blob: aca8fa1665b19a7e7a4ad068ecc027117bd3ea1d [file] [log] [blame]
#ifndef INTEL_BATCHBUFFER_H
#define INTEL_BATCHBUFFER_H
#include "main/mtypes.h"
#include "brw_context.h"
#include "intel_bufmgr.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Number of bytes to reserve for commands necessary to complete a batch.
*
* This includes:
* - MI_BATCHBUFFER_END (4 bytes)
* - Optional MI_NOOP for ensuring the batch length is qword aligned (4 bytes)
* - Any state emitted by vtbl->finish_batch():
* - Gen4-5 record ending occlusion query values (4 * 4 = 16 bytes)
* - Disabling OA counters on Gen6+ (3 DWords = 12 bytes)
* - Ending MI_REPORT_PERF_COUNT on Gen5+, plus associated PIPE_CONTROLs:
* - Two sets of PIPE_CONTROLs, which become 4 PIPE_CONTROLs each on SNB,
* which are 5 DWords each ==> 2 * 4 * 5 * 4 = 160 bytes
* - 3 DWords for MI_REPORT_PERF_COUNT itself on Gen6+. ==> 12 bytes.
* On Ironlake, it's 6 DWords, but we have some slack due to the lack of
* Sandybridge PIPE_CONTROL madness.
* - CC_STATE workaround on HSW (17 * 4 = 68 bytes)
* - 10 dwords for initial mi_flush
* - 2 dwords for CC state setup
* - 5 dwords for the required pipe control at the end
* - Restoring L3 configuration: (24 dwords = 96 bytes)
* - 2*6 dwords for two PIPE_CONTROL flushes.
* - 7 dwords for L3 configuration set-up.
* - 5 dwords for L3 atomic set-up (on HSW).
*/
#define BATCH_RESERVED 308
struct intel_batchbuffer;
void intel_batchbuffer_emit_render_ring_prelude(struct brw_context *brw);
void intel_batchbuffer_init(struct brw_context *brw);
void intel_batchbuffer_free(struct brw_context *brw);
void intel_batchbuffer_save_state(struct brw_context *brw);
void intel_batchbuffer_reset_to_saved(struct brw_context *brw);
void intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
enum brw_gpu_ring ring);
int _intel_batchbuffer_flush(struct brw_context *brw,
const char *file, int line);
#define intel_batchbuffer_flush(intel) \
_intel_batchbuffer_flush(intel, __FILE__, __LINE__)
/* Unlike bmBufferData, this currently requires the buffer be mapped.
* Consider it a convenience function wrapping multple
* intel_buffer_dword() calls.
*/
void intel_batchbuffer_data(struct brw_context *brw,
const void *data, GLuint bytes,
enum brw_gpu_ring ring);
uint32_t intel_batchbuffer_reloc(struct intel_batchbuffer *batch,
drm_intel_bo *buffer,
uint32_t offset,
uint32_t read_domains,
uint32_t write_domain,
uint32_t delta);
uint64_t intel_batchbuffer_reloc64(struct intel_batchbuffer *batch,
drm_intel_bo *buffer,
uint32_t offset,
uint32_t read_domains,
uint32_t write_domain,
uint32_t delta);
#define USED_BATCH(batch) ((uintptr_t)((batch).map_next - (batch).map))
static inline uint32_t float_as_int(float f)
{
union {
float f;
uint32_t d;
} fi;
fi.f = f;
return fi.d;
}
/* Inline functions - might actually be better off with these
* non-inlined. Certainly better off switching all command packets to
* be passed as structs rather than dwords, but that's a little bit of
* work...
*/
static inline unsigned
intel_batchbuffer_space(struct intel_batchbuffer *batch)
{
return (batch->state_batch_offset - batch->reserved_space)
- USED_BATCH(*batch) * 4;
}
static inline void
intel_batchbuffer_emit_dword(struct intel_batchbuffer *batch, GLuint dword)
{
#ifdef DEBUG
assert(intel_batchbuffer_space(batch) >= 4);
#endif
*batch->map_next++ = dword;
assert(batch->ring != UNKNOWN_RING);
}
static inline void
intel_batchbuffer_emit_float(struct intel_batchbuffer *batch, float f)
{
intel_batchbuffer_emit_dword(batch, float_as_int(f));
}
static inline void
intel_batchbuffer_begin(struct brw_context *brw, int n, enum brw_gpu_ring ring)
{
intel_batchbuffer_require_space(brw, n * 4, ring);
#ifdef DEBUG
brw->batch.emit = USED_BATCH(brw->batch);
brw->batch.total = n;
#endif
}
static inline void
intel_batchbuffer_advance(struct brw_context *brw)
{
#ifdef DEBUG
struct intel_batchbuffer *batch = &brw->batch;
unsigned int _n = USED_BATCH(*batch) - batch->emit;
assert(batch->total != 0);
if (_n != batch->total) {
fprintf(stderr, "ADVANCE_BATCH: %d of %d dwords emitted\n",
_n, batch->total);
abort();
}
batch->total = 0;
#else
(void) brw;
#endif
}
#define BEGIN_BATCH(n) do { \
intel_batchbuffer_begin(brw, (n), RENDER_RING); \
uint32_t *__map = brw->batch.map_next; \
brw->batch.map_next += (n)
#define BEGIN_BATCH_BLT(n) do { \
intel_batchbuffer_begin(brw, (n), BLT_RING); \
uint32_t *__map = brw->batch.map_next; \
brw->batch.map_next += (n)
#define OUT_BATCH(d) *__map++ = (d)
#define OUT_BATCH_F(f) OUT_BATCH(float_as_int((f)))
#define OUT_RELOC(buf, read_domains, write_domain, delta) do { \
uint32_t __offset = (__map - brw->batch.map) * 4; \
OUT_BATCH(intel_batchbuffer_reloc(&brw->batch, (buf), __offset, \
(read_domains), \
(write_domain), \
(delta))); \
} while (0)
/* Handle 48-bit address relocations for Gen8+ */
#define OUT_RELOC64(buf, read_domains, write_domain, delta) do { \
uint32_t __offset = (__map - brw->batch.map) * 4; \
uint64_t reloc64 = intel_batchbuffer_reloc64(&brw->batch, (buf), __offset, \
(read_domains), \
(write_domain), \
(delta)); \
OUT_BATCH(reloc64); \
OUT_BATCH(reloc64 >> 32); \
} while (0)
#define ADVANCE_BATCH() \
assert(__map == brw->batch.map_next); \
intel_batchbuffer_advance(brw); \
} while (0)
#ifdef __cplusplus
}
#endif
#endif