
ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
ctx->cf_info.had_divergent_discard |= ic->had_divergent_discard_then;
/** emit endif merge block */
ctx->program->next_uniform_if_depth--;
if (!ctx->cf_info.has_branch) {
ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
append_logical_start(ctx->block);
}
}
static bool
visit_if(isel_context* ctx, nir_if* if_stmt)
{
Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
Builder bld(ctx->program, ctx->block);
aco_ptr<Pseudo_branch_instruction> branch;
if_context ic;
if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
/**
* Uniform conditionals are represented in the following way*) :
*
* The linear and logical CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_ELSE (logical)
* \ /
* BB_ENDIF
*
* *) Exceptions may be due to break and continue statements within loops
* If a break/continue happens within uniform control flow, it branches
* to the loop exit/entry block. Otherwise, it branches to the next
* merge block.
**/
assert(cond.regClass() == ctx->program->lane_mask);
cond = bool_to_scalar_condition(ctx, cond);
begin_uniform_if_then(ctx, &ic, cond);
visit_cf_list(ctx, &if_stmt->then_list);
begin_uniform_if_else(ctx, &ic);
visit_cf_list(ctx, &if_stmt->else_list);
end_uniform_if(ctx, &ic);
} else { /* non-uniform condition */
/**
* To maintain a logical and linear CFG without critical edges,
* non-uniform conditionals are represented in the following way*) :
*
* The linear CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_THEN (linear)
* \ /
* BB_INVERT (linear)
* / \
* BB_ELSE (logical) BB_ELSE (linear)
* \ /
* BB_ENDIF
*
* The logical CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_ELSE (logical)
* \ /
* BB_ENDIF
*
* *) Exceptions may be due to break and continue statements within loops
**/
begin_divergent_if_then(ctx, &ic, cond, if_stmt->control);
visit_cf_list(ctx, &if_stmt->then_list);
begin_divergent_if_else(ctx, &ic, if_stmt->control);
visit_cf_list(ctx, &if_stmt->else_list);
end_divergent_if(ctx, &ic);
}
return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
}
static bool
visit_cf_list(isel_context* ctx, struct exec_list* list)
{
foreach_list_typed (nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block: visit_block(ctx, nir_cf_node_as_block(node)); break;
case nir_cf_node_if:
if (!visit_if(ctx, nir_cf_node_as_if(node)))
return true;
break;
case nir_cf_node_loop: visit_loop(ctx, nir_cf_node_as_loop(node)); break;
default: unreachable("unimplemented cf list type");
}
}
return false;
}
static void
export_mrt(isel_context* ctx, const struct aco_export_mrt* mrt)
{
Builder bld(ctx->program, ctx->block);
bld.exp(aco_opcode::exp, mrt->out[0], mrt->out[1], mrt->out[2], mrt->out[3],
mrt->enabled_channels, mrt->target, mrt->compr);
ctx->program->has_color_exports = true;
}
static bool
export_fs_mrt_color(isel_context* ctx, const struct aco_ps_epilog_info* info, Temp colors[4],
unsigned slot, struct aco_export_mrt* mrt)
{
unsigned col_format = (info->spi_shader_col_format >> (slot * 4)) & 0xf;
if (col_format == V_028714_SPI_SHADER_ZERO)
return false;
Builder bld(ctx->program, ctx->block);
Operand values[4];
for (unsigned i = 0; i < 4; ++i) {
values[i] = Operand(colors[i]);
}
unsigned enabled_channels = 0;
aco_opcode compr_op = aco_opcode::num_opcodes;
bool compr = false;
bool is_16bit = colors[0].regClass() == v2b;
bool is_int8 = (info->color_is_int8 >> slot) & 1;
bool is_int10 = (info->color_is_int10 >> slot) & 1;
bool enable_mrt_output_nan_fixup = (ctx->options->enable_mrt_output_nan_fixup >> slot) & 1;
/* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
if (enable_mrt_output_nan_fixup && !is_16bit &&
(col_format == V_028714_SPI_SHADER_32_R || col_format == V_028714_SPI_SHADER_32_GR ||
col_format == V_028714_SPI_SHADER_32_AR || col_format == V_028714_SPI_SHADER_32_ABGR ||
col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
for (unsigned i = 0; i < 4; i++) {
Temp is_not_nan =
bld.vopc(aco_opcode::v_cmp_eq_f32, bld.def(bld.lm), values[i], values[i]);
values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand::zero(), values[i],
is_not_nan);
}
}
switch (col_format) {
case V_028714_SPI_SHADER_32_R: enabled_channels = 1; break;
case V_028714_SPI_SHADER_32_GR: enabled_channels = 0x3; break;
case V_028714_SPI_SHADER_32_AR:
if (ctx->options->gfx_level >= GFX10) {
/* Special case: on GFX10, the outputs are different for 32_AR */
enabled_channels = 0x3;
values[1] = values[3];
values[3] = Operand(v1);
} else {
enabled_channels = 0x9;
}
break;
case V_028714_SPI_SHADER_FP16_ABGR:
for (int i = 0; i < 2; i++) {
if (is_16bit) {
values[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), values[i * 2],
values[i * 2 + 1]);
} else if (ctx->options->gfx_level == GFX8 || ctx->options->gfx_level == GFX9) {
values[i] = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, bld.def(v1), values[i * 2],
values[i * 2 + 1]);
} else {
values[i] = bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), values[i * 2],
values[i * 2 + 1]);
}
}
values[2] = Operand(v1);
values[3] = Operand(v1);
enabled_channels = 0xf;
compr = true;
break;
case V_028714_SPI_SHADER_UNORM16_ABGR:
if (is_16bit && ctx->options->gfx_level >= GFX9) {
compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
} else {
compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
}
break;
case V_028714_SPI_SHADER_SNORM16_ABGR:
if (is_16bit && ctx->options->gfx_level >= GFX9) {
compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
} else {
compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
}
break;
case V_028714_SPI_SHADER_UINT16_ABGR:
compr_op = aco_opcode::v_cvt_pk_u16_u32;
if (is_int8 || is_int10) {
/* clamp */
uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
for (unsigned i = 0; i < 4; i++) {
uint32_t max = i == 3 && is_int10 ? 3 : max_rgb;
values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1), Operand::c32(max), values[i]);
}
} else if (is_16bit) {
for (unsigned i = 0; i < 4; i++) {
Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
values[i] = Operand(tmp);
}
}
break;
case V_028714_SPI_SHADER_SINT16_ABGR:
compr_op = aco_opcode::v_cvt_pk_i16_i32;
if (is_int8 || is_int10) {
/* clamp */
uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
uint32_t min_rgb = is_int8 ? -128 : is_int10 ? -512 : 0;
for (unsigned i = 0; i < 4; i++) {
uint32_t max = i == 3 && is_int10 ? 1 : max_rgb;
uint32_t min = i == 3 && is_int10 ? -2u : min_rgb;
values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1), Operand::c32(max), values[i]);
values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand::c32(min), values[i]);
}
} else if (is_16bit) {
for (unsigned i = 0; i < 4; i++) {
Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
values[i] = Operand(tmp);
}
}
break;
case V_028714_SPI_SHADER_32_ABGR: enabled_channels = 0xF; break;
case V_028714_SPI_SHADER_ZERO:
default: return false;
}
if (compr_op != aco_opcode::num_opcodes) {
values[0] = bld.vop3(compr_op, bld.def(v1), values[0], values[1]);
values[1] = bld.vop3(compr_op, bld.def(v1), values[2], values[3]);
values[2] = Operand(v1);
values[3] = Operand(v1);
enabled_channels = 0xf;
compr = true;
} else if (!compr) {
for (int i = 0; i < 4; i++)
values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
}
if (ctx->program->gfx_level >= GFX11) {
/* GFX11 doesn't use COMPR for exports, but the channel mask should be
* 0x3 instead.
*/
enabled_channels = compr ? 0x3 : enabled_channels;
compr = false;
}
for (unsigned i = 0; i < 4; i++)
mrt->out[i] = values[i];
mrt->target = V_008DFC_SQ_EXP_MRT;
mrt->enabled_channels = enabled_channels;
mrt->compr = compr;
return true;
}
static void
export_fs_mrtz(isel_context* ctx, Temp depth, Temp stencil, Temp samplemask, Temp alpha)
{
Builder bld(ctx->program, ctx->block);
unsigned enabled_channels = 0;
bool compr = false;
Operand values[4];
for (unsigned i = 0; i < 4; ++i) {
values[i] = Operand(v1);
}
/* Both stencil and sample mask only need 16-bits. */
if (!depth.id() && !alpha.id() && (stencil.id() || samplemask.id())) {
compr = ctx->program->gfx_level < GFX11; /* COMPR flag */
if (stencil.id()) {
/* Stencil should be in X[23:16]. */
values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(16u), stencil);
enabled_channels |= ctx->program->gfx_level >= GFX11 ? 0x1 : 0x3;
}
if (samplemask.id()) {
/* SampleMask should be in Y[15:0]. */
values[1] = Operand(samplemask);
enabled_channels |= ctx->program->gfx_level >= GFX11 ? 0x2 : 0xc;
}
} else {
if (depth.id()) {
values[0] = Operand(depth);
enabled_channels |= 0x1;
}
if (stencil.id()) {
values[1] = Operand(stencil);
enabled_channels |= 0x2;
}
if (samplemask.id()) {
values[2] = Operand(samplemask);
enabled_channels |= 0x4;
}
if (alpha.id()) {
assert(ctx->program->gfx_level >= GFX11);
values[3] = Operand(alpha);
enabled_channels |= 0x8;
}
}
/* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
* writemask component.
*/
if (ctx->options->gfx_level == GFX6 && ctx->options->family != CHIP_OLAND &&
ctx->options->family != CHIP_HAINAN) {
enabled_channels |= 0x1;
}
bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3], enabled_channels,
V_008DFC_SQ_EXP_MRTZ, compr);
}
static void
create_fs_null_export(isel_context* ctx)
{
/* FS must always have exports.
* So when there are none, we need to add a null export.
*/
Builder bld(ctx->program, ctx->block);
/* GFX11 doesn't support NULL exports, and MRT0 should be exported instead. */
unsigned dest = ctx->options->gfx_level >= GFX11 ? V_008DFC_SQ_EXP_MRT : V_008DFC_SQ_EXP_NULL;
bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
/* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, /* vm */ true);
ctx->program->has_color_exports = true;
}
static void
create_fs_jump_to_epilog(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
std::vector<Operand> color_exports;
PhysReg exports_start(256); /* VGPR 0 */
for (unsigned slot = FRAG_RESULT_DATA0; slot < FRAG_RESULT_DATA7 + 1; ++slot) {
unsigned color_index = slot - FRAG_RESULT_DATA0;
unsigned color_type = (ctx->output_color_types >> (color_index * 2)) & 0x3;
unsigned write_mask = ctx->outputs.mask[slot];
if (!write_mask)
continue;
PhysReg color_start(exports_start.reg() + color_index * 4);
for (unsigned i = 0; i < 4; i++) {
if (!(write_mask & BITFIELD_BIT(i))) {
color_exports.emplace_back(Operand(v1));
continue;
}
PhysReg chan_reg = color_start.advance(i * 4u);
Operand chan(ctx->outputs.temps[slot * 4u + i]);
if (color_type == ACO_TYPE_FLOAT16) {
chan = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), chan);
} else if (color_type == ACO_TYPE_INT16 || color_type == ACO_TYPE_UINT16) {
bool sign_ext = color_type == ACO_TYPE_INT16;
Temp tmp = convert_int(ctx, bld, chan.getTemp(), 16, 32, sign_ext);
chan = Operand(tmp);
}
chan.setFixed(chan_reg);
color_exports.emplace_back(chan);
}
}
Temp continue_pc = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->program->info.ps.epilog_pc));
aco_ptr<Pseudo_instruction> jump{create_instruction<Pseudo_instruction>(
aco_opcode::p_jump_to_epilog, Format::PSEUDO, 1 + color_exports.size(), 0)};
jump->operands[0] = Operand(continue_pc);
for (unsigned i = 0; i < color_exports.size(); i++) {
jump->operands[i + 1] = color_exports[i];
}
ctx->block->instructions.emplace_back(std::move(jump));
}
PhysReg
get_arg_reg(const struct ac_shader_args* args, struct ac_arg arg)
{
assert(arg.used);
enum ac_arg_regfile file = args->args[arg.arg_index].file;
unsigned reg = args->args[arg.arg_index].offset;
return PhysReg(file == AC_ARG_SGPR ? reg : reg + 256);
}
static Operand
get_arg_for_end(isel_context* ctx, struct ac_arg arg)
{
return Operand(get_arg(ctx, arg), get_arg_reg(ctx->args, arg));
}
static Temp
get_tcs_out_current_patch_data_offset(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
const unsigned output_vertex_size = ctx->program->info.tcs.num_linked_outputs * 4u;
const unsigned pervertex_output_patch_size =
ctx->program->info.tcs.tcs_vertices_out * output_vertex_size;
const unsigned output_patch_stride =
pervertex_output_patch_size + ctx->program->info.tcs.num_linked_patch_outputs * 4u;
Temp tcs_rel_ids = get_arg(ctx, ctx->args->tcs_rel_ids);
Temp rel_patch_id =
bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand::c32(0u), Operand::c32(8u));
Temp patch_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, output_patch_stride, false);
Temp tcs_offchip_layout = get_arg(ctx, ctx->program->info.tcs.tcs_offchip_layout);
Temp patch_control_points = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc),
tcs_offchip_layout, Operand::c32(0x3f));
Temp num_patches = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
tcs_offchip_layout, Operand::c32(0x60006));
Temp lshs_vertex_stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
tcs_offchip_layout, Operand::c32(0x8000c));
Temp input_patch_size =
bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), patch_control_points, lshs_vertex_stride);
Temp output_patch0_offset =
bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), num_patches, input_patch_size);
Temp output_patch_offset =
bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
Operand::c32(pervertex_output_patch_size), output_patch0_offset);
return bld.nuw().vadd32(bld.def(v1), patch_offset, output_patch_offset);
}
static Temp
get_patch_base(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
const unsigned output_vertex_size = ctx->program->info.tcs.num_linked_outputs * 16u;
const unsigned pervertex_output_patch_size =
ctx->program->info.tcs.tcs_vertices_out * output_vertex_size;
Temp num_patches =
bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->program->info.tcs.tcs_offchip_layout), Operand::c32(0x60006));
return bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), num_patches,
Operand::c32(pervertex_output_patch_size));
}
static void
passthrough_all_args(isel_context* ctx, std::vector<Operand>& regs)
{
struct ac_arg arg;
arg.used = true;
for (arg.arg_index = 0; arg.arg_index < ctx->args->arg_count; arg.arg_index++)
regs.emplace_back(get_arg_for_end(ctx, arg));
}
static void
build_end_with_regs(isel_context* ctx, std::vector<Operand>& regs)
{
aco_ptr<Pseudo_instruction> end{create_instruction<Pseudo_instruction>(
aco_opcode::p_end_with_regs, Format::PSEUDO, regs.size(), 0)};
for (unsigned i = 0; i < regs.size(); i++)
end->operands[i] = regs[i];
ctx->block->instructions.emplace_back(std::move(end));
ctx->block->kind |= block_kind_end_with_regs;
}
static void
create_tcs_jump_to_epilog(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
PhysReg vgpr_start(256); /* VGPR 0 */
PhysReg sgpr_start(0); /* SGPR 0 */
/* SGPRs */
Operand ring_offsets = Operand(get_arg(ctx, ctx->args->ring_offsets));
ring_offsets.setFixed(sgpr_start);
Operand tess_offchip_offset = Operand(get_arg(ctx, ctx->args->tess_offchip_offset));
tess_offchip_offset.setFixed(sgpr_start.advance(8u));
Operand tcs_factor_offset = Operand(get_arg(ctx, ctx->args->tcs_factor_offset));
tcs_factor_offset.setFixed(sgpr_start.advance(12u));
Operand tcs_offchip_layout = Operand(get_arg(ctx, ctx->program->info.tcs.tcs_offchip_layout));
tcs_offchip_layout.setFixed(sgpr_start.advance(16u));
Operand patch_base = Operand(get_patch_base(ctx));
patch_base.setFixed(sgpr_start.advance(20u));
/* VGPRs */
Operand tcs_out_current_patch_data_offset = Operand(get_tcs_out_current_patch_data_offset(ctx));
tcs_out_current_patch_data_offset.setFixed(vgpr_start);
Operand invocation_id =
bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids),
Operand::c32(8u), Operand::c32(5u));
invocation_id.setFixed(vgpr_start.advance(4u));
Operand rel_patch_id =
bld.pseudo(aco_opcode::p_extract, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids),
Operand::c32(0u), Operand::c32(8u), Operand::c32(0u));
rel_patch_id.setFixed(vgpr_start.advance(8u));
Temp continue_pc =
convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->program->info.tcs.epilog_pc));
aco_ptr<Pseudo_instruction> jump{
create_instruction<Pseudo_instruction>(aco_opcode::p_jump_to_epilog, Format::PSEUDO, 9, 0)};
jump->operands[0] = Operand(continue_pc);
jump->operands[1] = ring_offsets;
jump->operands[2] = tess_offchip_offset;
jump->operands[3] = tcs_factor_offset;
jump->operands[4] = tcs_offchip_layout;
jump->operands[5] = patch_base;
jump->operands[6] = tcs_out_current_patch_data_offset;
jump->operands[7] = invocation_id;
jump->operands[8] = rel_patch_id;
ctx->block->instructions.emplace_back(std::move(jump));
}
static void
create_tcs_end_for_epilog(isel_context* ctx)
{
std::vector<Operand> regs;
regs.emplace_back(get_arg_for_end(ctx, ctx->program->info.tcs.tcs_offchip_layout));
regs.emplace_back(get_arg_for_end(ctx, ctx->program->info.tcs.tes_offchip_addr));
regs.emplace_back(get_arg_for_end(ctx, ctx->args->tess_offchip_offset));
regs.emplace_back(get_arg_for_end(ctx, ctx->args->tcs_factor_offset));
Builder bld(ctx->program, ctx->block);
/* Leave a hole corresponding to the two input VGPRs. This ensures that
* the invocation_id output does not alias the tcs_rel_ids input,
* which saves a V_MOV on gfx9.
*/
unsigned vgpr = 256 + ctx->args->num_vgprs_used;
Temp rel_patch_id =
bld.pseudo(aco_opcode::p_extract, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids),
Operand::c32(0u), Operand::c32(8u), Operand::c32(0u));
regs.emplace_back(Operand(rel_patch_id, PhysReg{vgpr++}));
Temp invocation_id =
bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids),
Operand::c32(8u), Operand::c32(5u));
regs.emplace_back(Operand(invocation_id, PhysReg{vgpr++}));
if (ctx->program->info.tcs.pass_tessfactors_by_reg) {
vgpr++; /* skip the tess factor LDS offset */
unsigned slot = VARYING_SLOT_TESS_LEVEL_OUTER;
u_foreach_bit (i, ctx->outputs.mask[slot]) {
regs.emplace_back(Operand(ctx->outputs.temps[slot * 4 + i], PhysReg{vgpr + i}));
}
vgpr += 4;
slot = VARYING_SLOT_TESS_LEVEL_INNER;
u_foreach_bit (i, ctx->outputs.mask[slot]) {
regs.emplace_back(Operand(ctx->outputs.temps[slot * 4 + i], PhysReg{vgpr + i}));
}
} else {
Temp patch0_patch_data_offset =
bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->program->info.tcs.vs_state_bits), Operand::c32(0xe000a));
Temp tf_lds_offset =
bld.v_mul24_imm(bld.def(v1), rel_patch_id, ctx->program->info.tcs.patch_stride);
tf_lds_offset = bld.nuw().vadd32(bld.def(v1), tf_lds_offset, patch0_patch_data_offset);
regs.emplace_back(Operand(tf_lds_offset, PhysReg{vgpr}));
}
build_end_with_regs(ctx, regs);
}
static void
create_fs_end_for_epilog(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
std::vector<Operand> regs;
regs.emplace_back(get_arg_for_end(ctx, ctx->program->info.ps.alpha_reference));
unsigned vgpr = 256;
for (unsigned slot = FRAG_RESULT_DATA0; slot <= FRAG_RESULT_DATA7; slot++) {
unsigned index = slot - FRAG_RESULT_DATA0;
unsigned type = (ctx->output_color_types >> (index * 2)) & 0x3;
unsigned write_mask = ctx->outputs.mask[slot];
if (!write_mask)
continue;
if (type == ACO_TYPE_ANY32) {
u_foreach_bit (i, write_mask) {
regs.emplace_back(Operand(ctx->outputs.temps[slot * 4 + i], PhysReg{vgpr + i}));
}
} else {
for (unsigned i = 0; i < 2; i++) {
unsigned mask = (write_mask >> (i * 2)) & 0x3;
if (!mask)
continue;
unsigned chan = slot * 4 + i * 2;
Operand lo = mask & 0x1 ? Operand(ctx->outputs.temps[chan]) : Operand(v2b);
Operand hi = mask & 0x2 ? Operand(ctx->outputs.temps[chan + 1]) : Operand(v2b);
Temp dst = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), lo, hi);
regs.emplace_back(Operand(dst, PhysReg{vgpr + i}));
}
}
vgpr += 4;
}
if (ctx->outputs.mask[FRAG_RESULT_DEPTH])
regs.emplace_back(Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4], PhysReg{vgpr++}));
if (ctx->outputs.mask[FRAG_RESULT_STENCIL])
regs.emplace_back(Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4], PhysReg{vgpr++}));
if (ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
regs.emplace_back(Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4], PhysReg{vgpr++}));
build_end_with_regs(ctx, regs);
/* Exit WQM mode finally. */
ctx->program->needs_exact = true;
}
Pseudo_instruction*
add_startpgm(struct isel_context* ctx)
{
unsigned def_count = 0;
for (unsigned i = 0; i < ctx->args->arg_count; i++) {
if (ctx->args->args[i].skip)
continue;
unsigned align = MIN2(4, util_next_power_of_two(ctx->args->args[i].size));
if (ctx->args->args[i].file == AC_ARG_SGPR && ctx->args->args[i].offset % align)
def_count += ctx->args->args[i].size;
else
def_count++;
}
Pseudo_instruction* startpgm =
create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, def_count);
ctx->block->instructions.emplace_back(startpgm);
for (unsigned i = 0, arg = 0; i < ctx->args->arg_count; i++) {
if (ctx->args->args[i].skip)
continue;
enum ac_arg_regfile file = ctx->args->args[i].file;
unsigned size = ctx->args->args[i].size;
unsigned reg = ctx->args->args[i].offset;
RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
if (file == AC_ARG_SGPR && reg % MIN2(4, util_next_power_of_two(size))) {
Temp elems[16];
for (unsigned j = 0; j < size; j++) {
elems[j] = ctx->program->allocateTmp(s1);
startpgm->definitions[arg++] = Definition(elems[j].id(), PhysReg{reg + j}, s1);
}
ctx->arg_temps[i] = create_vec_from_array(ctx, elems, size, RegType::sgpr, 4);
} else {
Temp dst = ctx->program->allocateTmp(type);
Definition def(dst);
def.setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
ctx->arg_temps[i] = dst;
startpgm->definitions[arg++] = def;
if (ctx->args->args[i].pending_vmem) {
assert(file == AC_ARG_VGPR);
ctx->program->args_pending_vmem.push_back(def);
}
}
}
/* epilog has no scratch */
if (ctx->args->scratch_offset.used) {
if (ctx->program->gfx_level < GFX9) {
/* Stash these in the program so that they can be accessed later when
* handling spilling.
*/
if (ctx->args->ring_offsets.used)
ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);
} else if (ctx->program->gfx_level <= GFX10_3 && ctx->program->stage != raytracing_cs) {
/* Manually initialize scratch. For RT stages scratch initialization is done in the prolog.
*/
Operand scratch_offset = Operand(get_arg(ctx, ctx->args->scratch_offset));
scratch_offset.setLateKill(true);
Operand scratch_addr = ctx->args->ring_offsets.used
? Operand(get_arg(ctx, ctx->args->ring_offsets))
: Operand(s2);
Builder bld(ctx->program, ctx->block);
bld.pseudo(aco_opcode::p_init_scratch, bld.def(s2), bld.def(s1, scc), scratch_addr,
scratch_offset);
}
}
return startpgm;
}
void
fix_ls_vgpr_init_bug(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
constexpr unsigned hs_idx = 1u;
Builder::Result hs_thread_count =
bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->merged_wave_info), Operand::c32((8u << 16) | (hs_idx * 8u)));
Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
/* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
Temp instance_id =
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->vertex_id),
get_arg(ctx, ctx->args->instance_id), ls_has_nonzero_hs_threads);
Temp vs_rel_patch_id =
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->tcs_rel_ids),
get_arg(ctx, ctx->args->vs_rel_patch_id), ls_has_nonzero_hs_threads);
Temp vertex_id =
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), get_arg(ctx, ctx->args->tcs_patch_id),
get_arg(ctx, ctx->args->vertex_id), ls_has_nonzero_hs_threads);
ctx->arg_temps[ctx->args->instance_id.arg_index] = instance_id;
ctx->arg_temps[ctx->args->vs_rel_patch_id.arg_index] = vs_rel_patch_id;
ctx->arg_temps[ctx->args->vertex_id.arg_index] = vertex_id;
}
void
split_arguments(isel_context* ctx, Pseudo_instruction* startpgm)
{
/* Split all arguments except for the first (ring_offsets) and the last
* (exec) so that the dead channels don't stay live throughout the program.
*/
for (int i = 1; i < startpgm->definitions.size(); i++) {
if (startpgm->definitions[i].regClass().size() > 1) {
emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
startpgm->definitions[i].regClass().size());
}
}
}
void
setup_fp_mode(isel_context* ctx, nir_shader* shader)
{
Program* program = ctx->program;
unsigned float_controls = shader->info.float_controls_execution_mode;
program->next_fp_mode.preserve_signed_zero_inf_nan32 =
float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
program->next_fp_mode.must_flush_denorms32 =
float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
program->next_fp_mode.must_flush_denorms16_64 =
float_controls &
(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 | FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
program->next_fp_mode.care_about_round32 =
float_controls &
(FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
program->next_fp_mode.care_about_round16_64 =
float_controls &
(FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
/* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
* the precision seems needed for Wolfenstein: Youngblood to render correctly */
if (program->next_fp_mode.must_flush_denorms16_64)
program->next_fp_mode.denorm16_64 = 0;
else
program->next_fp_mode.denorm16_64 = fp_denorm_keep;
/* preserving fp32 denorms is expensive, so only do it if asked */
if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
program->next_fp_mode.denorm32 = fp_denorm_keep;
else
program->next_fp_mode.denorm32 = 0;
if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
program->next_fp_mode.round32 = fp_round_tz;
else
program->next_fp_mode.round32 = fp_round_ne;
if (float_controls &
(FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
program->next_fp_mode.round16_64 = fp_round_tz;
else
program->next_fp_mode.round16_64 = fp_round_ne;
ctx->block->fp_mode = program->next_fp_mode;
}
void
cleanup_cfg(Program* program)
{
/* create linear_succs/logical_succs */
for (Block& BB : program->blocks) {
for (unsigned idx : BB.linear_preds)
program->blocks[idx].linear_succs.emplace_back(BB.index);
for (unsigned idx : BB.logical_preds)
program->blocks[idx].logical_succs.emplace_back(BB.index);
}
}
void
finish_program(isel_context* ctx)
{
cleanup_cfg(ctx->program);
/* Insert a single p_end_wqm instruction after the last derivative calculation */
if (ctx->program->stage == fragment_fs && ctx->program->needs_wqm && ctx->program->needs_exact) {
/* Find the next BB at top-level CFG */
while (!(ctx->program->blocks[ctx->wqm_block_idx].kind & block_kind_top_level)) {
ctx->wqm_block_idx++;
ctx->wqm_instruction_idx = 0;
}
std::vector<aco_ptr<Instruction>>* instrs =
&ctx->program->blocks[ctx->wqm_block_idx].instructions;
auto it = instrs->begin() + ctx->wqm_instruction_idx;
/* Delay transistion to Exact to help optimizations and scheduling */
while (it != instrs->end()) {
aco_ptr<Instruction>& instr = *it;
/* End WQM before: */
if (instr->isVMEM() || instr->isFlatLike() || instr->isDS() || instr->isEXP() ||
instr->opcode == aco_opcode::p_dual_src_export_gfx11 ||
instr->opcode == aco_opcode::p_logical_start)
break;
++it;
/* End WQM after: */
if (instr->opcode == aco_opcode::p_logical_end ||
instr->opcode == aco_opcode::p_discard_if ||
instr->opcode == aco_opcode::p_demote_to_helper ||
instr->opcode == aco_opcode::p_end_with_regs)
break;
}
Builder bld(ctx->program);
bld.reset(instrs, it);
bld.pseudo(aco_opcode::p_end_wqm);
}
}
Temp
lanecount_to_mask(isel_context* ctx, Temp count)
{
assert(count.regClass() == s1);
Builder bld(ctx->program, ctx->block);
Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand::zero());
Temp cond;
if (ctx->program->wave_size == 64) {
/* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count,
Operand::c32(6u /* log2(64) */));
cond =
bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand::c32(-1u), mask, bld.scc(active_64));
} else {
/* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of
* the register */
cond = emit_extract_vector(ctx, mask, 0, bld.lm);
}
return cond;
}
Temp
merged_wave_info_to_mask(isel_context* ctx, unsigned i)
{
Builder bld(ctx->program, ctx->block);
/* lanecount_to_mask() only cares about s0.u[6:0] so we don't need either s_bfe nor s_and here */
Temp count = i == 0 ? get_arg(ctx, ctx->args->merged_wave_info)
: bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->merged_wave_info), Operand::c32(i * 8u));
return lanecount_to_mask(ctx, count);
}
static void
insert_rt_jump_next(isel_context& ctx, const struct ac_shader_args* args)
{
unsigned src_count = ctx.args->arg_count;
Pseudo_instruction* ret =
create_instruction<Pseudo_instruction>(aco_opcode::p_return, Format::PSEUDO, src_count, 0);
ctx.block->instructions.emplace_back(ret);
for (unsigned i = 0; i < src_count; i++) {
enum ac_arg_regfile file = ctx.args->args[i].file;
unsigned size = ctx.args->args[i].size;
unsigned reg = ctx.args->args[i].offset + (file == AC_ARG_SGPR ? 0 : 256);
RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
Operand op = ctx.arg_temps[i].id() ? Operand(ctx.arg_temps[i], PhysReg{reg})
: Operand(PhysReg{reg}, type);
ret->operands[i] = op;
}
Builder bld(ctx.program, ctx.block);
bld.sop1(aco_opcode::s_setpc_b64, get_arg(&ctx, ctx.args->rt.uniform_shader_addr));
}
void
select_program_rt(isel_context& ctx, unsigned shader_count, struct nir_shader* const* shaders,
const struct ac_shader_args* args)
{
for (unsigned i = 0; i < shader_count; i++) {
if (i) {
ctx.block = ctx.program->create_and_insert_block();
ctx.block->kind = block_kind_top_level | block_kind_resume;
}
nir_shader* nir = shaders[i];
init_context(&ctx, nir);
setup_fp_mode(&ctx, nir);
Pseudo_instruction* startpgm = add_startpgm(&ctx);
append_logical_start(ctx.block);
split_arguments(&ctx, startpgm);
visit_cf_list(&ctx, &nir_shader_get_entrypoint(nir)->body);
append_logical_end(ctx.block);
ctx.block->kind |= block_kind_uniform;
/* Fix output registers and jump to next shader. We can skip this when dealing with a raygen
* shader without shader calls.
*/
if (shader_count > 1 || shaders[i]->info.stage != MESA_SHADER_RAYGEN)
insert_rt_jump_next(ctx, args);
cleanup_context(&ctx);
}
ctx.program->config->float_mode = ctx.program->blocks[0].fp_mode.val;
finish_program(&ctx);
}
void
pops_await_overlapped_waves(isel_context* ctx)
{
ctx->program->has_pops_overlapped_waves_wait = true;
Builder bld(ctx->program, ctx->block);
if (ctx->program->gfx_level >= GFX11) {
/* GFX11+ - waiting for the export from the overlapped waves.
* Await the export_ready event (bit wait_event_imm_dont_wait_export_ready clear).
*/
bld.sopp(aco_opcode::s_wait_event, -1, 0);
return;
}
/* Pre-GFX11 - sleep loop polling the exiting wave ID. */
const Temp collision = get_arg(ctx, ctx->args->pops_collision_wave_id);
/* Check if there's an overlap in the current wave - otherwise, the wait may result in a hang. */
const Temp did_overlap =
bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), collision, Operand::c32(31));
if_context did_overlap_if_context;
begin_uniform_if_then(ctx, &did_overlap_if_context, did_overlap);
bld.reset(ctx->block);
/* Set the packer register - after this, pops_exiting_wave_id can be polled. */
if (ctx->program->gfx_level >= GFX10) {
/* 2 packer ID bits on GFX10-10.3. */
const Temp packer_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
collision, Operand::c32(0x2001c));
/* POPS_PACKER register: bit 0 - POPS enabled for this wave, bits 2:1 - packer ID. */
const Temp packer_id_hwreg_bits = bld.sop2(aco_opcode::s_lshl1_add_u32, bld.def(s1),
bld.def(s1, scc), packer_id, Operand::c32(1));
bld.sopk(aco_opcode::s_setreg_b32, packer_id_hwreg_bits, ((3 - 1) << 11) | 25);
} else {
/* 1 packer ID bit on GFX9. */
const Temp packer_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
collision, Operand::c32(0x1001c));
/* MODE register: bit 24 - wave is associated with packer 0, bit 25 - with packer 1.
* Packer index to packer bits: 0 to 0b01, 1 to 0b10.
*/
const Temp packer_id_hwreg_bits =
bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), packer_id, Operand::c32(1));
bld.sopk(aco_opcode::s_setreg_b32, packer_id_hwreg_bits, ((2 - 1) << 11) | (24 << 6) | 1);
}
Temp newest_overlapped_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
collision, Operand::c32(0xa0010));
if (ctx->program->gfx_level < GFX10) {
/* On GFX9, the newest overlapped wave ID value passed to the shader is smaller than the
* actual wave ID by 1 in case of wraparound.
*/
const Temp current_wave_id = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc),
collision, Operand::c32(0x3ff));
const Temp newest_overlapped_wave_id_wrapped = bld.sopc(
aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), newest_overlapped_wave_id, current_wave_id);
newest_overlapped_wave_id =
bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), newest_overlapped_wave_id,
newest_overlapped_wave_id_wrapped);
}
/* The wave IDs are the low 10 bits of a monotonically increasing wave counter.
* The overlapped and the exiting wave IDs can't be larger than the current wave ID, and they are
* no more than 1023 values behind the current wave ID.
* Remap the overlapped and the exiting wave IDs from wrapping to monotonic so an unsigned
* comparison can be used: the wave `current - 1023` becomes 0, it's followed by a piece growing
* away from 0, then a piece increasing until UINT32_MAX, and the current wave is UINT32_MAX.
* To do that, subtract `current - 1023`, which with wrapping arithmetic is (current + 1), and
* `a - (b + 1)` is `a + ~b`.
* Note that if the 10-bit current wave ID is 1023 (thus 1024 will be subtracted), the wave
* `current - 1023` will become `UINT32_MAX - 1023` rather than 0, but all the possible wave IDs
* will still grow monotonically in the 32-bit value, and the unsigned comparison will behave as
* expected.
*/
const Temp wave_id_offset = bld.sop2(aco_opcode::s_nand_b32, bld.def(s1), bld.def(s1, scc),
collision, Operand::c32(0x3ff));
newest_overlapped_wave_id = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
newest_overlapped_wave_id, wave_id_offset);
/* Await the overlapped waves. */
loop_context wait_loop_context;
begin_loop(ctx, &wait_loop_context);
bld.reset(ctx->block);
const Temp exiting_wave_id = bld.pseudo(aco_opcode::p_pops_gfx9_add_exiting_wave_id, bld.def(s1),
bld.def(s1, scc), wave_id_offset);
/* If the exiting (not exited) wave ID is larger than the newest overlapped wave ID (after
* remapping both to monotonically increasing unsigned integers), the newest overlapped wave has
* exited the ordered section.
*/
const Temp newest_overlapped_wave_exited = bld.sopc(aco_opcode::s_cmp_lt_u32, bld.def(s1, scc),
newest_overlapped_wave_id, exiting_wave_id);
if_context newest_overlapped_wave_exited_if_context;
begin_uniform_if_then(ctx, &newest_overlapped_wave_exited_if_context,
newest_overlapped_wave_exited);
emit_loop_break(ctx);
begin_uniform_if_else(ctx, &newest_overlapped_wave_exited_if_context);
end_uniform_if(ctx, &newest_overlapped_wave_exited_if_context);
bld.reset(ctx->block);
/* Sleep before rechecking to let overlapped waves run for some time. */
bld.sopp(aco_opcode::s_sleep, -1, ctx->program->gfx_level >= GFX10 ? UINT16_MAX : 3);
end_loop(ctx, &wait_loop_context);
bld.reset(ctx->block);
/* Indicate the wait has been done to subsequent compilation stages. */
bld.pseudo(aco_opcode::p_pops_gfx9_overlapped_wave_wait_done);
begin_uniform_if_else(ctx, &did_overlap_if_context);
end_uniform_if(ctx, &did_overlap_if_context);
bld.reset(ctx->block);
}
static void
create_merged_jump_to_epilog(isel_context* ctx)
{
Builder bld(ctx->program, ctx->block);
std::vector<Operand> regs;
for (unsigned i = 0; i < ctx->args->arg_count; i++) {
if (!ctx->args->args[i].preserved)
continue;
const enum ac_arg_regfile file = ctx->args->args[i].file;
const unsigned reg = ctx->args->args[i].offset;
Operand op(ctx->arg_temps[i]);
op.setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
regs.emplace_back(op);
}
Temp continue_pc =
convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->program->info.next_stage_pc));
aco_ptr<Pseudo_instruction> jump{create_instruction<Pseudo_instruction>(
aco_opcode::p_jump_to_epilog, Format::PSEUDO, 1 + regs.size(), 0)};
jump->operands[0] = Operand(continue_pc);
for (unsigned i = 0; i < regs.size(); i++) {
jump->operands[i + 1] = regs[i];
}
ctx->block->instructions.emplace_back(std::move(jump));
}
static void
create_end_for_merged_shader(isel_context* ctx)
{
std::vector<Operand> regs;
unsigned max_args;
if (ctx->stage.sw == SWStage::VS) {
assert(ctx->args->vertex_id.used);
max_args = ctx->args->vertex_id.arg_index;
} else {
assert(ctx->stage.sw == SWStage::TES);
assert(ctx->args->tes_u.used);
max_args = ctx->args->tes_u.arg_index;
}
struct ac_arg arg;
arg.used = true;
for (arg.arg_index = 0; arg.arg_index < max_args; arg.arg_index++)
regs.emplace_back(get_arg_for_end(ctx, arg));
build_end_with_regs(ctx, regs);
}
void
select_shader(isel_context& ctx, nir_shader* nir, const bool need_startpgm, const bool need_endpgm,
const bool need_barrier, if_context* ic_merged_wave_info,
const bool check_merged_wave_info, const bool endif_merged_wave_info)
{
init_context(&ctx, nir);
setup_fp_mode(&ctx, nir);
Program* program = ctx.program;
if (need_startpgm) {
/* Needs to be after init_context() for FS. */
Pseudo_instruction* startpgm = add_startpgm(&ctx);
append_logical_start(ctx.block);
if (ctx.options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs &&
!program->info.vs.has_prolog)
fix_ls_vgpr_init_bug(&ctx);
split_arguments(&ctx, startpgm);
if (!program->info.vs.has_prolog &&
(program->stage.has(SWStage::VS) || program->stage.has(SWStage::TES))) {
Builder(ctx.program, ctx.block).sopp(aco_opcode::s_setprio, -1u, 0x3u);
}
}
if (program->gfx_level == GFX10 && program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER &&
!program->stage.has(SWStage::GS)) {
/* Workaround for Navi1x HW bug to ensure that all NGG waves launch before
* s_sendmsg(GS_ALLOC_REQ).
*/
Builder(ctx.program, ctx.block).sopp(aco_opcode::s_barrier, -1u, 0u);
}
if (check_merged_wave_info) {
const unsigned i =
nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ? 0 : 1;
const Temp cond = merged_wave_info_to_mask(&ctx, i);
begin_divergent_if_then(&ctx, ic_merged_wave_info, cond);
}
if (need_barrier) {
const sync_scope scope = ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq &&
program->wave_size % nir->info.tess.tcs_vertices_out == 0
? scope_subgroup
: scope_workgroup;
Builder(ctx.program, ctx.block)
.barrier(aco_opcode::p_barrier, memory_sync_info(storage_shared, semantic_acqrel, scope),
scope);
}
nir_function_impl* func = nir_shader_get_entrypoint(nir);
visit_cf_list(&ctx, &func->body);
if (ctx.program->info.has_epilog) {
if (ctx.stage == fragment_fs) {
if (ctx.options->is_opengl)
create_fs_end_for_epilog(&ctx);
else
create_fs_jump_to_epilog(&ctx);
/* FS epilogs always have at least one color/null export. */
ctx.program->has_color_exports = true;
} else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
assert(ctx.stage == tess_control_hs || ctx.stage == vertex_tess_control_hs);
if (ctx.options->is_opengl)
create_tcs_end_for_epilog(&ctx);
else
create_tcs_jump_to_epilog(&ctx);
}
}
if (endif_merged_wave_info) {
begin_divergent_if_else(&ctx, ic_merged_wave_info);
end_divergent_if(&ctx, ic_merged_wave_info);
}
bool is_first_stage_of_merged_shader = false;
if (ctx.program->info.merged_shader_compiled_separately &&
(ctx.stage.sw == SWStage::VS || ctx.stage.sw == SWStage::TES)) {
assert(program->gfx_level >= GFX9);
if (ctx.options->is_opengl)
create_end_for_merged_shader(&ctx);
else
create_merged_jump_to_epilog(&ctx);
is_first_stage_of_merged_shader = true;
}
cleanup_context(&ctx);
if (need_endpgm) {
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
ctx.block->kind |= block_kind_uniform;
if ((!program->info.has_epilog && !is_first_stage_of_merged_shader) ||
(nir->info.stage == MESA_SHADER_TESS_CTRL && program->gfx_level >= GFX9)) {
Builder(program, ctx.block).sopp(aco_opcode::s_endpgm);
}
finish_program(&ctx);
}
}
void
select_program_merged(isel_context& ctx, const unsigned shader_count, nir_shader* const* shaders)
{
if_context ic_merged_wave_info;
const bool ngg_gs = ctx.stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER && ctx.stage.has(SWStage::GS);
for (unsigned i = 0; i < shader_count; i++) {
nir_shader* nir = shaders[i];
/* We always need to insert p_startpgm at the beginning of the first shader. */
const bool need_startpgm = i == 0;
/* Need to handle program end for last shader stage. */
const bool need_endpgm = i == shader_count - 1;
/* In a merged VS+TCS HS, the VS implementation can be completely empty. */
nir_function_impl* func = nir_shader_get_entrypoint(nir);
const bool empty_shader =
nir_cf_list_is_empty_block(&func->body) &&
((nir->info.stage == MESA_SHADER_VERTEX &&
(ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
(nir->info.stage == MESA_SHADER_TESS_EVAL && ctx.stage == tess_eval_geometry_gs));
/* See if we need to emit a check of the merged wave info SGPR. */
const bool check_merged_wave_info =
ctx.tcs_in_out_eq ? i == 0 : (shader_count >= 2 && !empty_shader && !(ngg_gs && i == 1));
const bool endif_merged_wave_info =
ctx.tcs_in_out_eq ? i == 1 : (check_merged_wave_info && !(ngg_gs && i == 1));
/* Skip s_barrier from TCS when VS outputs are not stored in the LDS. */
const bool tcs_skip_barrier =
ctx.stage == vertex_tess_control_hs && ctx.tcs_temp_only_inputs == nir->info.inputs_read;
/* A barrier is usually needed at the beginning of the second shader, with exceptions. */
const bool need_barrier = i != 0 && !ngg_gs && !tcs_skip_barrier;
select_shader(ctx, nir, need_startpgm, need_endpgm, need_barrier, &ic_merged_wave_info,
check_merged_wave_info, endif_merged_wave_info);
if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
/* Special handling when TCS input and output patch size is the same.
* Outputs of the previous stage are inputs to the next stage.
*/
ctx.inputs = ctx.outputs;
ctx.outputs = shader_io_state();
}
}
}
Temp
get_tess_ring_descriptor(isel_context* ctx, const struct aco_tcs_epilog_info* einfo,
bool is_tcs_factor_ring)
{
Builder bld(ctx->program, ctx->block);
if (!ctx->options->is_opengl) {
Temp ring_offsets = get_arg(ctx, ctx->args->ring_offsets);
uint32_t tess_ring_offset =
is_tcs_factor_ring ? 5 /* RING_HS_TESS_FACTOR */ : 6 /* RING_HS_TESS_OFFCHIP */;
return bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ring_offsets,
Operand::c32(tess_ring_offset * 16u));
}
Temp addr = get_arg(ctx, einfo->tcs_out_lds_layout);
/* TCS only receives high 13 bits of the address. */
addr = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), addr,
Operand::c32(0xfff80000));
if (is_tcs_factor_ring) {
addr = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr,
Operand::c32(einfo->tess_offchip_ring_size));
}
uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (ctx->options->gfx_level >= GFX11) {
rsrc3 |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW);
} else if (ctx->options->gfx_level >= GFX10) {
rsrc3 |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr,
Operand::c32(ctx->options->address32_hi), Operand::c32(0xffffffff),
Operand::c32(rsrc3));
}
void
store_tess_factor_to_tess_ring(isel_context* ctx, Temp tess_ring_desc, Temp factors[],
unsigned factor_comps, Temp sbase, Temp voffset, Temp num_patches,
unsigned patch_offset)
{
Builder bld(ctx->program, ctx->block);
Temp soffset = sbase;
if (patch_offset) {
Temp offset =
bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), num_patches, Operand::c32(patch_offset));
soffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), soffset, offset);
}
Temp data = factor_comps == 1
? factors[0]
: create_vec_from_array(ctx, factors, factor_comps, RegType::vgpr, 4);
emit_single_mubuf_store(ctx, tess_ring_desc, voffset, soffset, Temp(), data, 0,
memory_sync_info(storage_vmem_output), true, false, false);
}
Temp
build_fast_udiv_nuw(isel_context* ctx, Temp num, Temp multiplier, Temp pre_shift, Temp post_shift,
Temp increment)
{
Builder bld(ctx->program, ctx->block);
num = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), pre_shift, num);
num = bld.nuw().vadd32(bld.def(v1), num, increment);
num = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), num, multiplier);
return bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), post_shift, num);
}
Temp
get_gl_vs_prolog_vertex_index(isel_context* ctx, const struct aco_gl_vs_prolog_info* vinfo,
unsigned input_index, Temp instance_divisor_constbuf)
{
bool divisor_is_one = vinfo->instance_divisor_is_one & (1u << input_index);
bool divisor_is_fetched = vinfo->instance_divisor_is_fetched & (1u << input_index);
Builder bld(ctx->program, ctx->block);
Temp index;
if (divisor_is_one) {
index = get_arg(ctx, ctx->args->instance_id);
} else if (divisor_is_fetched) {
Temp instance_id = get_arg(ctx, ctx->args->instance_id);
Temp udiv_factors = bld.smem(aco_opcode::s_buffer_load_dwordx4, bld.def(s4),
instance_divisor_constbuf, Operand::c32(input_index * 16));
emit_split_vector(ctx, udiv_factors, 4);
index = build_fast_udiv_nuw(ctx, instance_id, emit_extract_vector(ctx, udiv_factors, 0, s1),
emit_extract_vector(ctx, udiv_factors, 1, s1),
emit_extract_vector(ctx, udiv_factors, 2, s1),
emit_extract_vector(ctx, udiv_factors, 3, s1));
}
if (divisor_is_one || divisor_is_fetched) {
Temp start_instance = get_arg(ctx, ctx->args->start_instance);
index = bld.vadd32(bld.def(v1), index, start_instance);
} else {
Temp base_vertex = get_arg(ctx, ctx->args->base_vertex);
Temp vertex_id = get_arg(ctx, ctx->args->vertex_id);
index = bld.vadd32(bld.def(v1), base_vertex, vertex_id);
}
return index;
}
void
emit_polygon_stipple(isel_context* ctx, const struct aco_ps_prolog_info* finfo)
{
Builder bld(ctx->program, ctx->block);
/* Use the fixed-point gl_FragCoord input.
* Since the stipple pattern is 32x32 and it repeats, just get 5 bits
* per coordinate to get the repeating effect.
*/
Temp pos_fixed_pt = get_arg(ctx, ctx->args->pos_fixed_pt);
Temp addr0 = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand::c32(0x1f), pos_fixed_pt);
Temp addr1 = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), pos_fixed_pt, Operand::c32(16u),
Operand::c32(5u));
/* Load the buffer descriptor. */
Temp list = get_arg(ctx, finfo->internal_bindings);
list = convert_pointer_to_64_bit(ctx, list);
Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), list,
Operand::c32(finfo->poly_stipple_buf_offset));
/* The stipple pattern is 32x32, each row has 32 bits. */
Temp offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2), addr1);
Temp row = bld.mubuf(aco_opcode::buffer_load_dword, bld.def(v1), desc, offset, Operand::c32(0u),
0, true);
Temp bit = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), row, addr0, Operand::c32(1u));
Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand::zero(), bit);
bld.pseudo(aco_opcode::p_demote_to_helper, cond);
ctx->block->kind |= block_kind_uses_discard;
ctx->program->needs_exact = true;
}
void
overwrite_interp_args(isel_context* ctx, const struct aco_ps_prolog_info* finfo)
{
Builder bld(ctx->program, ctx->block);
if (finfo->bc_optimize_for_persp || finfo->bc_optimize_for_linear) {
/* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
* The hw doesn't compute CENTROID if the whole wave only
* contains fully-covered quads.
*/
Temp bc_optimize = get_arg(ctx, ctx->args->prim_mask);
/* enabled when bit 31 is set */
Temp cond =
bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), bc_optimize, Operand::c32(31u));
/* scale 1bit scc to wave size bits used by v_cndmask */
cond = bool_to_vector_condition(ctx, cond);
if (finfo->bc_optimize_for_persp) {
Temp center = get_arg(ctx, ctx->args->persp_center);
Temp centroid = get_arg(ctx, ctx->args->persp_centroid);
Temp dst = bld.tmp(v2);
select_vec2(ctx, dst, cond, center, centroid);
ctx->arg_temps[ctx->args->persp_centroid.arg_index] = dst;
}
if (finfo->bc_optimize_for_linear) {
Temp center = get_arg(ctx, ctx->args->linear_center);
Temp centroid = get_arg(ctx, ctx->args->linear_centroid);
Temp dst = bld.tmp(v2);
select_vec2(ctx, dst, cond, center, centroid);
ctx->arg_temps[ctx->args->linear_centroid.arg_index] = dst;
}
}
if (finfo->force_persp_sample_interp) {
Temp persp_sample = get_arg(ctx, ctx->args->persp_sample);
ctx->arg_temps[ctx->args->persp_center.arg_index] = persp_sample;
ctx->arg_temps[ctx->args->persp_centroid.arg_index] = persp_sample;
}
if (finfo->force_linear_sample_interp) {
Temp linear_sample = get_arg(ctx, ctx->args->linear_sample);
ctx->arg_temps[ctx->args->linear_center.arg_index] = linear_sample;
ctx->arg_temps[ctx->args->linear_centroid.arg_index] = linear_sample;
}
if (finfo->force_persp_center_interp) {
Temp persp_center = get_arg(ctx, ctx->args->persp_center);
ctx->arg_temps[ctx->args->persp_sample.arg_index] = persp_center;
ctx->arg_temps[ctx->args->persp_centroid.arg_index] = persp_center;
}
if (finfo->force_linear_center_interp) {
Temp linear_center = get_arg(ctx, ctx->args->linear_center);
ctx->arg_temps[ctx->args->linear_sample.arg_index] = linear_center;
ctx->arg_temps[ctx->args->linear_centroid.arg_index] = linear_center;
}
}
void
overwrite_samplemask_arg(isel_context* ctx, const struct aco_ps_prolog_info* finfo)
{
Builder bld(ctx->program, ctx->block);
/* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
* says:
*
* "When per-sample shading is active due to the use of a fragment
* input qualified by sample or due to the use of the gl_SampleID
* or gl_SamplePosition variables, only the bit for the current
* sample is set in gl_SampleMaskIn. When state specifies multiple
* fragment shader invocations for a given fragment, the sample
* mask for any single fragment shader invocation may specify a
* subset of the covered samples for the fragment. In this case,
* the bit corresponding to each covered sample will be set in
* exactly one fragment shader invocation."
*
* The samplemask loaded by hardware is always the coverage of the
* entire pixel/fragment, so mask bits out based on the sample ID.
*/
if (finfo->samplemask_log_ps_iter) {
Temp ancillary = get_arg(ctx, ctx->args->ancillary);
Temp sampleid = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), ancillary, Operand::c32(8u),
Operand::c32(4u));
Temp samplemask = get_arg(ctx, ctx->args->sample_coverage);
uint32_t ps_iter_mask = ac_get_ps_iter_mask(1 << finfo->samplemask_log_ps_iter);
Temp iter_mask = bld.copy(bld.def(v1), Operand::c32(ps_iter_mask));
Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sampleid, iter_mask);
samplemask = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), samplemask, mask);
ctx->arg_temps[ctx->args->sample_coverage.arg_index] = samplemask;
}
}
Temp
get_interp_color(isel_context* ctx, int interp_vgpr, unsigned attr_index, unsigned comp)
{
Builder bld(ctx->program, ctx->block);
Temp dst = bld.tmp(v1);
Temp prim_mask = get_arg(ctx, ctx->args->prim_mask);
if (interp_vgpr != -1) {
/* interp args are all 2 vgprs */
int arg_index = ctx->args->persp_sample.arg_index + interp_vgpr / 2;
Temp interp_ij = ctx->arg_temps[arg_index];
emit_interp_instr(ctx, attr_index, comp, interp_ij, dst, prim_mask);
} else {
emit_interp_mov_instr(ctx, attr_index, comp, 0, dst, prim_mask);
}
return dst;
}
void
interpolate_color_args(isel_context* ctx, const struct aco_ps_prolog_info* finfo,
std::vector<Operand>& regs)
{
if (!finfo->colors_read)
return;
Builder bld(ctx->program, ctx->block);
unsigned vgpr = 256 + ctx->args->num_vgprs_used;
if (finfo->color_two_side) {
Temp face = get_arg(ctx, ctx->args->front_face);
Temp is_face_positive =
bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand::zero(), face);
u_foreach_bit (i, finfo->colors_read) {
unsigned color_index = i / 4;
unsigned front_index = finfo->color_attr_index[color_index];
int interp_vgpr = finfo->color_interp_vgpr_index[color_index];
/* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
* otherwise it's at offset "num_inputs".
*/
unsigned back_index = finfo->num_interp_inputs;
if (color_index == 1 && finfo->colors_read & 0xf)
back_index++;
Temp front = get_interp_color(ctx, interp_vgpr, front_index, i % 4);
Temp back = get_interp_color(ctx, interp_vgpr, back_index, i % 4);
Temp color =
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), back, front, is_face_positive);
regs.emplace_back(Operand(color, PhysReg{vgpr++}));
}
} else {
u_foreach_bit (i, finfo->colors_read) {
unsigned color_index = i / 4;
unsigned attr_index = finfo->color_attr_index[color_index];
int interp_vgpr = finfo->color_interp_vgpr_index[color_index];
Temp color = get_interp_color(ctx, interp_vgpr, attr_index, i % 4);
regs.emplace_back(Operand(color, PhysReg{vgpr++}));
}
}
}
void
emit_clamp_alpha_test(isel_context* ctx, const struct aco_ps_epilog_info* info, Temp colors[4],
unsigned color_index)
{
Builder bld(ctx->program, ctx->block);
if (info->clamp_color) {
for (unsigned i = 0; i < 4; i++) {
if (colors[i].regClass() == v2b) {
colors[i] = bld.vop3(aco_opcode::v_med3_f16, bld.def(v2b), Operand::c16(0u),
Operand::c16(0x3c00), colors[i]);
} else {
assert(colors[i].regClass() == v1);
colors[i] = bld.vop3(aco_opcode::v_med3_f32, bld.def(v1), Operand::zero(),
Operand::c32(0x3f800000u), colors[i]);
}
}
}
if (info->alpha_to_one) {
if (colors[3].regClass() == v2b)
colors[3] = bld.copy(bld.def(v2b), Operand::c16(0x3c00));
else
colors[3] = bld.copy(bld.def(v1), Operand::c32(0x3f800000u));
}
if (color_index == 0 && info->alpha_func != COMPARE_FUNC_ALWAYS) {
Operand cond = Operand::c32(-1u);
if (info->alpha_func != COMPARE_FUNC_NEVER) {
aco_opcode opcode = aco_opcode::num_opcodes;
switch (info->alpha_func) {
case COMPARE_FUNC_LESS: opcode = aco_opcode::v_cmp_ngt_f32; break;
case COMPARE_FUNC_EQUAL: opcode = aco_opcode::v_cmp_neq_f32; break;
case COMPARE_FUNC_LEQUAL: opcode = aco_opcode::v_cmp_nge_f32; break;
case COMPARE_FUNC_GREATER: opcode = aco_opcode::v_cmp_nlt_f32; break;
case COMPARE_FUNC_NOTEQUAL: opcode = aco_opcode::v_cmp_nlg_f32; break;
case COMPARE_FUNC_GEQUAL: opcode = aco_opcode::v_cmp_nle_f32; break;
default: unreachable("invalid alpha func");
}
Temp ref = get_arg(ctx, info->alpha_reference);
Temp alpha = colors[3].regClass() == v2b
? bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), colors[3])
: colors[3];
/* true if not pass */
cond = bld.vopc(opcode, bld.def(bld.lm), ref, alpha);
}
bld.pseudo(aco_opcode::p_discard_if, cond);
ctx->block->kind |= block_kind_uses_discard;
ctx->program->needs_exact = true;
}
}
} /* end namespace */
void
select_program(Program* program, unsigned shader_count, struct nir_shader* const* shaders,
ac_shader_config* config, const struct aco_compiler_options* options,
const struct aco_shader_info* info, const struct ac_shader_args* args)
{
isel_context ctx =
setup_isel_context(program, shader_count, shaders, config, options, info, args);
if (ctx.stage == raytracing_cs)
return select_program_rt(ctx, shader_count, shaders, args);
if (shader_count >= 2) {
select_program_merged(ctx, shader_count, shaders);
} else {
bool need_barrier = false, check_merged_wave_info = false, endif_merged_wave_info = false;
if_context ic_merged_wave_info;
/* Handle separate compilation of VS+TCS and {VS,TES}+GS on GFX9+. */
if (ctx.program->info.merged_shader_compiled_separately) {
assert(ctx.program->gfx_level >= GFX9);
if (ctx.stage.sw == SWStage::VS || ctx.stage.sw == SWStage::TES) {
check_merged_wave_info = endif_merged_wave_info = true;
} else {
const bool ngg_gs =
ctx.stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER && ctx.stage.sw == SWStage::GS;
assert(ctx.stage == tess_control_hs || ctx.stage == geometry_gs || ngg_gs);
check_merged_wave_info = endif_merged_wave_info = !ngg_gs;
need_barrier = !ngg_gs;
}
}
select_shader(ctx, shaders[0], true, true, need_barrier, &ic_merged_wave_info,
check_merged_wave_info, endif_merged_wave_info);
}
}
void
select_trap_handler_shader(Program* program, struct nir_shader* shader, ac_shader_config* config,
const struct aco_compiler_options* options,
const struct aco_shader_info* info, const struct ac_shader_args* args)
{
assert(options->gfx_level == GFX8);
init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode,
config);
isel_context ctx = {};
ctx.program = program;
ctx.args = args;
ctx.options = options;
ctx.stage = program->stage;
ctx.block = ctx.program->create_and_insert_block();
ctx.block->kind = block_kind_top_level;
program->workgroup_size = 1; /* XXX */
add_startpgm(&ctx);
append_logical_start(ctx.block);
Builder bld(ctx.program, ctx.block);
/* Load the buffer descriptor from TMA. */
bld.smem(aco_opcode::s_load_dwordx4, Definition(PhysReg{ttmp4}, s4), Operand(PhysReg{tma}, s2),
Operand::zero());
/* Store TTMP0-TTMP1. */
bld.smem(aco_opcode::s_buffer_store_dwordx2, Operand(PhysReg{ttmp4}, s4), Operand::zero(),
Operand(PhysReg{ttmp0}, s2), memory_sync_info(), true);
uint32_t hw_regs_idx[] = {
2, /* HW_REG_STATUS */
3, /* HW_REG_TRAP_STS */
4, /* HW_REG_HW_ID */
7, /* HW_REG_IB_STS */
};
/* Store some hardware registers. */
for (unsigned i = 0; i < ARRAY_SIZE(hw_regs_idx); i++) {
/* "((size - 1) << 11) | register" */
bld.sopk(aco_opcode::s_getreg_b32, Definition(PhysReg{ttmp8}, s1),
((20 - 1) << 11) | hw_regs_idx[i]);
bld.smem(aco_opcode::s_buffer_store_dword, Operand(PhysReg{ttmp4}, s4),
Operand::c32(8u + i * 4), Operand(PhysReg{ttmp8}, s1), memory_sync_info(), true);
}
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
ctx.block->kind |= block_kind_uniform;
bld.sopp(aco_opcode::s_endpgm);
finish_program(&ctx);
}
Operand
get_arg_fixed(const struct ac_shader_args* args, struct ac_arg arg)
{
enum ac_arg_regfile file = args->args[arg.arg_index].file;
unsigned size = args->args[arg.arg_index].size;
RegClass rc = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
return Operand(get_arg_reg(args, arg), rc);
}
unsigned
load_vb_descs(Builder& bld, PhysReg dest, Operand base, unsigned start, unsigned max)
{
unsigned count = MIN2((bld.program->dev.sgpr_limit - dest.reg()) / 4u, max);
unsigned num_loads = (count / 4u) + util_bitcount(count & 0x3);
if (bld.program->gfx_level >= GFX10 && num_loads > 1)
bld.sopp(aco_opcode::s_clause, -1, num_loads - 1);
for (unsigned i = 0; i < count;) {
unsigned size = 1u << util_logbase2(MIN2(count - i, 4));
if (size == 4)
bld.smem(aco_opcode::s_load_dwordx16, Definition(dest, s16), base,
Operand::c32((start + i) * 16u));
else if (size == 2)
bld.smem(aco_opcode::s_load_dwordx8, Definition(dest, s8), base,
Operand::c32((start + i) * 16u));
else
bld.smem(aco_opcode::s_load_dwordx4, Definition(dest, s4), base,
Operand::c32((start + i) * 16u));
dest = dest.advance(size * 16u);
i += size;
}
return count;
}
Operand
calc_nontrivial_instance_id(Builder& bld, const struct ac_shader_args* args,
const struct aco_vs_prolog_info* pinfo, unsigned index,
Operand instance_id, Operand start_instance, PhysReg tmp_sgpr,
PhysReg tmp_vgpr0, PhysReg tmp_vgpr1)
{
bld.smem(aco_opcode::s_load_dwordx2, Definition(tmp_sgpr, s2),
get_arg_fixed(args, pinfo->inputs), Operand::c32(8u + index * 8u));
wait_imm lgkm_imm;
lgkm_imm.lgkm = 0;
bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(bld.program->gfx_level));
Definition fetch_index_def(tmp_vgpr0, v1);
Operand fetch_index(tmp_vgpr0, v1);
Operand div_info(tmp_sgpr, s1);
if (bld.program->gfx_level >= GFX8 && bld.program->gfx_level < GFX11) {
/* use SDWA */
if (bld.program->gfx_level < GFX9) {
bld.vop1(aco_opcode::v_mov_b32, Definition(tmp_vgpr1, v1), div_info);
div_info = Operand(tmp_vgpr1, v1);
}
bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, instance_id);
Instruction* instr;
if (bld.program->gfx_level >= GFX9)
instr = bld.vop2_sdwa(aco_opcode::v_add_u32, fetch_index_def, div_info, fetch_index).instr;
else
instr = bld.vop2_sdwa(aco_opcode::v_add_co_u32, fetch_index_def, Definition(vcc, bld.lm),
div_info, fetch_index)
.instr;
instr->sdwa().sel[0] = SubdwordSel::ubyte1;
bld.vop3(aco_opcode::v_mul_hi_u32, fetch_index_def, Operand(tmp_sgpr.advance(4), s1),
fetch_index);
instr =
bld.vop2_sdwa(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, fetch_index).instr;
instr->sdwa().sel[0] = SubdwordSel::ubyte2;
} else {
Operand tmp_op(tmp_vgpr1, v1);
Definition tmp_def(tmp_vgpr1, v1);
bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, div_info, instance_id);
bld.vop3(aco_opcode::v_bfe_u32, tmp_def, div_info, Operand::c32(8u), Operand::c32(8u));
bld.vadd32(fetch_index_def, tmp_op, fetch_index, false, Operand(s2), true);
bld.vop3(aco_opcode::v_mul_hi_u32, fetch_index_def, fetch_index,
Operand(tmp_sgpr.advance(4), s1));
bld.vop3(aco_opcode::v_bfe_u32, tmp_def, div_info, Operand::c32(16u), Operand::c32(8u));
bld.vop2(aco_opcode::v_lshrrev_b32, fetch_index_def, tmp_op, fetch_index);
}
bld.vadd32(fetch_index_def, start_instance, fetch_index, false, Operand(s2), true);
return fetch_index;
}
void
select_rt_prolog(Program* program, ac_shader_config* config,
const struct aco_compiler_options* options, const struct aco_shader_info* info,
const struct ac_shader_args* in_args, const struct ac_shader_args* out_args)
{
init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode,
config);
Block* block = program->create_and_insert_block();
block->kind = block_kind_top_level;
program->workgroup_size = info->workgroup_size;
program->wave_size = info->workgroup_size;
calc_min_waves(program);
Builder bld(program, block);
block->instructions.reserve(32);
unsigned num_sgprs = MAX2(in_args->num_sgprs_used, out_args->num_sgprs_used);
unsigned num_vgprs = MAX2(in_args->num_vgprs_used, out_args->num_vgprs_used);
/* Inputs:
* Ring offsets: s[0-1]
* Indirect descriptor sets: s[2]
* Push constants pointer: s[3]
* SBT descriptors: s[4-5]
* Traversal shader address: s[6-7]
* Ray launch size address: s[8-9]
* Dynamic callable stack base: s[10]
* Workgroup IDs (xyz): s[11], s[12], s[13]
* Scratch offset: s[14]
* Local invocation IDs: v[0-2]
*/
PhysReg in_ring_offsets = get_arg_reg(in_args, in_args->ring_offsets);
PhysReg in_sbt_desc = get_arg_reg(in_args, in_args->rt.sbt_descriptors);
PhysReg in_launch_size_addr = get_arg_reg(in_args, in_args->rt.launch_size_addr);
PhysReg in_stack_base = get_arg_reg(in_args, in_args->rt.dynamic_callable_stack_base);
PhysReg in_wg_id_x = get_arg_reg(in_args, in_args->workgroup_ids[0]);
PhysReg in_wg_id_y = get_arg_reg(in_args, in_args->workgroup_ids[1]);
PhysReg in_wg_id_z = get_arg_reg(in_args, in_args->workgroup_ids[2]);
PhysReg in_scratch_offset;
if (options->gfx_level < GFX11)
in_scratch_offset = get_arg_reg(in_args, in_args->scratch_offset);
PhysReg in_local_ids[2] = {
get_arg_reg(in_args, in_args->local_invocation_ids),
get_arg_reg(in_args, in_args->local_invocation_ids).advance(4),
};
/* Outputs:
* Callee shader PC: s[0-1]
* Indirect descriptor sets: s[2]
* Push constants pointer: s[3]
* SBT descriptors: s[4-5]
* Traversal shader address: s[6-7]
* Ray launch sizes (xyz): s[8], s[9], s[10]
* Scratch offset (<GFX9 only): s[11]
* Ring offsets (<GFX9 only): s[12-13]
* Ray launch IDs: v[0-2]
* Stack pointer: v[3]
* Shader VA: v[4-5]
* Shader Record Ptr: v[6-7]
*/
PhysReg out_uniform_shader_addr = get_arg_reg(out_args, out_args->rt.uniform_shader_addr);
PhysReg out_launch_size_x = get_arg_reg(out_args, out_args->rt.launch_size);
PhysReg out_launch_size_z = out_launch_size_x.advance(8);
PhysReg out_launch_ids[3];
for (unsigned i = 0; i < 3; i++)
out_launch_ids[i] = get_arg_reg(out_args, out_args->rt.launch_id).advance(i * 4);
PhysReg out_stack_ptr = get_arg_reg(out_args, out_args->rt.dynamic_callable_stack_base);
PhysReg out_record_ptr = get_arg_reg(out_args, out_args->rt.shader_record);
/* Temporaries: */
num_sgprs = align(num_sgprs, 2) + 4;
PhysReg tmp_raygen_sbt = PhysReg{num_sgprs - 4};
PhysReg tmp_ring_offsets = PhysReg{num_sgprs - 2};
/* Confirm some assumptions about register aliasing */
assert(in_ring_offsets == out_uniform_shader_addr);
assert(get_arg_reg(in_args, in_args->push_constants) ==
get_arg_reg(out_args, out_args->push_constants));
assert(get_arg_reg(in_args, in_args->rt.sbt_descriptors) ==
get_arg_reg(out_args, out_args->rt.sbt_descriptors));
assert(in_launch_size_addr == out_launch_size_x);
assert(in_stack_base == out_launch_size_z);
assert(in_local_ids[0] == out_launch_ids[0]);
/* load raygen sbt */
bld.smem(aco_opcode::s_load_dwordx2, Definition(tmp_raygen_sbt, s2), Operand(in_sbt_desc, s2),
Operand::c32(0u));
/* init scratch */
if (options->gfx_level < GFX9) {
/* copy ring offsets to temporary location*/
bld.sop1(aco_opcode::s_mov_b64, Definition(tmp_ring_offsets, s2),
Operand(in_ring_offsets, s2));
} else if (options->gfx_level < GFX11) {
hw_init_scratch(bld, Definition(in_ring_offsets, s1), Operand(in_ring_offsets, s2),
Operand(in_scratch_offset, s1));
}
/* set stack ptr */
bld.vop1(aco_opcode::v_mov_b32, Definition(out_stack_ptr, v1), Operand(in_stack_base, s1));
/* load raygen address */
bld.smem(aco_opcode::s_load_dwordx2, Definition(out_uniform_shader_addr, s2),
Operand(tmp_raygen_sbt, s2), Operand::c32(0u));
/* load ray launch sizes */
bld.smem(aco_opcode::s_load_dword, Definition(out_launch_size_z, s1),
Operand(in_launch_size_addr, s2), Operand::c32(8u));
bld.smem(aco_opcode::s_load_dwordx2, Definition(out_launch_size_x, s2),
Operand(in_launch_size_addr, s2), Operand::c32(0u));
/* calculate ray launch ids */
if (options->gfx_level >= GFX11) {
/* Thread IDs are packed in VGPR0, 10 bits per component. */
bld.vop3(aco_opcode::v_bfe_u32, Definition(in_local_ids[1], v1), Operand(in_local_ids[0], v1),
Operand::c32(10u), Operand::c32(3u));
bld.vop2(aco_opcode::v_and_b32, Definition(in_local_ids[0], v1), Operand::c32(0x7),
Operand(in_local_ids[0], v1));
}
/* Do this backwards to reduce some RAW hazards on GFX11+ */
bld.vop1(aco_opcode::v_mov_b32, Definition(out_launch_ids[2], v1), Operand(in_wg_id_z, s1));
bld.vop3(aco_opcode::v_mad_u32_u24, Definition(out_launch_ids[1], v1), Operand(in_wg_id_y, s1),
Operand::c32(program->workgroup_size == 32 ? 4 : 8), Operand(in_local_ids[1], v1));
bld.vop3(aco_opcode::v_mad_u32_u24, Definition(out_launch_ids[0], v1), Operand(in_wg_id_x, s1),
Operand::c32(8), Operand(in_local_ids[0], v1));
if (options->gfx_level < GFX9) {
/* write scratch/ring offsets to outputs, if needed */
bld.sop1(aco_opcode::s_mov_b32,
Definition(get_arg_reg(out_args, out_args->scratch_offset), s1),
Operand(in_scratch_offset, s1));
bld.sop1(aco_opcode::s_mov_b64, Definition(get_arg_reg(out_args, out_args->ring_offsets), s2),
Operand(tmp_ring_offsets, s2));
}
/* calculate shader record ptr: SBT + RADV_RT_HANDLE_SIZE */
if (options->gfx_level < GFX9) {
bld.vop2_e64(aco_opcode::v_add_co_u32, Definition(out_record_ptr, v1), Definition(vcc, s2),
Operand(tmp_raygen_sbt, s1), Operand::c32(32u));
} else {
bld.vop2_e64(aco_opcode::v_add_u32, Definition(out_record_ptr, v1),
Operand(tmp_raygen_sbt, s1), Operand::c32(32u));
}
bld.vop1(aco_opcode::v_mov_b32, Definition(out_record_ptr.advance(4), v1),
Operand(tmp_raygen_sbt.advance(4), s1));
/* jump to raygen */
bld.sop1(aco_opcode::s_setpc_b64, Operand(out_uniform_shader_addr, s2));
program->config->float_mode = program->blocks[0].fp_mode.val;
program->config->num_vgprs = get_vgpr_alloc(program, num_vgprs);
program->config->num_sgprs = get_sgpr_alloc(program, num_sgprs);
}
void
select_vs_prolog(Program* program, const struct aco_vs_prolog_info* pinfo, ac_shader_config* config,
const struct aco_compiler_options* options, const struct aco_shader_info* info,
const struct ac_shader_args* args)
{
assert(pinfo->num_attributes > 0);
/* This should be enough for any shader/stage. */
unsigned max_user_sgprs = options->gfx_level >= GFX9 ? 32 : 16;
init_program(program, compute_cs, info, options->gfx_level, options->family, options->wgp_mode,
config);
program->dev.vgpr_limit = 256;
Block* block = program->create_and_insert_block();
block->kind = block_kind_top_level;
program->workgroup_size = 64;
calc_min_waves(program);
Builder bld(program, block);
block->instructions.reserve(16 + pinfo->num_attributes * 4);
bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
uint32_t attrib_mask = BITFIELD_MASK(pinfo->num_attributes);
bool has_nontrivial_divisors = pinfo->nontrivial_divisors;
wait_imm lgkm_imm;
lgkm_imm.lgkm = 0;
/* choose sgprs */
PhysReg vertex_buffers(align(max_user_sgprs + 14, 2));
PhysReg prolog_input = vertex_buffers.advance(8);
PhysReg desc(
align((has_nontrivial_divisors ? prolog_input : vertex_buffers).advance(8).reg(), 4));
Operand start_instance = get_arg_fixed(args, args->start_instance);
Operand instance_id = get_arg_fixed(args, args->instance_id);
PhysReg attributes_start(256 + args->num_vgprs_used);
/* choose vgprs that won't be used for anything else until the last attribute load */
PhysReg vertex_index(attributes_start.reg() + pinfo->num_attributes * 4 - 1);
PhysReg instance_index(attributes_start.reg() + pinfo->num_attributes * 4 - 2);
PhysReg start_instance_vgpr(attributes_start.reg() + pinfo->num_attributes * 4 - 3);
PhysReg nontrivial_tmp_vgpr0(attributes_start.reg() + pinfo->num_attributes * 4 - 4);
PhysReg nontrivial_tmp_vgpr1(attributes_start.reg() + pinfo->num_attributes * 4);
bld.sop1(aco_opcode::s_mov_b32, Definition(vertex_buffers, s1),
get_arg_fixed(args, args->vertex_buffers));
if (options->address32_hi >= 0xffff8000 || options->address32_hi <= 0x7fff) {
bld.sopk(aco_opcode::s_movk_i32, Definition(vertex_buffers.advance(4), s1),
options->address32_hi & 0xFFFF);
} else {
bld.sop1(aco_opcode::s_mov_b32, Definition(vertex_buffers.advance(4), s1),
Operand::c32((unsigned)options->address32_hi));
}
/* calculate vgpr requirements */
unsigned num_vgprs = attributes_start.reg() - 256;
num_vgprs += pinfo->num_attributes * 4;
if (has_nontrivial_divisors && program->gfx_level <= GFX8)
num_vgprs++; /* make space for nontrivial_tmp_vgpr1 */
unsigned num_sgprs = 0;
const struct ac_vtx_format_info* vtx_info_table =
ac_get_vtx_format_info_table(GFX8, CHIP_POLARIS10);
for (unsigned loc = 0; loc < pinfo->num_attributes;) {
unsigned num_descs =
load_vb_descs(bld, desc, Operand(vertex_buffers, s2), loc, pinfo->num_attributes - loc);
num_sgprs = MAX2(num_sgprs, desc.advance(num_descs * 16u).reg());
if (loc == 0) {
/* perform setup while we load the descriptors */
if (pinfo->is_ngg || pinfo->next_stage != MESA_SHADER_VERTEX) {
Operand count = get_arg_fixed(args, args->merged_wave_info);
bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), count, Operand::c32(0u));
if (program->wave_size == 64) {
bld.sopc(aco_opcode::s_bitcmp1_b32, Definition(scc, s1), count,
Operand::c32(6u /* log2(64) */));
bld.sop2(aco_opcode::s_cselect_b64, Definition(exec, s2), Operand::c64(UINT64_MAX),
Operand(exec, s2), Operand(scc, s1));
}
}
/* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
if (info->hw_stage == AC_HW_HULL_SHADER && options->has_ls_vgpr_init_bug) {
/* We don't want load_vb_descs() to write vcc. */
assert(program->dev.sgpr_limit <= vcc.reg());
bld.sop2(aco_opcode::s_bfe_u32, Definition(vcc, s1), Definition(scc, s1),
get_arg_fixed(args, args->merged_wave_info), Operand::c32((8u << 16) | 8u));
bld.sop2(Builder::s_cselect, Definition(vcc, bld.lm), Operand::c32(-1), Operand::zero(),
Operand(scc, s1));
/* These copies are ordered so that vertex_id=tcs_patch_id doesn't overwrite vertex_id
* before instance_id=vertex_id. */
ac_arg src_args[] = {args->vertex_id, args->tcs_rel_ids, args->tcs_patch_id};
ac_arg dst_args[] = {args->instance_id, args->vs_rel_patch_id, args->vertex_id};
for (unsigned i = 0; i < 3; i++) {
bld.vop2(aco_opcode::v_cndmask_b32, Definition(get_arg_reg(args, dst_args[i]), v1),
get_arg_fixed(args, src_args[i]), get_arg_fixed(args, dst_args[i]),
Operand(vcc, bld.lm));
}
}
bool needs_instance_index =
pinfo->instance_rate_inputs &
~(pinfo->zero_divisors | pinfo->nontrivial_divisors); /* divisor is 1 */
bool needs_start_instance = pinfo->instance_rate_inputs & pinfo->zero_divisors;
bool needs_vertex_index = ~pinfo->instance_rate_inputs & attrib_mask;
if (needs_vertex_index)
bld.vadd32(Definition(vertex_index, v1), get_arg_fixed(args, args->base_vertex),
get_arg_fixed(args, args->vertex_id), false, Operand(s2), true);
if (needs_instance_index)
bld.vadd32(Definition(instance_index, v1), start_instance, instance_id, false,
Operand(s2), true);
if (needs_start_instance)
bld.vop1(aco_opcode::v_mov_b32, Definition(start_instance_vgpr, v1), start_instance);
}
bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(program->gfx_level));
for (unsigned i = 0; i < num_descs;) {
PhysReg dest(attributes_start.reg() + loc * 4u);
/* calculate index */
Operand fetch_index = Operand(vertex_index, v1);
if (pinfo->instance_rate_inputs & (1u << loc)) {
if (!(pinfo->zero_divisors & (1u << loc))) {
fetch_index = instance_id;
if (pinfo->nontrivial_divisors & (1u << loc)) {
unsigned index = util_bitcount(pinfo->nontrivial_divisors & BITFIELD_MASK(loc));
fetch_index = calc_nontrivial_instance_id(
bld, args, pinfo, index, instance_id, start_instance, prolog_input,
nontrivial_tmp_vgpr0, nontrivial_tmp_vgpr1);
} else {
fetch_index = Operand(instance_index, v1);
}
} else {
fetch_index = Operand(start_instance_vgpr, v1);
}
}
/* perform load */
PhysReg cur_desc = desc.advance(i * 16);
if ((pinfo->misaligned_mask & (1u << loc))) {
const struct ac_vtx_format_info* vtx_info = &vtx_info_table[pinfo->formats[loc]];
assert(vtx_info->has_hw_format & 0x1);
unsigned dfmt = vtx_info->hw_format[0] & 0xf;
unsigned nfmt = vtx_info->hw_format[0] >> 4;
for (unsigned j = 0; j < vtx_info->num_channels; j++) {
bool post_shuffle = pinfo->post_shuffle & (1u << loc);
unsigned offset = vtx_info->chan_byte_size * (post_shuffle && j < 3 ? 2 - j : j);
/* Use MUBUF to workaround hangs for byte-aligned dword loads. The Vulkan spec
* doesn't require this to work, but some GL CTS tests over Zink do this anyway.
* MTBUF can hang, but MUBUF doesn't (probably gives garbage, but GL CTS doesn't
* care).
*/
if (dfmt == V_008F0C_BUF_DATA_FORMAT_32)
bld.mubuf(aco_opcode::buffer_load_dword, Definition(dest.advance(j * 4u), v1),
Operand(cur_desc, s4), fetch_index, Operand::c32(0u), offset, false,
false, true);
else if (vtx_info->chan_byte_size == 8)
bld.mtbuf(aco_opcode::tbuffer_load_format_xy,
Definition(dest.advance(j * 8u), v2), Operand(cur_desc, s4),
fetch_index, Operand::c32(0u), dfmt, nfmt, offset, false, true);
else
bld.mtbuf(aco_opcode::tbuffer_load_format_x, Definition(dest.advance(j * 4u), v1),
Operand(cur_desc, s4), fetch_index, Operand::c32(0u), dfmt, nfmt,
offset, false, true);
}
uint32_t one =
nfmt == V_008F0C_BUF_NUM_FORMAT_UINT || nfmt == V_008F0C_BUF_NUM_FORMAT_SINT
? 1u
: 0x3f800000u;
/* 22.1.1. Attribute Location and Component Assignment of Vulkan 1.3 specification:
* For 64-bit data types, no default attribute values are provided. Input variables must
* not use more components than provided by the attribute.
*/
for (unsigned j = vtx_info->num_channels; vtx_info->chan_byte_size != 8 && j < 4; j++) {
bld.vop1(aco_opcode::v_mov_b32, Definition(dest.advance(j * 4u), v1),
Operand::c32(j == 3 ? one : 0u));
}
unsigned slots = vtx_info->chan_byte_size == 8 && vtx_info->num_channels > 2 ? 2 : 1;
loc += slots;
i += slots;
} else {
bld.mubuf(aco_opcode::buffer_load_format_xyzw, Definition(dest, v4),
Operand(cur_desc, s4), fetch_index, Operand::c32(0u), 0u, false, false, true);
loc++;
i++;
}
}
}
if (pinfo->alpha_adjust_lo | pinfo->alpha_adjust_hi) {
wait_imm vm_imm;
vm_imm.vm = 0;
bld.sopp(aco_opcode::s_waitcnt, -1, vm_imm.pack(program->gfx_level));
}
/* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
* so we may need to fix it up. */
u_foreach_bit (loc, (pinfo->alpha_adjust_lo | pinfo->alpha_adjust_hi)) {
PhysReg alpha(attributes_start.reg() + loc * 4u + 3);
unsigned alpha_adjust = (pinfo->alpha_adjust_lo >> loc) & 0x1;
alpha_adjust |= ((pinfo->alpha_adjust_hi >> loc) & 0x1) << 1;
if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED)
bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(alpha, v1), Operand(alpha, v1));
/* For the integer-like cases, do a natural sign extension.
*
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
* and happen to contain 0, 1, 2, 3 as the two LSBs of the
* exponent.
*/
unsigned offset = alpha_adjust == AC_ALPHA_ADJUST_SNORM ? 23u : 0u;
bld.vop3(aco_opcode::v_bfe_i32, Definition(alpha, v1), Operand(alpha, v1),
Operand::c32(offset), Operand::c32(2u));
/* Convert back to the right type. */
if (alpha_adjust == AC_ALPHA_ADJUST_SNORM) {
bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(alpha, v1), Operand(alpha, v1));
bld.vop2(aco_opcode::v_max_f32, Definition(alpha, v1), Operand::c32(0xbf800000u),
Operand(alpha, v1));
} else if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) {
bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(alpha, v1), Operand(alpha, v1));
}
}
block->kind |= block_kind_uniform;
/* continue on to the main shader */
Operand continue_pc = get_arg_fixed(args, pinfo->inputs);
if (has_nontrivial_divisors) {
bld.smem(aco_opcode::s_load_dwordx2, Definition(prolog_input, s2),
get_arg_fixed(args, pinfo->inputs), Operand::c32(0u));
bld.sopp(aco_opcode::s_waitcnt, -1, lgkm_imm.pack(program->gfx_level));
continue_pc = Operand(prolog_input, s2);
}
bld.sop1(aco_opcode::s_setpc_b64, continue_pc);
program->config->float_mode = program->blocks[0].fp_mode.val;
/* addition on GFX6-8 requires a carry-out (we use VCC) */
program->needs_vcc = program->gfx_level <= GFX8;
program->config->num_vgprs = std::min<uint16_t>(get_vgpr_alloc(program, num_vgprs), 256);
program->config->num_sgprs = get_sgpr_alloc(program, num_sgprs);
}
void
select_ps_epilog(Program* program, void* pinfo, ac_shader_config* config,
const struct aco_compiler_options* options, const struct aco_shader_info* info,
const struct ac_shader_args* args)
{
const struct aco_ps_epilog_info* einfo = (const struct aco_ps_epilog_info*)pinfo;
isel_context ctx =
setup_isel_context(program, 0, NULL, config, options, info, args, SWStage::FS);
ctx.block->fp_mode = program->next_fp_mode;
add_startpgm(&ctx);
append_logical_start(ctx.block);
Builder bld(ctx.program, ctx.block);
Temp colors[MAX_DRAW_BUFFERS][4];
for (unsigned i = 0; i < MAX_DRAW_BUFFERS; i++) {
if (!einfo->colors[i].used)
continue;
Temp color = get_arg(&ctx, einfo->colors[i]);
unsigned col_types = (einfo->color_types >> (i * 2)) & 0x3;
emit_split_vector(&ctx, color, col_types == ACO_TYPE_ANY32 ? 4 : 8);
for (unsigned c = 0; c < 4; ++c) {
colors[i][c] = emit_extract_vector(&ctx, color, c, col_types == ACO_TYPE_ANY32 ? v1 : v2b);
}
emit_clamp_alpha_test(&ctx, einfo, colors[i], i);
}
bool has_mrtz_depth = einfo->depth.used;
bool has_mrtz_stencil = einfo->stencil.used;
bool has_mrtz_samplemask = einfo->samplemask.used;
bool has_mrtz_alpha = einfo->alpha_to_coverage_via_mrtz && einfo->colors[0].used;
bool has_mrtz_export =
has_mrtz_depth || has_mrtz_stencil || has_mrtz_samplemask || has_mrtz_alpha;
if (has_mrtz_export) {
Temp depth = has_mrtz_depth ? get_arg(&ctx, einfo->depth) : Temp();
Temp stencil = has_mrtz_stencil ? get_arg(&ctx, einfo->stencil) : Temp();
Temp samplemask = has_mrtz_samplemask ? get_arg(&ctx, einfo->samplemask) : Temp();
Temp alpha = has_mrtz_alpha ? colors[0][3] : Temp();
export_fs_mrtz(&ctx, depth, stencil, samplemask, alpha);
}
/* Export all color render targets */
struct aco_export_mrt mrts[MAX_DRAW_BUFFERS];
unsigned mrt_num = 0;
if (einfo->broadcast_last_cbuf) {
for (unsigned i = 0; i <= einfo->broadcast_last_cbuf; i++) {
struct aco_export_mrt* mrt = &mrts[mrt_num];
if (export_fs_mrt_color(&ctx, einfo, colors[0], i, mrt))
mrt->target += mrt_num++;
}
} else {
for (unsigned i = 0; i < MAX_DRAW_BUFFERS; i++) {
struct aco_export_mrt* mrt = &mrts[mrt_num];
if (export_fs_mrt_color(&ctx, einfo, colors[i], i, mrt))
mrt->target += mrt_num++;
}
}
if (mrt_num) {
if (ctx.options->gfx_level >= GFX11 && einfo->mrt0_is_dual_src) {
assert(mrt_num == 2);
create_fs_dual_src_export_gfx11(&ctx, &mrts[0], &mrts[1]);
} else {
for (unsigned i = 0; i < mrt_num; i++)
export_mrt(&ctx, &mrts[i]);
}
} else if (!has_mrtz_export && !einfo->skip_null_export) {
create_fs_null_export(&ctx);
}
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
ctx.block->kind |= block_kind_export_end;
bld.reset(ctx.block);
bld.sopp(aco_opcode::s_endpgm);
finish_program(&ctx);
}
void
select_tcs_epilog(Program* program, void* pinfo, ac_shader_config* config,
const struct aco_compiler_options* options, const struct aco_shader_info* info,
const struct ac_shader_args* args)
{
const struct aco_tcs_epilog_info* einfo = (const struct aco_tcs_epilog_info*)pinfo;
isel_context ctx =
setup_isel_context(program, 0, NULL, config, options, info, args, SWStage::TCS);
ctx.block->fp_mode = program->next_fp_mode;
add_startpgm(&ctx);
append_logical_start(ctx.block);
Builder bld(ctx.program, ctx.block);
/* Add a barrier before loading tess factors from LDS. */
if (!einfo->pass_tessfactors_by_reg) {
/* To generate s_waitcnt lgkmcnt(0) when waitcnt insertion. */
program->pending_lds_access = true;
sync_scope scope = einfo->tcs_out_patch_fits_subgroup ? scope_subgroup : scope_workgroup;
bld.barrier(aco_opcode::p_barrier, memory_sync_info(storage_shared, semantic_acqrel, scope),
scope);
}
Temp invocation_id = get_arg(&ctx, einfo->invocation_id);
Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand::zero(), invocation_id);
if_context ic_invoc_0;
begin_divergent_if_then(&ctx, &ic_invoc_0, cond);
int outer_comps, inner_comps;
switch (einfo->primitive_mode) {
case TESS_PRIMITIVE_ISOLINES:
outer_comps = 2;
inner_comps = 0;
break;
case TESS_PRIMITIVE_TRIANGLES:
outer_comps = 3;
inner_comps = 1;
break;
case TESS_PRIMITIVE_QUADS:
outer_comps = 4;
inner_comps = 2;
break;
default: unreachable("invalid primitive mode"); return;
}
bld.reset(ctx.block);
unsigned tess_lvl_out_loc =
ac_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_OUTER) * 16;
unsigned tess_lvl_in_loc =
ac_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_INNER) * 16;
Temp outer[4];
Temp inner[2];
if (einfo->pass_tessfactors_by_reg) {
for (int i = 0; i < outer_comps; i++)
outer[i] = get_arg(&ctx, einfo->tess_lvl_out[i]);
for (int i = 0; i < inner_comps; i++)
inner[i] = get_arg(&ctx, einfo->tess_lvl_in[i]);
} else {
Temp addr = get_arg(&ctx, einfo->tcs_out_current_patch_data_offset);
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(2), addr);
Temp data = program->allocateTmp(RegClass(RegType::vgpr, outer_comps));
load_lds(&ctx, 4, outer_comps, data, addr, tess_lvl_out_loc, 4);
for (int i = 0; i < outer_comps; i++)
outer[i] = emit_extract_vector(&ctx, data, i, v1);
if (inner_comps) {
data = program->allocateTmp(RegClass(RegType::vgpr, inner_comps));
load_lds(&ctx, 4, inner_comps, data, addr, tess_lvl_in_loc, 4);
for (int i = 0; i < inner_comps; i++)
inner[i] = emit_extract_vector(&ctx, data, i, v1);
}
}
Temp tess_factor_ring_desc = get_tess_ring_descriptor(&ctx, einfo, true);
Temp tess_factor_ring_base = get_arg(&ctx, args->tcs_factor_offset);
Temp rel_patch_id = get_arg(&ctx, einfo->rel_patch_id);
unsigned tess_factor_ring_const_offset = 0;
if (program->gfx_level <= GFX8) {
/* Store the dynamic HS control word. */
cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand::zero(), rel_patch_id);
if_context ic_patch_0;
begin_divergent_if_then(&ctx, &ic_patch_0, cond);
bld.reset(ctx.block);
Temp data = bld.copy(bld.def(v1), Operand::c32(0x80000000u));
emit_single_mubuf_store(&ctx, tess_factor_ring_desc, Temp(0, v1), tess_factor_ring_base,
Temp(), data, 0, memory_sync_info(), true, false, false);
tess_factor_ring_const_offset += 4;
begin_divergent_if_else(&ctx, &ic_patch_0);
end_divergent_if(&ctx, &ic_patch_0);
}
bld.reset(ctx.block);
Temp tess_factor_ring_offset =
bld.v_mul_imm(bld.def(v1), rel_patch_id, (inner_comps + outer_comps) * 4, false);
switch (einfo->primitive_mode) {
case TESS_PRIMITIVE_ISOLINES: {
/* For isolines, the hardware expects tess factors in the reverse order. */
Temp data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), outer[1], outer[0]);
emit_single_mubuf_store(&ctx, tess_factor_ring_desc, tess_factor_ring_offset,
tess_factor_ring_base, Temp(), data, tess_factor_ring_const_offset,
memory_sync_info(), true, false, false);
break;
}
case TESS_PRIMITIVE_TRIANGLES: {
Temp data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4), outer[0], outer[1], outer[2],
inner[0]);
emit_single_mubuf_store(&ctx, tess_factor_ring_desc, tess_factor_ring_offset,
tess_factor_ring_base, Temp(), data, tess_factor_ring_const_offset,
memory_sync_info(), true, false, false);
break;
}
case TESS_PRIMITIVE_QUADS: {
Temp data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4), outer[0], outer[1], outer[2],
outer[3]);
emit_single_mubuf_store(&ctx, tess_factor_ring_desc, tess_factor_ring_offset,
tess_factor_ring_base, Temp(), data, tess_factor_ring_const_offset,
memory_sync_info(), true, false, false);
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), inner[0], inner[1]);
emit_single_mubuf_store(
&ctx, tess_factor_ring_desc, tess_factor_ring_offset, tess_factor_ring_base, Temp(), data,
tess_factor_ring_const_offset + 16, memory_sync_info(), true, false, false);
break;
}
default: unreachable("invalid primitive mode"); break;
}
if (einfo->tes_reads_tessfactors) {
Temp layout = get_arg(&ctx, einfo->tcs_offchip_layout);
Temp num_patches, patch_base;
if (ctx.options->is_opengl) {
num_patches = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), layout,
Operand::c32(0x3f));
num_patches = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), num_patches,
Operand::c32(1));
patch_base = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), layout,
Operand::c32(16));
} else {
num_patches = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), layout,
Operand::c32(0x60006));
patch_base = get_arg(&ctx, einfo->patch_base);
}
Temp tess_ring_desc = get_tess_ring_descriptor(&ctx, einfo, false);
Temp tess_ring_base = get_arg(&ctx, args->tess_offchip_offset);
Temp sbase =
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), tess_ring_base, patch_base);
Temp voffset =
bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand::c32(4), rel_patch_id);
store_tess_factor_to_tess_ring(&ctx, tess_ring_desc, outer, outer_comps, sbase, voffset,
num_patches, tess_lvl_out_loc);
if (inner_comps) {
store_tess_factor_to_tess_ring(&ctx, tess_ring_desc, inner, inner_comps, sbase, voffset,
num_patches, tess_lvl_in_loc);
}
}
begin_divergent_if_else(&ctx, &ic_invoc_0);
end_divergent_if(&ctx, &ic_invoc_0);
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
bld.reset(ctx.block);
bld.sopp(aco_opcode::s_endpgm);
finish_program(&ctx);
}
void
select_gl_vs_prolog(Program* program, void* pinfo, ac_shader_config* config,
const struct aco_compiler_options* options, const struct aco_shader_info* info,
const struct ac_shader_args* args)
{
const struct aco_gl_vs_prolog_info* vinfo = (const struct aco_gl_vs_prolog_info*)pinfo;
isel_context ctx =
setup_isel_context(program, 0, NULL, config, options, info, args, SWStage::VS);
ctx.block->fp_mode = program->next_fp_mode;
add_startpgm(&ctx);
append_logical_start(ctx.block);
Builder bld(ctx.program, ctx.block);
bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
if (vinfo->as_ls && options->has_ls_vgpr_init_bug)
fix_ls_vgpr_init_bug(&ctx);
std::vector<Operand> regs;
passthrough_all_args(&ctx, regs);
Temp instance_divisor_constbuf;
if (vinfo->instance_divisor_is_fetched) {
Temp list = get_arg(&ctx, vinfo->internal_bindings);
list = convert_pointer_to_64_bit(&ctx, list);
instance_divisor_constbuf = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), list,
Operand::c32(vinfo->instance_diviser_buf_offset));
}
unsigned vgpr = 256 + ctx.args->num_vgprs_used;
for (unsigned i = 0; i < vinfo->num_inputs; i++) {
Temp index = get_gl_vs_prolog_vertex_index(&ctx, vinfo, i, instance_divisor_constbuf);
regs.emplace_back(Operand(index, PhysReg{vgpr + i}));
}
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
build_end_with_regs(&ctx, regs);
finish_program(&ctx);
}
void
select_ps_prolog(Program* program, void* pinfo, ac_shader_config* config,
const struct aco_compiler_options* options, const struct aco_shader_info* info,
const struct ac_shader_args* args)
{
const struct aco_ps_prolog_info* finfo = (const struct aco_ps_prolog_info*)pinfo;
isel_context ctx =
setup_isel_context(program, 0, NULL, config, options, info, args, SWStage::FS);
ctx.block->fp_mode = program->next_fp_mode;
add_startpgm(&ctx);
append_logical_start(ctx.block);
if (finfo->poly_stipple)
emit_polygon_stipple(&ctx, finfo);
overwrite_interp_args(&ctx, finfo);
overwrite_samplemask_arg(&ctx, finfo);
std::vector<Operand> regs;
passthrough_all_args(&ctx, regs);
interpolate_color_args(&ctx, finfo, regs);
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
build_end_with_regs(&ctx, regs);
/* To compute all end args in WQM mode if required by main part. */
if (finfo->needs_wqm)
set_wqm(&ctx, true);
/* Exit WQM mode finally. */
program->needs_exact = true;
finish_program(&ctx);
}
} // namespace aco