blob: 3e4aa9bc6234c8d32bc7e0130313f6086a4ed0af [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#if GEN_GEN == 8
void
gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
{
uint32_t count = cmd_buffer->state.dynamic.viewport.count;
const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports;
struct anv_state sf_clip_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
for (uint32_t i = 0; i < count; i++) {
const VkViewport *vp = &viewports[i];
/* The gen7 state struct has just the matrix and guardband fields, the
* gen8 struct adds the min/max viewport fields. */
struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = {
.ViewportMatrixElementm00 = vp->width / 2,
.ViewportMatrixElementm11 = vp->height / 2,
.ViewportMatrixElementm22 = 1.0,
.ViewportMatrixElementm30 = vp->x + vp->width / 2,
.ViewportMatrixElementm31 = vp->y + vp->height / 2,
.ViewportMatrixElementm32 = 0.0,
.XMinClipGuardband = -1.0f,
.XMaxClipGuardband = 1.0f,
.YMinClipGuardband = -1.0f,
.YMaxClipGuardband = 1.0f,
.XMinViewPort = vp->x,
.XMaxViewPort = vp->x + vp->width - 1,
.YMinViewPort = vp->y,
.YMaxViewPort = vp->y + vp->height - 1,
};
GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64,
&sf_clip_viewport);
}
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(sf_clip_state);
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) {
clip.SFClipViewportPointer = sf_clip_state.offset;
}
}
void
gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
bool depth_clamp_enable)
{
uint32_t count = cmd_buffer->state.dynamic.viewport.count;
const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports;
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
for (uint32_t i = 0; i < count; i++) {
const VkViewport *vp = &viewports[i];
struct GENX(CC_VIEWPORT) cc_viewport = {
.MinimumDepth = depth_clamp_enable ? vp->minDepth : 0.0f,
.MaximumDepth = depth_clamp_enable ? vp->maxDepth : 1.0f,
};
GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
}
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(cc_state);
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) {
cc.CCViewportPointer = cc_state.offset;
}
}
#endif
static void
__emit_genx_sf_state(struct anv_cmd_buffer *cmd_buffer)
{
uint32_t sf_dw[GENX(3DSTATE_SF_length)];
struct GENX(3DSTATE_SF) sf = {
GENX(3DSTATE_SF_header),
.LineWidth = cmd_buffer->state.dynamic.line_width,
};
GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
/* FIXME: gen9.fs */
anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
cmd_buffer->state.pipeline->gen8.sf);
}
void
gen9_emit_sf_state(struct anv_cmd_buffer *cmd_buffer);
#if GEN_GEN == 9
void
gen9_emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
{
__emit_genx_sf_state(cmd_buffer);
}
#endif
#if GEN_GEN == 8
static void
__emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->device->info.is_cherryview)
gen9_emit_sf_state(cmd_buffer);
else
__emit_genx_sf_state(cmd_buffer);
}
#else
static void
__emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
{
__emit_genx_sf_state(cmd_buffer);
}
#endif
void
genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) {
__emit_sf_state(cmd_buffer);
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){
uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
struct GENX(3DSTATE_RASTER) raster = {
GENX(3DSTATE_RASTER_header),
.GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
.GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
.GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
};
GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
pipeline->gen8.raster);
}
/* Stencil reference values moved from COLOR_CALC_STATE in gen8 to
* 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split
* across different state packets for gen8 and gen9. We handle that by
* using a big old #if switch here.
*/
#if GEN_GEN == 8
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GENX(COLOR_CALC_STATE_length) * 4,
64);
struct GENX(COLOR_CALC_STATE) cc = {
.BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
.BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
.BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
.BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
.StencilReferenceValue = d->stencil_reference.front & 0xff,
.BackFaceStencilReferenceValue = d->stencil_reference.back & 0xff,
};
GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(cc_state);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) {
ccp.ColorCalcStatePointer = cc_state.offset;
ccp.ColorCalcStatePointerValid = true;
}
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
uint32_t wm_depth_stencil_dw[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
struct GENX(3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil) = {
GENX(3DSTATE_WM_DEPTH_STENCIL_header),
.StencilTestMask = d->stencil_compare_mask.front & 0xff,
.StencilWriteMask = d->stencil_write_mask.front & 0xff,
.BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
.BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
};
GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, wm_depth_stencil_dw,
&wm_depth_stencil);
anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw,
pipeline->gen8.wm_depth_stencil);
}
#else
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) {
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GEN9_COLOR_CALC_STATE_length * 4,
64);
struct GEN9_COLOR_CALC_STATE cc = {
.BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
.BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
.BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
.BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
};
GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(cc_state);
anv_batch_emit(&cmd_buffer->batch, GEN9_3DSTATE_CC_STATE_POINTERS, ccp) {
ccp.ColorCalcStatePointer = cc_state.offset;
ccp.ColorCalcStatePointerValid = true;
}
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length];
struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
GEN9_3DSTATE_WM_DEPTH_STENCIL_header,
.StencilTestMask = d->stencil_compare_mask.front & 0xff,
.StencilWriteMask = d->stencil_write_mask.front & 0xff,
.BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
.BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
.StencilReferenceValue = d->stencil_reference.front & 0xff,
.BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff,
};
GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil);
anv_batch_emit_merge(&cmd_buffer->batch, dwords,
pipeline->gen9.wm_depth_stencil);
}
#endif
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_INDEX_BUFFER)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF), vf) {
vf.IndexedDrawCutIndexEnable = pipeline->primitive_restart;
vf.CutIndex = cmd_buffer->state.restart_index;
}
}
cmd_buffer->state.dirty = 0;
}
void genX(CmdBindIndexBuffer)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
static const uint32_t vk_to_gen_index_type[] = {
[VK_INDEX_TYPE_UINT16] = INDEX_WORD,
[VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
};
static const uint32_t restart_index_for_type[] = {
[VK_INDEX_TYPE_UINT16] = UINT16_MAX,
[VK_INDEX_TYPE_UINT32] = UINT32_MAX,
};
cmd_buffer->state.restart_index = restart_index_for_type[indexType];
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
ib.IndexFormat = vk_to_gen_index_type[indexType];
ib.MemoryObjectControlState = GENX(MOCS);
ib.BufferStartingAddress =
(struct anv_address) { buffer->bo, buffer->offset + offset };
ib.BufferSize = buffer->size - offset;
}
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
}
/**
* Emit the HZ_OP packet in the sequence specified by the BDW PRM section
* entitled: "Optimized Depth Buffer Clear and/or Stencil Buffer Clear."
*
* \todo Enable Stencil Buffer-only clears
*/
void
genX(cmd_buffer_emit_hz_op)(struct anv_cmd_buffer *cmd_buffer,
enum blorp_hiz_op op)
{
struct anv_cmd_state *cmd_state = &cmd_buffer->state;
const struct anv_image_view *iview =
anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
if (iview == NULL || !anv_image_has_hiz(iview->image))
return;
/* FINISHME: Implement multi-subpass HiZ */
if (cmd_buffer->state.pass->subpass_count > 1)
return;
const uint32_t ds = cmd_state->subpass->depth_stencil_attachment;
/* Section 7.4. of the Vulkan 1.0.27 spec states:
*
* "The render area must be contained within the framebuffer dimensions."
*
* Therefore, the only way the extent of the render area can match that of
* the image view is if the render area offset equals (0, 0).
*/
const bool full_surface_op =
cmd_state->render_area.extent.width == iview->extent.width &&
cmd_state->render_area.extent.height == iview->extent.height;
if (full_surface_op)
assert(cmd_state->render_area.offset.x == 0 &&
cmd_state->render_area.offset.y == 0);
bool depth_clear;
bool stencil_clear;
/* This variable corresponds to the Pixel Dim column in the table below */
struct isl_extent2d px_dim;
/* Validate that we can perform the HZ operation and that it's necessary. */
switch (op) {
case BLORP_HIZ_OP_DEPTH_CLEAR:
stencil_clear = VK_IMAGE_ASPECT_STENCIL_BIT &
cmd_state->attachments[ds].pending_clear_aspects;
depth_clear = VK_IMAGE_ASPECT_DEPTH_BIT &
cmd_state->attachments[ds].pending_clear_aspects;
/* Apply alignment restrictions. Despite the BDW PRM mentioning this is
* only needed for a depth buffer surface type of D16_UNORM, testing
* showed it to be necessary for other depth formats as well
* (e.g., D32_FLOAT).
*/
#if GEN_GEN == 8
/* Pre-SKL, HiZ has an 8x4 sample block. As the number of samples
* increases, the number of pixels representable by this block
* decreases by a factor of the sample dimensions. Sample dimensions
* scale following the MSAA interleaved pattern.
*
* Sample|Sample|Pixel
* Count |Dim |Dim
* ===================
* 1 | 1x1 | 8x4
* 2 | 2x1 | 4x4
* 4 | 2x2 | 4x2
* 8 | 4x2 | 2x2
* 16 | 4x4 | 2x1
*
* Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
*/
/* This variable corresponds to the Sample Dim column in the table
* above.
*/
const struct isl_extent2d sa_dim =
isl_get_interleaved_msaa_px_size_sa(iview->image->samples);
px_dim.w = 8 / sa_dim.w;
px_dim.h = 4 / sa_dim.h;
#elif GEN_GEN >= 9
/* SKL+, the sample block becomes a "pixel block" so the expected
* pixel dimension is a constant 8x4 px for all sample counts.
*/
px_dim = (struct isl_extent2d) { .w = 8, .h = 4};
#endif
if (depth_clear && !full_surface_op) {
/* Fast depth clears clear an entire sample block at a time. As a
* result, the rectangle must be aligned to the pixel dimensions of
* a sample block for a successful operation.
*
* Fast clears can still work if the offset is aligned and the render
* area offset + extent touches the edge of a depth buffer whose extent
* is unaligned. This is because each physical HiZ miplevel is padded
* by the px_dim. In this case, the size of the clear rectangle will be
* padded later on in this function.
*/
if (cmd_state->render_area.offset.x % px_dim.w ||
cmd_state->render_area.offset.y % px_dim.h)
depth_clear = false;
if (cmd_state->render_area.offset.x +
cmd_state->render_area.extent.width != iview->extent.width &&
cmd_state->render_area.extent.width % px_dim.w)
depth_clear = false;
if (cmd_state->render_area.offset.y +
cmd_state->render_area.extent.height != iview->extent.height &&
cmd_state->render_area.extent.height % px_dim.h)
depth_clear = false;
}
if (!depth_clear) {
if (stencil_clear) {
/* Stencil has no alignment requirements */
px_dim = (struct isl_extent2d) { .w = 1, .h = 1};
} else {
/* Nothing to clear */
return;
}
}
break;
case BLORP_HIZ_OP_DEPTH_RESOLVE:
if (cmd_buffer->state.pass->attachments[ds].store_op !=
VK_ATTACHMENT_STORE_OP_STORE)
return;
break;
case BLORP_HIZ_OP_HIZ_RESOLVE:
/* If the render area covers the entire surface *and* load_op is either
* CLEAR or DONT_CARE then the previous contents of the depth buffer
* will be entirely discarded. In this case, we can skip the HiZ
* resolve.
*
* If the render area is not the full surface, we need to do
* the resolve because otherwise data outside the render area may get
* garbled by the resolve at the end of the render pass.
*/
if (full_surface_op &&
cmd_buffer->state.pass->attachments[ds].load_op !=
VK_ATTACHMENT_LOAD_OP_LOAD)
return;
break;
case BLORP_HIZ_OP_NONE:
unreachable("Invalid HiZ OP");
break;
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_WM_HZ_OP), hzp) {
switch (op) {
case BLORP_HIZ_OP_DEPTH_CLEAR:
hzp.StencilBufferClearEnable = stencil_clear;
hzp.DepthBufferClearEnable = depth_clear;
hzp.FullSurfaceDepthandStencilClear = full_surface_op;
hzp.StencilClearValue =
cmd_state->attachments[ds].clear_value.depthStencil.stencil & 0xff;
break;
case BLORP_HIZ_OP_DEPTH_RESOLVE:
hzp.DepthBufferResolveEnable = true;
break;
case BLORP_HIZ_OP_HIZ_RESOLVE:
hzp.HierarchicalDepthBufferResolveEnable = true;
break;
case BLORP_HIZ_OP_NONE:
unreachable("Invalid HiZ OP");
break;
}
if (op != BLORP_HIZ_OP_DEPTH_CLEAR) {
/* The Optimized HiZ resolve rectangle must be the size of the full RT
* and aligned to 8x4. The non-optimized Depth resolve rectangle must
* be the size of the full RT. The same alignment is assumed to be
* required.
*/
hzp.ClearRectangleXMin = 0;
hzp.ClearRectangleYMin = 0;
hzp.ClearRectangleXMax = align_u32(iview->extent.width, 8);
hzp.ClearRectangleYMax = align_u32(iview->extent.height, 4);
} else {
/* Contrary to the HW docs both fields are inclusive */
hzp.ClearRectangleXMin = cmd_state->render_area.offset.x;
hzp.ClearRectangleYMin = cmd_state->render_area.offset.y;
/* Contrary to the HW docs both fields are exclusive */
hzp.ClearRectangleXMax = cmd_state->render_area.offset.x +
align_u32(cmd_state->render_area.extent.width, px_dim.width);
hzp.ClearRectangleYMax = cmd_state->render_area.offset.y +
align_u32(cmd_state->render_area.extent.height, px_dim.height);
}
/* Due to a hardware issue, this bit MBZ */
hzp.ScissorRectangleEnable = false;
hzp.NumberofMultisamples = ffs(iview->image->samples) - 1;
hzp.SampleMask = 0xFFFF;
}
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.PostSyncOperation = WriteImmediateData;
pc.Address =
(struct anv_address){ &cmd_buffer->device->workaround_bo, 0 };
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_WM_HZ_OP), hzp);
/* Perform clear specific flushing and state updates */
if (op == BLORP_HIZ_OP_DEPTH_CLEAR) {
if (depth_clear && !full_surface_op) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DepthStallEnable = true;
pc.DepthCacheFlushEnable = true;
}
}
/* Remove cleared aspects from the pending mask */
if (stencil_clear) {
cmd_state->attachments[ds].pending_clear_aspects &=
~VK_IMAGE_ASPECT_STENCIL_BIT;
}
if (depth_clear) {
cmd_state->attachments[ds].pending_clear_aspects &=
~VK_IMAGE_ASPECT_DEPTH_BIT;
}
}
}
/* Set of stage bits for which are pipelined, i.e. they get queued by the
* command streamer for later execution.
*/
#define ANV_PIPELINE_STAGE_PIPELINED_BITS \
(VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
VK_PIPELINE_STAGE_TRANSFER_BIT | \
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
void genX(CmdSetEvent)(
VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
pc.StallAtPixelScoreboard = true;
pc.CommandStreamerStallEnable = true;
}
pc.DestinationAddressType = DAT_PPGTT,
pc.PostSyncOperation = WriteImmediateData,
pc.Address = (struct anv_address) {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
};
pc.ImmediateData = VK_EVENT_SET;
}
}
void genX(CmdResetEvent)(
VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
pc.StallAtPixelScoreboard = true;
pc.CommandStreamerStallEnable = true;
}
pc.DestinationAddressType = DAT_PPGTT;
pc.PostSyncOperation = WriteImmediateData;
pc.Address = (struct anv_address) {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
};
pc.ImmediateData = VK_EVENT_RESET;
}
}
void genX(CmdWaitEvents)(
VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
for (uint32_t i = 0; i < eventCount; i++) {
ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
sem.WaitMode = PollingMode,
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
sem.SemaphoreDataDword = VK_EVENT_SET,
sem.SemaphoreAddress = (struct anv_address) {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
};
}
}
genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
false, /* byRegion */
memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
}