blob: d58f7b0af624a00451d4d4606373c088310fd345 [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "ac_llvm_cull.h"
#include "si_build_pm4.h"
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "util/fast_idiv_by_const.h"
#include "util/u_prim.h"
#include "util/u_suballoc.h"
#include "util/u_upload_mgr.h"
/* Based on:
* https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf
*/
/* This file implements primitive culling using asynchronous compute.
* It's written to be GL conformant.
*
* It takes a monolithic VS in LLVM IR returning gl_Position and invokes it
* in a compute shader. The shader processes 1 primitive/thread by invoking
* the VS for each vertex to get the positions, decomposes strips and fans
* into triangles (if needed), eliminates primitive restart (if needed),
* does (W<0) culling, face culling, view XY culling, zero-area and
* small-primitive culling, and generates a new index buffer that doesn't
* contain culled primitives.
*
* The index buffer is generated using the Ordered Count feature of GDS,
* which is an atomic counter that is incremented in the wavefront launch
* order, so that the original primitive order is preserved.
*
* Another GDS ordered counter is used to eliminate primitive restart indices.
* If a restart index lands on an even thread ID, the compute shader has to flip
* the primitive orientation of the whole following triangle strip. The primitive
* orientation has to be correct after strip and fan decomposition for two-sided
* shading to behave correctly. The decomposition also needs to be aware of
* which vertex is the provoking vertex for flat shading to behave correctly.
*
* IB = a GPU command buffer
*
* Both the compute and gfx IBs run in parallel sort of like CE and DE.
* The gfx IB has a CP barrier (REWIND packet) before a draw packet. REWIND
* doesn't continue if its word isn't 0x80000000. Once compute shaders are
* finished culling, the last wave will write the final primitive count from
* GDS directly into the count word of the draw packet in the gfx IB, and
* a CS_DONE event will signal the REWIND packet to continue. It's really
* a direct draw with command buffer patching from the compute queue.
*
* The compute IB doesn't have to start when its corresponding gfx IB starts,
* but can start sooner. The compute IB is signaled to start after the last
* execution barrier in the *previous* gfx IB. This is handled as follows.
* The kernel GPU scheduler starts the compute IB after the previous gfx IB has
* started. The compute IB then waits (WAIT_REG_MEM) for a mid-IB fence that
* represents the barrier in the previous gfx IB.
*
* Features:
* - Triangle strips and fans are decomposed into an indexed triangle list.
* The decomposition differs based on the provoking vertex state.
* - Instanced draws are converted into non-instanced draws for 16-bit indices.
* (InstanceID is stored in the high bits of VertexID and unpacked by VS)
* - Primitive restart is fully supported with triangle strips, including
* correct primitive orientation across multiple waves. (restart indices
* reset primitive orientation)
* - W<0 culling (W<0 is behind the viewer, sort of like near Z culling).
* - Back face culling, incl. culling zero-area / degenerate primitives.
* - View XY culling.
* - View Z culling (disabled due to limited impact with perspective projection).
* - Small primitive culling for all MSAA modes and all quant modes.
*
* The following are not implemented:
* - ClipVertex/ClipDistance/CullDistance-based culling.
* - Scissor culling.
* - HiZ culling.
*
* Limitations (and unimplemented features that may be possible to implement):
* - Only triangles, triangle strips, and triangle fans are supported.
* - Primitive restart is only supported with triangle strips.
* - Instancing and primitive restart can't be used together.
* - Instancing is only supported with 16-bit indices and instance count <= 2^16.
* - The instance divisor buffer is unavailable, so all divisors must be
* either 0 or 1.
* - Multidraws where the vertex shader reads gl_DrawID are unsupported.
* - No support for tessellation and geometry shaders.
* (patch elimination where tess factors are 0 would be possible to implement)
* - The vertex shader must not contain memory stores.
* - All VS resources must not have a write usage in the command buffer.
* - Bindless textures and images must not occur in the vertex shader.
*
* User data SGPR layout:
* INDEX_BUFFERS: pointer to constants
* 0..3: input index buffer - typed buffer view
* 4..7: output index buffer - typed buffer view
* 8..11: viewport state - scale.xy, translate.xy
* VERTEX_COUNTER: counter address or first primitive ID
* - If unordered memory counter: address of "count" in the draw packet
* and is incremented atomically by the shader.
* - If unordered GDS counter: address of "count" in GDS starting from 0,
* must be initialized to 0 before the dispatch.
* - If ordered GDS counter: the primitive ID that should reset the vertex
* counter to 0 in GDS
* LAST_WAVE_PRIM_ID: the primitive ID that should write the final vertex
* count to memory if using GDS ordered append
* VERTEX_COUNT_ADDR: where the last wave should write the vertex count if
* using GDS ordered append
* VS.VERTEX_BUFFERS: same value as VS
* VS.CONST_AND_SHADER_BUFFERS: same value as VS
* VS.SAMPLERS_AND_IMAGES: same value as VS
* VS.BASE_VERTEX: same value as VS
* VS.START_INSTANCE: same value as VS
* NUM_PRIMS_UDIV_MULTIPLIER: For fast 31-bit division by the number of primitives
* per instance for instancing.
* NUM_PRIMS_UDIV_TERMS:
* - Bits [0:4]: "post_shift" for fast 31-bit division for instancing.
* - Bits [5:31]: The number of primitives per instance for computing the remainder.
* PRIMITIVE_RESTART_INDEX
* SMALL_PRIM_CULLING_PRECISION: Scale the primitive bounding box by this number.
*
*
* The code contains 3 codepaths:
* - Unordered memory counter (for debugging, random primitive order, no primitive restart)
* - Unordered GDS counter (for debugging, random primitive order, no primitive restart)
* - Ordered GDS counter (it preserves the primitive order)
*
* How to test primitive restart (the most complicated part because it needs
* to get the primitive orientation right):
* Set THREADGROUP_SIZE to 2 to exercise both intra-wave and inter-wave
* primitive orientation flips with small draw calls, which is what most tests use.
* You can also enable draw call splitting into draw calls with just 2 primitives.
*/
/* At least 256 is needed for the fastest wave launch rate from compute queues
* due to hw constraints. Nothing in the code needs more than 1 wave/threadgroup. */
#define THREADGROUP_SIZE 256 /* high numbers limit available VGPRs */
#define THREADGROUPS_PER_CU 1 /* TGs to launch on 1 CU before going onto the next, max 8 */
#define MAX_WAVES_PER_SH 0 /* no limit */
#define INDEX_STORES_USE_SLC 1 /* don't cache indices if L2 is full */
/* Don't cull Z. We already do (W < 0) culling for primitives behind the viewer. */
#define CULL_Z 0
/* 0 = unordered memory counter, 1 = unordered GDS counter, 2 = ordered GDS counter */
#define VERTEX_COUNTER_GDS_MODE 2
#define GDS_SIZE_UNORDERED (4 * 1024) /* only for the unordered GDS counter */
/* Grouping compute dispatches for small draw calls: How many primitives from multiple
* draw calls to process by compute before signaling the gfx IB. This reduces the number
* of EOP events + REWIND packets, because they decrease performance. */
#define PRIMS_PER_BATCH (512 * 1024)
/* Draw call splitting at the packet level. This allows signaling the gfx IB
* for big draw calls sooner, but doesn't allow context flushes between packets.
* Primitive restart is supported. Only implemented for ordered append. */
#define SPLIT_PRIMS_PACKET_LEVEL_VALUE PRIMS_PER_BATCH
/* If there is not enough ring buffer space for the current IB, split draw calls into
* this number of primitives, so that we can flush the context and get free ring space. */
#define SPLIT_PRIMS_DRAW_LEVEL PRIMS_PER_BATCH
/* Derived values. */
#define WAVES_PER_TG DIV_ROUND_UP(THREADGROUP_SIZE, 64)
#define SPLIT_PRIMS_PACKET_LEVEL \
(VERTEX_COUNTER_GDS_MODE == 2 ? SPLIT_PRIMS_PACKET_LEVEL_VALUE \
: UINT_MAX & ~(THREADGROUP_SIZE - 1))
#define REWIND_SIGNAL_BIT 0x80000000
/* For emulating the rewind packet on CI. */
#define FORCE_REWIND_EMULATION 0
void si_initialize_prim_discard_tunables(struct si_screen *sscreen, bool is_aux_context,
unsigned *prim_discard_vertex_count_threshold,
unsigned *index_ring_size_per_ib)
{
*prim_discard_vertex_count_threshold = UINT_MAX; /* disable */
if (sscreen->info.chip_class == GFX6 || /* SI support is not implemented */
!sscreen->info.has_gds_ordered_append || sscreen->debug_flags & DBG(NO_PD) || is_aux_context)
return;
/* TODO: enable this after the GDS kernel memory management is fixed */
bool enable_on_pro_graphics_by_default = false;
if (sscreen->debug_flags & DBG(ALWAYS_PD) || sscreen->debug_flags & DBG(PD) ||
(enable_on_pro_graphics_by_default && sscreen->info.is_pro_graphics &&
(sscreen->info.family == CHIP_BONAIRE || sscreen->info.family == CHIP_HAWAII ||
sscreen->info.family == CHIP_TONGA || sscreen->info.family == CHIP_FIJI ||
sscreen->info.family == CHIP_POLARIS10 || sscreen->info.family == CHIP_POLARIS11 ||
sscreen->info.family == CHIP_VEGA10 || sscreen->info.family == CHIP_VEGA20))) {
*prim_discard_vertex_count_threshold = 6000 * 3; /* 6K triangles */
if (sscreen->debug_flags & DBG(ALWAYS_PD))
*prim_discard_vertex_count_threshold = 0; /* always enable */
const uint32_t MB = 1024 * 1024;
const uint64_t GB = 1024 * 1024 * 1024;
/* The total size is double this per context.
* Greater numbers allow bigger gfx IBs.
*/
if (sscreen->info.vram_size <= 2 * GB)
*index_ring_size_per_ib = 64 * MB;
else if (sscreen->info.vram_size <= 4 * GB)
*index_ring_size_per_ib = 128 * MB;
else
*index_ring_size_per_ib = 256 * MB;
}
}
/* Opcode can be "add" or "swap". */
static LLVMValueRef si_build_ds_ordered_op(struct si_shader_context *ctx, const char *opcode,
LLVMValueRef m0, LLVMValueRef value,
unsigned ordered_count_index, bool release, bool done)
{
if (ctx->screen->info.chip_class >= GFX10)
ordered_count_index |= 1 << 24; /* number of dwords == 1 */
LLVMValueRef args[] = {
LLVMBuildIntToPtr(ctx->ac.builder, m0, LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS), ""),
value,
LLVMConstInt(ctx->ac.i32, LLVMAtomicOrderingMonotonic, 0), /* ordering */
ctx->ac.i32_0, /* scope */
ctx->ac.i1false, /* volatile */
LLVMConstInt(ctx->ac.i32, ordered_count_index, 0),
LLVMConstInt(ctx->ac.i1, release, 0),
LLVMConstInt(ctx->ac.i1, done, 0),
};
char intrinsic[64];
snprintf(intrinsic, sizeof(intrinsic), "llvm.amdgcn.ds.ordered.%s", opcode);
return ac_build_intrinsic(&ctx->ac, intrinsic, ctx->ac.i32, args, ARRAY_SIZE(args), 0);
}
static LLVMValueRef si_expand_32bit_pointer(struct si_shader_context *ctx, LLVMValueRef ptr)
{
uint64_t hi = (uint64_t)ctx->screen->info.address32_hi << 32;
ptr = LLVMBuildZExt(ctx->ac.builder, ptr, ctx->ac.i64, "");
ptr = LLVMBuildOr(ctx->ac.builder, ptr, LLVMConstInt(ctx->ac.i64, hi, 0), "");
return LLVMBuildIntToPtr(ctx->ac.builder, ptr,
LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GLOBAL), "");
}
struct si_thread0_section {
struct si_shader_context *ctx;
LLVMValueRef vgpr_result; /* a VGPR for the value on thread 0. */
LLVMValueRef saved_exec;
};
/* Enter a section that only executes on thread 0. */
static void si_enter_thread0_section(struct si_shader_context *ctx,
struct si_thread0_section *section, LLVMValueRef thread_id)
{
section->ctx = ctx;
section->vgpr_result = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "result0");
/* This IF has 4 instructions:
* v_and_b32_e32 v, 63, v ; get the thread ID
* v_cmp_eq_u32_e32 vcc, 0, v ; thread ID == 0
* s_and_saveexec_b64 s, vcc
* s_cbranch_execz BB0_4
*
* It could just be s_and_saveexec_b64 s, 1.
*/
ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, thread_id, ctx->ac.i32_0, ""),
12601);
}
/* Exit a section that only executes on thread 0 and broadcast the result
* to all threads. */
static void si_exit_thread0_section(struct si_thread0_section *section, LLVMValueRef *result)
{
struct si_shader_context *ctx = section->ctx;
LLVMBuildStore(ctx->ac.builder, *result, section->vgpr_result);
ac_build_endif(&ctx->ac, 12601);
/* Broadcast the result from thread 0 to all threads. */
*result =
ac_build_readlane(&ctx->ac, LLVMBuildLoad(ctx->ac.builder, section->vgpr_result, ""), NULL);
}
void si_build_prim_discard_compute_shader(struct si_shader_context *ctx)
{
struct si_shader_key *key = &ctx->shader->key;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef vs = ctx->main_fn;
/* Always inline the VS function. */
ac_add_function_attr(ctx->ac.context, vs, -1, AC_FUNC_ATTR_ALWAYSINLINE);
LLVMSetLinkage(vs, LLVMPrivateLinkage);
enum ac_arg_type const_desc_type;
if (ctx->shader->selector->info.base.num_ubos == 1 &&
ctx->shader->selector->info.base.num_ssbos == 0)
const_desc_type = AC_ARG_CONST_FLOAT_PTR;
else
const_desc_type = AC_ARG_CONST_DESC_PTR;
memset(&ctx->args, 0, sizeof(ctx->args));
struct ac_arg param_index_buffers_and_constants, param_vertex_counter;
struct ac_arg param_vb_desc, param_const_desc;
struct ac_arg param_base_vertex, param_start_instance;
struct ac_arg param_block_id, param_local_id, param_ordered_wave_id;
struct ac_arg param_restart_index, param_smallprim_precision;
struct ac_arg param_num_prims_udiv_multiplier, param_num_prims_udiv_terms;
struct ac_arg param_sampler_desc, param_last_wave_prim_id, param_vertex_count_addr;
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR,
&param_index_buffers_and_constants);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_vertex_counter);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_last_wave_prim_id);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_vertex_count_addr);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &param_vb_desc);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, const_desc_type, &param_const_desc);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR, &param_sampler_desc);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_base_vertex);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_start_instance);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_num_prims_udiv_multiplier);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_num_prims_udiv_terms);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_restart_index);
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, &param_smallprim_precision);
/* Block ID and thread ID inputs. */
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_block_id);
if (VERTEX_COUNTER_GDS_MODE == 2)
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_ordered_wave_id);
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &param_local_id);
/* Create the compute shader function. */
gl_shader_stage old_stage = ctx->stage;
ctx->stage = MESA_SHADER_COMPUTE;
si_llvm_create_func(ctx, "prim_discard_cs", NULL, 0, THREADGROUP_SIZE);
ctx->stage = old_stage;
if (VERTEX_COUNTER_GDS_MODE == 2) {
ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
} else if (VERTEX_COUNTER_GDS_MODE == 1) {
ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", GDS_SIZE_UNORDERED);
}
/* Assemble parameters for VS. */
LLVMValueRef vs_params[16];
unsigned num_vs_params = 0;
unsigned param_vertex_id, param_instance_id;
vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 0))); /* RW_BUFFERS */
vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 1))); /* BINDLESS */
vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_const_desc);
vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_sampler_desc);
vs_params[num_vs_params++] =
LLVMConstInt(ctx->ac.i32, S_VS_STATE_INDEXED(key->opt.cs_indexed), 0);
vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_base_vertex);
vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_start_instance);
vs_params[num_vs_params++] = ctx->ac.i32_0; /* DrawID */
vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_vb_desc);
vs_params[(param_vertex_id = num_vs_params++)] = NULL; /* VertexID */
vs_params[(param_instance_id = num_vs_params++)] = NULL; /* InstanceID */
vs_params[num_vs_params++] = ctx->ac.i32_0; /* unused (PrimID) */
vs_params[num_vs_params++] = ctx->ac.i32_0; /* unused */
assert(num_vs_params <= ARRAY_SIZE(vs_params));
assert(num_vs_params == LLVMCountParamTypes(LLVMGetElementType(LLVMTypeOf(vs))));
/* Load descriptors. (load 8 dwords at once) */
LLVMValueRef input_indexbuf, output_indexbuf, tmp, desc[8];
LLVMValueRef index_buffers_and_constants =
ac_get_arg(&ctx->ac, param_index_buffers_and_constants);
tmp = LLVMBuildPointerCast(builder, index_buffers_and_constants,
ac_array_in_const32_addr_space(ctx->ac.v8i32), "");
tmp = ac_build_load_to_sgpr(&ctx->ac, tmp, ctx->ac.i32_0);
for (unsigned i = 0; i < 8; i++)
desc[i] = ac_llvm_extract_elem(&ctx->ac, tmp, i);
input_indexbuf = ac_build_gather_values(&ctx->ac, desc, 4);
output_indexbuf = ac_build_gather_values(&ctx->ac, desc + 4, 4);
/* Compute PrimID and InstanceID. */
LLVMValueRef global_thread_id = ac_build_imad(&ctx->ac, ac_get_arg(&ctx->ac, param_block_id),
LLVMConstInt(ctx->ac.i32, THREADGROUP_SIZE, 0),
ac_get_arg(&ctx->ac, param_local_id));
LLVMValueRef prim_id = global_thread_id; /* PrimID within an instance */
LLVMValueRef instance_id = ctx->ac.i32_0;
if (key->opt.cs_instancing) {
LLVMValueRef num_prims_udiv_terms = ac_get_arg(&ctx->ac, param_num_prims_udiv_terms);
LLVMValueRef num_prims_udiv_multiplier =
ac_get_arg(&ctx->ac, param_num_prims_udiv_multiplier);
/* Unpack num_prims_udiv_terms. */
LLVMValueRef post_shift =
LLVMBuildAnd(builder, num_prims_udiv_terms, LLVMConstInt(ctx->ac.i32, 0x1f, 0), "");
LLVMValueRef prims_per_instance =
LLVMBuildLShr(builder, num_prims_udiv_terms, LLVMConstInt(ctx->ac.i32, 5, 0), "");
/* Divide the total prim_id by the number of prims per instance. */
instance_id =
ac_build_fast_udiv_u31_d_not_one(&ctx->ac, prim_id, num_prims_udiv_multiplier, post_shift);
/* Compute the remainder. */
prim_id = LLVMBuildSub(builder, prim_id,
LLVMBuildMul(builder, instance_id, prims_per_instance, ""), "");
}
/* Generate indices (like a non-indexed draw call). */
LLVMValueRef index[4] = {NULL, NULL, NULL, LLVMGetUndef(ctx->ac.i32)};
unsigned vertices_per_prim = 3;
switch (key->opt.cs_prim_type) {
case PIPE_PRIM_TRIANGLES:
for (unsigned i = 0; i < 3; i++) {
index[i] = ac_build_imad(&ctx->ac, prim_id, LLVMConstInt(ctx->ac.i32, 3, 0),
LLVMConstInt(ctx->ac.i32, i, 0));
}
break;
case PIPE_PRIM_TRIANGLE_STRIP:
for (unsigned i = 0; i < 3; i++) {
index[i] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->ac.i32, i, 0), "");
}
break;
case PIPE_PRIM_TRIANGLE_FAN:
/* Vertex 1 is first and vertex 2 is last. This will go to the hw clipper
* and rasterizer as a normal triangle, so we need to put the provoking
* vertex into the correct index variable and preserve orientation at the same time.
* gl_VertexID is preserved, because it's equal to the index.
*/
if (key->opt.cs_provoking_vertex_first) {
index[0] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->ac.i32, 1, 0), "");
index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->ac.i32, 2, 0), "");
index[2] = ctx->ac.i32_0;
} else {
index[0] = ctx->ac.i32_0;
index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->ac.i32, 1, 0), "");
index[2] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->ac.i32, 2, 0), "");
}
break;
default:
unreachable("unexpected primitive type");
}
/* Fetch indices. */
if (key->opt.cs_indexed) {
for (unsigned i = 0; i < 3; i++) {
index[i] = ac_build_buffer_load_format(&ctx->ac, input_indexbuf, index[i], ctx->ac.i32_0,
1, 0, true, false);
index[i] = ac_to_integer(&ctx->ac, index[i]);
}
}
LLVMValueRef ordered_wave_id = NULL;
/* Extract the ordered wave ID. */
if (VERTEX_COUNTER_GDS_MODE == 2) {
ordered_wave_id = ac_get_arg(&ctx->ac, param_ordered_wave_id);
ordered_wave_id =
LLVMBuildLShr(builder, ordered_wave_id, LLVMConstInt(ctx->ac.i32, 6, 0), "");
ordered_wave_id =
LLVMBuildAnd(builder, ordered_wave_id, LLVMConstInt(ctx->ac.i32, 0xfff, 0), "");
}
LLVMValueRef thread_id = LLVMBuildAnd(builder, ac_get_arg(&ctx->ac, param_local_id),
LLVMConstInt(ctx->ac.i32, 63, 0), "");
/* Every other triangle in a strip has a reversed vertex order, so we
* need to swap vertices of odd primitives to get the correct primitive
* orientation when converting triangle strips to triangles. Primitive
* restart complicates it, because a strip can start anywhere.
*/
LLVMValueRef prim_restart_accepted = ctx->ac.i1true;
LLVMValueRef vertex_counter = ac_get_arg(&ctx->ac, param_vertex_counter);
if (key->opt.cs_prim_type == PIPE_PRIM_TRIANGLE_STRIP) {
/* Without primitive restart, odd primitives have reversed orientation.
* Only primitive restart can flip it with respect to the first vertex
* of the draw call.
*/
LLVMValueRef first_is_odd = ctx->ac.i1false;
/* Handle primitive restart. */
if (key->opt.cs_primitive_restart) {
/* Get the GDS primitive restart continue flag and clear
* the flag in vertex_counter. This flag is used when the draw
* call was split and we need to load the primitive orientation
* flag from GDS for the first wave too.
*/
LLVMValueRef gds_prim_restart_continue =
LLVMBuildLShr(builder, vertex_counter, LLVMConstInt(ctx->ac.i32, 31, 0), "");
gds_prim_restart_continue =
LLVMBuildTrunc(builder, gds_prim_restart_continue, ctx->ac.i1, "");
vertex_counter =
LLVMBuildAnd(builder, vertex_counter, LLVMConstInt(ctx->ac.i32, 0x7fffffff, 0), "");
LLVMValueRef index0_is_reset;
for (unsigned i = 0; i < 3; i++) {
LLVMValueRef not_reset = LLVMBuildICmp(builder, LLVMIntNE, index[i],
ac_get_arg(&ctx->ac, param_restart_index), "");
if (i == 0)
index0_is_reset = LLVMBuildNot(builder, not_reset, "");
prim_restart_accepted = LLVMBuildAnd(builder, prim_restart_accepted, not_reset, "");
}
/* If the previous waves flip the primitive orientation
* of the current triangle strip, it will be stored in GDS.
*
* Sometimes the correct orientation is not needed, in which case
* we don't need to execute this.
*/
if (key->opt.cs_need_correct_orientation && VERTEX_COUNTER_GDS_MODE == 2) {
/* If there are reset indices in this wave, get the thread index
* where the most recent strip starts relative to each thread.
*/
LLVMValueRef preceding_threads_mask =
LLVMBuildSub(builder,
LLVMBuildShl(builder, ctx->ac.i64_1,
LLVMBuildZExt(builder, thread_id, ctx->ac.i64, ""), ""),
ctx->ac.i64_1, "");
LLVMValueRef reset_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, index0_is_reset);
LLVMValueRef preceding_reset_threadmask =
LLVMBuildAnd(builder, reset_threadmask, preceding_threads_mask, "");
LLVMValueRef strip_start = ac_build_umsb(&ctx->ac, preceding_reset_threadmask, NULL);
strip_start = LLVMBuildAdd(builder, strip_start, ctx->ac.i32_1, "");
/* This flips the orientatino based on reset indices within this wave only. */
first_is_odd = LLVMBuildTrunc(builder, strip_start, ctx->ac.i1, "");
LLVMValueRef last_strip_start, prev_wave_state, ret, tmp;
LLVMValueRef is_first_wave, current_wave_resets_index;
/* Get the thread index where the last strip starts in this wave.
*
* If the last strip doesn't start in this wave, the thread index
* will be 0.
*
* If the last strip starts in the next wave, the thread index will
* be 64.
*/
last_strip_start = ac_build_umsb(&ctx->ac, reset_threadmask, NULL);
last_strip_start = LLVMBuildAdd(builder, last_strip_start, ctx->ac.i32_1, "");
struct si_thread0_section section;
si_enter_thread0_section(ctx, &section, thread_id);
/* This must be done in the thread 0 section, because
* we expect PrimID to be 0 for the whole first wave
* in this expression.
*
* NOTE: This will need to be different if we wanna support
* instancing with primitive restart.
*/
is_first_wave = LLVMBuildICmp(builder, LLVMIntEQ, prim_id, ctx->ac.i32_0, "");
is_first_wave = LLVMBuildAnd(builder, is_first_wave,
LLVMBuildNot(builder, gds_prim_restart_continue, ""), "");
current_wave_resets_index =
LLVMBuildICmp(builder, LLVMIntNE, last_strip_start, ctx->ac.i32_0, "");
ret = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "prev_state");
/* Save the last strip start primitive index in GDS and read
* the value that previous waves stored.
*
* if (is_first_wave || current_wave_resets_strip)
* // Read the value that previous waves stored and store a new one.
* first_is_odd = ds.ordered.swap(last_strip_start);
* else
* // Just read the value that previous waves stored.
* first_is_odd = ds.ordered.add(0);
*/
ac_build_ifcc(
&ctx->ac, LLVMBuildOr(builder, is_first_wave, current_wave_resets_index, ""), 12602);
{
/* The GDS address is always 0 with ordered append. */
tmp = si_build_ds_ordered_op(ctx, "swap", ordered_wave_id, last_strip_start, 1, true,
false);
LLVMBuildStore(builder, tmp, ret);
}
ac_build_else(&ctx->ac, 12603);
{
/* Just read the value from GDS. */
tmp = si_build_ds_ordered_op(ctx, "add", ordered_wave_id, ctx->ac.i32_0, 1, true,
false);
LLVMBuildStore(builder, tmp, ret);
}
ac_build_endif(&ctx->ac, 12602);
prev_wave_state = LLVMBuildLoad(builder, ret, "");
/* Ignore the return value if this is the first wave. */
prev_wave_state =
LLVMBuildSelect(builder, is_first_wave, ctx->ac.i32_0, prev_wave_state, "");
si_exit_thread0_section(&section, &prev_wave_state);
prev_wave_state = LLVMBuildTrunc(builder, prev_wave_state, ctx->ac.i1, "");
/* If the strip start appears to be on thread 0 for the current primitive
* (meaning the reset index is not present in this wave and might have
* appeared in previous waves), use the value from GDS to determine
* primitive orientation.
*
* If the strip start is in this wave for the current primitive, use
* the value from the current wave to determine primitive orientation.
*/
LLVMValueRef strip_start_is0 =
LLVMBuildICmp(builder, LLVMIntEQ, strip_start, ctx->ac.i32_0, "");
first_is_odd =
LLVMBuildSelect(builder, strip_start_is0, prev_wave_state, first_is_odd, "");
}
}
/* prim_is_odd = (first_is_odd + current_is_odd) % 2. */
LLVMValueRef prim_is_odd = LLVMBuildXor(
builder, first_is_odd, LLVMBuildTrunc(builder, thread_id, ctx->ac.i1, ""), "");
/* Convert triangle strip indices to triangle indices. */
ac_build_triangle_strip_indices_to_triangle(
&ctx->ac, prim_is_odd, LLVMConstInt(ctx->ac.i1, key->opt.cs_provoking_vertex_first, 0),
index);
}
/* Execute the vertex shader for each vertex to get vertex positions. */
LLVMValueRef pos[3][4];
for (unsigned i = 0; i < vertices_per_prim; i++) {
vs_params[param_vertex_id] = index[i];
vs_params[param_instance_id] = instance_id;
LLVMValueRef ret = ac_build_call(&ctx->ac, vs, vs_params, num_vs_params);
for (unsigned chan = 0; chan < 4; chan++)
pos[i][chan] = LLVMBuildExtractValue(builder, ret, chan, "");
}
/* Divide XYZ by W. */
for (unsigned i = 0; i < vertices_per_prim; i++) {
for (unsigned chan = 0; chan < 3; chan++)
pos[i][chan] = ac_build_fdiv(&ctx->ac, pos[i][chan], pos[i][3]);
}
/* Load the viewport state. */
LLVMValueRef vp = ac_build_load_invariant(&ctx->ac, index_buffers_and_constants,
LLVMConstInt(ctx->ac.i32, 2, 0));
vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
LLVMValueRef vp_scale[2], vp_translate[2];
vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
/* Do culling. */
struct ac_cull_options options = {};
options.cull_front = key->opt.cs_cull_front;
options.cull_back = key->opt.cs_cull_back;
options.cull_view_xy = true;
options.cull_view_near_z = CULL_Z && key->opt.cs_cull_z;
options.cull_view_far_z = CULL_Z && key->opt.cs_cull_z;
options.cull_small_prims = true;
options.cull_zero_area = true;
options.cull_w = true;
options.use_halfz_clip_space = key->opt.cs_halfz_clip_space;
LLVMValueRef accepted =
ac_cull_triangle(&ctx->ac, pos, prim_restart_accepted, vp_scale, vp_translate,
ac_get_arg(&ctx->ac, param_smallprim_precision), &options);
ac_build_optimization_barrier(&ctx->ac, &accepted);
LLVMValueRef accepted_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, accepted);
/* Count the number of active threads by doing bitcount(accepted). */
LLVMValueRef num_prims_accepted = ac_build_intrinsic(
&ctx->ac, "llvm.ctpop.i64", ctx->ac.i64, &accepted_threadmask, 1, AC_FUNC_ATTR_READNONE);
num_prims_accepted = LLVMBuildTrunc(builder, num_prims_accepted, ctx->ac.i32, "");
LLVMValueRef start;
/* Execute atomic_add on the vertex count. */
struct si_thread0_section section;
si_enter_thread0_section(ctx, &section, thread_id);
{
if (VERTEX_COUNTER_GDS_MODE == 0) {
LLVMValueRef num_indices = LLVMBuildMul(
builder, num_prims_accepted, LLVMConstInt(ctx->ac.i32, vertices_per_prim, 0), "");
vertex_counter = si_expand_32bit_pointer(ctx, vertex_counter);
start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd, vertex_counter, num_indices,
LLVMAtomicOrderingMonotonic, false);
} else if (VERTEX_COUNTER_GDS_MODE == 1) {
LLVMValueRef num_indices = LLVMBuildMul(
builder, num_prims_accepted, LLVMConstInt(ctx->ac.i32, vertices_per_prim, 0), "");
vertex_counter = LLVMBuildIntToPtr(builder, vertex_counter,
LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS), "");
start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd, vertex_counter, num_indices,
LLVMAtomicOrderingMonotonic, false);
} else if (VERTEX_COUNTER_GDS_MODE == 2) {
LLVMValueRef tmp_store = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
/* If the draw call was split into multiple subdraws, each using
* a separate draw packet, we need to start counting from 0 for
* the first compute wave of the subdraw.
*
* vertex_counter contains the primitive ID of the first thread
* in the first wave.
*
* This is only correct with VERTEX_COUNTER_GDS_MODE == 2:
*/
LLVMValueRef is_first_wave =
LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id, vertex_counter, "");
/* Store the primitive count for ordered append, not vertex count.
* The idea is to avoid GDS initialization via CP DMA. The shader
* effectively stores the first count using "swap".
*
* if (first_wave) {
* ds.ordered.swap(num_prims_accepted); // store the first primitive count
* previous = 0;
* } else {
* previous = ds.ordered.add(num_prims_accepted) // add the primitive count
* }
*/
ac_build_ifcc(&ctx->ac, is_first_wave, 12604);
{
/* The GDS address is always 0 with ordered append. */
si_build_ds_ordered_op(ctx, "swap", ordered_wave_id, num_prims_accepted, 0, true, true);
LLVMBuildStore(builder, ctx->ac.i32_0, tmp_store);
}
ac_build_else(&ctx->ac, 12605);
{
LLVMBuildStore(builder,
si_build_ds_ordered_op(ctx, "add", ordered_wave_id, num_prims_accepted,
0, true, true),
tmp_store);
}
ac_build_endif(&ctx->ac, 12604);
start = LLVMBuildLoad(builder, tmp_store, "");
}
}
si_exit_thread0_section(&section, &start);
/* Write the final vertex count to memory. An EOS/EOP event could do this,
* but those events are super slow and should be avoided if performance
* is a concern. Thanks to GDS ordered append, we can emulate a CS_DONE
* event like this.
*/
if (VERTEX_COUNTER_GDS_MODE == 2) {
ac_build_ifcc(&ctx->ac,
LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
ac_get_arg(&ctx->ac, param_last_wave_prim_id), ""),
12606);
LLVMValueRef count = LLVMBuildAdd(builder, start, num_prims_accepted, "");
count = LLVMBuildMul(builder, count, LLVMConstInt(ctx->ac.i32, vertices_per_prim, 0), "");
/* GFX8 needs to disable caching, so that the CP can see the stored value.
* MTYPE=3 bypasses TC L2.
*/
if (ctx->screen->info.chip_class <= GFX8) {
LLVMValueRef desc[] = {
ac_get_arg(&ctx->ac, param_vertex_count_addr),
LLVMConstInt(ctx->ac.i32, S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0),
LLVMConstInt(ctx->ac.i32, 4, 0),
LLVMConstInt(
ctx->ac.i32,
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_MTYPE(3 /* uncached */),
0),
};
LLVMValueRef rsrc = ac_build_gather_values(&ctx->ac, desc, 4);
ac_build_buffer_store_dword(&ctx->ac, rsrc, count, 1, ctx->ac.i32_0, ctx->ac.i32_0, 0,
ac_glc | ac_slc);
} else {
LLVMBuildStore(
builder, count,
si_expand_32bit_pointer(ctx, ac_get_arg(&ctx->ac, param_vertex_count_addr)));
}
ac_build_endif(&ctx->ac, 12606);
} else {
/* For unordered modes that increment a vertex count instead of
* primitive count, convert it into the primitive index.
*/
start = LLVMBuildUDiv(builder, start, LLVMConstInt(ctx->ac.i32, vertices_per_prim, 0), "");
}
/* Now we need to store the indices of accepted primitives into
* the output index buffer.
*/
ac_build_ifcc(&ctx->ac, accepted, 16607);
{
/* Get the number of bits set before the index of this thread. */
LLVMValueRef prim_index = ac_build_mbcnt(&ctx->ac, accepted_threadmask);
/* We have lowered instancing. Pack the instance ID into vertex ID. */
if (key->opt.cs_instancing) {
instance_id = LLVMBuildShl(builder, instance_id, LLVMConstInt(ctx->ac.i32, 16, 0), "");
for (unsigned i = 0; i < vertices_per_prim; i++)
index[i] = LLVMBuildOr(builder, index[i], instance_id, "");
}
if (VERTEX_COUNTER_GDS_MODE == 2) {
/* vertex_counter contains the first primitive ID
* for this dispatch. If the draw call was split into
* multiple subdraws, the first primitive ID is > 0
* for subsequent subdraws. Each subdraw uses a different
* portion of the output index buffer. Offset the store
* vindex by the first primitive ID to get the correct
* store address for the subdraw.
*/
start = LLVMBuildAdd(builder, start, vertex_counter, "");
}
/* Write indices for accepted primitives. */
LLVMValueRef vindex = LLVMBuildAdd(builder, start, prim_index, "");
LLVMValueRef vdata = ac_build_gather_values(&ctx->ac, index, 3);
if (!ac_has_vec3_support(ctx->ac.chip_class, true))
vdata = ac_build_expand_to_vec4(&ctx->ac, vdata, 3);
ac_build_buffer_store_format(&ctx->ac, output_indexbuf, vdata, vindex, ctx->ac.i32_0,
ac_glc | (INDEX_STORES_USE_SLC ? ac_slc : 0));
}
ac_build_endif(&ctx->ac, 16607);
LLVMBuildRetVoid(builder);
}
/* Return false if the shader isn't ready. */
static bool si_shader_select_prim_discard_cs(struct si_context *sctx,
const struct pipe_draw_info *info,
bool primitive_restart)
{
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
struct si_shader_key key;
/* Primitive restart needs ordered counters. */
assert(!primitive_restart || VERTEX_COUNTER_GDS_MODE == 2);
assert(!primitive_restart || info->instance_count == 1);
memset(&key, 0, sizeof(key));
si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, &key, &key.part.vs.prolog);
assert(!key.part.vs.prolog.instance_divisor_is_fetched);
key.part.vs.prolog.unpack_instance_id_from_vertex_id = 0;
key.opt.vs_as_prim_discard_cs = 1;
key.opt.cs_prim_type = info->mode;
key.opt.cs_indexed = info->index_size != 0;
key.opt.cs_instancing = info->instance_count > 1;
key.opt.cs_primitive_restart = primitive_restart;
key.opt.cs_provoking_vertex_first = rs->provoking_vertex_first;
/* Primitive restart with triangle strips needs to preserve primitive
* orientation for cases where front and back primitive orientation matters.
*/
if (primitive_restart) {
struct si_shader_selector *ps = sctx->ps_shader.cso;
key.opt.cs_need_correct_orientation = rs->cull_front != rs->cull_back ||
ps->info.uses_frontface ||
(rs->two_side && ps->info.colors_read);
}
if (rs->rasterizer_discard) {
/* Just for performance testing and analysis of trivial bottlenecks.
* This should result in a very short compute shader. */
key.opt.cs_cull_front = 1;
key.opt.cs_cull_back = 1;
} else {
key.opt.cs_cull_front = sctx->viewports.y_inverted ? rs->cull_back : rs->cull_front;
key.opt.cs_cull_back = sctx->viewports.y_inverted ? rs->cull_front : rs->cull_back;
}
if (!rs->depth_clamp_any && CULL_Z) {
key.opt.cs_cull_z = 1;
key.opt.cs_halfz_clip_space = rs->clip_halfz;
}
sctx->cs_prim_discard_state.cso = sctx->vs_shader.cso;
sctx->cs_prim_discard_state.current = NULL;
if (!sctx->compiler.passes)
si_init_compiler(sctx->screen, &sctx->compiler);
struct si_compiler_ctx_state compiler_state;
compiler_state.compiler = &sctx->compiler;
compiler_state.debug = sctx->debug;
compiler_state.is_debug_context = sctx->is_debug;
return si_shader_select_with_key(sctx->screen, &sctx->cs_prim_discard_state, &compiler_state,
&key, -1, true) == 0 &&
/* Disallow compute shaders using the scratch buffer. */
sctx->cs_prim_discard_state.current->config.scratch_bytes_per_wave == 0;
}
static bool si_initialize_prim_discard_cmdbuf(struct si_context *sctx)
{
if (sctx->index_ring)
return true;
if (!sctx->prim_discard_compute_cs) {
struct radeon_winsys *ws = sctx->ws;
unsigned gds_size =
VERTEX_COUNTER_GDS_MODE == 1 ? GDS_SIZE_UNORDERED : VERTEX_COUNTER_GDS_MODE == 2 ? 8 : 0;
unsigned num_oa_counters = VERTEX_COUNTER_GDS_MODE == 2 ? 2 : 0;
if (gds_size) {
sctx->gds = ws->buffer_create(ws, gds_size, 4, RADEON_DOMAIN_GDS,
RADEON_FLAG_DRIVER_INTERNAL);
if (!sctx->gds)
return false;
ws->cs_add_buffer(sctx->gfx_cs, sctx->gds, RADEON_USAGE_READWRITE, 0, 0);
}
if (num_oa_counters) {
assert(gds_size);
sctx->gds_oa = ws->buffer_create(ws, num_oa_counters, 1, RADEON_DOMAIN_OA,
RADEON_FLAG_DRIVER_INTERNAL);
if (!sctx->gds_oa)
return false;
ws->cs_add_buffer(sctx->gfx_cs, sctx->gds_oa, RADEON_USAGE_READWRITE, 0, 0);
}
sctx->prim_discard_compute_cs =
ws->cs_add_parallel_compute_ib(sctx->gfx_cs, num_oa_counters > 0);
if (!sctx->prim_discard_compute_cs)
return false;
}
if (!sctx->index_ring) {
sctx->index_ring = si_aligned_buffer_create(
sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
PIPE_USAGE_DEFAULT,
sctx->index_ring_size_per_ib * 2, sctx->screen->info.pte_fragment_size);
if (!sctx->index_ring)
return false;
}
return true;
}
static bool si_check_ring_space(struct si_context *sctx, unsigned out_indexbuf_size)
{
return sctx->index_ring_offset +
align(out_indexbuf_size, sctx->screen->info.tcc_cache_line_size) <=
sctx->index_ring_size_per_ib;
}
enum si_prim_discard_outcome
si_prepare_prim_discard_or_split_draw(struct si_context *sctx, const struct pipe_draw_info *info,
const struct pipe_draw_start_count *draws,
unsigned num_draws, bool primitive_restart)
{
/* If the compute shader compilation isn't finished, this returns false. */
if (!si_shader_select_prim_discard_cs(sctx, info, primitive_restart))
return SI_PRIM_DISCARD_DISABLED;
if (!si_initialize_prim_discard_cmdbuf(sctx))
return SI_PRIM_DISCARD_DISABLED;
struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
unsigned prim = info->mode;
unsigned count = draws[0].count;
unsigned instance_count = info->instance_count;
unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(prim, count);
unsigned num_prims = num_prims_per_instance * instance_count;
unsigned out_indexbuf_size = num_prims * 12;
bool ring_full = !si_check_ring_space(sctx, out_indexbuf_size);
const unsigned split_prims_draw_level = SPLIT_PRIMS_DRAW_LEVEL;
/* Split draws at the draw call level if the ring is full. This makes
* better use of the ring space.
*/
if (ring_full && num_prims > split_prims_draw_level &&
instance_count == 1 && /* TODO: support splitting instanced draws */
(1 << prim) & ((1 << PIPE_PRIM_TRIANGLES) | (1 << PIPE_PRIM_TRIANGLE_STRIP))) {
/* Split draws. */
struct pipe_draw_info split_draw = *info;
struct pipe_draw_start_count split_draw_range = draws[0];
split_draw.primitive_restart = primitive_restart;
unsigned base_start = split_draw_range.start;
if (prim == PIPE_PRIM_TRIANGLES) {
unsigned vert_count_per_subdraw = split_prims_draw_level * 3;
assert(vert_count_per_subdraw < count);
for (unsigned start = 0; start < count; start += vert_count_per_subdraw) {
split_draw_range.start = base_start + start;
split_draw_range.count = MIN2(count - start, vert_count_per_subdraw);
sctx->b.multi_draw(&sctx->b, &split_draw, &split_draw_range, 1);
}
} else if (prim == PIPE_PRIM_TRIANGLE_STRIP) {
/* No primitive pair can be split, because strips reverse orientation
* for odd primitives. */
STATIC_ASSERT(split_prims_draw_level % 2 == 0);
unsigned vert_count_per_subdraw = split_prims_draw_level;
for (unsigned start = 0; start < count - 2; start += vert_count_per_subdraw) {
split_draw_range.start = base_start + start;
split_draw_range.count = MIN2(count - start, vert_count_per_subdraw + 2);
sctx->b.multi_draw(&sctx->b, &split_draw, &split_draw_range, 1);
if (start == 0 && primitive_restart &&
sctx->cs_prim_discard_state.current->key.opt.cs_need_correct_orientation)
sctx->preserve_prim_restart_gds_at_flush = true;
}
sctx->preserve_prim_restart_gds_at_flush = false;
} else {
assert(0);
}
return SI_PRIM_DISCARD_DRAW_SPLIT;
}
/* Just quit if the draw call doesn't fit into the ring and can't be split. */
if (out_indexbuf_size > sctx->index_ring_size_per_ib) {
if (SI_PRIM_DISCARD_DEBUG)
puts("PD failed: draw call too big, can't be split");
return SI_PRIM_DISCARD_DISABLED;
}
unsigned num_subdraws = DIV_ROUND_UP(num_prims, SPLIT_PRIMS_PACKET_LEVEL);
unsigned need_compute_dw = 11 /* shader */ + 34 /* first draw */ +
24 * (num_subdraws - 1) + /* subdraws */
30; /* leave some space at the end */
unsigned need_gfx_dw = si_get_minimum_num_gfx_cs_dwords(sctx, 0);
if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION)
need_gfx_dw += 9; /* NOP(2) + WAIT_REG_MEM(7), then chain */
else
need_gfx_dw += num_subdraws * 8; /* use REWIND(2) + DRAW(6) */
if (ring_full ||
(VERTEX_COUNTER_GDS_MODE == 1 && sctx->compute_gds_offset + 8 > GDS_SIZE_UNORDERED) ||
!sctx->ws->cs_check_space(gfx_cs, need_gfx_dw, false)) {
/* If the current IB is empty but the size is too small, add a NOP
* packet to force a flush and get a bigger IB.
*/
if (!radeon_emitted(gfx_cs, sctx->initial_gfx_cs_size) &&
gfx_cs->current.cdw + need_gfx_dw > gfx_cs->current.max_dw) {
radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
radeon_emit(gfx_cs, 0);
}
si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
}
/* The compute IB is always chained, but we need to call cs_check_space to add more space. */
struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
ASSERTED bool compute_has_space = sctx->ws->cs_check_space(cs, need_compute_dw, false);
assert(compute_has_space);
assert(si_check_ring_space(sctx, out_indexbuf_size));
return SI_PRIM_DISCARD_ENABLED;
}
void si_compute_signal_gfx(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
unsigned writeback_L2_flags = 0;
/* The writeback L2 flags vary with each chip generation. */
/* CI needs to flush vertex indices to memory. */
if (sctx->chip_class <= GFX7)
writeback_L2_flags = EVENT_TC_WB_ACTION_ENA;
else if (sctx->chip_class == GFX8 && VERTEX_COUNTER_GDS_MODE == 0)
writeback_L2_flags = EVENT_TC_WB_ACTION_ENA | EVENT_TC_NC_ACTION_ENA;
if (!sctx->compute_num_prims_in_batch)
return;
assert(sctx->compute_rewind_va);
/* After the queued dispatches are done and vertex counts are written to
* the gfx IB, signal the gfx IB to continue. CP doesn't wait for
* the dispatches to finish, it only adds the CS_DONE event into the event
* queue.
*/
si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, writeback_L2_flags,
sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
writeback_L2_flags ? EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM : EOP_INT_SEL_NONE,
EOP_DATA_SEL_VALUE_32BIT, NULL,
sctx->compute_rewind_va | ((uint64_t)sctx->screen->info.address32_hi << 32),
REWIND_SIGNAL_BIT, /* signaling value for the REWIND packet */
SI_NOT_QUERY);
sctx->compute_rewind_va = 0;
sctx->compute_num_prims_in_batch = 0;
}
/* Dispatch a primitive discard compute shader. */
void si_dispatch_prim_discard_cs_and_draw(struct si_context *sctx,
const struct pipe_draw_info *info,
unsigned count, unsigned index_size,
unsigned base_vertex, uint64_t input_indexbuf_va,
unsigned input_indexbuf_num_elements)
{
struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(info->mode, count);
if (!num_prims_per_instance)
return;
unsigned num_prims = num_prims_per_instance * info->instance_count;
unsigned vertices_per_prim, output_indexbuf_format, gfx10_output_indexbuf_format;
switch (info->mode) {
case PIPE_PRIM_TRIANGLES:
case PIPE_PRIM_TRIANGLE_STRIP:
case PIPE_PRIM_TRIANGLE_FAN:
vertices_per_prim = 3;
output_indexbuf_format = V_008F0C_BUF_DATA_FORMAT_32_32_32;
gfx10_output_indexbuf_format = V_008F0C_IMG_FORMAT_32_32_32_UINT;
break;
default:
unreachable("unsupported primitive type");
return;
}
unsigned out_indexbuf_offset;
uint64_t output_indexbuf_size = num_prims * vertices_per_prim * 4;
bool first_dispatch = !sctx->prim_discard_compute_ib_initialized;
/* Initialize the compute IB if it's empty. */
if (!sctx->prim_discard_compute_ib_initialized) {
/* 1) State initialization. */
sctx->compute_gds_offset = 0;
sctx->compute_ib_last_shader = NULL;
if (sctx->last_ib_barrier_fence) {
assert(!sctx->last_ib_barrier_buf);
sctx->ws->cs_add_fence_dependency(gfx_cs, sctx->last_ib_barrier_fence,
RADEON_DEPENDENCY_PARALLEL_COMPUTE_ONLY);
}
/* 2) IB initialization. */
/* This needs to be done at the beginning of IBs due to possible
* TTM buffer moves in the kernel.
*/
if (sctx->chip_class >= GFX10) {
radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
radeon_emit(cs, 0); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
radeon_emit(cs, /* GCR_CNTL */
S_586_GLI_INV(V_586_GLI_ALL) | S_586_GLK_INV(1) | S_586_GLV_INV(1) |
S_586_GL1_INV(1) | S_586_GL2_INV(1) | S_586_GL2_WB(1) | S_586_GLM_INV(1) |
S_586_GLM_WB(1) | S_586_SEQ(V_586_SEQ_FORWARD));
} else {
si_emit_surface_sync(sctx, cs,
S_0085F0_TC_ACTION_ENA(1) | S_0085F0_TCL1_ACTION_ENA(1) |
S_0301F0_TC_WB_ACTION_ENA(sctx->chip_class >= GFX8) |
S_0085F0_SH_ICACHE_ACTION_ENA(1) |
S_0085F0_SH_KCACHE_ACTION_ENA(1));
}
/* Restore the GDS prim restart counter if needed. */
if (sctx->preserve_prim_restart_gds_at_flush) {
si_cp_copy_data(sctx, cs, COPY_DATA_GDS, NULL, 4, COPY_DATA_SRC_MEM,
sctx->wait_mem_scratch, 4);
}
si_emit_initial_compute_regs(sctx, cs);
radeon_set_sh_reg(
cs, R_00B860_COMPUTE_TMPRING_SIZE,
S_00B860_WAVES(sctx->scratch_waves) | S_00B860_WAVESIZE(0)); /* no scratch */
/* Only 1D grids are launched. */
radeon_set_sh_reg_seq(cs, R_00B820_COMPUTE_NUM_THREAD_Y, 2);
radeon_emit(cs, S_00B820_NUM_THREAD_FULL(1) | S_00B820_NUM_THREAD_PARTIAL(1));
radeon_emit(cs, S_00B824_NUM_THREAD_FULL(1) | S_00B824_NUM_THREAD_PARTIAL(1));
radeon_set_sh_reg_seq(cs, R_00B814_COMPUTE_START_Y, 2);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
/* Disable ordered alloc for OA resources. */
for (unsigned i = 0; i < 2; i++) {
radeon_set_uconfig_reg_seq(cs, R_031074_GDS_OA_CNTL, 3);
radeon_emit(cs, S_031074_INDEX(i));
radeon_emit(cs, 0);
radeon_emit(cs, S_03107C_ENABLE(0));
}
if (sctx->last_ib_barrier_buf) {
assert(!sctx->last_ib_barrier_fence);
radeon_add_to_buffer_list(sctx, gfx_cs, sctx->last_ib_barrier_buf, RADEON_USAGE_READ,
RADEON_PRIO_FENCE);
si_cp_wait_mem(sctx, cs,
sctx->last_ib_barrier_buf->gpu_address + sctx->last_ib_barrier_buf_offset,
1, 1, WAIT_REG_MEM_EQUAL);
}
sctx->prim_discard_compute_ib_initialized = true;
}
/* Allocate the output index buffer. */
output_indexbuf_size = align(output_indexbuf_size, sctx->screen->info.tcc_cache_line_size);
assert(sctx->index_ring_offset + output_indexbuf_size <= sctx->index_ring_size_per_ib);
out_indexbuf_offset = sctx->index_ring_base + sctx->index_ring_offset;
sctx->index_ring_offset += output_indexbuf_size;
radeon_add_to_buffer_list(sctx, gfx_cs, sctx->index_ring, RADEON_USAGE_READWRITE,
RADEON_PRIO_SHADER_RW_BUFFER);
uint64_t out_indexbuf_va = sctx->index_ring->gpu_address + out_indexbuf_offset;
/* Prepare index buffer descriptors. */
struct si_resource *indexbuf_desc = NULL;
unsigned indexbuf_desc_offset;
unsigned desc_size = 12 * 4;
uint32_t *desc;
u_upload_alloc(sctx->b.const_uploader, 0, desc_size, si_optimal_tcc_alignment(sctx, desc_size),
&indexbuf_desc_offset, (struct pipe_resource **)&indexbuf_desc, (void **)&desc);
radeon_add_to_buffer_list(sctx, gfx_cs, indexbuf_desc, RADEON_USAGE_READ,
RADEON_PRIO_DESCRIPTORS);
/* Input index buffer. */
desc[0] = input_indexbuf_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(input_indexbuf_va >> 32) | S_008F04_STRIDE(index_size);
desc[2] = input_indexbuf_num_elements * (sctx->chip_class == GFX8 ? index_size : 1);
if (sctx->chip_class >= GFX10) {
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_FORMAT(index_size == 1 ? V_008F0C_IMG_FORMAT_8_UINT
: index_size == 2 ? V_008F0C_IMG_FORMAT_16_UINT
: V_008F0C_IMG_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_STRUCTURED_WITH_OFFSET) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] =
S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
S_008F0C_DATA_FORMAT(index_size == 1 ? V_008F0C_BUF_DATA_FORMAT_8
: index_size == 2 ? V_008F0C_BUF_DATA_FORMAT_16
: V_008F0C_BUF_DATA_FORMAT_32);
}
/* Output index buffer. */
desc[4] = out_indexbuf_va;
desc[5] =
S_008F04_BASE_ADDRESS_HI(out_indexbuf_va >> 32) | S_008F04_STRIDE(vertices_per_prim * 4);
desc[6] = num_prims * (sctx->chip_class == GFX8 ? vertices_per_prim * 4 : 1);
if (sctx->chip_class >= GFX10) {
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_0) |
S_008F0C_FORMAT(gfx10_output_indexbuf_format) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_STRUCTURED_WITH_OFFSET) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_0) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
S_008F0C_DATA_FORMAT(output_indexbuf_format);
}
/* Viewport state. */
struct si_small_prim_cull_info cull_info;
si_get_small_prim_cull_info(sctx, &cull_info);
desc[8] = fui(cull_info.scale[0]);
desc[9] = fui(cull_info.scale[1]);
desc[10] = fui(cull_info.translate[0]);
desc[11] = fui(cull_info.translate[1]);
/* Better subpixel precision increases the efficiency of small
* primitive culling. */
unsigned num_samples = sctx->framebuffer.nr_samples;
unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode;
float small_prim_cull_precision;
if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
small_prim_cull_precision = num_samples / 4096.0;
else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
small_prim_cull_precision = num_samples / 1024.0;
else
small_prim_cull_precision = num_samples / 256.0;
/* Set user data SGPRs. */
/* This can't be greater than 14 if we want the fastest launch rate. */
unsigned user_sgprs = 13;
uint64_t index_buffers_va = indexbuf_desc->gpu_address + indexbuf_desc_offset;
unsigned vs_const_desc = si_const_and_shader_buffer_descriptors_idx(PIPE_SHADER_VERTEX);
unsigned vs_sampler_desc = si_sampler_and_image_descriptors_idx(PIPE_SHADER_VERTEX);
uint64_t vs_const_desc_va = sctx->descriptors[vs_const_desc].gpu_address;
uint64_t vs_sampler_desc_va = sctx->descriptors[vs_sampler_desc].gpu_address;
uint64_t vb_desc_va = sctx->vb_descriptors_buffer
? sctx->vb_descriptors_buffer->gpu_address + sctx->vb_descriptors_offset
: 0;
unsigned gds_offset, gds_size;
struct si_fast_udiv_info32 num_prims_udiv = {};
if (info->instance_count > 1)
num_prims_udiv = si_compute_fast_udiv_info32(num_prims_per_instance, 31);
/* Limitations on how these two are packed in the user SGPR. */
assert(num_prims_udiv.post_shift < 32);
assert(num_prims_per_instance < 1 << 27);
si_resource_reference(&indexbuf_desc, NULL);
bool primitive_restart = sctx->cs_prim_discard_state.current->key.opt.cs_primitive_restart;
if (VERTEX_COUNTER_GDS_MODE == 1) {
gds_offset = sctx->compute_gds_offset;
gds_size = primitive_restart ? 8 : 4;
sctx->compute_gds_offset += gds_size;
/* Reset the counters in GDS for the first dispatch using WRITE_DATA.
* The remainder of the GDS will be cleared after the dispatch packet
* in parallel with compute shaders.
*/
if (first_dispatch) {
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + gds_size / 4, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_GDS) | S_370_WR_CONFIRM(1));
radeon_emit(cs, gds_offset);
radeon_emit(cs, 0);
radeon_emit(cs, 0); /* value to write */
if (gds_size == 8)
radeon_emit(cs, 0);
}
}
/* Set shader registers. */
struct si_shader *shader = sctx->cs_prim_discard_state.current;
if (shader != sctx->compute_ib_last_shader) {
radeon_add_to_buffer_list(sctx, gfx_cs, shader->bo, RADEON_USAGE_READ,
RADEON_PRIO_SHADER_BINARY);
uint64_t shader_va = shader->bo->gpu_address;
assert(shader->config.scratch_bytes_per_wave == 0);
assert(shader->config.num_vgprs * WAVES_PER_TG <= 256 * 4);
radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2);
radeon_emit(cs, shader_va >> 8);
radeon_emit(cs, S_00B834_DATA(shader_va >> 40));
radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
radeon_emit(
cs, S_00B848_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B848_SGPRS(sctx->chip_class <= GFX9 ? (shader->config.num_sgprs - 1) / 8 : 0) |
S_00B848_FLOAT_MODE(shader->config.float_mode) | S_00B848_DX10_CLAMP(1) |
S_00B848_MEM_ORDERED(sctx->chip_class >= GFX10) |
S_00B848_WGP_MODE(sctx->chip_class >= GFX10));
radeon_emit(cs, S_00B84C_SCRATCH_EN(0 /* no scratch */) | S_00B84C_USER_SGPR(user_sgprs) |
S_00B84C_TGID_X_EN(1 /* only blockID.x is used */) |
S_00B84C_TG_SIZE_EN(VERTEX_COUNTER_GDS_MODE == 2 /* need the wave ID */) |
S_00B84C_TIDIG_COMP_CNT(0 /* only threadID.x is used */) |
S_00B84C_LDS_SIZE(shader->config.lds_size));
radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
ac_get_compute_resource_limits(&sctx->screen->info, WAVES_PER_TG,
MAX_WAVES_PER_SH, THREADGROUPS_PER_CU));
sctx->compute_ib_last_shader = shader;
}
STATIC_ASSERT(SPLIT_PRIMS_PACKET_LEVEL % THREADGROUP_SIZE == 0);
/* Big draw calls are split into smaller dispatches and draw packets. */
for (unsigned start_prim = 0; start_prim < num_prims; start_prim += SPLIT_PRIMS_PACKET_LEVEL) {
unsigned num_subdraw_prims;
if (start_prim + SPLIT_PRIMS_PACKET_LEVEL < num_prims)
num_subdraw_prims = SPLIT_PRIMS_PACKET_LEVEL;
else
num_subdraw_prims = num_prims - start_prim;
/* Small dispatches are executed back to back until a specific primitive
* count is reached. Then, a CS_DONE is inserted to signal the gfx IB
* to start drawing the batch. This batching adds latency to the gfx IB,
* but CS_DONE and REWIND are too slow.
*/
if (sctx->compute_num_prims_in_batch + num_subdraw_prims > PRIMS_PER_BATCH)
si_compute_signal_gfx(sctx);
if (sctx->compute_num_prims_in_batch == 0) {
assert((gfx_cs->gpu_address >> 32) == sctx->screen->info.address32_hi);
sctx->compute_rewind_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 1) * 4;
if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION) {
radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
radeon_emit(gfx_cs, 0);
si_cp_wait_mem(
sctx, gfx_cs,
sctx->compute_rewind_va | (uint64_t)sctx->screen->info.address32_hi << 32,
REWIND_SIGNAL_BIT, REWIND_SIGNAL_BIT, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_PFP);
/* Use INDIRECT_BUFFER to chain to a different buffer
* to discard the CP prefetch cache.
*/
sctx->ws->cs_check_space(gfx_cs, 0, true);
} else {
radeon_emit(gfx_cs, PKT3(PKT3_REWIND, 0, 0));
radeon_emit(gfx_cs, 0);
}
}
sctx->compute_num_prims_in_batch += num_subdraw_prims;
uint32_t count_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 4) * 4;
uint64_t index_va = out_indexbuf_va + start_prim * 12;
/* Emit the draw packet into the gfx IB. */
radeon_emit(gfx_cs, PKT3(PKT3_DRAW_INDEX_2, 4, 0));
radeon_emit(gfx_cs, num_prims * vertices_per_prim);
radeon_emit(gfx_cs, index_va);
radeon_emit(gfx_cs, index_va >> 32);
radeon_emit(gfx_cs, 0);
radeon_emit(gfx_cs, V_0287F0_DI_SRC_SEL_DMA);
/* Continue with the compute IB. */
if (start_prim == 0) {
uint32_t gds_prim_restart_continue_bit = 0;
if (sctx->preserve_prim_restart_gds_at_flush) {
assert(primitive_restart && info->mode == PIPE_PRIM_TRIANGLE_STRIP);
assert(start_prim < 1 << 31);
gds_prim_restart_continue_bit = 1 << 31;
}
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, user_sgprs);
radeon_emit(cs, index_buffers_va);
radeon_emit(cs, VERTEX_COUNTER_GDS_MODE == 0
? count_va
: VERTEX_COUNTER_GDS_MODE == 1
? gds_offset
: start_prim | gds_prim_restart_continue_bit);
radeon_emit(cs, start_prim + num_subdraw_prims - 1);
radeon_emit(cs, count_va);
radeon_emit(cs, vb_desc_va);
radeon_emit(cs, vs_const_desc_va);
radeon_emit(cs, vs_sampler_desc_va);
radeon_emit(cs, base_vertex);
radeon_emit(cs, info->start_instance);
radeon_emit(cs, num_prims_udiv.multiplier);
radeon_emit(cs, num_prims_udiv.post_shift | (num_prims_per_instance << 5));
radeon_emit(cs, info->restart_index);
/* small-prim culling precision (same as rasterizer precision = QUANT_MODE) */
radeon_emit(cs, fui(small_prim_cull_precision));
} else {
assert(VERTEX_COUNTER_GDS_MODE == 2);
/* Only update the SGPRs that changed. */
radeon_set_sh_reg_seq(cs, R_00B904_COMPUTE_USER_DATA_1, 3);
radeon_emit(cs, start_prim);
radeon_emit(cs, start_prim + num_subdraw_prims - 1);
radeon_emit(cs, count_va);
}
/* Set grid dimensions. */
unsigned start_block = start_prim / THREADGROUP_SIZE;
unsigned num_full_blocks = num_subdraw_prims / THREADGROUP_SIZE;
unsigned partial_block_size = num_subdraw_prims % THREADGROUP_SIZE;
radeon_set_sh_reg(cs, R_00B810_COMPUTE_START_X, start_block);
radeon_set_sh_reg(cs, R_00B81C_COMPUTE_NUM_THREAD_X,
S_00B81C_NUM_THREAD_FULL(THREADGROUP_SIZE) |
S_00B81C_NUM_THREAD_PARTIAL(partial_block_size));
radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, 0) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, start_block + num_full_blocks + !!partial_block_size);
radeon_emit(cs, 1);
radeon_emit(cs, 1);
radeon_emit(cs, S_00B800_COMPUTE_SHADER_EN(1) | S_00B800_PARTIAL_TG_EN(!!partial_block_size) |
S_00B800_ORDERED_APPEND_ENBL(VERTEX_COUNTER_GDS_MODE == 2) |
S_00B800_ORDER_MODE(0 /* launch in order */));
/* This is only for unordered append. Ordered append writes this from
* the shader.
*
* Note that EOP and EOS events are super slow, so emulating the event
* in a shader is an important optimization.
*/
if (VERTEX_COUNTER_GDS_MODE == 1) {
si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, 0,
sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
EOP_INT_SEL_NONE, EOP_DATA_SEL_GDS, NULL,
count_va | ((uint64_t)sctx->screen->info.address32_hi << 32),
EOP_DATA_GDS(gds_offset / 4, 1), SI_NOT_QUERY);
/* Now that compute shaders are running, clear the remainder of GDS. */
if (first_dispatch) {
unsigned offset = gds_offset + gds_size;
si_cp_dma_clear_buffer(
sctx, cs, NULL, offset, GDS_SIZE_UNORDERED - offset, 0,
SI_CPDMA_SKIP_CHECK_CS_SPACE | SI_CPDMA_SKIP_GFX_SYNC | SI_CPDMA_SKIP_SYNC_BEFORE,
SI_COHERENCY_NONE, L2_BYPASS);
}
}
first_dispatch = false;
assert(cs->current.cdw <= cs->current.max_dw);
assert(gfx_cs->current.cdw <= gfx_cs->current.max_dw);
}
}