blob: 926feaf9ed0bf2e492e8e824e3063b249447c7d8 [file] [log] [blame]
/*
* Copyright 2013 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "sid.h"
/* Set this if you want the ME to wait until CP DMA is done.
* It should be set on the last CP DMA packet. */
#define CP_DMA_SYNC (1 << 0)
/* Set this if the source data was used as a destination in a previous CP DMA
* packet. It's for preventing a read-after-write (RAW) hazard between two
* CP DMA packets. */
#define CP_DMA_RAW_WAIT (1 << 1)
#define CP_DMA_DST_IS_GDS (1 << 2)
#define CP_DMA_CLEAR (1 << 3)
#define CP_DMA_PFP_SYNC_ME (1 << 4)
#define CP_DMA_SRC_IS_GDS (1 << 5)
/* The max number of bytes that can be copied per packet. */
static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
{
unsigned max =
sctx->chip_class >= GFX9 ? S_414_BYTE_COUNT_GFX9(~0u) : S_414_BYTE_COUNT_GFX6(~0u);
/* make it aligned for optimal performance */
return max & ~(SI_CPDMA_ALIGNMENT - 1);
}
/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
* a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
* clear value.
*/
static void si_emit_cp_dma(struct si_context *sctx, struct radeon_cmdbuf *cs, uint64_t dst_va,
uint64_t src_va, unsigned size, unsigned flags,
enum si_cache_policy cache_policy)
{
uint32_t header = 0, command = 0;
assert(size <= cp_dma_max_byte_count(sctx));
assert(sctx->chip_class != GFX6 || cache_policy == L2_BYPASS);
if (sctx->chip_class >= GFX9)
command |= S_414_BYTE_COUNT_GFX9(size);
else
command |= S_414_BYTE_COUNT_GFX6(size);
/* Sync flags. */
if (flags & CP_DMA_SYNC)
header |= S_411_CP_SYNC(1);
else {
if (sctx->chip_class >= GFX9)
command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
else
command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
}
if (flags & CP_DMA_RAW_WAIT)
command |= S_414_RAW_WAIT(1);
/* Src and dst flags. */
if (sctx->chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) && src_va == dst_va) {
header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
} else if (flags & CP_DMA_DST_IS_GDS) {
header |= S_411_DST_SEL(V_411_GDS);
/* GDS increments the address, not CP. */
command |= S_414_DAS(V_414_REGISTER) | S_414_DAIC(V_414_NO_INCREMENT);
} else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
header |=
S_411_DST_SEL(V_411_DST_ADDR_TC_L2) | S_500_DST_CACHE_POLICY(cache_policy == L2_STREAM);
}
if (flags & CP_DMA_CLEAR) {
header |= S_411_SRC_SEL(V_411_DATA);
} else if (flags & CP_DMA_SRC_IS_GDS) {
header |= S_411_SRC_SEL(V_411_GDS);
/* Both of these are required for GDS. It does increment the address. */
command |= S_414_SAS(V_414_REGISTER) | S_414_SAIC(V_414_NO_INCREMENT);
} else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
header |=
S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) | S_500_SRC_CACHE_POLICY(cache_policy == L2_STREAM);
}
if (sctx->chip_class >= GFX7) {
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, header);
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
radeon_emit(cs, command);
} else {
header |= S_411_SRC_ADDR_HI(src_va >> 32);
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, command);
}
/* CP DMA is executed in ME, but index buffers are read by PFP.
* This ensures that ME (CP DMA) is idle before PFP starts fetching
* indices. If we wanted to execute CP DMA in PFP, this packet
* should precede it.
*/
if (sctx->has_graphics && flags & CP_DMA_PFP_SYNC_ME) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
}
void si_cp_dma_wait_for_idle(struct si_context *sctx)
{
/* Issue a dummy DMA that copies zero bytes.
*
* The DMA engine will see that there's no work to do and skip this
* DMA request, however, the CP will see the sync flag and still wait
* for all DMAs to complete.
*/
si_emit_cp_dma(sctx, sctx->gfx_cs, 0, 0, 0, CP_DMA_SYNC, L2_BYPASS);
}
static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
struct pipe_resource *src, unsigned byte_count,
uint64_t remaining_size, unsigned user_flags, enum si_coherency coher,
bool *is_first, unsigned *packet_flags)
{
/* Fast exit for a CPDMA prefetch. */
if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
*is_first = false;
return;
}
if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
/* Count memory usage in so that need_cs_space can take it into account. */
if (dst)
si_context_add_resource_size(sctx, dst);
if (src)
si_context_add_resource_size(sctx, src);
}
if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
si_need_gfx_cs_space(sctx);
/* This must be done after need_cs_space. */
if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
if (dst)
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(dst), RADEON_USAGE_WRITE,
RADEON_PRIO_CP_DMA);
if (src)
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(src), RADEON_USAGE_READ,
RADEON_PRIO_CP_DMA);
}
/* Flush the caches for the first copy only.
* Also wait for the previous CP DMA operations.
*/
if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->flags)
sctx->emit_cache_flush(sctx);
if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first && !(*packet_flags & CP_DMA_CLEAR))
*packet_flags |= CP_DMA_RAW_WAIT;
*is_first = false;
/* Do the synchronization after the last dma, so that all data
* is written to memory.
*/
if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) && byte_count == remaining_size) {
*packet_flags |= CP_DMA_SYNC;
if (coher == SI_COHERENCY_SHADER)
*packet_flags |= CP_DMA_PFP_SYNC_ME;
}
}
void si_cp_dma_clear_buffer(struct si_context *sctx, struct radeon_cmdbuf *cs,
struct pipe_resource *dst, uint64_t offset, uint64_t size,
unsigned value, unsigned user_flags, enum si_coherency coher,
enum si_cache_policy cache_policy)
{
struct si_resource *sdst = si_resource(dst);
uint64_t va = (sdst ? sdst->gpu_address : 0) + offset;
bool is_first = true;
assert(size && size % 4 == 0);
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
if (sdst)
util_range_add(dst, &sdst->valid_buffer_range, offset, offset + size);
/* Flush the caches. */
if (sdst && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH |
si_get_flush_flags(sctx, coher, cache_policy);
}
while (size) {
unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
unsigned dma_flags = CP_DMA_CLEAR | (sdst ? 0 : CP_DMA_DST_IS_GDS);
si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, user_flags, coher, &is_first,
&dma_flags);
/* Emit the clear packet. */
si_emit_cp_dma(sctx, cs, va, value, byte_count, dma_flags, cache_policy);
size -= byte_count;
va += byte_count;
}
if (sdst && cache_policy != L2_BYPASS)
sdst->TC_L2_dirty = true;
/* If it's not a framebuffer fast clear... */
if (coher == SI_COHERENCY_SHADER) {
sctx->num_cp_dma_calls++;
si_prim_discard_signal_next_compute_ib_start(sctx);
}
}
/**
* Realign the CP DMA engine. This must be done after a copy with an unaligned
* size.
*
* \param size Remaining size to the CP DMA alignment.
*/
static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size, unsigned user_flags,
enum si_coherency coher, enum si_cache_policy cache_policy,
bool *is_first)
{
uint64_t va;
unsigned dma_flags = 0;
unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
assert(size < SI_CPDMA_ALIGNMENT);
/* Use the scratch buffer as the dummy buffer. The 3D engine should be
* idle at this point.
*/
if (!sctx->scratch_buffer || sctx->scratch_buffer->b.b.width0 < scratch_size) {
si_resource_reference(&sctx->scratch_buffer, NULL);
sctx->scratch_buffer = si_aligned_buffer_create(&sctx->screen->b,
SI_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
PIPE_USAGE_DEFAULT, scratch_size, 256);
if (!sctx->scratch_buffer)
return;
si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
}
si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b, &sctx->scratch_buffer->b.b, size, size,
user_flags, coher, is_first, &dma_flags);
va = sctx->scratch_buffer->gpu_address;
si_emit_cp_dma(sctx, sctx->gfx_cs, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags, cache_policy);
}
/**
* Do memcpy between buffers using CP DMA.
* If src or dst is NULL, it means read or write GDS, respectively.
*
* \param user_flags bitmask of SI_CPDMA_*
*/
void si_cp_dma_copy_buffer(struct si_context *sctx, struct pipe_resource *dst,
struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset,
unsigned size, unsigned user_flags, enum si_coherency coher,
enum si_cache_policy cache_policy)
{
uint64_t main_dst_offset, main_src_offset;
unsigned skipped_size = 0;
unsigned realign_size = 0;
unsigned gds_flags = (dst ? 0 : CP_DMA_DST_IS_GDS) | (src ? 0 : CP_DMA_SRC_IS_GDS);
bool is_first = true;
assert(size);
if (dst) {
/* Skip this for the L2 prefetch. */
if (dst != src || dst_offset != src_offset) {
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
util_range_add(dst, &si_resource(dst)->valid_buffer_range, dst_offset, dst_offset + size);
}
dst_offset += si_resource(dst)->gpu_address;
}
if (src)
src_offset += si_resource(src)->gpu_address;
/* The workarounds aren't needed on Fiji and beyond. */
if (sctx->family <= CHIP_CARRIZO || sctx->family == CHIP_STONEY) {
/* If the size is not aligned, we must add a dummy copy at the end
* just to align the internal counter. Otherwise, the DMA engine
* would slow down by an order of magnitude for following copies.
*/
if (size % SI_CPDMA_ALIGNMENT)
realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
/* If the copy begins unaligned, we must start copying from the next
* aligned block and the skipped part should be copied after everything
* else has been copied. Only the src alignment matters, not dst.
*
* GDS doesn't need the source address to be aligned.
*/
if (src && src_offset % SI_CPDMA_ALIGNMENT) {
skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
/* The main part will be skipped if the size is too small. */
skipped_size = MIN2(skipped_size, size);
size -= skipped_size;
}
}
/* TMZ handling */
if (unlikely(sctx->ws->ws_uses_secure_bo(sctx->ws) &&
!(user_flags & SI_CPDMA_SKIP_TMZ))) {
bool secure = src && (si_resource(src)->flags & RADEON_FLAG_ENCRYPTED);
assert(!secure || (!dst || (si_resource(dst)->flags & RADEON_FLAG_ENCRYPTED)));
if (secure != sctx->ws->cs_is_secure(sctx->gfx_cs)) {
si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
sctx->ws->cs_set_secure(sctx->gfx_cs, secure);
}
}
/* Flush the caches. */
if ((dst || src) && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH |
si_get_flush_flags(sctx, coher, cache_policy);
}
/* This is the main part doing the copying. Src is always aligned. */
main_dst_offset = dst_offset + skipped_size;
main_src_offset = src_offset + skipped_size;
while (size) {
unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
unsigned dma_flags = gds_flags;
si_cp_dma_prepare(sctx, dst, src, byte_count, size + skipped_size + realign_size, user_flags,
coher, &is_first, &dma_flags);
si_emit_cp_dma(sctx, sctx->gfx_cs, main_dst_offset, main_src_offset, byte_count, dma_flags,
cache_policy);
size -= byte_count;
main_src_offset += byte_count;
main_dst_offset += byte_count;
}
/* Copy the part we skipped because src wasn't aligned. */
if (skipped_size) {
unsigned dma_flags = gds_flags;
si_cp_dma_prepare(sctx, dst, src, skipped_size, skipped_size + realign_size, user_flags,
coher, &is_first, &dma_flags);
si_emit_cp_dma(sctx, sctx->gfx_cs, dst_offset, src_offset, skipped_size, dma_flags,
cache_policy);
}
/* Finally, realign the engine if the size wasn't aligned. */
if (realign_size) {
si_cp_dma_realign_engine(sctx, realign_size, user_flags, coher, cache_policy, &is_first);
}
if (dst && cache_policy != L2_BYPASS)
si_resource(dst)->TC_L2_dirty = true;
/* If it's not a prefetch or GDS copy... */
if (dst && src && (dst != src || dst_offset != src_offset)) {
sctx->num_cp_dma_calls++;
si_prim_discard_signal_next_compute_ib_start(sctx);
}
}
void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf, uint64_t offset,
unsigned size)
{
assert(sctx->chip_class >= GFX7);
si_cp_dma_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL,
SI_COHERENCY_SHADER, L2_LRU);
}
static void cik_prefetch_shader_async(struct si_context *sctx, struct si_pm4_state *state)
{
struct pipe_resource *bo = &state->shader->bo->b.b;
cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
}
static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
{
if (!sctx->vertex_elements || !sctx->vertex_elements->vb_desc_list_alloc_size)
return;
cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b, sctx->vb_descriptors_offset,
sctx->vertex_elements->vb_desc_list_alloc_size);
}
/**
* Prefetch shaders and VBO descriptors.
*
* \param vertex_stage_only Whether only the the API VS and VBO descriptors
* should be prefetched.
*/
void cik_emit_prefetch_L2(struct si_context *sctx, bool vertex_stage_only)
{
unsigned mask = sctx->prefetch_L2_mask;
assert(mask);
/* Prefetch shaders and VBO descriptors to TC L2. */
if (sctx->chip_class >= GFX9) {
/* Choose the right spot for the VBO prefetch. */
if (sctx->queued.named.hs) {
if (mask & SI_PREFETCH_HS)
cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
cik_prefetch_VBO_descriptors(sctx);
if (vertex_stage_only) {
sctx->prefetch_L2_mask &= ~(SI_PREFETCH_HS | SI_PREFETCH_VBO_DESCRIPTORS);
return;
}
if (mask & SI_PREFETCH_GS)
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
if (mask & SI_PREFETCH_VS)
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
} else if (sctx->queued.named.gs) {
if (mask & SI_PREFETCH_GS)
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
cik_prefetch_VBO_descriptors(sctx);
if (vertex_stage_only) {
sctx->prefetch_L2_mask &= ~(SI_PREFETCH_GS | SI_PREFETCH_VBO_DESCRIPTORS);
return;
}
if (mask & SI_PREFETCH_VS)
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
} else {
if (mask & SI_PREFETCH_VS)
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
cik_prefetch_VBO_descriptors(sctx);
if (vertex_stage_only) {
sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS);
return;
}
}
} else {
/* GFX6-GFX8 */
/* Choose the right spot for the VBO prefetch. */
if (sctx->tes_shader.cso) {
if (mask & SI_PREFETCH_LS)
cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
cik_prefetch_VBO_descriptors(sctx);
if (vertex_stage_only) {
sctx->prefetch_L2_mask &= ~(SI_PREFETCH_LS | SI_PREFETCH_VBO_DESCRIPTORS);
return;
}
if (mask & SI_PREFETCH_HS)
cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
if (mask & SI_PREFETCH_ES)
cik_prefetch_shader_async(sctx, sctx->queued.named.es);
if (mask & SI_PREFETCH_GS)
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
if (mask & SI_PREFETCH_VS)
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
} else if (sctx->gs_shader.cso) {
if (mask & SI_PREFETCH_ES)
cik_prefetch_shader_async(sctx, sctx->queued.named.es);
if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
cik_prefetch_VBO_descriptors(sctx);
if (vertex_stage_only) {
sctx->prefetch_L2_mask &= ~(SI_PREFETCH_ES | SI_PREFETCH_VBO_DESCRIPTORS);
return;
}
if (mask & SI_PREFETCH_GS)
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
if (mask & SI_PREFETCH_VS)
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
} else {
if (mask & SI_PREFETCH_VS)
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
cik_prefetch_VBO_descriptors(sctx);
if (vertex_stage_only) {
sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS);
return;
}
}
}
if (mask & SI_PREFETCH_PS)
cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
sctx->prefetch_L2_mask = 0;
}
void si_test_gds(struct si_context *sctx)
{
struct pipe_context *ctx = &sctx->b;
struct pipe_resource *src, *dst;
unsigned r[4] = {};
unsigned offset = debug_get_num_option("OFFSET", 16);
src = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
dst = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 0, 4, 0xabcdef01, 0, SI_COHERENCY_SHADER,
L2_BYPASS);
si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 4, 4, 0x23456789, 0, SI_COHERENCY_SHADER,
L2_BYPASS);
si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 8, 4, 0x87654321, 0, SI_COHERENCY_SHADER,
L2_BYPASS);
si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 12, 4, 0xfedcba98, 0, SI_COHERENCY_SHADER,
L2_BYPASS);
si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, 0, 16, 0xdeadbeef, 0, SI_COHERENCY_SHADER,
L2_BYPASS);
si_cp_dma_copy_buffer(sctx, NULL, src, offset, 0, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
printf("GDS copy = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
r[0] == 0xabcdef01 && r[1] == 0x23456789 && r[2] == 0x87654321 && r[3] == 0xfedcba98
? "pass"
: "fail");
si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, NULL, offset, 16, 0xc1ea4146, 0, SI_COHERENCY_NONE,
L2_BYPASS);
si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
printf("GDS clear = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
r[0] == 0xc1ea4146 && r[1] == 0xc1ea4146 && r[2] == 0xc1ea4146 && r[3] == 0xc1ea4146
? "pass"
: "fail");
pipe_resource_reference(&src, NULL);
pipe_resource_reference(&dst, NULL);
exit(0);
}
void si_cp_write_data(struct si_context *sctx, struct si_resource *buf, unsigned offset,
unsigned size, unsigned dst_sel, unsigned engine, const void *data)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
assert(offset % 4 == 0);
assert(size % 4 == 0);
if (sctx->chip_class == GFX6 && dst_sel == V_370_MEM)
dst_sel = V_370_MEM_GRBM;
radeon_add_to_buffer_list(sctx, cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
uint64_t va = buf->gpu_address + offset;
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + size / 4, 0));
radeon_emit(cs, S_370_DST_SEL(dst_sel) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(engine));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit_array(cs, (const uint32_t *)data, size / 4);
}
void si_cp_copy_data(struct si_context *sctx, struct radeon_cmdbuf *cs, unsigned dst_sel,
struct si_resource *dst, unsigned dst_offset, unsigned src_sel,
struct si_resource *src, unsigned src_offset)
{
/* cs can point to the compute IB, which has the buffer list in gfx_cs. */
if (dst) {
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dst, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
}
if (src) {
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, src, RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
}
uint64_t dst_va = (dst ? dst->gpu_address : 0ull) + dst_offset;
uint64_t src_va = (src ? src->gpu_address : 0ull) + src_offset;
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(src_sel) | COPY_DATA_DST_SEL(dst_sel) | COPY_DATA_WR_CONFIRM);
radeon_emit(cs, src_va);
radeon_emit(cs, src_va >> 32);
radeon_emit(cs, dst_va);
radeon_emit(cs, dst_va >> 32);
}