blob: d837059cfd4e8216c903d00340b5b16249fae89b [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include "aco_builder.h"
#include <unordered_set>
#include <algorithm>
#include "vulkan/radv_shader.h" // for radv_nir_compiler_options
#include "amdgfxregs.h"
#define SMEM_WINDOW_SIZE (350 - ctx.num_waves * 35)
#define VMEM_WINDOW_SIZE (1024 - ctx.num_waves * 64)
#define POS_EXP_WINDOW_SIZE 512
#define SMEM_MAX_MOVES (64 - ctx.num_waves * 4)
#define VMEM_MAX_MOVES (128 - ctx.num_waves * 8)
/* creating clauses decreases def-use distances, so make it less aggressive the lower num_waves is */
#define VMEM_CLAUSE_MAX_GRAB_DIST ((ctx.num_waves - 1) * 8)
#define POS_EXP_MAX_MOVES 512
namespace aco {
enum MoveResult {
move_success,
move_fail_ssa,
move_fail_rar,
move_fail_pressure,
};
struct MoveState {
RegisterDemand max_registers;
Block *block;
Instruction *current;
RegisterDemand *register_demand;
bool improved_rar;
std::vector<bool> depends_on;
/* Two are needed because, for downwards VMEM scheduling, one needs to
* exclude the instructions in the clause, since new instructions in the
* clause are not moved past any other instructions in the clause. */
std::vector<bool> RAR_dependencies;
std::vector<bool> RAR_dependencies_clause;
int source_idx;
int insert_idx, insert_idx_clause;
RegisterDemand total_demand, total_demand_clause;
/* for moving instructions before the current instruction to after it */
void downwards_init(int current_idx, bool improved_rar, bool may_form_clauses);
MoveResult downwards_move(bool clause);
void downwards_skip();
/* for moving instructions after the first use of the current instruction upwards */
void upwards_init(int source_idx, bool improved_rar);
bool upwards_check_deps();
void upwards_set_insert_idx(int before);
MoveResult upwards_move();
void upwards_skip();
private:
void downwards_advance_helper();
};
struct sched_ctx {
int16_t num_waves;
int16_t last_SMEM_stall;
int last_SMEM_dep_idx;
MoveState mv;
};
/* This scheduler is a simple bottom-up pass based on ideas from
* "A Novel Lightweight Instruction Scheduling Algorithm for Just-In-Time Compiler"
* from Xiaohua Shi and Peng Guo.
* The basic approach is to iterate over all instructions. When a memory instruction
* is encountered it tries to move independent instructions from above and below
* between the memory instruction and it's first user.
* The novelty is that this scheduler cares for the current register pressure:
* Instructions will only be moved if the register pressure won't exceed a certain bound.
*/
template <typename T>
void move_element(T begin_it, size_t idx, size_t before) {
if (idx < before) {
auto begin = std::next(begin_it, idx);
auto end = std::next(begin_it, before);
std::rotate(begin, begin + 1, end);
} else if (idx > before) {
auto begin = std::next(begin_it, before);
auto end = std::next(begin_it, idx + 1);
std::rotate(begin, end - 1, end);
}
}
void MoveState::downwards_advance_helper()
{
source_idx--;
total_demand.update(register_demand[source_idx]);
}
void MoveState::downwards_init(int current_idx, bool improved_rar_, bool may_form_clauses)
{
improved_rar = improved_rar_;
source_idx = current_idx;
insert_idx = current_idx + 1;
insert_idx_clause = current_idx;
total_demand = total_demand_clause = register_demand[current_idx];
std::fill(depends_on.begin(), depends_on.end(), false);
if (improved_rar) {
std::fill(RAR_dependencies.begin(), RAR_dependencies.end(), false);
if (may_form_clauses)
std::fill(RAR_dependencies_clause.begin(), RAR_dependencies_clause.end(), false);
}
for (const Operand& op : current->operands) {
if (op.isTemp()) {
depends_on[op.tempId()] = true;
if (improved_rar && op.isFirstKill())
RAR_dependencies[op.tempId()] = true;
}
}
/* update total_demand/source_idx */
downwards_advance_helper();
}
MoveResult MoveState::downwards_move(bool clause)
{
aco_ptr<Instruction>& instr = block->instructions[source_idx];
for (const Definition& def : instr->definitions)
if (def.isTemp() && depends_on[def.tempId()])
return move_fail_ssa;
/* check if one of candidate's operands is killed by depending instruction */
std::vector<bool>& RAR_deps = improved_rar ? (clause ? RAR_dependencies_clause : RAR_dependencies) : depends_on;
for (const Operand& op : instr->operands) {
if (op.isTemp() && RAR_deps[op.tempId()]) {
// FIXME: account for difference in register pressure
return move_fail_rar;
}
}
if (clause) {
for (const Operand& op : instr->operands) {
if (op.isTemp()) {
depends_on[op.tempId()] = true;
if (op.isFirstKill())
RAR_dependencies[op.tempId()] = true;
}
}
}
int dest_insert_idx = clause ? insert_idx_clause : insert_idx;
RegisterDemand register_pressure = clause ? total_demand_clause : total_demand;
const RegisterDemand candidate_diff = get_live_changes(instr);
const RegisterDemand temp = get_temp_registers(instr);
if (RegisterDemand(register_pressure - candidate_diff).exceeds(max_registers))
return move_fail_pressure;
const RegisterDemand temp2 = get_temp_registers(block->instructions[dest_insert_idx - 1]);
const RegisterDemand new_demand = register_demand[dest_insert_idx - 1] - temp2 + temp;
if (new_demand.exceeds(max_registers))
return move_fail_pressure;
/* move the candidate below the memory load */
move_element(block->instructions.begin(), source_idx, dest_insert_idx);
/* update register pressure */
move_element(register_demand, source_idx, dest_insert_idx);
for (int i = source_idx; i < dest_insert_idx - 1; i++)
register_demand[i] -= candidate_diff;
register_demand[dest_insert_idx - 1] = new_demand;
total_demand_clause -= candidate_diff;
insert_idx_clause--;
if (!clause) {
total_demand -= candidate_diff;
insert_idx--;
}
downwards_advance_helper();
return move_success;
}
void MoveState::downwards_skip()
{
aco_ptr<Instruction>& instr = block->instructions[source_idx];
for (const Operand& op : instr->operands) {
if (op.isTemp()) {
depends_on[op.tempId()] = true;
if (improved_rar && op.isFirstKill()) {
RAR_dependencies[op.tempId()] = true;
RAR_dependencies_clause[op.tempId()] = true;
}
}
}
total_demand_clause.update(register_demand[source_idx]);
downwards_advance_helper();
}
void MoveState::upwards_init(int source_idx_, bool improved_rar_)
{
source_idx = source_idx_;
improved_rar = improved_rar_;
insert_idx = -1;
std::fill(depends_on.begin(), depends_on.end(), false);
std::fill(RAR_dependencies.begin(), RAR_dependencies.end(), false);
for (const Definition& def : current->definitions) {
if (def.isTemp())
depends_on[def.tempId()] = true;
}
}
bool MoveState::upwards_check_deps()
{
aco_ptr<Instruction>& instr = block->instructions[source_idx];
for (const Operand& op : instr->operands) {
if (op.isTemp() && depends_on[op.tempId()])
return false;
}
return true;
}
void MoveState::upwards_set_insert_idx(int before)
{
insert_idx = before;
total_demand = register_demand[before - 1];
}
MoveResult MoveState::upwards_move()
{
assert(insert_idx >= 0);
aco_ptr<Instruction>& instr = block->instructions[source_idx];
for (const Operand& op : instr->operands) {
if (op.isTemp() && depends_on[op.tempId()])
return move_fail_ssa;
}
/* check if candidate uses/kills an operand which is used by a dependency */
for (const Operand& op : instr->operands) {
if (op.isTemp() && (!improved_rar || op.isFirstKill()) && RAR_dependencies[op.tempId()])
return move_fail_rar;
}
/* check if register pressure is low enough: the diff is negative if register pressure is decreased */
const RegisterDemand candidate_diff = get_live_changes(instr);
const RegisterDemand temp = get_temp_registers(instr);
if (RegisterDemand(total_demand + candidate_diff).exceeds(max_registers))
return move_fail_pressure;
const RegisterDemand temp2 = get_temp_registers(block->instructions[insert_idx - 1]);
const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + candidate_diff + temp;
if (new_demand.exceeds(max_registers))
return move_fail_pressure;
/* move the candidate above the insert_idx */
move_element(block->instructions.begin(), source_idx, insert_idx);
/* update register pressure */
move_element(register_demand, source_idx, insert_idx);
for (int i = insert_idx + 1; i <= source_idx; i++)
register_demand[i] += candidate_diff;
register_demand[insert_idx] = new_demand;
total_demand += candidate_diff;
insert_idx++;
total_demand.update(register_demand[source_idx]);
source_idx++;
return move_success;
}
void MoveState::upwards_skip()
{
if (insert_idx >= 0) {
aco_ptr<Instruction>& instr = block->instructions[source_idx];
for (const Definition& def : instr->definitions) {
if (def.isTemp())
depends_on[def.tempId()] = true;
}
for (const Operand& op : instr->operands) {
if (op.isTemp())
RAR_dependencies[op.tempId()] = true;
}
total_demand.update(register_demand[source_idx]);
}
source_idx++;
}
bool can_reorder(Instruction* candidate)
{
switch (candidate->format) {
case Format::SMEM:
return static_cast<SMEM_instruction*>(candidate)->can_reorder;
case Format::MUBUF:
return static_cast<MUBUF_instruction*>(candidate)->can_reorder;
case Format::MIMG:
return static_cast<MIMG_instruction*>(candidate)->can_reorder;
case Format::MTBUF:
return static_cast<MTBUF_instruction*>(candidate)->can_reorder;
case Format::FLAT:
case Format::GLOBAL:
case Format::SCRATCH:
return static_cast<FLAT_instruction*>(candidate)->can_reorder;
default:
return true;
}
}
bool is_gs_or_done_sendmsg(const Instruction *instr)
{
if (instr->opcode == aco_opcode::s_sendmsg) {
uint16_t imm = static_cast<const SOPP_instruction*>(instr)->imm;
return (imm & sendmsg_id_mask) == _sendmsg_gs ||
(imm & sendmsg_id_mask) == _sendmsg_gs_done;
}
return false;
}
bool is_done_sendmsg(const Instruction *instr)
{
if (instr->opcode == aco_opcode::s_sendmsg) {
uint16_t imm = static_cast<const SOPP_instruction*>(instr)->imm;
return (imm & sendmsg_id_mask) == _sendmsg_gs_done;
}
return false;
}
barrier_interaction get_barrier_interaction(const Instruction* instr)
{
switch (instr->format) {
case Format::SMEM:
return static_cast<const SMEM_instruction*>(instr)->barrier;
case Format::MUBUF:
return static_cast<const MUBUF_instruction*>(instr)->barrier;
case Format::MIMG:
return static_cast<const MIMG_instruction*>(instr)->barrier;
case Format::MTBUF:
return static_cast<const MTBUF_instruction*>(instr)->barrier;
case Format::FLAT:
case Format::GLOBAL:
case Format::SCRATCH:
return static_cast<const FLAT_instruction*>(instr)->barrier;
case Format::DS:
return barrier_shared;
case Format::SOPP:
if (is_done_sendmsg(instr))
return (barrier_interaction)(barrier_gs_data | barrier_gs_sendmsg);
else if (is_gs_or_done_sendmsg(instr))
return barrier_gs_sendmsg;
else
return barrier_none;
case Format::PSEUDO_BARRIER:
return barrier_barrier;
default:
return barrier_none;
}
}
barrier_interaction parse_barrier(Instruction *instr)
{
if (instr->format == Format::PSEUDO_BARRIER) {
switch (instr->opcode) {
case aco_opcode::p_memory_barrier_atomic:
return barrier_atomic;
/* For now, buffer and image barriers are treated the same. this is because of
* dEQP-VK.memory_model.message_passing.core11.u32.coherent.fence_fence.atomicwrite.device.payload_nonlocal.buffer.guard_nonlocal.image.comp
* which seems to use an image load to determine if the result of a buffer load is valid. So the ordering of the two loads is important.
* I /think/ we should probably eventually expand the meaning of a buffer barrier so that all buffer operations before it, must stay before it
* and that both image and buffer operations after it, must stay after it. We should also do the same for image barriers.
* Or perhaps the problem is that we don't have a combined barrier instruction for both buffers and images, but the CTS test expects us to?
* Either way, this solution should work. */
case aco_opcode::p_memory_barrier_buffer:
case aco_opcode::p_memory_barrier_image:
return (barrier_interaction)(barrier_image | barrier_buffer);
case aco_opcode::p_memory_barrier_shared:
return barrier_shared;
case aco_opcode::p_memory_barrier_common:
return (barrier_interaction)(barrier_image | barrier_buffer | barrier_shared | barrier_atomic);
case aco_opcode::p_memory_barrier_gs_data:
return barrier_gs_data;
case aco_opcode::p_memory_barrier_gs_sendmsg:
return barrier_gs_sendmsg;
default:
break;
}
} else if (instr->opcode == aco_opcode::s_barrier) {
return (barrier_interaction)(barrier_barrier | barrier_image | barrier_buffer | barrier_shared | barrier_atomic);
}
return barrier_none;
}
struct hazard_query {
bool contains_spill;
int barriers;
int barrier_interaction;
bool can_reorder_vmem;
bool can_reorder_smem;
};
void init_hazard_query(hazard_query *query) {
query->contains_spill = false;
query->barriers = 0;
query->barrier_interaction = 0;
query->can_reorder_vmem = true;
query->can_reorder_smem = true;
}
void add_to_hazard_query(hazard_query *query, Instruction *instr)
{
query->barriers |= parse_barrier(instr);
query->barrier_interaction |= get_barrier_interaction(instr);
if (instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload)
query->contains_spill = true;
bool can_reorder_instr = can_reorder(instr);
query->can_reorder_smem &= instr->format != Format::SMEM || can_reorder_instr;
query->can_reorder_vmem &= !(instr->isVMEM() || instr->isFlatOrGlobal()) || can_reorder_instr;
}
enum HazardResult {
hazard_success,
hazard_fail_reorder_vmem_smem,
hazard_fail_reorder_ds,
hazard_fail_reorder_sendmsg,
hazard_fail_spill,
hazard_fail_export,
hazard_fail_barrier,
/* Must stop at these failures. The hazard query code doesn't consider them
* when added. */
hazard_fail_exec,
hazard_fail_unreorderable,
};
HazardResult perform_hazard_query(hazard_query *query, Instruction *instr)
{
bool can_reorder_candidate = can_reorder(instr);
if (instr->opcode == aco_opcode::p_exit_early_if)
return hazard_fail_exec;
for (const Definition& def : instr->definitions) {
if (def.isFixed() && def.physReg() == exec)
return hazard_fail_exec;
}
/* don't move exports so that they stay closer together */
if (instr->format == Format::EXP)
return hazard_fail_export;
/* don't move non-reorderable instructions */
if (instr->opcode == aco_opcode::s_memtime ||
instr->opcode == aco_opcode::s_memrealtime ||
instr->opcode == aco_opcode::s_setprio)
return hazard_fail_unreorderable;
barrier_interaction bar = parse_barrier(instr);
if (query->barrier_interaction && (query->barrier_interaction & bar))
return hazard_fail_barrier;
if (bar && query->barriers && (query->barriers & ~bar))
return hazard_fail_barrier;
if (query->barriers && (query->barriers & get_barrier_interaction(instr)))
return hazard_fail_barrier;
if (!query->can_reorder_smem && instr->format == Format::SMEM && !can_reorder_candidate)
return hazard_fail_reorder_vmem_smem;
if (!query->can_reorder_vmem && (instr->isVMEM() || instr->isFlatOrGlobal()) && !can_reorder_candidate)
return hazard_fail_reorder_vmem_smem;
if ((query->barrier_interaction & barrier_shared) && instr->format == Format::DS)
return hazard_fail_reorder_ds;
if (is_gs_or_done_sendmsg(instr) && (query->barrier_interaction & get_barrier_interaction(instr)))
return hazard_fail_reorder_sendmsg;
if ((instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload) &&
query->contains_spill)
return hazard_fail_spill;
return hazard_success;
}
void schedule_SMEM(sched_ctx& ctx, Block* block,
std::vector<RegisterDemand>& register_demand,
Instruction* current, int idx)
{
assert(idx != 0);
int window_size = SMEM_WINDOW_SIZE;
int max_moves = SMEM_MAX_MOVES;
int16_t k = 0;
/* don't move s_memtime/s_memrealtime */
if (current->opcode == aco_opcode::s_memtime || current->opcode == aco_opcode::s_memrealtime)
return;
/* first, check if we have instructions before current to move down */
hazard_query hq;
init_hazard_query(&hq);
add_to_hazard_query(&hq, current);
ctx.mv.downwards_init(idx, false, false);
for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
assert(candidate_idx >= 0);
assert(candidate_idx == ctx.mv.source_idx);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
/* break if we'd make the previous SMEM instruction stall */
bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx;
if (can_stall_prev_smem && ctx.last_SMEM_stall >= 0)
break;
/* break when encountering another MEM instruction, logical_start or barriers */
if (candidate->opcode == aco_opcode::p_logical_start)
break;
if (candidate->isVMEM())
break;
bool can_move_down = true;
HazardResult haz = perform_hazard_query(&hq, candidate.get());
if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill || haz == hazard_fail_reorder_sendmsg || haz == hazard_fail_barrier || haz == hazard_fail_export)
can_move_down = false;
else if (haz != hazard_success)
break;
/* don't use LDS/GDS instructions to hide latency since it can
* significanly worsen LDS scheduling */
if (candidate->format == Format::DS || !can_move_down) {
add_to_hazard_query(&hq, candidate.get());
ctx.mv.downwards_skip();
continue;
}
MoveResult res = ctx.mv.downwards_move(false);
if (res == move_fail_ssa || res == move_fail_rar) {
add_to_hazard_query(&hq, candidate.get());
ctx.mv.downwards_skip();
continue;
} else if (res == move_fail_pressure) {
break;
}
if (candidate_idx < ctx.last_SMEM_dep_idx)
ctx.last_SMEM_stall++;
k++;
}
/* find the first instruction depending on current or find another MEM */
ctx.mv.upwards_init(idx + 1, false);
bool found_dependency = false;
/* second, check if we have instructions after current to move up */
for (int candidate_idx = idx + 1; k < max_moves && candidate_idx < (int) idx + window_size; candidate_idx++) {
assert(candidate_idx == ctx.mv.source_idx);
assert(candidate_idx < (int) block->instructions.size());
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
if (candidate->opcode == aco_opcode::p_logical_end)
break;
/* check if candidate depends on current */
bool is_dependency = !found_dependency && !ctx.mv.upwards_check_deps();
/* no need to steal from following VMEM instructions */
if (is_dependency && candidate->isVMEM())
break;
if (found_dependency) {
HazardResult haz = perform_hazard_query(&hq, candidate.get());
if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill ||
haz == hazard_fail_reorder_sendmsg || haz == hazard_fail_barrier ||
haz == hazard_fail_export)
is_dependency = true;
else if (haz != hazard_success)
break;
}
if (is_dependency) {
if (!found_dependency) {
ctx.mv.upwards_set_insert_idx(candidate_idx);
init_hazard_query(&hq);
found_dependency = true;
}
}
if (is_dependency || !found_dependency) {
if (found_dependency)
add_to_hazard_query(&hq, candidate.get());
else
k++;
ctx.mv.upwards_skip();
continue;
}
MoveResult res = ctx.mv.upwards_move();
if (res == move_fail_ssa || res == move_fail_rar) {
/* no need to steal from following VMEM instructions */
if (res == move_fail_ssa && candidate->isVMEM())
break;
add_to_hazard_query(&hq, candidate.get());
ctx.mv.upwards_skip();
continue;
} else if (res == move_fail_pressure) {
break;
}
k++;
}
ctx.last_SMEM_dep_idx = found_dependency ? ctx.mv.insert_idx : 0;
ctx.last_SMEM_stall = 10 - ctx.num_waves - k;
}
void schedule_VMEM(sched_ctx& ctx, Block* block,
std::vector<RegisterDemand>& register_demand,
Instruction* current, int idx)
{
assert(idx != 0);
int window_size = VMEM_WINDOW_SIZE;
int max_moves = VMEM_MAX_MOVES;
int clause_max_grab_dist = VMEM_CLAUSE_MAX_GRAB_DIST;
int16_t k = 0;
/* first, check if we have instructions before current to move down */
hazard_query indep_hq;
hazard_query clause_hq;
init_hazard_query(&indep_hq);
init_hazard_query(&clause_hq);
add_to_hazard_query(&indep_hq, current);
ctx.mv.downwards_init(idx, true, true);
for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
assert(candidate_idx == ctx.mv.source_idx);
assert(candidate_idx >= 0);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
bool is_vmem = candidate->isVMEM() || candidate->isFlatOrGlobal();
/* break when encountering another VMEM instruction, logical_start or barriers */
if (candidate->opcode == aco_opcode::p_logical_start)
break;
/* break if we'd make the previous SMEM instruction stall */
bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx;
if (can_stall_prev_smem && ctx.last_SMEM_stall >= 0)
break;
bool part_of_clause = false;
if (current->isVMEM() == candidate->isVMEM()) {
bool same_resource = true;
if (current->isVMEM())
same_resource = candidate->operands[0].tempId() == current->operands[0].tempId();
int grab_dist = ctx.mv.insert_idx_clause - candidate_idx;
/* We can't easily tell how much this will decrease the def-to-use
* distances, so just use how far it will be moved as a heuristic. */
part_of_clause = same_resource && grab_dist < clause_max_grab_dist;
}
/* if current depends on candidate, add additional dependencies and continue */
bool can_move_down = !is_vmem || part_of_clause;
HazardResult haz = perform_hazard_query(part_of_clause ? &clause_hq : &indep_hq, candidate.get());
if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill ||
haz == hazard_fail_reorder_sendmsg || haz == hazard_fail_barrier ||
haz == hazard_fail_export)
can_move_down = false;
else if (haz != hazard_success)
break;
if (!can_move_down) {
add_to_hazard_query(&indep_hq, candidate.get());
add_to_hazard_query(&clause_hq, candidate.get());
ctx.mv.downwards_skip();
continue;
}
Instruction *candidate_ptr = candidate.get();
MoveResult res = ctx.mv.downwards_move(part_of_clause);
if (res == move_fail_ssa || res == move_fail_rar) {
add_to_hazard_query(&indep_hq, candidate.get());
add_to_hazard_query(&clause_hq, candidate.get());
ctx.mv.downwards_skip();
continue;
} else if (res == move_fail_pressure) {
break;
}
if (part_of_clause)
add_to_hazard_query(&indep_hq, candidate_ptr);
k++;
if (candidate_idx < ctx.last_SMEM_dep_idx)
ctx.last_SMEM_stall++;
}
/* find the first instruction depending on current or find another VMEM */
ctx.mv.upwards_init(idx + 1, true);
bool found_dependency = false;
/* second, check if we have instructions after current to move up */
for (int candidate_idx = idx + 1; k < max_moves && candidate_idx < (int) idx + window_size; candidate_idx++) {
assert(candidate_idx == ctx.mv.source_idx);
assert(candidate_idx < (int) block->instructions.size());
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
bool is_vmem = candidate->isVMEM() || candidate->isFlatOrGlobal();
if (candidate->opcode == aco_opcode::p_logical_end)
break;
/* check if candidate depends on current */
bool is_dependency = false;
if (found_dependency) {
HazardResult haz = perform_hazard_query(&indep_hq, candidate.get());
if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill ||
haz == hazard_fail_reorder_vmem_smem || haz == hazard_fail_reorder_sendmsg ||
haz == hazard_fail_barrier || haz == hazard_fail_export)
is_dependency = true;
else if (haz != hazard_success)
break;
}
is_dependency |= !found_dependency && !ctx.mv.upwards_check_deps();
if (is_dependency) {
if (!found_dependency) {
ctx.mv.upwards_set_insert_idx(candidate_idx);
init_hazard_query(&indep_hq);
found_dependency = true;
}
} else if (is_vmem) {
/* don't move up dependencies of other VMEM instructions */
for (const Definition& def : candidate->definitions) {
if (def.isTemp())
ctx.mv.depends_on[def.tempId()] = true;
}
}
if (is_dependency || !found_dependency) {
if (found_dependency)
add_to_hazard_query(&indep_hq, candidate.get());
ctx.mv.upwards_skip();
continue;
}
MoveResult res = ctx.mv.upwards_move();
if (res == move_fail_ssa || res == move_fail_rar) {
add_to_hazard_query(&indep_hq, candidate.get());
ctx.mv.upwards_skip();
continue;
} else if (res == move_fail_pressure) {
break;
}
k++;
}
}
void schedule_position_export(sched_ctx& ctx, Block* block,
std::vector<RegisterDemand>& register_demand,
Instruction* current, int idx)
{
assert(idx != 0);
int window_size = POS_EXP_WINDOW_SIZE;
int max_moves = POS_EXP_MAX_MOVES;
int16_t k = 0;
ctx.mv.downwards_init(idx, true, false);
hazard_query hq;
init_hazard_query(&hq);
add_to_hazard_query(&hq, current);
for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
assert(candidate_idx >= 0);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
if (candidate->opcode == aco_opcode::p_logical_start)
break;
if (candidate->isVMEM() || candidate->format == Format::SMEM || candidate->isFlatOrGlobal())
break;
HazardResult haz = perform_hazard_query(&hq, candidate.get());
if (haz == hazard_fail_exec || haz == hazard_fail_unreorderable)
break;
if (haz != hazard_success) {
add_to_hazard_query(&hq, candidate.get());
ctx.mv.downwards_skip();
continue;
}
MoveResult res = ctx.mv.downwards_move(false);
if (res == move_fail_ssa || res == move_fail_rar) {
add_to_hazard_query(&hq, candidate.get());
ctx.mv.downwards_skip();
continue;
} else if (res == move_fail_pressure) {
break;
}
k++;
}
}
void schedule_block(sched_ctx& ctx, Program *program, Block* block, live& live_vars)
{
ctx.last_SMEM_dep_idx = 0;
ctx.last_SMEM_stall = INT16_MIN;
ctx.mv.block = block;
ctx.mv.register_demand = live_vars.register_demand[block->index].data();
/* go through all instructions and find memory loads */
for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
Instruction* current = block->instructions[idx].get();
if (current->definitions.empty())
continue;
if (current->isVMEM() || current->isFlatOrGlobal()) {
ctx.mv.current = current;
schedule_VMEM(ctx, block, live_vars.register_demand[block->index], current, idx);
}
if (current->format == Format::SMEM) {
ctx.mv.current = current;
schedule_SMEM(ctx, block, live_vars.register_demand[block->index], current, idx);
}
}
if ((program->stage & (hw_vs | hw_ngg_gs)) && (block->kind & block_kind_export_end)) {
/* Try to move position exports as far up as possible, to reduce register
* usage and because ISA reference guides say so. */
for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
Instruction* current = block->instructions[idx].get();
if (current->format == Format::EXP) {
unsigned target = static_cast<Export_instruction*>(current)->dest;
if (target >= V_008DFC_SQ_EXP_POS && target < V_008DFC_SQ_EXP_PARAM) {
ctx.mv.current = current;
schedule_position_export(ctx, block, live_vars.register_demand[block->index], current, idx);
}
}
}
}
/* resummarize the block's register demand */
block->register_demand = RegisterDemand();
for (unsigned idx = 0; idx < block->instructions.size(); idx++) {
block->register_demand.update(live_vars.register_demand[block->index][idx]);
}
}
void schedule_program(Program *program, live& live_vars)
{
sched_ctx ctx;
ctx.mv.depends_on.resize(program->peekAllocationId());
ctx.mv.RAR_dependencies.resize(program->peekAllocationId());
ctx.mv.RAR_dependencies_clause.resize(program->peekAllocationId());
/* Allowing the scheduler to reduce the number of waves to as low as 5
* improves performance of Thrones of Britannia significantly and doesn't
* seem to hurt anything else. */
if (program->num_waves <= 5)
ctx.num_waves = program->num_waves;
else if (program->max_reg_demand.vgpr >= 32)
ctx.num_waves = 5;
else if (program->max_reg_demand.vgpr >= 28)
ctx.num_waves = 6;
else if (program->max_reg_demand.vgpr >= 24)
ctx.num_waves = 7;
else
ctx.num_waves = 8;
ctx.num_waves = std::max<uint16_t>(ctx.num_waves, program->min_waves);
assert(ctx.num_waves > 0 && ctx.num_waves <= program->num_waves);
ctx.mv.max_registers = { int16_t(get_addr_vgpr_from_waves(program, ctx.num_waves) - 2),
int16_t(get_addr_sgpr_from_waves(program, ctx.num_waves))};
for (Block& block : program->blocks)
schedule_block(ctx, program, &block, live_vars);
/* update max_reg_demand and num_waves */
RegisterDemand new_demand;
for (Block& block : program->blocks) {
new_demand.update(block.register_demand);
}
update_vgpr_sgpr_demand(program, new_demand);
/* if enabled, this code asserts that register_demand is updated correctly */
#if 0
int prev_num_waves = program->num_waves;
const RegisterDemand prev_max_demand = program->max_reg_demand;
std::vector<RegisterDemand> demands(program->blocks.size());
for (unsigned j = 0; j < program->blocks.size(); j++) {
demands[j] = program->blocks[j].register_demand;
}
struct radv_nir_compiler_options options;
options.chip_class = program->chip_class;
live live_vars2 = aco::live_var_analysis(program, &options);
for (unsigned j = 0; j < program->blocks.size(); j++) {
Block &b = program->blocks[j];
for (unsigned i = 0; i < b.instructions.size(); i++)
assert(live_vars.register_demand[b.index][i] == live_vars2.register_demand[b.index][i]);
assert(b.register_demand == demands[j]);
}
assert(program->max_reg_demand == prev_max_demand);
assert(program->num_waves == prev_num_waves);
#endif
}
}