blob: ff441126e19aae888083419943aaf2c5129dd529 [file] [log] [blame]
/*
* Copyright (C) 2016 Rob Clark <robclark@freedesktop.org>
* Copyright © 2018 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "pipe/p_state.h"
#include "util/u_string.h"
#include "util/u_memory.h"
#include "util/u_helpers.h"
#include "util/format/u_format.h"
#include "util/u_viewport.h"
#include "freedreno_log.h"
#include "freedreno_resource.h"
#include "freedreno_state.h"
#include "freedreno_query_hw.h"
#include "common/freedreno_guardband.h"
#include "fd6_emit.h"
#include "fd6_blend.h"
#include "fd6_const.h"
#include "fd6_context.h"
#include "fd6_image.h"
#include "fd6_pack.h"
#include "fd6_program.h"
#include "fd6_rasterizer.h"
#include "fd6_texture.h"
#include "fd6_format.h"
#include "fd6_zsa.h"
/* Border color layout is diff from a4xx/a5xx.. if it turns out to be
* the same as a6xx then move this somewhere common ;-)
*
* Entry layout looks like (total size, 0x60 bytes):
*/
struct PACKED bcolor_entry {
uint32_t fp32[4];
uint16_t ui16[4];
int16_t si16[4];
uint16_t fp16[4];
uint16_t rgb565;
uint16_t rgb5a1;
uint16_t rgba4;
uint8_t __pad0[2];
uint8_t ui8[4];
int8_t si8[4];
uint32_t rgb10a2;
uint32_t z24; /* also s8? */
uint16_t srgb[4]; /* appears to duplicate fp16[], but clamped, used for srgb */
uint8_t __pad1[56];
};
#define FD6_BORDER_COLOR_SIZE sizeof(struct bcolor_entry)
#define FD6_BORDER_COLOR_UPLOAD_SIZE (2 * PIPE_MAX_SAMPLERS * FD6_BORDER_COLOR_SIZE)
static void
setup_border_colors(struct fd_texture_stateobj *tex, struct bcolor_entry *entries)
{
unsigned i, j;
STATIC_ASSERT(sizeof(struct bcolor_entry) == FD6_BORDER_COLOR_SIZE);
for (i = 0; i < tex->num_samplers; i++) {
struct bcolor_entry *e = &entries[i];
struct pipe_sampler_state *sampler = tex->samplers[i];
union pipe_color_union *bc;
if (!sampler)
continue;
bc = &sampler->border_color;
/*
* XXX HACK ALERT XXX
*
* The border colors need to be swizzled in a particular
* format-dependent order. Even though samplers don't know about
* formats, we can assume that with a GL state tracker, there's a
* 1:1 correspondence between sampler and texture. Take advantage
* of that knowledge.
*/
if ((i >= tex->num_textures) || !tex->textures[i])
continue;
struct pipe_sampler_view *view = tex->textures[i];
enum pipe_format format = view->format;
const struct util_format_description *desc =
util_format_description(format);
e->rgb565 = 0;
e->rgb5a1 = 0;
e->rgba4 = 0;
e->rgb10a2 = 0;
e->z24 = 0;
unsigned char swiz[4];
fd6_tex_swiz(format, swiz,
view->swizzle_r, view->swizzle_g,
view->swizzle_b, view->swizzle_a);
for (j = 0; j < 4; j++) {
int c = swiz[j];
int cd = c;
/*
* HACK: for PIPE_FORMAT_X24S8_UINT we end up w/ the
* stencil border color value in bc->ui[0] but according
* to desc->swizzle and desc->channel, the .x/.w component
* is NONE and the stencil value is in the y component.
* Meanwhile the hardware wants this in the .w component
* for x24s8 and the .x component for x32_s8x24.
*/
if ((format == PIPE_FORMAT_X24S8_UINT) ||
(format == PIPE_FORMAT_X32_S8X24_UINT)) {
if (j == 0) {
c = 1;
cd = (format == PIPE_FORMAT_X32_S8X24_UINT) ? 0 : 3;
} else {
continue;
}
}
if (c >= 4)
continue;
if (desc->channel[c].pure_integer) {
uint16_t clamped;
switch (desc->channel[c].size) {
case 2:
assert(desc->channel[c].type == UTIL_FORMAT_TYPE_UNSIGNED);
clamped = CLAMP(bc->ui[j], 0, 0x3);
break;
case 8:
if (desc->channel[c].type == UTIL_FORMAT_TYPE_SIGNED)
clamped = CLAMP(bc->i[j], -128, 127);
else
clamped = CLAMP(bc->ui[j], 0, 255);
break;
case 10:
assert(desc->channel[c].type == UTIL_FORMAT_TYPE_UNSIGNED);
clamped = CLAMP(bc->ui[j], 0, 0x3ff);
break;
case 16:
if (desc->channel[c].type == UTIL_FORMAT_TYPE_SIGNED)
clamped = CLAMP(bc->i[j], -32768, 32767);
else
clamped = CLAMP(bc->ui[j], 0, 65535);
break;
default:
assert(!"Unexpected bit size");
case 32:
clamped = 0;
break;
}
e->fp32[cd] = bc->ui[j];
e->fp16[cd] = clamped;
} else {
float f = bc->f[j];
float f_u = CLAMP(f, 0, 1);
float f_s = CLAMP(f, -1, 1);
e->fp32[c] = fui(f);
e->fp16[c] = util_float_to_half(f);
e->srgb[c] = util_float_to_half(f_u);
e->ui16[c] = f_u * 0xffff;
e->si16[c] = f_s * 0x7fff;
e->ui8[c] = f_u * 0xff;
e->si8[c] = f_s * 0x7f;
if (c == 1)
e->rgb565 |= (int)(f_u * 0x3f) << 5;
else if (c < 3)
e->rgb565 |= (int)(f_u * 0x1f) << (c ? 11 : 0);
if (c == 3)
e->rgb5a1 |= (f_u > 0.5) ? 0x8000 : 0;
else
e->rgb5a1 |= (int)(f_u * 0x1f) << (c * 5);
if (c == 3)
e->rgb10a2 |= (int)(f_u * 0x3) << 30;
else
e->rgb10a2 |= (int)(f_u * 0x3ff) << (c * 10);
e->rgba4 |= (int)(f_u * 0xf) << (c * 4);
if (c == 0)
e->z24 = f_u * 0xffffff;
}
}
#ifdef DEBUG
memset(&e->__pad0, 0, sizeof(e->__pad0));
memset(&e->__pad1, 0, sizeof(e->__pad1));
#endif
}
}
static void
emit_border_color(struct fd_context *ctx, struct fd_ringbuffer *ring)
{
struct fd6_context *fd6_ctx = fd6_context(ctx);
struct bcolor_entry *entries;
unsigned off;
void *ptr;
STATIC_ASSERT(sizeof(struct bcolor_entry) == FD6_BORDER_COLOR_SIZE);
u_upload_alloc(fd6_ctx->border_color_uploader,
0, FD6_BORDER_COLOR_UPLOAD_SIZE,
FD6_BORDER_COLOR_UPLOAD_SIZE, &off,
&fd6_ctx->border_color_buf,
&ptr);
entries = ptr;
setup_border_colors(&ctx->tex[PIPE_SHADER_VERTEX], &entries[0]);
setup_border_colors(&ctx->tex[PIPE_SHADER_FRAGMENT],
&entries[ctx->tex[PIPE_SHADER_VERTEX].num_samplers]);
OUT_PKT4(ring, REG_A6XX_SP_TP_BORDER_COLOR_BASE_ADDR_LO, 2);
OUT_RELOC(ring, fd_resource(fd6_ctx->border_color_buf)->bo, off, 0, 0);
u_upload_unmap(fd6_ctx->border_color_uploader);
}
static void
fd6_emit_fb_tex(struct fd_ringbuffer *state, struct fd_context *ctx)
{
struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer;
struct pipe_surface *psurf = pfb->cbufs[0];
struct fd_resource *rsc = fd_resource(psurf->texture);
uint32_t texconst0 = fd6_tex_const_0(psurf->texture, psurf->u.tex.level,
psurf->format, PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y,
PIPE_SWIZZLE_Z, PIPE_SWIZZLE_W);
/* always TILE6_2 mode in GMEM.. which also means no swap: */
texconst0 &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
texconst0 |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
OUT_RING(state, texconst0);
OUT_RING(state, A6XX_TEX_CONST_1_WIDTH(pfb->width) |
A6XX_TEX_CONST_1_HEIGHT(pfb->height));
OUT_RINGP(state, A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D),
&ctx->batch->fb_read_patches);
OUT_RING(state, A6XX_TEX_CONST_3_ARRAY_PITCH(rsc->layout.layer_size));
OUT_RING(state, A6XX_TEX_CONST_4_BASE_LO(ctx->screen->gmem_base));
OUT_RING(state, A6XX_TEX_CONST_5_BASE_HI(ctx->screen->gmem_base >> 32) |
A6XX_TEX_CONST_5_DEPTH(1));
OUT_RING(state, 0); /* texconst6 */
OUT_RING(state, 0); /* texconst7 */
OUT_RING(state, 0); /* texconst8 */
OUT_RING(state, 0); /* texconst9 */
OUT_RING(state, 0); /* texconst10 */
OUT_RING(state, 0); /* texconst11 */
OUT_RING(state, 0);
OUT_RING(state, 0);
OUT_RING(state, 0);
OUT_RING(state, 0);
}
bool
fd6_emit_textures(struct fd_pipe *pipe, struct fd_ringbuffer *ring,
enum pipe_shader_type type, struct fd_texture_stateobj *tex,
unsigned bcolor_offset,
/* can be NULL if no image/SSBO/fb state to merge in: */
const struct ir3_shader_variant *v, struct fd_context *ctx)
{
bool needs_border = false;
unsigned opcode, tex_samp_reg, tex_const_reg, tex_count_reg;
enum a6xx_state_block sb;
switch (type) {
case PIPE_SHADER_VERTEX:
sb = SB6_VS_TEX;
opcode = CP_LOAD_STATE6_GEOM;
tex_samp_reg = REG_A6XX_SP_VS_TEX_SAMP_LO;
tex_const_reg = REG_A6XX_SP_VS_TEX_CONST_LO;
tex_count_reg = REG_A6XX_SP_VS_TEX_COUNT;
break;
case PIPE_SHADER_TESS_CTRL:
sb = SB6_HS_TEX;
opcode = CP_LOAD_STATE6_GEOM;
tex_samp_reg = REG_A6XX_SP_HS_TEX_SAMP_LO;
tex_const_reg = REG_A6XX_SP_HS_TEX_CONST_LO;
tex_count_reg = REG_A6XX_SP_HS_TEX_COUNT;
break;
case PIPE_SHADER_TESS_EVAL:
sb = SB6_DS_TEX;
opcode = CP_LOAD_STATE6_GEOM;
tex_samp_reg = REG_A6XX_SP_DS_TEX_SAMP_LO;
tex_const_reg = REG_A6XX_SP_DS_TEX_CONST_LO;
tex_count_reg = REG_A6XX_SP_DS_TEX_COUNT;
break;
case PIPE_SHADER_GEOMETRY:
sb = SB6_GS_TEX;
opcode = CP_LOAD_STATE6_GEOM;
tex_samp_reg = REG_A6XX_SP_GS_TEX_SAMP_LO;
tex_const_reg = REG_A6XX_SP_GS_TEX_CONST_LO;
tex_count_reg = REG_A6XX_SP_GS_TEX_COUNT;
break;
case PIPE_SHADER_FRAGMENT:
sb = SB6_FS_TEX;
opcode = CP_LOAD_STATE6_FRAG;
tex_samp_reg = REG_A6XX_SP_FS_TEX_SAMP_LO;
tex_const_reg = REG_A6XX_SP_FS_TEX_CONST_LO;
tex_count_reg = REG_A6XX_SP_FS_TEX_COUNT;
break;
case PIPE_SHADER_COMPUTE:
sb = SB6_CS_TEX;
opcode = CP_LOAD_STATE6_FRAG;
tex_samp_reg = REG_A6XX_SP_CS_TEX_SAMP_LO;
tex_const_reg = REG_A6XX_SP_CS_TEX_CONST_LO;
tex_count_reg = REG_A6XX_SP_CS_TEX_COUNT;
break;
default:
unreachable("bad state block");
}
if (tex->num_samplers > 0) {
struct fd_ringbuffer *state =
fd_ringbuffer_new_object(pipe, tex->num_samplers * 4 * 4);
for (unsigned i = 0; i < tex->num_samplers; i++) {
static const struct fd6_sampler_stateobj dummy_sampler = {};
const struct fd6_sampler_stateobj *sampler = tex->samplers[i] ?
fd6_sampler_stateobj(tex->samplers[i]) : &dummy_sampler;
OUT_RING(state, sampler->texsamp0);
OUT_RING(state, sampler->texsamp1);
OUT_RING(state, sampler->texsamp2 |
A6XX_TEX_SAMP_2_BCOLOR(i + bcolor_offset));
OUT_RING(state, sampler->texsamp3);
needs_border |= sampler->needs_border;
}
/* output sampler state: */
OUT_PKT7(ring, opcode, 3);
OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
CP_LOAD_STATE6_0_NUM_UNIT(tex->num_samplers));
OUT_RB(ring, state); /* SRC_ADDR_LO/HI */
OUT_PKT4(ring, tex_samp_reg, 2);
OUT_RB(ring, state); /* SRC_ADDR_LO/HI */
fd_ringbuffer_del(state);
}
unsigned num_merged_textures = tex->num_textures;
unsigned num_textures = tex->num_textures;
if (v) {
num_merged_textures += v->image_mapping.num_tex;
if (v->fb_read)
num_merged_textures++;
/* There could be more bound textures than what the shader uses.
* Which isn't known at shader compile time. So in the case we
* are merging tex state, only emit the textures that the shader
* uses (since the image/SSBO related tex state comes immediately
* after)
*/
num_textures = v->image_mapping.tex_base;
}
if (num_merged_textures > 0) {
struct fd_ringbuffer *state =
fd_ringbuffer_new_object(pipe, num_merged_textures * 16 * 4);
for (unsigned i = 0; i < num_textures; i++) {
static const struct fd6_pipe_sampler_view dummy_view = {};
const struct fd6_pipe_sampler_view *view = tex->textures[i] ?
fd6_pipe_sampler_view(tex->textures[i]) : &dummy_view;
struct fd_resource *rsc = NULL;
if (view->base.texture)
rsc = fd_resource(view->base.texture);
OUT_RING(state, view->texconst0);
OUT_RING(state, view->texconst1);
OUT_RING(state, view->texconst2);
OUT_RING(state, view->texconst3);
if (rsc) {
if (view->base.format == PIPE_FORMAT_X32_S8X24_UINT)
rsc = rsc->stencil;
OUT_RELOC(state, rsc->bo, view->offset,
(uint64_t)view->texconst5 << 32, 0);
} else {
OUT_RING(state, 0x00000000);
OUT_RING(state, view->texconst5);
}
OUT_RING(state, view->texconst6);
if (rsc && view->ubwc_enabled) {
OUT_RELOC(state, rsc->bo, view->ubwc_offset, 0, 0);
} else {
OUT_RING(state, 0);
OUT_RING(state, 0);
}
OUT_RING(state, view->texconst9);
OUT_RING(state, view->texconst10);
OUT_RING(state, view->texconst11);
OUT_RING(state, 0);
OUT_RING(state, 0);
OUT_RING(state, 0);
OUT_RING(state, 0);
}
if (v) {
const struct ir3_ibo_mapping *mapping = &v->image_mapping;
struct fd_shaderbuf_stateobj *buf = &ctx->shaderbuf[type];
struct fd_shaderimg_stateobj *img = &ctx->shaderimg[type];
for (unsigned i = 0; i < mapping->num_tex; i++) {
unsigned idx = mapping->tex_to_image[i];
if (idx & IBO_SSBO) {
fd6_emit_ssbo_tex(state, &buf->sb[idx & ~IBO_SSBO]);
} else {
fd6_emit_image_tex(state, &img->si[idx]);
}
}
if (v->fb_read) {
fd6_emit_fb_tex(state, ctx);
}
}
/* emit texture state: */
OUT_PKT7(ring, opcode, 3);
OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
CP_LOAD_STATE6_0_NUM_UNIT(num_merged_textures));
OUT_RB(ring, state); /* SRC_ADDR_LO/HI */
OUT_PKT4(ring, tex_const_reg, 2);
OUT_RB(ring, state); /* SRC_ADDR_LO/HI */
fd_ringbuffer_del(state);
}
OUT_PKT4(ring, tex_count_reg, 1);
OUT_RING(ring, num_merged_textures);
return needs_border;
}
/* Emits combined texture state, which also includes any Image/SSBO
* related texture state merged in (because we must have all texture
* state for a given stage in a single buffer). In the fast-path, if
* we don't need to merge in any image/ssbo related texture state, we
* just use cached texture stateobj. Otherwise we generate a single-
* use stateobj.
*
* TODO Is there some sane way we can still use cached texture stateobj
* with image/ssbo in use?
*
* returns whether border_color is required:
*/
static bool
fd6_emit_combined_textures(struct fd_ringbuffer *ring, struct fd6_emit *emit,
enum pipe_shader_type type, const struct ir3_shader_variant *v)
{
struct fd_context *ctx = emit->ctx;
bool needs_border = false;
static const struct {
enum fd6_state_id state_id;
unsigned enable_mask;
} s[PIPE_SHADER_TYPES] = {
[PIPE_SHADER_VERTEX] = { FD6_GROUP_VS_TEX, ENABLE_ALL },
[PIPE_SHADER_TESS_CTRL] = { FD6_GROUP_HS_TEX, ENABLE_ALL },
[PIPE_SHADER_TESS_EVAL] = { FD6_GROUP_DS_TEX, ENABLE_ALL },
[PIPE_SHADER_GEOMETRY] = { FD6_GROUP_GS_TEX, ENABLE_ALL },
[PIPE_SHADER_FRAGMENT] = { FD6_GROUP_FS_TEX, ENABLE_DRAW },
};
debug_assert(s[type].state_id);
if (!v->image_mapping.num_tex && !v->fb_read) {
/* in the fast-path, when we don't have to mix in any image/SSBO
* related texture state, we can just lookup the stateobj and
* re-emit that:
*
* Also, framebuffer-read is a slow-path because an extra
* texture needs to be inserted.
*
* TODO we can probably simmplify things if we also treated
* border_color as a slow-path.. this way the tex state key
* wouldn't depend on bcolor_offset.. but fb_read might rather
* be *somehow* a fast-path if we eventually used it for PLS.
* I suppose there would be no harm in just *always* inserting
* an fb_read texture?
*/
if ((ctx->dirty_shader[type] & FD_DIRTY_SHADER_TEX) &&
ctx->tex[type].num_textures > 0) {
struct fd6_texture_state *tex = fd6_texture_state(ctx,
type, &ctx->tex[type]);
needs_border |= tex->needs_border;
fd6_emit_add_group(emit, tex->stateobj, s[type].state_id,
s[type].enable_mask);
}
} else {
/* In the slow-path, create a one-shot texture state object
* if either TEX|PROG|SSBO|IMAGE state is dirty:
*/
if ((ctx->dirty_shader[type] &
(FD_DIRTY_SHADER_TEX | FD_DIRTY_SHADER_PROG |
FD_DIRTY_SHADER_IMAGE | FD_DIRTY_SHADER_SSBO)) ||
v->fb_read) {
struct fd_texture_stateobj *tex = &ctx->tex[type];
struct fd_ringbuffer *stateobj =
fd_submit_new_ringbuffer(ctx->batch->submit,
0x1000, FD_RINGBUFFER_STREAMING);
unsigned bcolor_offset =
fd6_border_color_offset(ctx, type, tex);
needs_border |= fd6_emit_textures(ctx->pipe, stateobj, type, tex,
bcolor_offset, v, ctx);
fd6_emit_take_group(emit, stateobj, s[type].state_id,
s[type].enable_mask);
}
}
return needs_border;
}
static struct fd_ringbuffer *
build_vbo_state(struct fd6_emit *emit)
{
const struct fd_vertex_state *vtx = emit->vtx;
struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(emit->ctx->batch->submit,
4 * (1 + vtx->vertexbuf.count * 4), FD_RINGBUFFER_STREAMING);
OUT_PKT4(ring, REG_A6XX_VFD_FETCH(0), 4 * vtx->vertexbuf.count);
for (int32_t j = 0; j < vtx->vertexbuf.count; j++) {
const struct pipe_vertex_buffer *vb = &vtx->vertexbuf.vb[j];
struct fd_resource *rsc = fd_resource(vb->buffer.resource);
if (rsc == NULL) {
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
} else {
uint32_t off = vb->buffer_offset;
uint32_t size = fd_bo_size(rsc->bo) - off;
OUT_RELOC(ring, rsc->bo, off, 0, 0);
OUT_RING(ring, size); /* VFD_FETCH[j].SIZE */
OUT_RING(ring, vb->stride); /* VFD_FETCH[j].STRIDE */
}
}
return ring;
}
static enum a6xx_ztest_mode
compute_ztest_mode(struct fd6_emit *emit, bool lrz_valid)
{
struct fd_context *ctx = emit->ctx;
struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer;
struct fd6_zsa_stateobj *zsa = fd6_zsa_stateobj(ctx->zsa);
const struct ir3_shader_variant *fs = emit->fs;
if (fs->shader->nir->info.fs.early_fragment_tests)
return A6XX_EARLY_Z;
if (fs->no_earlyz || fs->writes_pos || !zsa->base.depth.enabled) {
return A6XX_LATE_Z;
} else if ((fs->has_kill || zsa->alpha_test) &&
(zsa->base.depth.writemask || !pfb->zsbuf)) {
/* Slightly odd, but seems like the hw wants us to select
* LATE_Z mode if there is no depth buffer + discard. Either
* that, or when occlusion query is enabled. See:
*
* dEQP-GLES31.functional.fbo.no_attachments.*
*/
return lrz_valid ? A6XX_EARLY_LRZ_LATE_Z : A6XX_LATE_Z;
} else {
return A6XX_EARLY_Z;
}
}
/**
* Calculate normalized LRZ state based on zsa/prog/blend state, updating
* the zsbuf's lrz state as necessary to detect the cases where we need
* to invalidate lrz.
*/
static struct fd6_lrz_state
compute_lrz_state(struct fd6_emit *emit, bool binning_pass)
{
struct fd_context *ctx = emit->ctx;
struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer;
const struct ir3_shader_variant *fs = emit->fs;
struct fd6_lrz_state lrz;
if (!pfb->zsbuf) {
memset(&lrz, 0, sizeof(lrz));
if (!binning_pass) {
lrz.z_mode = compute_ztest_mode(emit, false);
}
return lrz;
}
struct fd6_blend_stateobj *blend = fd6_blend_stateobj(ctx->blend);
struct fd6_zsa_stateobj *zsa = fd6_zsa_stateobj(ctx->zsa);
struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture);
lrz = zsa->lrz;
/* normalize lrz state: */
if (blend->reads_dest || fs->writes_pos || fs->no_earlyz || fs->has_kill) {
lrz.write = false;
if (binning_pass)
lrz.enable = false;
}
/* if we change depthfunc direction, bail out on using LRZ. The
* LRZ buffer encodes a min/max depth value per block, but if
* we switch from GT/GE <-> LT/LE, those values cannot be
* interpreted properly.
*/
if (zsa->base.depth.enabled &&
(rsc->lrz_direction != FD_LRZ_UNKNOWN) &&
(rsc->lrz_direction != lrz.direction)) {
rsc->lrz_valid = false;
}
if (zsa->invalidate_lrz || !rsc->lrz_valid) {
rsc->lrz_valid = false;
memset(&lrz, 0, sizeof(lrz));
}
if (fs->no_earlyz || fs->writes_pos) {
lrz.enable = false;
lrz.write = false;
lrz.test = false;
}
if (!binning_pass) {
lrz.z_mode = compute_ztest_mode(emit, rsc->lrz_valid);
}
/* Once we start writing to the real depth buffer, we lock in the
* direction for LRZ.. if we have to skip a LRZ write for any
* reason, it is still safe to have LRZ until there is a direction
* reversal. Prior to the reversal, since we disabled LRZ writes
* in the "unsafe" cases, this just means that the LRZ test may
* not early-discard some things that end up not passing a later
* test (ie. be overly concervative). But once you have a reversal
* of direction, it is possible to increase/decrease the z value
* to the point where the overly-conservative test is incorrect.
*/
if (zsa->base.depth.writemask) {
rsc->lrz_direction = lrz.direction;
}
return lrz;
}
static struct fd_ringbuffer *
build_lrz(struct fd6_emit *emit, bool binning_pass)
{
struct fd_context *ctx = emit->ctx;
struct fd6_context *fd6_ctx = fd6_context(ctx);
struct fd6_lrz_state lrz =
compute_lrz_state(emit, binning_pass);
/* If the LRZ state has not changed, we can skip the emit: */
if (!ctx->last.dirty &&
!memcmp(&fd6_ctx->last.lrz[binning_pass], &lrz, sizeof(lrz)))
return NULL;
fd6_ctx->last.lrz[binning_pass] = lrz;
struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(ctx->batch->submit,
8*4, FD_RINGBUFFER_STREAMING);
OUT_REG(ring, A6XX_GRAS_LRZ_CNTL(
.enable = lrz.enable,
.lrz_write = lrz.write,
.greater = lrz.direction == FD_LRZ_GREATER,
.z_test_enable = lrz.test,
));
OUT_REG(ring, A6XX_RB_LRZ_CNTL(
.enable = lrz.enable,
));
OUT_REG(ring, A6XX_RB_DEPTH_PLANE_CNTL(
.z_mode = lrz.z_mode,
));
OUT_REG(ring, A6XX_GRAS_SU_DEPTH_PLANE_CNTL(
.z_mode = lrz.z_mode,
));
return ring;
}
static void
fd6_emit_streamout(struct fd_ringbuffer *ring, struct fd6_emit *emit, struct ir3_stream_output_info *info)
{
struct fd_context *ctx = emit->ctx;
const struct fd6_program_state *prog = fd6_emit_get_prog(emit);
struct fd_streamout_stateobj *so = &ctx->streamout;
emit->streamout_mask = 0;
for (unsigned i = 0; i < so->num_targets; i++) {
struct pipe_stream_output_target *target = so->targets[i];
if (!target)
continue;
OUT_PKT4(ring, REG_A6XX_VPC_SO_BUFFER_BASE_LO(i), 3);
/* VPC_SO[i].BUFFER_BASE_LO: */
OUT_RELOC(ring, fd_resource(target->buffer)->bo, target->buffer_offset, 0, 0);
OUT_RING(ring, target->buffer_size - target->buffer_offset);
if (so->reset & (1 << i)) {
unsigned offset = (so->offsets[i] * info->stride[i] * 4);
OUT_PKT4(ring, REG_A6XX_VPC_SO_BUFFER_OFFSET(i), 1);
OUT_RING(ring, offset);
} else {
OUT_PKT7(ring, CP_MEM_TO_REG, 3);
OUT_RING(ring, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(i)) |
CP_MEM_TO_REG_0_SHIFT_BY_2 | CP_MEM_TO_REG_0_UNK31 |
CP_MEM_TO_REG_0_CNT(0));
OUT_RELOC(ring, control_ptr(fd6_context(ctx), flush_base[i].offset));
}
OUT_PKT4(ring, REG_A6XX_VPC_SO_FLUSH_BASE_LO(i), 2);
OUT_RELOC(ring, control_ptr(fd6_context(ctx), flush_base[i]));
so->reset &= ~(1 << i);
emit->streamout_mask |= (1 << i);
}
if (emit->streamout_mask) {
fd6_emit_add_group(emit, prog->streamout_stateobj, FD6_GROUP_SO, ENABLE_ALL);
} else {
/* If we transition from a draw with streamout to one without, turn
* off streamout.
*/
if (ctx->last.streamout_mask != 0) {
struct fd_ringbuffer *obj = fd_submit_new_ringbuffer(emit->ctx->batch->submit,
5 * 4, FD_RINGBUFFER_STREAMING);
OUT_PKT7(obj, CP_CONTEXT_REG_BUNCH, 4);
OUT_RING(obj, REG_A6XX_VPC_SO_CNTL);
OUT_RING(obj, 0);
OUT_RING(obj, REG_A6XX_VPC_SO_BUF_CNTL);
OUT_RING(obj, 0);
fd6_emit_take_group(emit, obj, FD6_GROUP_SO, ENABLE_ALL);
}
}
ctx->last.streamout_mask = emit->streamout_mask;
}
void
fd6_emit_state(struct fd_ringbuffer *ring, struct fd6_emit *emit)
{
struct fd_context *ctx = emit->ctx;
struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer;
const struct fd6_program_state *prog = fd6_emit_get_prog(emit);
const struct ir3_shader_variant *vs = emit->vs;
const struct ir3_shader_variant *hs = emit->hs;
const struct ir3_shader_variant *ds = emit->ds;
const struct ir3_shader_variant *gs = emit->gs;
const struct ir3_shader_variant *fs = emit->fs;
const enum fd_dirty_3d_state dirty = emit->dirty;
bool needs_border = false;
emit_marker6(ring, 5);
/* NOTE: we track fb_read differently than _BLEND_ENABLED since
* we might at some point decide to do sysmem in some cases when
* blend is enabled:
*/
if (fs->fb_read)
ctx->batch->gmem_reason |= FD_GMEM_FB_READ;
if (emit->dirty & FD_DIRTY_VTXSTATE) {
struct fd6_vertex_stateobj *vtx = fd6_vertex_stateobj(ctx->vtx.vtx);
fd6_emit_add_group(emit, vtx->stateobj, FD6_GROUP_VTXSTATE, ENABLE_ALL);
}
if (emit->dirty & FD_DIRTY_VTXBUF) {
struct fd_ringbuffer *state;
state = build_vbo_state(emit);
fd6_emit_take_group(emit, state, FD6_GROUP_VBO, ENABLE_ALL);
}
if (dirty & (FD_DIRTY_ZSA | FD_DIRTY_RASTERIZER)) {
struct fd_ringbuffer *state =
fd6_zsa_state(ctx,
util_format_is_pure_integer(pipe_surface_format(pfb->cbufs[0])),
fd_depth_clamp_enabled(ctx));
fd6_emit_add_group(emit, state, FD6_GROUP_ZSA, ENABLE_ALL);
}
if (dirty & (FD_DIRTY_ZSA | FD_DIRTY_BLEND | FD_DIRTY_PROG)) {
struct fd_ringbuffer *state;
state = build_lrz(emit, false);
if (state) {
fd6_emit_take_group(emit, state, FD6_GROUP_LRZ, ENABLE_DRAW);
}
state = build_lrz(emit, true);
if (state) {
fd6_emit_take_group(emit, state,
FD6_GROUP_LRZ_BINNING, CP_SET_DRAW_STATE__0_BINNING);
}
}
if (dirty & FD_DIRTY_STENCIL_REF) {
struct pipe_stencil_ref *sr = &ctx->stencil_ref;
OUT_PKT4(ring, REG_A6XX_RB_STENCILREF, 1);
OUT_RING(ring, A6XX_RB_STENCILREF_REF(sr->ref_value[0]) |
A6XX_RB_STENCILREF_BFREF(sr->ref_value[1]));
}
/* NOTE: scissor enabled bit is part of rasterizer state, but
* fd_rasterizer_state_bind() will mark scissor dirty if needed:
*/
if (dirty & FD_DIRTY_SCISSOR) {
struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(
emit->ctx->batch->submit, 3*4, FD_RINGBUFFER_STREAMING);
struct pipe_scissor_state *scissor = fd_context_get_scissor(ctx);
OUT_REG(ring,
A6XX_GRAS_SC_SCREEN_SCISSOR_TL(0,
.x = scissor->minx,
.y = scissor->miny
),
A6XX_GRAS_SC_SCREEN_SCISSOR_BR(0,
.x = MAX2(scissor->maxx, 1) - 1,
.y = MAX2(scissor->maxy, 1) - 1
)
);
fd6_emit_take_group(emit, ring, FD6_GROUP_SCISSOR, ENABLE_ALL);
ctx->batch->max_scissor.minx = MIN2(ctx->batch->max_scissor.minx, scissor->minx);
ctx->batch->max_scissor.miny = MIN2(ctx->batch->max_scissor.miny, scissor->miny);
ctx->batch->max_scissor.maxx = MAX2(ctx->batch->max_scissor.maxx, scissor->maxx);
ctx->batch->max_scissor.maxy = MAX2(ctx->batch->max_scissor.maxy, scissor->maxy);
}
if (dirty & FD_DIRTY_VIEWPORT) {
struct pipe_scissor_state *scissor = &ctx->viewport_scissor;
OUT_REG(ring,
A6XX_GRAS_CL_VPORT_XOFFSET(0, ctx->viewport.translate[0]),
A6XX_GRAS_CL_VPORT_XSCALE(0, ctx->viewport.scale[0]),
A6XX_GRAS_CL_VPORT_YOFFSET(0, ctx->viewport.translate[1]),
A6XX_GRAS_CL_VPORT_YSCALE(0, ctx->viewport.scale[1]),
A6XX_GRAS_CL_VPORT_ZOFFSET(0, ctx->viewport.translate[2]),
A6XX_GRAS_CL_VPORT_ZSCALE(0, ctx->viewport.scale[2])
);
OUT_REG(ring,
A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL(0,
.x = scissor->minx,
.y = scissor->miny
),
A6XX_GRAS_SC_VIEWPORT_SCISSOR_BR(0,
.x = MAX2(scissor->maxx, 1) - 1,
.y = MAX2(scissor->maxy, 1) - 1
)
);
unsigned guardband_x =
fd_calc_guardband(ctx->viewport.translate[0], ctx->viewport.scale[0],
false);
unsigned guardband_y =
fd_calc_guardband(ctx->viewport.translate[1], ctx->viewport.scale[1],
false);
OUT_REG(ring, A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ(
.horz = guardband_x,
.vert = guardband_y
)
);
}
/* The clamp ranges are only used when the rasterizer wants depth
* clamping.
*/
if ((dirty & (FD_DIRTY_VIEWPORT | FD_DIRTY_RASTERIZER)) &&
fd_depth_clamp_enabled(ctx)) {
float zmin, zmax;
util_viewport_zmin_zmax(&ctx->viewport, ctx->rasterizer->clip_halfz,
&zmin, &zmax);
OUT_REG(ring,
A6XX_GRAS_CL_Z_CLAMP_MIN(0, zmin),
A6XX_GRAS_CL_Z_CLAMP_MAX(0, zmax));
OUT_REG(ring,
A6XX_RB_Z_CLAMP_MIN(zmin),
A6XX_RB_Z_CLAMP_MAX(zmax));
}
if (dirty & FD_DIRTY_PROG) {
fd6_emit_add_group(emit, prog->config_stateobj, FD6_GROUP_PROG_CONFIG, ENABLE_ALL);
fd6_emit_add_group(emit, prog->stateobj, FD6_GROUP_PROG, ENABLE_DRAW);
fd6_emit_add_group(emit, prog->binning_stateobj,
FD6_GROUP_PROG_BINNING, CP_SET_DRAW_STATE__0_BINNING);
/* emit remaining streaming program state, ie. what depends on
* other emit state, so cannot be pre-baked.
*/
struct fd_ringbuffer *streaming = fd6_program_interp_state(emit);
fd6_emit_take_group(emit, streaming, FD6_GROUP_PROG_INTERP, ENABLE_DRAW);
}
if (dirty & FD_DIRTY_RASTERIZER) {
struct fd_ringbuffer *stateobj =
fd6_rasterizer_state(ctx, emit->primitive_restart);
fd6_emit_add_group(emit, stateobj,
FD6_GROUP_RASTERIZER, ENABLE_ALL);
}
if (dirty & (FD_DIRTY_FRAMEBUFFER | FD_DIRTY_RASTERIZER_DISCARD | FD_DIRTY_PROG)) {
struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(
emit->ctx->batch->submit, 5 * 4, FD_RINGBUFFER_STREAMING);
unsigned nr = pfb->nr_cbufs;
if (ctx->rasterizer->rasterizer_discard)
nr = 0;
OUT_PKT4(ring, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
OUT_RING(ring, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
COND(fs->writes_smask && pfb->samples > 1,
A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
OUT_RING(ring, A6XX_RB_FS_OUTPUT_CNTL1_MRT(nr));
OUT_PKT4(ring, REG_A6XX_SP_FS_OUTPUT_CNTL1, 1);
OUT_RING(ring, A6XX_SP_FS_OUTPUT_CNTL1_MRT(nr));
fd6_emit_take_group(emit, ring, FD6_GROUP_PROG_FB_RAST, ENABLE_DRAW);
}
fd6_emit_consts(emit);
struct ir3_stream_output_info *info = &fd6_last_shader(prog)->shader->stream_output;
if (info->num_outputs)
fd6_emit_streamout(ring, emit, info);
if (dirty & (FD_DIRTY_BLEND | FD_DIRTY_SAMPLE_MASK)) {
struct fd6_blend_variant *blend = fd6_blend_variant(ctx->blend,
pfb->samples, ctx->sample_mask);
fd6_emit_add_group(emit, blend->stateobj, FD6_GROUP_BLEND, ENABLE_DRAW);
}
if (dirty & FD_DIRTY_BLEND_COLOR) {
struct pipe_blend_color *bcolor = &ctx->blend_color;
struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(
emit->ctx->batch->submit, 5*4, FD_RINGBUFFER_STREAMING);
OUT_REG(ring,
A6XX_RB_BLEND_RED_F32(bcolor->color[0]),
A6XX_RB_BLEND_GREEN_F32(bcolor->color[1]),
A6XX_RB_BLEND_BLUE_F32(bcolor->color[2]),
A6XX_RB_BLEND_ALPHA_F32(bcolor->color[3])
);
fd6_emit_take_group(emit, ring, FD6_GROUP_BLEND_COLOR, ENABLE_DRAW);
}
needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_VERTEX, vs);
if (hs) {
needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_TESS_CTRL, hs);
needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_TESS_EVAL, ds);
}
if (gs) {
needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_GEOMETRY, gs);
}
needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_FRAGMENT, fs);
if (needs_border)
emit_border_color(ctx, ring);
if (hs) {
debug_assert(ir3_shader_nibo(hs) == 0);
debug_assert(ir3_shader_nibo(ds) == 0);
}
if (gs) {
debug_assert(ir3_shader_nibo(gs) == 0);
}
#define DIRTY_IBO (FD_DIRTY_SHADER_SSBO | FD_DIRTY_SHADER_IMAGE | \
FD_DIRTY_SHADER_PROG)
if (ctx->dirty_shader[PIPE_SHADER_FRAGMENT] & DIRTY_IBO) {
struct fd_ringbuffer *state =
fd6_build_ibo_state(ctx, fs, PIPE_SHADER_FRAGMENT);
struct fd_ringbuffer *obj = fd_submit_new_ringbuffer(
ctx->batch->submit, 0x100, FD_RINGBUFFER_STREAMING);
OUT_PKT7(obj, CP_LOAD_STATE6, 3);
OUT_RING(obj, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) |
CP_LOAD_STATE6_0_NUM_UNIT(ir3_shader_nibo(fs)));
OUT_RB(obj, state);
OUT_PKT4(obj, REG_A6XX_SP_IBO_LO, 2);
OUT_RB(obj, state);
/* TODO if we used CP_SET_DRAW_STATE for compute shaders, we could
* de-duplicate this from program->config_stateobj
*/
OUT_PKT4(obj, REG_A6XX_SP_IBO_COUNT, 1);
OUT_RING(obj, ir3_shader_nibo(fs));
fd6_emit_ibo_consts(emit, fs, PIPE_SHADER_FRAGMENT, ring);
fd6_emit_take_group(emit, obj, FD6_GROUP_IBO, ENABLE_DRAW);
fd_ringbuffer_del(state);
}
if (emit->num_groups > 0) {
OUT_PKT7(ring, CP_SET_DRAW_STATE, 3 * emit->num_groups);
for (unsigned i = 0; i < emit->num_groups; i++) {
struct fd6_state_group *g = &emit->groups[i];
unsigned n = g->stateobj ?
fd_ringbuffer_size(g->stateobj) / 4 : 0;
debug_assert((g->enable_mask & ~ENABLE_ALL) == 0);
if (n == 0) {
OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE |
g->enable_mask |
CP_SET_DRAW_STATE__0_GROUP_ID(g->group_id));
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
} else {
OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(n) |
g->enable_mask |
CP_SET_DRAW_STATE__0_GROUP_ID(g->group_id));
OUT_RB(ring, g->stateobj);
}
if (g->stateobj)
fd_ringbuffer_del(g->stateobj);
}
emit->num_groups = 0;
}
}
void
fd6_emit_cs_state(struct fd_context *ctx, struct fd_ringbuffer *ring,
struct ir3_shader_variant *cp)
{
enum fd_dirty_shader_state dirty = ctx->dirty_shader[PIPE_SHADER_COMPUTE];
if (dirty & (FD_DIRTY_SHADER_TEX | FD_DIRTY_SHADER_PROG |
FD_DIRTY_SHADER_IMAGE | FD_DIRTY_SHADER_SSBO)) {
struct fd_texture_stateobj *tex = &ctx->tex[PIPE_SHADER_COMPUTE];
unsigned bcolor_offset = fd6_border_color_offset(ctx, PIPE_SHADER_COMPUTE, tex);
bool needs_border = fd6_emit_textures(ctx->pipe, ring, PIPE_SHADER_COMPUTE, tex,
bcolor_offset, cp, ctx);
if (needs_border)
emit_border_color(ctx, ring);
OUT_PKT4(ring, REG_A6XX_SP_VS_TEX_COUNT, 1);
OUT_RING(ring, 0);
OUT_PKT4(ring, REG_A6XX_SP_HS_TEX_COUNT, 1);
OUT_RING(ring, 0);
OUT_PKT4(ring, REG_A6XX_SP_DS_TEX_COUNT, 1);
OUT_RING(ring, 0);
OUT_PKT4(ring, REG_A6XX_SP_GS_TEX_COUNT, 1);
OUT_RING(ring, 0);
OUT_PKT4(ring, REG_A6XX_SP_FS_TEX_COUNT, 1);
OUT_RING(ring, 0);
}
if (dirty & (FD_DIRTY_SHADER_SSBO | FD_DIRTY_SHADER_IMAGE)) {
struct fd_ringbuffer *state =
fd6_build_ibo_state(ctx, cp, PIPE_SHADER_COMPUTE);
OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_IBO) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(ir3_shader_nibo(cp)));
OUT_RB(ring, state);
OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_LO, 2);
OUT_RB(ring, state);
OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_COUNT, 1);
OUT_RING(ring, ir3_shader_nibo(cp));
fd_ringbuffer_del(state);
}
}
/* emit setup at begin of new cmdstream buffer (don't rely on previous
* state, there could have been a context switch between ioctls):
*/
void
fd6_emit_restore(struct fd_batch *batch, struct fd_ringbuffer *ring)
{
//struct fd_context *ctx = batch->ctx;
fd_log(batch, "START RESTORE");
fd6_cache_inv(batch, ring);
OUT_REG(ring, A6XX_HLSQ_INVALIDATE_CMD(
.vs_state = true,
.hs_state = true,
.ds_state = true,
.gs_state = true,
.fs_state = true,
.cs_state = true,
.gfx_ibo = true,
.cs_ibo = true,
.gfx_shared_const = true,
.cs_shared_const = true,
.gfx_bindless = 0x1f,
.cs_bindless = 0x1f
));
OUT_WFI5(ring);
WRITE(REG_A6XX_RB_UNKNOWN_8E04, 0x0);
WRITE(REG_A6XX_SP_UNKNOWN_AE04, 0x8);
WRITE(REG_A6XX_SP_UNKNOWN_AE00, 0);
WRITE(REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
WRITE(REG_A6XX_SP_UNKNOWN_B605, 0x44);
WRITE(REG_A6XX_SP_UNKNOWN_B600, 0x100000);
WRITE(REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
WRITE(REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
WRITE(REG_A6XX_VPC_UNKNOWN_9600, 0);
WRITE(REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
WRITE(REG_A6XX_HLSQ_UNKNOWN_BE04, 0x80000);
WRITE(REG_A6XX_SP_UNKNOWN_AE03, 0x1430);
WRITE(REG_A6XX_SP_IBO_COUNT, 0);
WRITE(REG_A6XX_SP_UNKNOWN_B182, 0);
WRITE(REG_A6XX_HLSQ_SHARED_CONSTS, 0);
WRITE(REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
WRITE(REG_A6XX_UCHE_CLIENT_PF, 4);
WRITE(REG_A6XX_RB_UNKNOWN_8E01, 0x1);
WRITE(REG_A6XX_SP_MODE_CONTROL, A6XX_SP_MODE_CONTROL_CONSTANT_DEMOTION_ENABLE | 4);
WRITE(REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
WRITE(REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
WRITE(REG_A6XX_PC_MODE_CNTL, 0x1f);
WRITE(REG_A6XX_GRAS_UNKNOWN_8101, 0);
WRITE(REG_A6XX_GRAS_SAMPLE_CNTL, 0);
WRITE(REG_A6XX_GRAS_UNKNOWN_8110, 0x2);
WRITE(REG_A6XX_RB_UNKNOWN_8818, 0);
WRITE(REG_A6XX_RB_UNKNOWN_8819, 0);
WRITE(REG_A6XX_RB_UNKNOWN_881A, 0);
WRITE(REG_A6XX_RB_UNKNOWN_881B, 0);
WRITE(REG_A6XX_RB_UNKNOWN_881C, 0);
WRITE(REG_A6XX_RB_UNKNOWN_881D, 0);
WRITE(REG_A6XX_RB_UNKNOWN_881E, 0);
WRITE(REG_A6XX_RB_UNKNOWN_88F0, 0);
WRITE(REG_A6XX_VPC_POINT_COORD_INVERT,
A6XX_VPC_POINT_COORD_INVERT(0).value);
WRITE(REG_A6XX_VPC_UNKNOWN_9300, 0);
WRITE(REG_A6XX_VPC_SO_DISABLE, A6XX_VPC_SO_DISABLE(true).value);
WRITE(REG_A6XX_PC_UNKNOWN_9980, 0);
WRITE(REG_A6XX_PC_MULTIVIEW_CNTL, 0);
WRITE(REG_A6XX_SP_UNKNOWN_A81B, 0);
WRITE(REG_A6XX_SP_UNKNOWN_B183, 0);
WRITE(REG_A6XX_GRAS_UNKNOWN_8099, 0);
WRITE(REG_A6XX_GRAS_VS_LAYER_CNTL, 0);
WRITE(REG_A6XX_GRAS_UNKNOWN_80A0, 2);
WRITE(REG_A6XX_GRAS_UNKNOWN_80AF, 0);
WRITE(REG_A6XX_VPC_UNKNOWN_9210, 0);
WRITE(REG_A6XX_VPC_UNKNOWN_9211, 0);
WRITE(REG_A6XX_VPC_UNKNOWN_9602, 0);
WRITE(REG_A6XX_PC_UNKNOWN_9E72, 0);
WRITE(REG_A6XX_SP_TP_SAMPLE_CONFIG, 0);
/* NOTE blob seems to (mostly?) use 0xb2 for SP_TP_UNKNOWN_B309
* but this seems to kill texture gather offsets.
*/
WRITE(REG_A6XX_SP_TP_UNKNOWN_B309, 0xa2);
WRITE(REG_A6XX_RB_SAMPLE_CONFIG, 0);
WRITE(REG_A6XX_GRAS_SAMPLE_CONFIG, 0);
WRITE(REG_A6XX_RB_Z_BOUNDS_MIN, 0);
WRITE(REG_A6XX_RB_Z_BOUNDS_MAX, 0);
WRITE(REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
emit_marker6(ring, 7);
OUT_PKT4(ring, REG_A6XX_VFD_MODE_CNTL, 1);
OUT_RING(ring, 0x00000000); /* VFD_MODE_CNTL */
WRITE(REG_A6XX_VFD_MULTIVIEW_CNTL, 0);
OUT_PKT4(ring, REG_A6XX_PC_MODE_CNTL, 1);
OUT_RING(ring, 0x0000001f); /* PC_MODE_CNTL */
/* we don't use this yet.. probably best to disable.. */
OUT_PKT7(ring, CP_SET_DRAW_STATE, 3);
OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
OUT_RING(ring, CP_SET_DRAW_STATE__1_ADDR_LO(0));
OUT_RING(ring, CP_SET_DRAW_STATE__2_ADDR_HI(0));
OUT_PKT4(ring, REG_A6XX_VPC_SO_BUF_CNTL, 1);
OUT_RING(ring, 0x00000000); /* VPC_SO_BUF_CNTL */
OUT_PKT4(ring, REG_A6XX_GRAS_LRZ_CNTL, 1);
OUT_RING(ring, 0x00000000);
OUT_PKT4(ring, REG_A6XX_RB_LRZ_CNTL, 1);
OUT_RING(ring, 0x00000000);
fd_log(batch, "END RESTORE");
}
static void
fd6_mem_to_mem(struct fd_ringbuffer *ring, struct pipe_resource *dst,
unsigned dst_off, struct pipe_resource *src, unsigned src_off,
unsigned sizedwords)
{
struct fd_bo *src_bo = fd_resource(src)->bo;
struct fd_bo *dst_bo = fd_resource(dst)->bo;
unsigned i;
for (i = 0; i < sizedwords; i++) {
OUT_PKT7(ring, CP_MEM_TO_MEM, 5);
OUT_RING(ring, 0x00000000);
OUT_RELOC(ring, dst_bo, dst_off, 0, 0);
OUT_RELOC(ring, src_bo, src_off, 0, 0);
dst_off += 4;
src_off += 4;
}
}
/* this is *almost* the same as fd6_cache_flush().. which I guess
* could be re-worked to be something a bit more generic w/ param
* indicating what needs to be flushed.. although that would mean
* figuring out which events trigger what state to flush..
*/
static void
fd6_framebuffer_barrier(struct fd_context *ctx)
{
struct fd6_context *fd6_ctx = fd6_context(ctx);
struct fd_batch *batch = ctx->batch;
struct fd_ringbuffer *ring = batch->draw;
unsigned seqno;
seqno = fd6_event_write(batch, ring, RB_DONE_TS, true);
OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
CP_WAIT_REG_MEM_0_POLL_MEMORY);
OUT_RELOC(ring, control_ptr(fd6_ctx, seqno));
OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(seqno));
OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(~0));
OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(16));
fd6_event_write(batch, ring, PC_CCU_FLUSH_COLOR_TS, true);
fd6_event_write(batch, ring, PC_CCU_FLUSH_DEPTH_TS, true);
seqno = fd6_event_write(batch, ring, CACHE_FLUSH_TS, true);
fd6_event_write(batch, ring, 0x31, false);
OUT_PKT7(ring, CP_WAIT_MEM_GTE, 4);
OUT_RING(ring, CP_WAIT_MEM_GTE_0_RESERVED(0));
OUT_RELOC(ring, control_ptr(fd6_ctx, seqno));
OUT_RING(ring, CP_WAIT_MEM_GTE_3_REF(seqno));
}
void
fd6_emit_init_screen(struct pipe_screen *pscreen)
{
struct fd_screen *screen = fd_screen(pscreen);
screen->emit_ib = fd6_emit_ib;
screen->mem_to_mem = fd6_mem_to_mem;
}
void
fd6_emit_init(struct pipe_context *pctx)
{
struct fd_context *ctx = fd_context(pctx);
ctx->framebuffer_barrier = fd6_framebuffer_barrier;
}