blob: b9d167a878e795d21c0703db2326df647157d509 [file] [log] [blame]
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
#include "util/u_dynarray.h"
/**
* Elimination of dead writes based on derefs.
*
* Dead writes are stores and copies that write to a deref, which then gets
* another write before it was used (read or sourced for a copy). Those
* writes can be removed since they don't affect anything.
*
* For derefs that refer to a memory area that can be read after the program,
* the last write is considered used. The presence of certain instructions
* may also cause writes to be considered used, e.g. memory barrier (in this case
* the value must be written as other thread might use it).
*
* The write mask for store instructions is considered, so it is possible that
* a store is removed because of the combination of other stores overwritten
* its value.
*/
/* Entry for unused_writes arrays. */
struct write_entry {
/* If NULL indicates the entry is free to be reused. */
nir_intrinsic_instr *intrin;
nir_component_mask_t mask;
nir_deref_instr *dst;
};
static void
clear_unused_for_modes(struct util_dynarray *unused_writes, nir_variable_mode modes)
{
util_dynarray_foreach_reverse(unused_writes, struct write_entry, entry) {
if (entry->dst->mode & modes)
*entry = util_dynarray_pop(unused_writes, struct write_entry);
}
}
static void
clear_unused_for_read(struct util_dynarray *unused_writes, nir_deref_instr *src)
{
util_dynarray_foreach_reverse(unused_writes, struct write_entry, entry) {
if (nir_compare_derefs(src, entry->dst) & nir_derefs_may_alias_bit)
*entry = util_dynarray_pop(unused_writes, struct write_entry);
}
}
static bool
update_unused_writes(struct util_dynarray *unused_writes,
nir_intrinsic_instr *intrin,
nir_deref_instr *dst, nir_component_mask_t mask)
{
bool progress = false;
/* This pass assumes that destination of copies and stores are derefs that
* end in a vector or scalar (it is OK to have wildcards or indirects for
* arrays).
*/
assert(glsl_type_is_vector_or_scalar(dst->type));
/* Find writes that are unused and can be removed. */
util_dynarray_foreach_reverse(unused_writes, struct write_entry, entry) {
nir_deref_compare_result comp = nir_compare_derefs(dst, entry->dst);
if (comp & nir_derefs_a_contains_b_bit) {
entry->mask &= ~mask;
if (entry->mask == 0) {
nir_instr_remove(&entry->intrin->instr);
*entry = util_dynarray_pop(unused_writes, struct write_entry);
progress = true;
}
}
}
/* Add the new write to the unused array. */
struct write_entry new_entry = {
.intrin = intrin,
.mask = mask,
.dst = dst,
};
util_dynarray_append(unused_writes, struct write_entry, new_entry);
return progress;
}
static bool
remove_dead_write_vars_local(void *mem_ctx, nir_block *block)
{
bool progress = false;
struct util_dynarray unused_writes;
util_dynarray_init(&unused_writes, mem_ctx);
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_call) {
clear_unused_for_modes(&unused_writes, nir_var_shader_out |
nir_var_shader_temp |
nir_var_function_temp |
nir_var_mem_ssbo |
nir_var_mem_shared |
nir_var_mem_global);
continue;
}
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_control_barrier:
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier: {
clear_unused_for_modes(&unused_writes, nir_var_shader_out |
nir_var_mem_ssbo |
nir_var_mem_shared |
nir_var_mem_global);
break;
}
case nir_intrinsic_memory_barrier_buffer:
clear_unused_for_modes(&unused_writes, nir_var_mem_ssbo |
nir_var_mem_global);
break;
case nir_intrinsic_memory_barrier_shared:
clear_unused_for_modes(&unused_writes, nir_var_mem_shared);
break;
case nir_intrinsic_memory_barrier_tcs_patch:
clear_unused_for_modes(&unused_writes, nir_var_shader_out);
break;
case nir_intrinsic_scoped_barrier: {
if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_RELEASE) {
clear_unused_for_modes(&unused_writes,
nir_intrinsic_memory_modes(intrin));
}
break;
}
case nir_intrinsic_emit_vertex:
case nir_intrinsic_emit_vertex_with_counter: {
clear_unused_for_modes(&unused_writes, nir_var_shader_out);
break;
}
case nir_intrinsic_load_deref: {
nir_deref_instr *src = nir_src_as_deref(intrin->src[0]);
clear_unused_for_read(&unused_writes, src);
break;
}
case nir_intrinsic_store_deref: {
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE) {
/* Consider a volatile write to also be a sort of read. This
* prevents us from deleting a non-volatile write just before a
* volatile write thanks to a non-volatile write afterwards. It's
* quite the corner case, but this should be safer and more
* predictable for the programmer than allowing two non-volatile
* writes to be combined with a volatile write between them.
*/
clear_unused_for_read(&unused_writes, dst);
break;
}
nir_component_mask_t mask = nir_intrinsic_write_mask(intrin);
progress |= update_unused_writes(&unused_writes, intrin, dst, mask);
break;
}
case nir_intrinsic_copy_deref: {
nir_deref_instr *src = nir_src_as_deref(intrin->src[1]);
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
if (nir_intrinsic_dst_access(intrin) & ACCESS_VOLATILE) {
clear_unused_for_read(&unused_writes, src);
clear_unused_for_read(&unused_writes, dst);
break;
}
/* Self-copy is removed. */
if (nir_compare_derefs(src, dst) & nir_derefs_equal_bit) {
nir_instr_remove(instr);
progress = true;
break;
}
clear_unused_for_read(&unused_writes, src);
nir_component_mask_t mask = (1 << glsl_get_vector_elements(dst->type)) - 1;
progress |= update_unused_writes(&unused_writes, intrin, dst, mask);
break;
}
default:
break;
}
}
/* All unused writes at the end of the block are kept, since we can't be
* sure they'll be overwritten or not with local analysis only.
*/
return progress;
}
static bool
remove_dead_write_vars_impl(void *mem_ctx, nir_function_impl *impl)
{
bool progress = false;
nir_metadata_require(impl, nir_metadata_block_index);
nir_foreach_block(block, impl)
progress |= remove_dead_write_vars_local(mem_ctx, block);
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
bool
nir_opt_dead_write_vars(nir_shader *shader)
{
void *mem_ctx = ralloc_context(NULL);
bool progress = false;
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
progress |= remove_dead_write_vars_impl(mem_ctx, function->impl);
}
ralloc_free(mem_ctx);
return progress;
}