blob: 8634bf74d6e0cc9224c2a5988dbf582dc3b1d321 [file] [log] [blame]
/*
* Copyright (C) 2019 Alyssa Rosenzweig
* Copyright (C) 2014-2017 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <assert.h>
#include "drm-uapi/panfrost_drm.h"
#include "pan_bo.h"
#include "pan_context.h"
#include "util/hash_table.h"
#include "util/ralloc.h"
#include "util/format/u_format.h"
#include "util/u_pack_color.h"
#include "pan_util.h"
#include "pandecode/decode.h"
#include "panfrost-quirks.h"
/* panfrost_bo_access is here to help us keep track of batch accesses to BOs
* and build a proper dependency graph such that batches can be pipelined for
* better GPU utilization.
*
* Each accessed BO has a corresponding entry in the ->accessed_bos hash table.
* A BO is either being written or read at any time, that's what the type field
* encodes.
* When the last access is a write, the batch writing the BO might have read
* dependencies (readers that have not been executed yet and want to read the
* previous BO content), and when the last access is a read, all readers might
* depend on another batch to push its results to memory. That's what the
* readers/writers keep track off.
* There can only be one writer at any given time, if a new batch wants to
* write to the same BO, a dependency will be added between the new writer and
* the old writer (at the batch level), and panfrost_bo_access->writer will be
* updated to point to the new writer.
*/
struct panfrost_bo_access {
uint32_t type;
struct util_dynarray readers;
struct panfrost_batch_fence *writer;
};
static struct panfrost_batch_fence *
panfrost_create_batch_fence(struct panfrost_batch *batch)
{
struct panfrost_batch_fence *fence;
ASSERTED int ret;
fence = rzalloc(NULL, struct panfrost_batch_fence);
assert(fence);
pipe_reference_init(&fence->reference, 1);
fence->ctx = batch->ctx;
fence->batch = batch;
ret = drmSyncobjCreate(pan_device(batch->ctx->base.screen)->fd, 0,
&fence->syncobj);
assert(!ret);
return fence;
}
static void
panfrost_free_batch_fence(struct panfrost_batch_fence *fence)
{
drmSyncobjDestroy(pan_device(fence->ctx->base.screen)->fd,
fence->syncobj);
ralloc_free(fence);
}
void
panfrost_batch_fence_unreference(struct panfrost_batch_fence *fence)
{
if (pipe_reference(&fence->reference, NULL))
panfrost_free_batch_fence(fence);
}
void
panfrost_batch_fence_reference(struct panfrost_batch_fence *fence)
{
pipe_reference(NULL, &fence->reference);
}
static struct panfrost_batch *
panfrost_create_batch(struct panfrost_context *ctx,
const struct pipe_framebuffer_state *key)
{
struct panfrost_batch *batch = rzalloc(ctx, struct panfrost_batch);
batch->ctx = ctx;
batch->bos = _mesa_hash_table_create(batch, _mesa_hash_pointer,
_mesa_key_pointer_equal);
batch->minx = batch->miny = ~0;
batch->maxx = batch->maxy = 0;
batch->transient_offset = 0;
batch->out_sync = panfrost_create_batch_fence(batch);
util_copy_framebuffer_state(&batch->key, key);
return batch;
}
static void
panfrost_freeze_batch(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
struct hash_entry *entry;
/* Remove the entry in the FBO -> batch hash table if the batch
* matches. This way, next draws/clears targeting this FBO will trigger
* the creation of a new batch.
*/
entry = _mesa_hash_table_search(ctx->batches, &batch->key);
if (entry && entry->data == batch)
_mesa_hash_table_remove(ctx->batches, entry);
/* If this is the bound batch, the panfrost_context parameters are
* relevant so submitting it invalidates those parameters, but if it's
* not bound, the context parameters are for some other batch so we
* can't invalidate them.
*/
if (ctx->batch == batch) {
panfrost_invalidate_frame(ctx);
ctx->batch = NULL;
}
}
#ifndef NDEBUG
static bool panfrost_batch_is_frozen(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
struct hash_entry *entry;
entry = _mesa_hash_table_search(ctx->batches, &batch->key);
if (entry && entry->data == batch)
return false;
if (ctx->batch == batch)
return false;
return true;
}
#endif
static void
panfrost_free_batch(struct panfrost_batch *batch)
{
if (!batch)
return;
assert(panfrost_batch_is_frozen(batch));
hash_table_foreach(batch->bos, entry)
panfrost_bo_unreference((struct panfrost_bo *)entry->key);
util_dynarray_foreach(&batch->dependencies,
struct panfrost_batch_fence *, dep) {
panfrost_batch_fence_unreference(*dep);
}
/* The out_sync fence lifetime is different from the the batch one
* since other batches might want to wait on a fence of already
* submitted/signaled batch. All we need to do here is make sure the
* fence does not point to an invalid batch, which the core will
* interpret as 'batch is already submitted'.
*/
batch->out_sync->batch = NULL;
panfrost_batch_fence_unreference(batch->out_sync);
util_unreference_framebuffer_state(&batch->key);
ralloc_free(batch);
}
#ifndef NDEBUG
static bool
panfrost_dep_graph_contains_batch(struct panfrost_batch *root,
struct panfrost_batch *batch)
{
if (!root)
return false;
util_dynarray_foreach(&root->dependencies,
struct panfrost_batch_fence *, dep) {
if ((*dep)->batch == batch ||
panfrost_dep_graph_contains_batch((*dep)->batch, batch))
return true;
}
return false;
}
#endif
static void
panfrost_batch_add_dep(struct panfrost_batch *batch,
struct panfrost_batch_fence *newdep)
{
if (batch == newdep->batch)
return;
/* We might want to turn ->dependencies into a set if the number of
* deps turns out to be big enough to make this 'is dep already there'
* search inefficient.
*/
util_dynarray_foreach(&batch->dependencies,
struct panfrost_batch_fence *, dep) {
if (*dep == newdep)
return;
}
/* Make sure the dependency graph is acyclic. */
assert(!panfrost_dep_graph_contains_batch(newdep->batch, batch));
panfrost_batch_fence_reference(newdep);
util_dynarray_append(&batch->dependencies,
struct panfrost_batch_fence *, newdep);
/* We now have a batch depending on us, let's make sure new draw/clear
* calls targeting the same FBO use a new batch object.
*/
if (newdep->batch)
panfrost_freeze_batch(newdep->batch);
}
static struct panfrost_batch *
panfrost_get_batch(struct panfrost_context *ctx,
const struct pipe_framebuffer_state *key)
{
/* Lookup the job first */
struct hash_entry *entry = _mesa_hash_table_search(ctx->batches, key);
if (entry)
return entry->data;
/* Otherwise, let's create a job */
struct panfrost_batch *batch = panfrost_create_batch(ctx, key);
/* Save the created job */
_mesa_hash_table_insert(ctx->batches, &batch->key, batch);
return batch;
}
/* Get the job corresponding to the FBO we're currently rendering into */
struct panfrost_batch *
panfrost_get_batch_for_fbo(struct panfrost_context *ctx)
{
/* If we're wallpapering, we special case to workaround
* u_blitter abuse */
if (ctx->wallpaper_batch)
return ctx->wallpaper_batch;
/* If we already began rendering, use that */
if (ctx->batch) {
assert(util_framebuffer_state_equal(&ctx->batch->key,
&ctx->pipe_framebuffer));
return ctx->batch;
}
/* If not, look up the job */
struct panfrost_batch *batch = panfrost_get_batch(ctx,
&ctx->pipe_framebuffer);
/* Set this job as the current FBO job. Will be reset when updating the
* FB state and when submitting or releasing a job.
*/
ctx->batch = batch;
return batch;
}
struct panfrost_batch *
panfrost_get_fresh_batch_for_fbo(struct panfrost_context *ctx)
{
struct panfrost_batch *batch;
batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
/* The batch has no draw/clear queued, let's return it directly.
* Note that it's perfectly fine to re-use a batch with an
* existing clear, we'll just update it with the new clear request.
*/
if (!batch->first_job)
return batch;
/* Otherwise, we need to freeze the existing one and instantiate a new
* one.
*/
panfrost_freeze_batch(batch);
return panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
}
static bool
panfrost_batch_fence_is_signaled(struct panfrost_batch_fence *fence)
{
if (fence->signaled)
return true;
/* Batch has not been submitted yet. */
if (fence->batch)
return false;
int ret = drmSyncobjWait(pan_device(fence->ctx->base.screen)->fd,
&fence->syncobj, 1, 0, 0, NULL);
/* Cache whether the fence was signaled */
fence->signaled = ret >= 0;
return fence->signaled;
}
static void
panfrost_bo_access_gc_fences(struct panfrost_context *ctx,
struct panfrost_bo_access *access,
const struct panfrost_bo *bo)
{
if (access->writer && panfrost_batch_fence_is_signaled(access->writer)) {
panfrost_batch_fence_unreference(access->writer);
access->writer = NULL;
}
struct panfrost_batch_fence **readers_array = util_dynarray_begin(&access->readers);
struct panfrost_batch_fence **new_readers = readers_array;
util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
reader) {
if (!(*reader))
continue;
if (panfrost_batch_fence_is_signaled(*reader)) {
panfrost_batch_fence_unreference(*reader);
*reader = NULL;
} else {
/* Build a new array of only unsignaled fences in-place */
*(new_readers++) = *reader;
}
}
if (!util_dynarray_resize(&access->readers, struct panfrost_batch_fence *,
new_readers - readers_array) &&
new_readers != readers_array)
unreachable("Invalid dynarray access->readers");
}
/* Collect signaled fences to keep the kernel-side syncobj-map small. The
* idea is to collect those signaled fences at the end of each flush_all
* call. This function is likely to collect only fences from previous
* batch flushes not the one that have just have just been submitted and
* are probably still in flight when we trigger the garbage collection.
* Anyway, we need to do this garbage collection at some point if we don't
* want the BO access map to keep invalid entries around and retain
* syncobjs forever.
*/
static void
panfrost_gc_fences(struct panfrost_context *ctx)
{
hash_table_foreach(ctx->accessed_bos, entry) {
struct panfrost_bo_access *access = entry->data;
assert(access);
panfrost_bo_access_gc_fences(ctx, access, entry->key);
if (!util_dynarray_num_elements(&access->readers,
struct panfrost_batch_fence *) &&
!access->writer) {
ralloc_free(access);
_mesa_hash_table_remove(ctx->accessed_bos, entry);
}
}
}
#ifndef NDEBUG
static bool
panfrost_batch_in_readers(struct panfrost_batch *batch,
struct panfrost_bo_access *access)
{
util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
reader) {
if (*reader && (*reader)->batch == batch)
return true;
}
return false;
}
#endif
static void
panfrost_batch_update_bo_access(struct panfrost_batch *batch,
struct panfrost_bo *bo, uint32_t access_type,
bool already_accessed)
{
struct panfrost_context *ctx = batch->ctx;
struct panfrost_bo_access *access;
uint32_t old_access_type;
struct hash_entry *entry;
assert(access_type == PAN_BO_ACCESS_WRITE ||
access_type == PAN_BO_ACCESS_READ);
entry = _mesa_hash_table_search(ctx->accessed_bos, bo);
access = entry ? entry->data : NULL;
if (access) {
old_access_type = access->type;
} else {
access = rzalloc(ctx, struct panfrost_bo_access);
util_dynarray_init(&access->readers, access);
_mesa_hash_table_insert(ctx->accessed_bos, bo, access);
/* We are the first to access this BO, let's initialize
* old_access_type to our own access type in that case.
*/
old_access_type = access_type;
access->type = access_type;
}
assert(access);
if (access_type == PAN_BO_ACCESS_WRITE &&
old_access_type == PAN_BO_ACCESS_READ) {
/* Previous access was a read and we want to write this BO.
* We first need to add explicit deps between our batch and
* the previous readers.
*/
util_dynarray_foreach(&access->readers,
struct panfrost_batch_fence *, reader) {
/* We were already reading the BO, no need to add a dep
* on ourself (the acyclic check would complain about
* that).
*/
if (!(*reader) || (*reader)->batch == batch)
continue;
panfrost_batch_add_dep(batch, *reader);
}
panfrost_batch_fence_reference(batch->out_sync);
/* We now are the new writer. */
access->writer = batch->out_sync;
access->type = access_type;
/* Release the previous readers and reset the readers array. */
util_dynarray_foreach(&access->readers,
struct panfrost_batch_fence *,
reader) {
if (!*reader)
continue;
panfrost_batch_fence_unreference(*reader);
}
util_dynarray_clear(&access->readers);
} else if (access_type == PAN_BO_ACCESS_WRITE &&
old_access_type == PAN_BO_ACCESS_WRITE) {
/* Previous access was a write and we want to write this BO.
* First check if we were the previous writer, in that case
* there's nothing to do. Otherwise we need to add a
* dependency between the new writer and the old one.
*/
if (access->writer != batch->out_sync) {
if (access->writer) {
panfrost_batch_add_dep(batch, access->writer);
panfrost_batch_fence_unreference(access->writer);
}
panfrost_batch_fence_reference(batch->out_sync);
access->writer = batch->out_sync;
}
} else if (access_type == PAN_BO_ACCESS_READ &&
old_access_type == PAN_BO_ACCESS_WRITE) {
/* Previous access was a write and we want to read this BO.
* First check if we were the previous writer, in that case
* we want to keep the access type unchanged, as a write is
* more constraining than a read.
*/
if (access->writer != batch->out_sync) {
/* Add a dependency on the previous writer. */
panfrost_batch_add_dep(batch, access->writer);
/* The previous access was a write, there's no reason
* to have entries in the readers array.
*/
assert(!util_dynarray_num_elements(&access->readers,
struct panfrost_batch_fence *));
/* Add ourselves to the readers array. */
panfrost_batch_fence_reference(batch->out_sync);
util_dynarray_append(&access->readers,
struct panfrost_batch_fence *,
batch->out_sync);
access->type = PAN_BO_ACCESS_READ;
}
} else {
/* We already accessed this BO before, so we should already be
* in the reader array.
*/
if (already_accessed) {
assert(panfrost_batch_in_readers(batch, access));
return;
}
/* Previous access was a read and we want to read this BO.
* Add ourselves to the readers array and add a dependency on
* the previous writer if any.
*/
panfrost_batch_fence_reference(batch->out_sync);
util_dynarray_append(&access->readers,
struct panfrost_batch_fence *,
batch->out_sync);
if (access->writer)
panfrost_batch_add_dep(batch, access->writer);
}
}
void
panfrost_batch_add_bo(struct panfrost_batch *batch, struct panfrost_bo *bo,
uint32_t flags)
{
if (!bo)
return;
struct hash_entry *entry;
uint32_t old_flags = 0;
entry = _mesa_hash_table_search(batch->bos, bo);
if (!entry) {
entry = _mesa_hash_table_insert(batch->bos, bo,
(void *)(uintptr_t)flags);
panfrost_bo_reference(bo);
} else {
old_flags = (uintptr_t)entry->data;
/* All batches have to agree on the shared flag. */
assert((old_flags & PAN_BO_ACCESS_SHARED) ==
(flags & PAN_BO_ACCESS_SHARED));
}
assert(entry);
if (old_flags == flags)
return;
flags |= old_flags;
entry->data = (void *)(uintptr_t)flags;
/* If this is not a shared BO, we don't really care about dependency
* tracking.
*/
if (!(flags & PAN_BO_ACCESS_SHARED))
return;
/* All dependencies should have been flushed before we execute the
* wallpaper draw, so it should be harmless to skip the
* update_bo_access() call.
*/
if (batch == batch->ctx->wallpaper_batch)
return;
/* Only pass R/W flags to the dep tracking logic. */
assert(flags & PAN_BO_ACCESS_RW);
flags = (flags & PAN_BO_ACCESS_WRITE) ?
PAN_BO_ACCESS_WRITE : PAN_BO_ACCESS_READ;
panfrost_batch_update_bo_access(batch, bo, flags, old_flags != 0);
}
void panfrost_batch_add_fbo_bos(struct panfrost_batch *batch)
{
uint32_t flags = PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_WRITE |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT;
for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
struct panfrost_resource *rsrc = pan_resource(batch->key.cbufs[i]->texture);
panfrost_batch_add_bo(batch, rsrc->bo, flags);
}
if (batch->key.zsbuf) {
struct panfrost_resource *rsrc = pan_resource(batch->key.zsbuf->texture);
panfrost_batch_add_bo(batch, rsrc->bo, flags);
}
}
struct panfrost_bo *
panfrost_batch_create_bo(struct panfrost_batch *batch, size_t size,
uint32_t create_flags, uint32_t access_flags)
{
struct panfrost_bo *bo;
bo = pan_bo_create(pan_device(batch->ctx->base.screen), size,
create_flags);
panfrost_batch_add_bo(batch, bo, access_flags);
/* panfrost_batch_add_bo() has retained a reference and
* pan_bo_create() initialize the refcnt to 1, so let's
* unreference the BO here so it gets released when the batch is
* destroyed (unless it's retained by someone else in the meantime).
*/
panfrost_bo_unreference(bo);
return bo;
}
/* Returns the polygon list's GPU address if available, or otherwise allocates
* the polygon list. It's perfectly fast to use allocate/free BO directly,
* since we'll hit the BO cache and this is one-per-batch anyway. */
mali_ptr
panfrost_batch_get_polygon_list(struct panfrost_batch *batch, unsigned size)
{
if (batch->polygon_list) {
assert(batch->polygon_list->size >= size);
} else {
/* Create the BO as invisible, as there's no reason to map */
size = util_next_power_of_two(size);
batch->polygon_list = panfrost_batch_create_bo(batch, size,
PAN_BO_INVISIBLE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
}
return batch->polygon_list->gpu;
}
struct panfrost_bo *
panfrost_batch_get_scratchpad(struct panfrost_batch *batch,
unsigned shift,
unsigned thread_tls_alloc,
unsigned core_count)
{
unsigned size = panfrost_get_total_stack_size(shift,
thread_tls_alloc,
core_count);
if (batch->scratchpad) {
assert(batch->scratchpad->size >= size);
} else {
batch->scratchpad = panfrost_batch_create_bo(batch, size,
PAN_BO_INVISIBLE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
}
return batch->scratchpad;
}
struct panfrost_bo *
panfrost_batch_get_shared_memory(struct panfrost_batch *batch,
unsigned size,
unsigned workgroup_count)
{
if (batch->shared_memory) {
assert(batch->shared_memory->size >= size);
} else {
batch->shared_memory = panfrost_batch_create_bo(batch, size,
PAN_BO_INVISIBLE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER);
}
return batch->shared_memory;
}
struct panfrost_bo *
panfrost_batch_get_tiler_heap(struct panfrost_batch *batch)
{
if (batch->tiler_heap)
return batch->tiler_heap;
batch->tiler_heap = panfrost_batch_create_bo(batch, 4096 * 4096,
PAN_BO_INVISIBLE |
PAN_BO_GROWABLE,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
assert(batch->tiler_heap);
return batch->tiler_heap;
}
struct panfrost_bo *
panfrost_batch_get_tiler_dummy(struct panfrost_batch *batch)
{
struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
uint32_t create_flags = 0;
if (batch->tiler_dummy)
return batch->tiler_dummy;
if (!(dev->quirks & MIDGARD_NO_HIER_TILING))
create_flags = PAN_BO_INVISIBLE;
batch->tiler_dummy = panfrost_batch_create_bo(batch, 4096,
create_flags,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
assert(batch->tiler_dummy);
return batch->tiler_dummy;
}
static void
panfrost_batch_draw_wallpaper(struct panfrost_batch *batch)
{
/* Color 0 is cleared, no need to draw the wallpaper.
* TODO: MRT wallpapers.
*/
if (batch->clear & PIPE_CLEAR_COLOR0)
return;
/* Nothing to reload? TODO: MRT wallpapers */
if (batch->key.cbufs[0] == NULL)
return;
/* No draw calls, and no clear on the depth/stencil bufs.
* Drawing the wallpaper would be useless.
*/
if (!batch->tiler_dep &&
!(batch->clear & PIPE_CLEAR_DEPTHSTENCIL))
return;
/* Check if the buffer has any content on it worth preserving */
struct pipe_surface *surf = batch->key.cbufs[0];
struct panfrost_resource *rsrc = pan_resource(surf->texture);
unsigned level = surf->u.tex.level;
if (!rsrc->slices[level].initialized)
return;
batch->ctx->wallpaper_batch = batch;
/* Clamp the rendering area to the damage extent. The
* KHR_partial_update() spec states that trying to render outside of
* the damage region is "undefined behavior", so we should be safe.
*/
unsigned damage_width = (rsrc->damage.extent.maxx - rsrc->damage.extent.minx);
unsigned damage_height = (rsrc->damage.extent.maxy - rsrc->damage.extent.miny);
if (damage_width && damage_height) {
panfrost_batch_intersection_scissor(batch,
rsrc->damage.extent.minx,
rsrc->damage.extent.miny,
rsrc->damage.extent.maxx,
rsrc->damage.extent.maxy);
}
/* FIXME: Looks like aligning on a tile is not enough, but
* aligning on twice the tile size seems to works. We don't
* know exactly what happens here but this deserves extra
* investigation to figure it out.
*/
batch->minx = batch->minx & ~((MALI_TILE_LENGTH * 2) - 1);
batch->miny = batch->miny & ~((MALI_TILE_LENGTH * 2) - 1);
batch->maxx = MIN2(ALIGN_POT(batch->maxx, MALI_TILE_LENGTH * 2),
rsrc->base.width0);
batch->maxy = MIN2(ALIGN_POT(batch->maxy, MALI_TILE_LENGTH * 2),
rsrc->base.height0);
struct pipe_scissor_state damage;
struct pipe_box rects[4];
/* Clamp the damage box to the rendering area. */
damage.minx = MAX2(batch->minx, rsrc->damage.biggest_rect.x);
damage.miny = MAX2(batch->miny, rsrc->damage.biggest_rect.y);
damage.maxx = MIN2(batch->maxx,
rsrc->damage.biggest_rect.x +
rsrc->damage.biggest_rect.width);
damage.maxx = MAX2(damage.maxx, damage.minx);
damage.maxy = MIN2(batch->maxy,
rsrc->damage.biggest_rect.y +
rsrc->damage.biggest_rect.height);
damage.maxy = MAX2(damage.maxy, damage.miny);
/* One damage rectangle means we can end up with at most 4 reload
* regions:
* 1: left region, only exists if damage.x > 0
* 2: right region, only exists if damage.x + damage.width < fb->width
* 3: top region, only exists if damage.y > 0. The intersection with
* the left and right regions are dropped
* 4: bottom region, only exists if damage.y + damage.height < fb->height.
* The intersection with the left and right regions are dropped
*
* ____________________________
* | | 3 | |
* | |___________| |
* | | damage | |
* | 1 | rect | 2 |
* | |___________| |
* | | 4 | |
* |_______|___________|______|
*/
u_box_2d(batch->minx, batch->miny, damage.minx - batch->minx,
batch->maxy - batch->miny, &rects[0]);
u_box_2d(damage.maxx, batch->miny, batch->maxx - damage.maxx,
batch->maxy - batch->miny, &rects[1]);
u_box_2d(damage.minx, batch->miny, damage.maxx - damage.minx,
damage.miny - batch->miny, &rects[2]);
u_box_2d(damage.minx, damage.maxy, damage.maxx - damage.minx,
batch->maxy - damage.maxy, &rects[3]);
for (unsigned i = 0; i < 4; i++) {
/* Width and height are always >= 0 even if width is declared as a
* signed integer: u_box_2d() helper takes unsigned args and
* panfrost_set_damage_region() is taking care of clamping
* negative values.
*/
if (!rects[i].width || !rects[i].height)
continue;
/* Blit the wallpaper in */
panfrost_blit_wallpaper(batch->ctx, &rects[i]);
}
batch->ctx->wallpaper_batch = NULL;
}
static int
panfrost_batch_submit_ioctl(struct panfrost_batch *batch,
mali_ptr first_job_desc,
uint32_t reqs)
{
struct panfrost_context *ctx = batch->ctx;
struct pipe_context *gallium = (struct pipe_context *) ctx;
struct panfrost_device *dev = pan_device(gallium->screen);
struct drm_panfrost_submit submit = {0,};
uint32_t *bo_handles, *in_syncs = NULL;
bool is_fragment_shader;
int ret;
is_fragment_shader = (reqs & PANFROST_JD_REQ_FS) && batch->first_job;
if (is_fragment_shader)
submit.in_sync_count = 1;
else
submit.in_sync_count = util_dynarray_num_elements(&batch->dependencies,
struct panfrost_batch_fence *);
if (submit.in_sync_count) {
in_syncs = calloc(submit.in_sync_count, sizeof(*in_syncs));
assert(in_syncs);
}
/* The fragment job always depends on the vertex/tiler job if there's
* one
*/
if (is_fragment_shader) {
in_syncs[0] = batch->out_sync->syncobj;
} else {
unsigned int i = 0;
util_dynarray_foreach(&batch->dependencies,
struct panfrost_batch_fence *, dep)
in_syncs[i++] = (*dep)->syncobj;
}
submit.in_syncs = (uintptr_t)in_syncs;
submit.out_sync = batch->out_sync->syncobj;
submit.jc = first_job_desc;
submit.requirements = reqs;
bo_handles = calloc(batch->bos->entries, sizeof(*bo_handles));
assert(bo_handles);
hash_table_foreach(batch->bos, entry) {
struct panfrost_bo *bo = (struct panfrost_bo *)entry->key;
uint32_t flags = (uintptr_t)entry->data;
assert(bo->gem_handle > 0);
bo_handles[submit.bo_handle_count++] = bo->gem_handle;
/* Update the BO access flags so that panfrost_bo_wait() knows
* about all pending accesses.
* We only keep the READ/WRITE info since this is all the BO
* wait logic cares about.
* We also preserve existing flags as this batch might not
* be the first one to access the BO.
*/
bo->gpu_access |= flags & (PAN_BO_ACCESS_RW);
}
submit.bo_handles = (u64) (uintptr_t) bo_handles;
ret = drmIoctl(dev->fd, DRM_IOCTL_PANFROST_SUBMIT, &submit);
free(bo_handles);
free(in_syncs);
if (ret) {
DBG("Error submitting: %m\n");
return errno;
}
/* Trace the job if we're doing that */
if (pan_debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) {
/* Wait so we can get errors reported back */
drmSyncobjWait(dev->fd, &batch->out_sync->syncobj, 1,
INT64_MAX, 0, NULL);
/* Trace gets priority over sync */
bool minimal = !(pan_debug & PAN_DBG_TRACE);
pandecode_jc(submit.jc, FALSE, dev->gpu_id, minimal);
}
return 0;
}
static int
panfrost_batch_submit_jobs(struct panfrost_batch *batch)
{
bool has_draws = batch->first_job;
int ret = 0;
if (has_draws) {
ret = panfrost_batch_submit_ioctl(batch, batch->first_job, 0);
assert(!ret);
}
if (batch->tiler_dep || batch->clear) {
mali_ptr fragjob = panfrost_fragment_job(batch, has_draws);
ret = panfrost_batch_submit_ioctl(batch, fragjob, PANFROST_JD_REQ_FS);
assert(!ret);
}
return ret;
}
static void
panfrost_batch_submit(struct panfrost_batch *batch)
{
assert(batch);
/* Submit the dependencies first. */
util_dynarray_foreach(&batch->dependencies,
struct panfrost_batch_fence *, dep) {
if ((*dep)->batch)
panfrost_batch_submit((*dep)->batch);
}
int ret;
/* Nothing to do! */
if (!batch->first_job && !batch->clear) {
/* Mark the fence as signaled so the fence logic does not try
* to wait on it.
*/
batch->out_sync->signaled = true;
goto out;
}
panfrost_batch_draw_wallpaper(batch);
/* Now that all draws are in, we can finally prepare the
* FBD for the batch */
if (batch->framebuffer.gpu && batch->first_job) {
struct panfrost_context *ctx = batch->ctx;
struct pipe_context *gallium = (struct pipe_context *) ctx;
struct panfrost_device *dev = pan_device(gallium->screen);
if (dev->quirks & MIDGARD_SFBD)
panfrost_attach_sfbd(batch, ~0);
else
panfrost_attach_mfbd(batch, ~0);
}
panfrost_scoreboard_initialize_tiler(batch);
ret = panfrost_batch_submit_jobs(batch);
if (ret)
DBG("panfrost_batch_submit failed: %d\n", ret);
/* We must reset the damage info of our render targets here even
* though a damage reset normally happens when the DRI layer swaps
* buffers. That's because there can be implicit flushes the GL
* app is not aware of, and those might impact the damage region: if
* part of the damaged portion is drawn during those implicit flushes,
* you have to reload those areas before next draws are pushed, and
* since the driver can't easily know what's been modified by the draws
* it flushed, the easiest solution is to reload everything.
*/
for (unsigned i = 0; i < batch->key.nr_cbufs; i++) {
struct panfrost_resource *res;
if (!batch->key.cbufs[i])
continue;
res = pan_resource(batch->key.cbufs[i]->texture);
panfrost_resource_reset_damage(res);
}
out:
panfrost_freeze_batch(batch);
panfrost_free_batch(batch);
}
void
panfrost_flush_all_batches(struct panfrost_context *ctx, bool wait)
{
struct util_dynarray fences, syncobjs;
if (wait) {
util_dynarray_init(&fences, NULL);
util_dynarray_init(&syncobjs, NULL);
}
hash_table_foreach(ctx->batches, hentry) {
struct panfrost_batch *batch = hentry->data;
assert(batch);
if (wait) {
panfrost_batch_fence_reference(batch->out_sync);
util_dynarray_append(&fences, struct panfrost_batch_fence *,
batch->out_sync);
util_dynarray_append(&syncobjs, uint32_t,
batch->out_sync->syncobj);
}
panfrost_batch_submit(batch);
}
assert(!ctx->batches->entries);
/* Collect batch fences before returning */
panfrost_gc_fences(ctx);
if (!wait)
return;
drmSyncobjWait(pan_device(ctx->base.screen)->fd,
util_dynarray_begin(&syncobjs),
util_dynarray_num_elements(&syncobjs, uint32_t),
INT64_MAX, DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL, NULL);
util_dynarray_foreach(&fences, struct panfrost_batch_fence *, fence)
panfrost_batch_fence_unreference(*fence);
util_dynarray_fini(&fences);
util_dynarray_fini(&syncobjs);
}
bool
panfrost_pending_batches_access_bo(struct panfrost_context *ctx,
const struct panfrost_bo *bo)
{
struct panfrost_bo_access *access;
struct hash_entry *hentry;
hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
access = hentry ? hentry->data : NULL;
if (!access)
return false;
if (access->writer && access->writer->batch)
return true;
util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
reader) {
if (*reader && (*reader)->batch)
return true;
}
return false;
}
void
panfrost_flush_batches_accessing_bo(struct panfrost_context *ctx,
struct panfrost_bo *bo,
uint32_t access_type)
{
struct panfrost_bo_access *access;
struct hash_entry *hentry;
/* It doesn't make any to flush only the readers. */
assert(access_type == PAN_BO_ACCESS_WRITE ||
access_type == PAN_BO_ACCESS_RW);
hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
access = hentry ? hentry->data : NULL;
if (!access)
return;
if (access_type & PAN_BO_ACCESS_WRITE && access->writer &&
access->writer->batch)
panfrost_batch_submit(access->writer->batch);
if (!(access_type & PAN_BO_ACCESS_READ))
return;
util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
reader) {
if (*reader && (*reader)->batch)
panfrost_batch_submit((*reader)->batch);
}
}
void
panfrost_batch_set_requirements(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
if (ctx->rasterizer && ctx->rasterizer->base.multisample)
batch->requirements |= PAN_REQ_MSAA;
if (ctx->depth_stencil && ctx->depth_stencil->depth.writemask)
batch->requirements |= PAN_REQ_DEPTH_WRITE;
}
void
panfrost_batch_adjust_stack_size(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
for (unsigned i = 0; i < PIPE_SHADER_TYPES; ++i) {
struct panfrost_shader_state *ss;
ss = panfrost_get_shader_state(ctx, i);
if (!ss)
continue;
batch->stack_size = MAX2(batch->stack_size, ss->stack_size);
}
}
/* Helper to smear a 32-bit color across 128-bit components */
static void
pan_pack_color_32(uint32_t *packed, uint32_t v)
{
for (unsigned i = 0; i < 4; ++i)
packed[i] = v;
}
static void
pan_pack_color_64(uint32_t *packed, uint32_t lo, uint32_t hi)
{
for (unsigned i = 0; i < 4; i += 2) {
packed[i + 0] = lo;
packed[i + 1] = hi;
}
}
static void
pan_pack_color(uint32_t *packed, const union pipe_color_union *color, enum pipe_format format)
{
/* Alpha magicked to 1.0 if there is no alpha */
bool has_alpha = util_format_has_alpha(format);
float clear_alpha = has_alpha ? color->f[3] : 1.0f;
/* Packed color depends on the framebuffer format */
const struct util_format_description *desc =
util_format_description(format);
if (util_format_is_rgba8_variant(desc)) {
pan_pack_color_32(packed,
((uint32_t) float_to_ubyte(clear_alpha) << 24) |
((uint32_t) float_to_ubyte(color->f[2]) << 16) |
((uint32_t) float_to_ubyte(color->f[1]) << 8) |
((uint32_t) float_to_ubyte(color->f[0]) << 0));
} else if (format == PIPE_FORMAT_B5G6R5_UNORM) {
/* First, we convert the components to R5, G6, B5 separately */
unsigned r5 = CLAMP(color->f[0], 0.0, 1.0) * 31.0;
unsigned g6 = CLAMP(color->f[1], 0.0, 1.0) * 63.0;
unsigned b5 = CLAMP(color->f[2], 0.0, 1.0) * 31.0;
/* Then we pack into a sparse u32. TODO: Why these shifts? */
pan_pack_color_32(packed, (b5 << 25) | (g6 << 14) | (r5 << 5));
} else if (format == PIPE_FORMAT_B4G4R4A4_UNORM) {
/* We scale the components against 0xF0 (=240.0), rather than 0xFF */
unsigned r4 = CLAMP(color->f[0], 0.0, 1.0) * 240.0;
unsigned g4 = CLAMP(color->f[1], 0.0, 1.0) * 240.0;
unsigned b4 = CLAMP(color->f[2], 0.0, 1.0) * 240.0;
unsigned a4 = CLAMP(clear_alpha, 0.0, 1.0) * 240.0;
/* Pack on *byte* intervals */
pan_pack_color_32(packed, (a4 << 24) | (b4 << 16) | (g4 << 8) | r4);
} else if (format == PIPE_FORMAT_B5G5R5A1_UNORM) {
/* Scale as expected but shift oddly */
unsigned r5 = round(CLAMP(color->f[0], 0.0, 1.0)) * 31.0;
unsigned g5 = round(CLAMP(color->f[1], 0.0, 1.0)) * 31.0;
unsigned b5 = round(CLAMP(color->f[2], 0.0, 1.0)) * 31.0;
unsigned a1 = round(CLAMP(clear_alpha, 0.0, 1.0)) * 1.0;
pan_pack_color_32(packed, (a1 << 31) | (b5 << 25) | (g5 << 15) | (r5 << 5));
} else {
/* Try Gallium's generic default path. Doesn't work for all
* formats but it's a good guess. */
union util_color out;
if (util_format_is_pure_integer(format)) {
memcpy(out.ui, color->ui, 16);
} else {
util_pack_color(color->f, format, &out);
}
unsigned size = util_format_get_blocksize(format);
if (size == 1) {
unsigned b = out.ui[0];
unsigned s = b | (b << 8);
pan_pack_color_32(packed, s | (s << 16));
} else if (size == 2)
pan_pack_color_32(packed, out.ui[0] | (out.ui[0] << 16));
else if (size == 3 || size == 4)
pan_pack_color_32(packed, out.ui[0]);
else if (size == 6)
pan_pack_color_64(packed, out.ui[0], out.ui[1] | (out.ui[1] << 16)); /* RGB16F -- RGBB */
else if (size == 8)
pan_pack_color_64(packed, out.ui[0], out.ui[1]);
else if (size == 16)
memcpy(packed, out.ui, 16);
else
unreachable("Unknown generic format size packing clear colour");
}
}
void
panfrost_batch_clear(struct panfrost_batch *batch,
unsigned buffers,
const union pipe_color_union *color,
double depth, unsigned stencil)
{
struct panfrost_context *ctx = batch->ctx;
if (buffers & PIPE_CLEAR_COLOR) {
for (unsigned i = 0; i < PIPE_MAX_COLOR_BUFS; ++i) {
if (!(buffers & (PIPE_CLEAR_COLOR0 << i)))
continue;
enum pipe_format format = ctx->pipe_framebuffer.cbufs[i]->format;
pan_pack_color(batch->clear_color[i], color, format);
}
}
if (buffers & PIPE_CLEAR_DEPTH) {
batch->clear_depth = depth;
}
if (buffers & PIPE_CLEAR_STENCIL) {
batch->clear_stencil = stencil;
}
batch->clear |= buffers;
/* Clearing affects the entire framebuffer (by definition -- this is
* the Gallium clear callback, which clears the whole framebuffer. If
* the scissor test were enabled from the GL side, the state tracker
* would emit a quad instead and we wouldn't go down this code path) */
panfrost_batch_union_scissor(batch, 0, 0,
ctx->pipe_framebuffer.width,
ctx->pipe_framebuffer.height);
}
static bool
panfrost_batch_compare(const void *a, const void *b)
{
return util_framebuffer_state_equal(a, b);
}
static uint32_t
panfrost_batch_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct pipe_framebuffer_state));
}
/* Given a new bounding rectangle (scissor), let the job cover the union of the
* new and old bounding rectangles */
void
panfrost_batch_union_scissor(struct panfrost_batch *batch,
unsigned minx, unsigned miny,
unsigned maxx, unsigned maxy)
{
batch->minx = MIN2(batch->minx, minx);
batch->miny = MIN2(batch->miny, miny);
batch->maxx = MAX2(batch->maxx, maxx);
batch->maxy = MAX2(batch->maxy, maxy);
}
void
panfrost_batch_intersection_scissor(struct panfrost_batch *batch,
unsigned minx, unsigned miny,
unsigned maxx, unsigned maxy)
{
batch->minx = MAX2(batch->minx, minx);
batch->miny = MAX2(batch->miny, miny);
batch->maxx = MIN2(batch->maxx, maxx);
batch->maxy = MIN2(batch->maxy, maxy);
}
/* Are we currently rendering to the dev (rather than an FBO)? */
bool
panfrost_batch_is_scanout(struct panfrost_batch *batch)
{
/* If there is no color buffer, it's an FBO */
if (batch->key.nr_cbufs != 1)
return false;
/* If we're too early that no framebuffer was sent, it's scanout */
if (!batch->key.cbufs[0])
return true;
return batch->key.cbufs[0]->texture->bind & PIPE_BIND_DISPLAY_TARGET ||
batch->key.cbufs[0]->texture->bind & PIPE_BIND_SCANOUT ||
batch->key.cbufs[0]->texture->bind & PIPE_BIND_SHARED;
}
void
panfrost_batch_init(struct panfrost_context *ctx)
{
ctx->batches = _mesa_hash_table_create(ctx,
panfrost_batch_hash,
panfrost_batch_compare);
ctx->accessed_bos = _mesa_hash_table_create(ctx, _mesa_hash_pointer,
_mesa_key_pointer_equal);
}