blob: 577f0be0b9278fbff69be9ada4b69ab75f541653 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include <inttypes.h>
#include "nir_search.h"
#include "nir_builder.h"
#include "nir_worklist.h"
#include "util/half_float.h"
/* This should be the same as nir_search_max_comm_ops in nir_algebraic.py. */
#define NIR_SEARCH_MAX_COMM_OPS 8
struct match_state {
bool inexact_match;
bool has_exact_alu;
uint8_t comm_op_direction;
unsigned variables_seen;
/* Used for running the automaton on newly-constructed instructions. */
struct util_dynarray *states;
const struct per_op_table *pass_op_table;
nir_alu_src variables[NIR_SEARCH_MAX_VARIABLES];
struct hash_table *range_ht;
};
static bool
match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state);
static bool
nir_algebraic_automaton(nir_instr *instr, struct util_dynarray *states,
const struct per_op_table *pass_op_table);
static const uint8_t identity_swizzle[NIR_MAX_VEC_COMPONENTS] =
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
};
/**
* Check if a source produces a value of the given type.
*
* Used for satisfying 'a@type' constraints.
*/
static bool
src_is_type(nir_src src, nir_alu_type type)
{
assert(type != nir_type_invalid);
if (!src.is_ssa)
return false;
if (src.ssa->parent_instr->type == nir_instr_type_alu) {
nir_alu_instr *src_alu = nir_instr_as_alu(src.ssa->parent_instr);
nir_alu_type output_type = nir_op_infos[src_alu->op].output_type;
if (type == nir_type_bool) {
switch (src_alu->op) {
case nir_op_iand:
case nir_op_ior:
case nir_op_ixor:
return src_is_type(src_alu->src[0].src, nir_type_bool) &&
src_is_type(src_alu->src[1].src, nir_type_bool);
case nir_op_inot:
return src_is_type(src_alu->src[0].src, nir_type_bool);
default:
break;
}
}
return nir_alu_type_get_base_type(output_type) == type;
} else if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr);
if (type == nir_type_bool) {
return intr->intrinsic == nir_intrinsic_load_front_face ||
intr->intrinsic == nir_intrinsic_load_helper_invocation;
}
}
/* don't know */
return false;
}
static bool
nir_op_matches_search_op(nir_op nop, uint16_t sop)
{
if (sop <= nir_last_opcode)
return nop == sop;
#define MATCH_FCONV_CASE(op) \
case nir_search_op_##op: \
return nop == nir_op_##op##16 || \
nop == nir_op_##op##32 || \
nop == nir_op_##op##64;
#define MATCH_ICONV_CASE(op) \
case nir_search_op_##op: \
return nop == nir_op_##op##8 || \
nop == nir_op_##op##16 || \
nop == nir_op_##op##32 || \
nop == nir_op_##op##64;
#define MATCH_BCONV_CASE(op) \
case nir_search_op_##op: \
return nop == nir_op_##op##1 || \
nop == nir_op_##op##32;
switch (sop) {
MATCH_FCONV_CASE(i2f)
MATCH_FCONV_CASE(u2f)
MATCH_FCONV_CASE(f2f)
MATCH_ICONV_CASE(f2u)
MATCH_ICONV_CASE(f2i)
MATCH_ICONV_CASE(u2u)
MATCH_ICONV_CASE(i2i)
MATCH_FCONV_CASE(b2f)
MATCH_ICONV_CASE(b2i)
MATCH_BCONV_CASE(i2b)
MATCH_BCONV_CASE(f2b)
default:
unreachable("Invalid nir_search_op");
}
#undef MATCH_FCONV_CASE
#undef MATCH_ICONV_CASE
#undef MATCH_BCONV_CASE
}
uint16_t
nir_search_op_for_nir_op(nir_op nop)
{
#define MATCH_FCONV_CASE(op) \
case nir_op_##op##16: \
case nir_op_##op##32: \
case nir_op_##op##64: \
return nir_search_op_##op;
#define MATCH_ICONV_CASE(op) \
case nir_op_##op##8: \
case nir_op_##op##16: \
case nir_op_##op##32: \
case nir_op_##op##64: \
return nir_search_op_##op;
#define MATCH_BCONV_CASE(op) \
case nir_op_##op##1: \
case nir_op_##op##32: \
return nir_search_op_##op;
switch (nop) {
MATCH_FCONV_CASE(i2f)
MATCH_FCONV_CASE(u2f)
MATCH_FCONV_CASE(f2f)
MATCH_ICONV_CASE(f2u)
MATCH_ICONV_CASE(f2i)
MATCH_ICONV_CASE(u2u)
MATCH_ICONV_CASE(i2i)
MATCH_FCONV_CASE(b2f)
MATCH_ICONV_CASE(b2i)
MATCH_BCONV_CASE(i2b)
MATCH_BCONV_CASE(f2b)
default:
return nop;
}
#undef MATCH_FCONV_CASE
#undef MATCH_ICONV_CASE
#undef MATCH_BCONV_CASE
}
static nir_op
nir_op_for_search_op(uint16_t sop, unsigned bit_size)
{
if (sop <= nir_last_opcode)
return sop;
#define RET_FCONV_CASE(op) \
case nir_search_op_##op: \
switch (bit_size) { \
case 16: return nir_op_##op##16; \
case 32: return nir_op_##op##32; \
case 64: return nir_op_##op##64; \
default: unreachable("Invalid bit size"); \
}
#define RET_ICONV_CASE(op) \
case nir_search_op_##op: \
switch (bit_size) { \
case 8: return nir_op_##op##8; \
case 16: return nir_op_##op##16; \
case 32: return nir_op_##op##32; \
case 64: return nir_op_##op##64; \
default: unreachable("Invalid bit size"); \
}
#define RET_BCONV_CASE(op) \
case nir_search_op_##op: \
switch (bit_size) { \
case 1: return nir_op_##op##1; \
case 32: return nir_op_##op##32; \
default: unreachable("Invalid bit size"); \
}
switch (sop) {
RET_FCONV_CASE(i2f)
RET_FCONV_CASE(u2f)
RET_FCONV_CASE(f2f)
RET_ICONV_CASE(f2u)
RET_ICONV_CASE(f2i)
RET_ICONV_CASE(u2u)
RET_ICONV_CASE(i2i)
RET_FCONV_CASE(b2f)
RET_ICONV_CASE(b2i)
RET_BCONV_CASE(i2b)
RET_BCONV_CASE(f2b)
default:
unreachable("Invalid nir_search_op");
}
#undef RET_FCONV_CASE
#undef RET_ICONV_CASE
#undef RET_BCONV_CASE
}
static bool
match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state)
{
uint8_t new_swizzle[NIR_MAX_VEC_COMPONENTS];
/* Searching only works on SSA values because, if it's not SSA, we can't
* know if the value changed between one instance of that value in the
* expression and another. Also, the replace operation will place reads of
* that value right before the last instruction in the expression we're
* replacing so those reads will happen after the original reads and may
* not be valid if they're register reads.
*/
assert(instr->src[src].src.is_ssa);
/* If the source is an explicitly sized source, then we need to reset
* both the number of components and the swizzle.
*/
if (nir_op_infos[instr->op].input_sizes[src] != 0) {
num_components = nir_op_infos[instr->op].input_sizes[src];
swizzle = identity_swizzle;
}
for (unsigned i = 0; i < num_components; ++i)
new_swizzle[i] = instr->src[src].swizzle[swizzle[i]];
/* If the value has a specific bit size and it doesn't match, bail */
if (value->bit_size > 0 &&
nir_src_bit_size(instr->src[src].src) != value->bit_size)
return false;
switch (value->type) {
case nir_search_value_expression:
if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu)
return false;
return match_expression(nir_search_value_as_expression(value),
nir_instr_as_alu(instr->src[src].src.ssa->parent_instr),
num_components, new_swizzle, state);
case nir_search_value_variable: {
nir_search_variable *var = nir_search_value_as_variable(value);
assert(var->variable < NIR_SEARCH_MAX_VARIABLES);
if (state->variables_seen & (1 << var->variable)) {
if (state->variables[var->variable].src.ssa != instr->src[src].src.ssa)
return false;
assert(!instr->src[src].abs && !instr->src[src].negate);
for (unsigned i = 0; i < num_components; ++i) {
if (state->variables[var->variable].swizzle[i] != new_swizzle[i])
return false;
}
return true;
} else {
if (var->is_constant &&
instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const)
return false;
if (var->cond && !var->cond(state->range_ht, instr,
src, num_components, new_swizzle))
return false;
if (var->type != nir_type_invalid &&
!src_is_type(instr->src[src].src, var->type))
return false;
state->variables_seen |= (1 << var->variable);
state->variables[var->variable].src = instr->src[src].src;
state->variables[var->variable].abs = false;
state->variables[var->variable].negate = false;
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i) {
if (i < num_components)
state->variables[var->variable].swizzle[i] = new_swizzle[i];
else
state->variables[var->variable].swizzle[i] = 0;
}
return true;
}
}
case nir_search_value_constant: {
nir_search_constant *const_val = nir_search_value_as_constant(value);
if (!nir_src_is_const(instr->src[src].src))
return false;
switch (const_val->type) {
case nir_type_float: {
nir_load_const_instr *const load =
nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr);
/* There are 8-bit and 1-bit integer types, but there are no 8-bit or
* 1-bit float types. This prevents potential assertion failures in
* nir_src_comp_as_float.
*/
if (load->def.bit_size < 16)
return false;
for (unsigned i = 0; i < num_components; ++i) {
double val = nir_src_comp_as_float(instr->src[src].src,
new_swizzle[i]);
if (val != const_val->data.d)
return false;
}
return true;
}
case nir_type_int:
case nir_type_uint:
case nir_type_bool: {
unsigned bit_size = nir_src_bit_size(instr->src[src].src);
uint64_t mask = bit_size == 64 ? UINT64_MAX : (1ull << bit_size) - 1;
for (unsigned i = 0; i < num_components; ++i) {
uint64_t val = nir_src_comp_as_uint(instr->src[src].src,
new_swizzle[i]);
if ((val & mask) != (const_val->data.u & mask))
return false;
}
return true;
}
default:
unreachable("Invalid alu source type");
}
}
default:
unreachable("Invalid search value type");
}
}
static bool
match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state)
{
if (expr->cond && !expr->cond(instr))
return false;
if (!nir_op_matches_search_op(instr->op, expr->opcode))
return false;
assert(instr->dest.dest.is_ssa);
if (expr->value.bit_size > 0 &&
instr->dest.dest.ssa.bit_size != expr->value.bit_size)
return false;
state->inexact_match = expr->inexact || state->inexact_match;
state->has_exact_alu = instr->exact || state->has_exact_alu;
if (state->inexact_match && state->has_exact_alu)
return false;
assert(!instr->dest.saturate);
assert(nir_op_infos[instr->op].num_inputs > 0);
/* If we have an explicitly sized destination, we can only handle the
* identity swizzle. While dot(vec3(a, b, c).zxy) is a valid
* expression, we don't have the information right now to propagate that
* swizzle through. We can only properly propagate swizzles if the
* instruction is vectorized.
*/
if (nir_op_infos[instr->op].output_size != 0) {
for (unsigned i = 0; i < num_components; i++) {
if (swizzle[i] != i)
return false;
}
}
/* If this is a commutative expression and it's one of the first few, look
* up its direction for the current search operation. We'll use that value
* to possibly flip the sources for the match.
*/
unsigned comm_op_flip =
(expr->comm_expr_idx >= 0 &&
expr->comm_expr_idx < NIR_SEARCH_MAX_COMM_OPS) ?
((state->comm_op_direction >> expr->comm_expr_idx) & 1) : 0;
bool matched = true;
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
/* 2src_commutative instructions that have 3 sources are only commutative
* in the first two sources. Source 2 is always source 2.
*/
if (!match_value(expr->srcs[i], instr,
i < 2 ? i ^ comm_op_flip : i,
num_components, swizzle, state)) {
matched = false;
break;
}
}
return matched;
}
static unsigned
replace_bitsize(const nir_search_value *value, unsigned search_bitsize,
struct match_state *state)
{
if (value->bit_size > 0)
return value->bit_size;
if (value->bit_size < 0)
return nir_src_bit_size(state->variables[-value->bit_size - 1].src);
return search_bitsize;
}
static nir_alu_src
construct_value(nir_builder *build,
const nir_search_value *value,
unsigned num_components, unsigned search_bitsize,
struct match_state *state,
nir_instr *instr)
{
switch (value->type) {
case nir_search_value_expression: {
const nir_search_expression *expr = nir_search_value_as_expression(value);
unsigned dst_bit_size = replace_bitsize(value, search_bitsize, state);
nir_op op = nir_op_for_search_op(expr->opcode, dst_bit_size);
if (nir_op_infos[op].output_size != 0)
num_components = nir_op_infos[op].output_size;
nir_alu_instr *alu = nir_alu_instr_create(build->shader, op);
nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
dst_bit_size, NULL);
alu->dest.write_mask = (1 << num_components) - 1;
alu->dest.saturate = false;
/* We have no way of knowing what values in a given search expression
* map to a particular replacement value. Therefore, if the
* expression we are replacing has any exact values, the entire
* replacement should be exact.
*/
alu->exact = state->has_exact_alu || expr->exact;
for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
/* If the source is an explicitly sized source, then we need to reset
* the number of components to match.
*/
if (nir_op_infos[alu->op].input_sizes[i] != 0)
num_components = nir_op_infos[alu->op].input_sizes[i];
alu->src[i] = construct_value(build, expr->srcs[i],
num_components, search_bitsize,
state, instr);
}
nir_builder_instr_insert(build, &alu->instr);
assert(alu->dest.dest.ssa.index ==
util_dynarray_num_elements(state->states, uint16_t));
util_dynarray_append(state->states, uint16_t, 0);
nir_algebraic_automaton(&alu->instr, state->states, state->pass_op_table);
nir_alu_src val;
val.src = nir_src_for_ssa(&alu->dest.dest.ssa);
val.negate = false;
val.abs = false,
memcpy(val.swizzle, identity_swizzle, sizeof val.swizzle);
return val;
}
case nir_search_value_variable: {
const nir_search_variable *var = nir_search_value_as_variable(value);
assert(state->variables_seen & (1 << var->variable));
nir_alu_src val = { NIR_SRC_INIT };
nir_alu_src_copy(&val, &state->variables[var->variable],
(void *)build->shader);
assert(!var->is_constant);
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
val.swizzle[i] = state->variables[var->variable].swizzle[var->swizzle[i]];
return val;
}
case nir_search_value_constant: {
const nir_search_constant *c = nir_search_value_as_constant(value);
unsigned bit_size = replace_bitsize(value, search_bitsize, state);
nir_ssa_def *cval;
switch (c->type) {
case nir_type_float:
cval = nir_imm_floatN_t(build, c->data.d, bit_size);
break;
case nir_type_int:
case nir_type_uint:
cval = nir_imm_intN_t(build, c->data.i, bit_size);
break;
case nir_type_bool:
cval = nir_imm_boolN_t(build, c->data.u, bit_size);
break;
default:
unreachable("Invalid alu source type");
}
assert(cval->index ==
util_dynarray_num_elements(state->states, uint16_t));
util_dynarray_append(state->states, uint16_t, 0);
nir_algebraic_automaton(cval->parent_instr, state->states,
state->pass_op_table);
nir_alu_src val;
val.src = nir_src_for_ssa(cval);
val.negate = false;
val.abs = false,
memset(val.swizzle, 0, sizeof val.swizzle);
return val;
}
default:
unreachable("Invalid search value type");
}
}
UNUSED static void dump_value(const nir_search_value *val)
{
switch (val->type) {
case nir_search_value_constant: {
const nir_search_constant *sconst = nir_search_value_as_constant(val);
switch (sconst->type) {
case nir_type_float:
fprintf(stderr, "%f", sconst->data.d);
break;
case nir_type_int:
fprintf(stderr, "%"PRId64, sconst->data.i);
break;
case nir_type_uint:
fprintf(stderr, "0x%"PRIx64, sconst->data.u);
break;
case nir_type_bool:
fprintf(stderr, "%s", sconst->data.u != 0 ? "True" : "False");
break;
default:
unreachable("bad const type");
}
break;
}
case nir_search_value_variable: {
const nir_search_variable *var = nir_search_value_as_variable(val);
if (var->is_constant)
fprintf(stderr, "#");
fprintf(stderr, "%c", var->variable + 'a');
break;
}
case nir_search_value_expression: {
const nir_search_expression *expr = nir_search_value_as_expression(val);
fprintf(stderr, "(");
if (expr->inexact)
fprintf(stderr, "~");
switch (expr->opcode) {
#define CASE(n) \
case nir_search_op_##n: fprintf(stderr, #n); break;
CASE(f2b)
CASE(b2f)
CASE(b2i)
CASE(i2b)
CASE(i2i)
CASE(f2i)
CASE(i2f)
#undef CASE
default:
fprintf(stderr, "%s", nir_op_infos[expr->opcode].name);
}
unsigned num_srcs = 1;
if (expr->opcode <= nir_last_opcode)
num_srcs = nir_op_infos[expr->opcode].num_inputs;
for (unsigned i = 0; i < num_srcs; i++) {
fprintf(stderr, " ");
dump_value(expr->srcs[i]);
}
fprintf(stderr, ")");
break;
}
}
if (val->bit_size > 0)
fprintf(stderr, "@%d", val->bit_size);
}
static void
add_uses_to_worklist(nir_instr *instr, nir_instr_worklist *worklist)
{
nir_ssa_def *def = nir_instr_ssa_def(instr);
nir_foreach_use_safe(use_src, def) {
nir_instr_worklist_push_tail(worklist, use_src->parent_instr);
}
}
static void
nir_algebraic_update_automaton(nir_instr *new_instr,
nir_instr_worklist *algebraic_worklist,
struct util_dynarray *states,
const struct per_op_table *pass_op_table)
{
nir_instr_worklist *automaton_worklist = nir_instr_worklist_create();
/* Walk through the tree of uses of our new instruction's SSA value,
* recursively updating the automaton state until it stabilizes.
*/
add_uses_to_worklist(new_instr, automaton_worklist);
nir_instr *instr;
while ((instr = nir_instr_worklist_pop_head(automaton_worklist))) {
if (nir_algebraic_automaton(instr, states, pass_op_table)) {
nir_instr_worklist_push_tail(algebraic_worklist, instr);
add_uses_to_worklist(instr, automaton_worklist);
}
}
nir_instr_worklist_destroy(automaton_worklist);
}
nir_ssa_def *
nir_replace_instr(nir_builder *build, nir_alu_instr *instr,
struct hash_table *range_ht,
struct util_dynarray *states,
const struct per_op_table *pass_op_table,
const nir_search_expression *search,
const nir_search_value *replace,
nir_instr_worklist *algebraic_worklist)
{
uint8_t swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i)
swizzle[i] = i;
assert(instr->dest.dest.is_ssa);
struct match_state state;
state.inexact_match = false;
state.has_exact_alu = false;
state.range_ht = range_ht;
state.pass_op_table = pass_op_table;
STATIC_ASSERT(sizeof(state.comm_op_direction) * 8 >= NIR_SEARCH_MAX_COMM_OPS);
unsigned comm_expr_combinations =
1 << MIN2(search->comm_exprs, NIR_SEARCH_MAX_COMM_OPS);
bool found = false;
for (unsigned comb = 0; comb < comm_expr_combinations; comb++) {
/* The bitfield of directions is just the current iteration. Hooray for
* binary.
*/
state.comm_op_direction = comb;
state.variables_seen = 0;
if (match_expression(search, instr,
instr->dest.dest.ssa.num_components,
swizzle, &state)) {
found = true;
break;
}
}
if (!found)
return NULL;
#if 0
fprintf(stderr, "matched: ");
dump_value(&search->value);
fprintf(stderr, " -> ");
dump_value(replace);
fprintf(stderr, " ssa_%d\n", instr->dest.dest.ssa.index);
#endif
/* If the instruction at the root of the expression tree being replaced is
* a unary operation, insert the replacement instructions at the location
* of the source of the unary operation. Otherwise, insert the replacement
* instructions at the location of the expression tree root.
*
* For the unary operation case, this is done to prevent some spurious code
* motion that can dramatically extend live ranges. Imagine an expression
* like -(A+B) where the addtion and the negation are separated by flow
* control and thousands of instructions. If this expression is replaced
* with -A+-B, inserting the new instructions at the site of the negation
* could extend the live range of A and B dramtically. This could increase
* register pressure and cause spilling.
*
* It may well be that moving instructions around is a good thing, but
* keeping algebraic optimizations and code motion optimizations separate
* seems safest.
*/
nir_alu_instr *const src_instr = nir_src_as_alu_instr(instr->src[0].src);
if (src_instr != NULL &&
(instr->op == nir_op_fneg || instr->op == nir_op_fabs ||
instr->op == nir_op_ineg || instr->op == nir_op_iabs ||
instr->op == nir_op_inot)) {
/* Insert new instructions *after*. Otherwise a hypothetical
* replacement fneg(X) -> fabs(X) would insert the fabs() instruction
* before X! This can also occur for things like fneg(X.wzyx) -> X.wzyx
* in vector mode. A move instruction to handle the swizzle will get
* inserted before X.
*
* This manifested in a single OpenGL ES 2.0 CTS vertex shader test on
* older Intel GPU that use vector-mode vertex processing.
*/
build->cursor = nir_after_instr(&src_instr->instr);
} else {
build->cursor = nir_before_instr(&instr->instr);
}
state.states = states;
nir_alu_src val = construct_value(build, replace,
instr->dest.dest.ssa.num_components,
instr->dest.dest.ssa.bit_size,
&state, &instr->instr);
/* Note that NIR builder will elide the MOV if it's a no-op, which may
* allow more work to be done in a single pass through algebraic.
*/
nir_ssa_def *ssa_val =
nir_mov_alu(build, val, instr->dest.dest.ssa.num_components);
if (ssa_val->index == util_dynarray_num_elements(states, uint16_t)) {
util_dynarray_append(states, uint16_t, 0);
nir_algebraic_automaton(ssa_val->parent_instr, states, pass_op_table);
}
/* Rewrite the uses of the old SSA value to the new one, and recurse
* through the uses updating the automaton's state.
*/
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(ssa_val));
nir_algebraic_update_automaton(ssa_val->parent_instr, algebraic_worklist,
states, pass_op_table);
/* Nothing uses the instr any more, so drop it out of the program. Note
* that the instr may be in the worklist still, so we can't free it
* directly.
*/
nir_instr_remove(&instr->instr);
return ssa_val;
}
static bool
nir_algebraic_automaton(nir_instr *instr, struct util_dynarray *states,
const struct per_op_table *pass_op_table)
{
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu = nir_instr_as_alu(instr);
nir_op op = alu->op;
uint16_t search_op = nir_search_op_for_nir_op(op);
const struct per_op_table *tbl = &pass_op_table[search_op];
if (tbl->num_filtered_states == 0)
return false;
/* Calculate the index into the transition table. Note the index
* calculated must match the iteration order of Python's
* itertools.product(), which was used to emit the transition
* table.
*/
unsigned index = 0;
for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
index *= tbl->num_filtered_states;
index += tbl->filter[*util_dynarray_element(states, uint16_t,
alu->src[i].src.ssa->index)];
}
uint16_t *state = util_dynarray_element(states, uint16_t,
alu->dest.dest.ssa.index);
if (*state != tbl->table[index]) {
*state = tbl->table[index];
return true;
}
return false;
}
case nir_instr_type_load_const: {
nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
uint16_t *state = util_dynarray_element(states, uint16_t,
load_const->def.index);
if (*state != CONST_STATE) {
*state = CONST_STATE;
return true;
}
return false;
}
default:
return false;
}
}
static bool
nir_algebraic_instr(nir_builder *build, nir_instr *instr,
struct hash_table *range_ht,
const bool *condition_flags,
const struct transform **transforms,
const uint16_t *transform_counts,
struct util_dynarray *states,
const struct per_op_table *pass_op_table,
nir_instr_worklist *worklist)
{
if (instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(instr);
if (!alu->dest.dest.is_ssa)
return false;
unsigned bit_size = alu->dest.dest.ssa.bit_size;
const unsigned execution_mode =
build->shader->info.float_controls_execution_mode;
const bool ignore_inexact =
nir_is_float_control_signed_zero_inf_nan_preserve(execution_mode, bit_size) ||
nir_is_denorm_flush_to_zero(execution_mode, bit_size);
int xform_idx = *util_dynarray_element(states, uint16_t,
alu->dest.dest.ssa.index);
for (uint16_t i = 0; i < transform_counts[xform_idx]; i++) {
const struct transform *xform = &transforms[xform_idx][i];
if (condition_flags[xform->condition_offset] &&
!(xform->search->inexact && ignore_inexact) &&
nir_replace_instr(build, alu, range_ht, states, pass_op_table,
xform->search, xform->replace, worklist)) {
_mesa_hash_table_clear(range_ht, NULL);
return true;
}
}
return false;
}
bool
nir_algebraic_impl(nir_function_impl *impl,
const bool *condition_flags,
const struct transform **transforms,
const uint16_t *transform_counts,
const struct per_op_table *pass_op_table)
{
bool progress = false;
nir_builder build;
nir_builder_init(&build, impl);
/* Note: it's important here that we're allocating a zeroed array, since
* state 0 is the default state, which means we don't have to visit
* anything other than constants and ALU instructions.
*/
struct util_dynarray states = {0};
if (!util_dynarray_resize(&states, uint16_t, impl->ssa_alloc)) {
nir_metadata_preserve(impl, nir_metadata_all);
return false;
}
memset(states.data, 0, states.size);
struct hash_table *range_ht = _mesa_pointer_hash_table_create(NULL);
nir_instr_worklist *worklist = nir_instr_worklist_create();
/* Walk top-to-bottom setting up the automaton state. */
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
nir_algebraic_automaton(instr, &states, pass_op_table);
}
}
/* Put our instrs in the worklist such that we're popping the last instr
* first. This will encourage us to match the biggest source patterns when
* possible.
*/
nir_foreach_block_reverse(block, impl) {
nir_foreach_instr_reverse(instr, block) {
nir_instr_worklist_push_tail(worklist, instr);
}
}
nir_instr *instr;
while ((instr = nir_instr_worklist_pop_head(worklist))) {
/* The worklist can have an instr pushed to it multiple times if it was
* the src of multiple instrs that also got optimized, so make sure that
* we don't try to re-optimize an instr we already handled.
*/
if (exec_node_is_tail_sentinel(&instr->node))
continue;
progress |= nir_algebraic_instr(&build, instr,
range_ht, condition_flags,
transforms, transform_counts, &states,
pass_op_table, worklist);
}
nir_instr_worklist_destroy(worklist);
ralloc_free(range_ht);
util_dynarray_fini(&states);
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}