blob: 20db0b1104fc122d5deebdbf32a88285b1973f59 [file] [log] [blame]
// Bench.cpp
#include "StdAfx.h"
#include <stdio.h>
#ifndef _WIN32
#define USE_POSIX_TIME
#define USE_POSIX_TIME2
#endif
#ifdef USE_POSIX_TIME
#include <time.h>
#ifdef USE_POSIX_TIME2
#include <sys/time.h>
#endif
#endif
#ifdef _WIN32
#define USE_ALLOCA
#endif
#ifdef USE_ALLOCA
#ifdef _WIN32
#include <malloc.h>
#else
#include <stdlib.h>
#endif
#endif
#include "../../../../C/7zCrc.h"
#include "../../../../C/Alloc.h"
#include "../../../../C/CpuArch.h"
#ifndef _7ZIP_ST
#include "../../../Windows/Synchronization.h"
#include "../../../Windows/Thread.h"
#endif
#if defined(_WIN32) || defined(UNIX_USE_WIN_FILE)
#define USE_WIN_FILE
#endif
#ifdef USE_WIN_FILE
#include "../../../Windows/FileIO.h"
#endif
#include "../../../Common/IntToString.h"
#include "../../../Common/StringConvert.h"
#include "../../../Common/StringToInt.h"
#include "../../Common/MethodProps.h"
#include "../../Common/StreamUtils.h"
#include "Bench.h"
using namespace NWindows;
static const UInt32 k_LZMA = 0x030101;
static const UInt64 kComplexInCommands = (UInt64)1 <<
#ifdef UNDER_CE
31;
#else
34;
#endif
static const UInt32 kComplexInSeconds = 4;
static void SetComplexCommands(UInt32 complexInSeconds,
bool isSpecifiedFreq, UInt64 cpuFreq, UInt64 &complexInCommands)
{
complexInCommands = kComplexInCommands;
const UInt64 kMinFreq = (UInt64)1000000 * 4;
const UInt64 kMaxFreq = (UInt64)1000000 * 20000;
if (cpuFreq < kMinFreq && !isSpecifiedFreq)
cpuFreq = kMinFreq;
if (cpuFreq < kMaxFreq || isSpecifiedFreq)
{
if (complexInSeconds != 0)
complexInCommands = complexInSeconds * cpuFreq;
else
complexInCommands = cpuFreq >> 2;
}
}
static const unsigned kNumHashDictBits = 17;
static const UInt32 kFilterUnpackSize = (48 << 10);
static const unsigned kOldLzmaDictBits = 30;
static const UInt32 kAdditionalSize = (1 << 16);
static const UInt32 kCompressedAdditionalSize = (1 << 10);
static const UInt32 kMaxLzmaPropSize = 5;
class CBaseRandomGenerator
{
UInt32 A1;
UInt32 A2;
public:
CBaseRandomGenerator() { Init(); }
void Init() { A1 = 362436069; A2 = 521288629;}
UInt32 GetRnd()
{
return
((A1 = 36969 * (A1 & 0xffff) + (A1 >> 16)) << 16) +
((A2 = 18000 * (A2 & 0xffff) + (A2 >> 16)) );
}
};
static const unsigned kBufferAlignment = 1 << 4;
struct CBenchBuffer
{
size_t BufferSize;
#ifdef _WIN32
Byte *Buffer;
CBenchBuffer(): BufferSize(0), Buffer(NULL) {}
~CBenchBuffer() { ::MidFree(Buffer); }
void AllocAlignedMask(size_t size, size_t)
{
::MidFree(Buffer);
BufferSize = 0;
Buffer = (Byte *)::MidAlloc(size);
if (Buffer)
BufferSize = size;
}
#else
Byte *Buffer;
Byte *_bufBase;
CBenchBuffer(): BufferSize(0), Buffer(NULL), _bufBase(NULL){}
~CBenchBuffer() { ::MidFree(_bufBase); }
void AllocAlignedMask(size_t size, size_t alignMask)
{
::MidFree(_bufBase);
Buffer = NULL;
BufferSize = 0;
_bufBase = (Byte *)::MidAlloc(size + alignMask);
if (_bufBase)
{
// Buffer = (Byte *)(((uintptr_t)_bufBase + alignMask) & ~(uintptr_t)alignMask);
Buffer = (Byte *)(((ptrdiff_t)_bufBase + alignMask) & ~(ptrdiff_t)alignMask);
BufferSize = size;
}
}
#endif
bool Alloc(size_t size)
{
if (Buffer && BufferSize == size)
return true;
AllocAlignedMask(size, kBufferAlignment - 1);
return (Buffer != NULL || size == 0);
}
};
class CBenchRandomGenerator: public CBenchBuffer
{
static UInt32 GetVal(UInt32 &res, unsigned numBits)
{
UInt32 val = res & (((UInt32)1 << numBits) - 1);
res >>= numBits;
return val;
}
static UInt32 GetLen(UInt32 &r)
{
UInt32 len = GetVal(r, 2);
return GetVal(r, 1 + len);
}
public:
void GenerateSimpleRandom(CBaseRandomGenerator *_RG_)
{
CBaseRandomGenerator rg = *_RG_;
const size_t bufSize = BufferSize;
Byte *buf = Buffer;
for (size_t i = 0; i < bufSize; i++)
buf[i] = (Byte)rg.GetRnd();
*_RG_ = rg;
}
void GenerateLz(unsigned dictBits, CBaseRandomGenerator *_RG_)
{
CBaseRandomGenerator rg = *_RG_;
UInt32 pos = 0;
UInt32 rep0 = 1;
const size_t bufSize = BufferSize;
Byte *buf = Buffer;
unsigned posBits = 1;
while (pos < bufSize)
{
UInt32 r = rg.GetRnd();
if (GetVal(r, 1) == 0 || pos < 1024)
buf[pos++] = (Byte)(r & 0xFF);
else
{
UInt32 len;
len = 1 + GetLen(r);
if (GetVal(r, 3) != 0)
{
len += GetLen(r);
while (((UInt32)1 << posBits) < pos)
posBits++;
unsigned numBitsMax = dictBits;
if (numBitsMax > posBits)
numBitsMax = posBits;
const unsigned kAddBits = 6;
unsigned numLogBits = 5;
if (numBitsMax <= (1 << 4) - 1 + kAddBits)
numLogBits = 4;
for (;;)
{
UInt32 ppp = GetVal(r, numLogBits) + kAddBits;
r = rg.GetRnd();
if (ppp > numBitsMax)
continue;
rep0 = GetVal(r, ppp);
if (rep0 < pos)
break;
r = rg.GetRnd();
}
rep0++;
}
{
UInt32 rem = (UInt32)bufSize - pos;
if (len > rem)
len = rem;
}
Byte *dest = buf + pos;
const Byte *src = dest - rep0;
pos += len;
for (UInt32 i = 0; i < len; i++)
*dest++ = *src++;
}
}
*_RG_ = rg;
}
};
class CBenchmarkInStream:
public ISequentialInStream,
public CMyUnknownImp
{
const Byte *Data;
size_t Pos;
size_t Size;
public:
MY_UNKNOWN_IMP
void Init(const Byte *data, size_t size)
{
Data = data;
Size = size;
Pos = 0;
}
STDMETHOD(Read)(void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CBenchmarkInStream::Read(void *data, UInt32 size, UInt32 *processedSize)
{
size_t remain = Size - Pos;
UInt32 kMaxBlockSize = (1 << 20);
if (size > kMaxBlockSize)
size = kMaxBlockSize;
if (size > remain)
size = (UInt32)remain;
for (UInt32 i = 0; i < size; i++)
((Byte *)data)[i] = Data[Pos + i];
Pos += size;
if (processedSize)
*processedSize = size;
return S_OK;
}
class CBenchmarkOutStream:
public ISequentialOutStream,
public CBenchBuffer,
public CMyUnknownImp
{
// bool _overflow;
public:
size_t Pos;
bool RealCopy;
bool CalcCrc;
UInt32 Crc;
// CBenchmarkOutStream(): _overflow(false) {}
void Init(bool realCopy, bool calcCrc)
{
Crc = CRC_INIT_VAL;
RealCopy = realCopy;
CalcCrc = calcCrc;
// _overflow = false;
Pos = 0;
}
// void Print() { printf("\n%8d %8d\n", (unsigned)BufferSize, (unsigned)Pos); }
MY_UNKNOWN_IMP
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CBenchmarkOutStream::Write(const void *data, UInt32 size, UInt32 *processedSize)
{
size_t curSize = BufferSize - Pos;
if (curSize > size)
curSize = size;
if (curSize != 0)
{
if (RealCopy)
memcpy(Buffer + Pos, data, curSize);
if (CalcCrc)
Crc = CrcUpdate(Crc, data, curSize);
Pos += curSize;
}
if (processedSize)
*processedSize = (UInt32)curSize;
if (curSize != size)
{
// _overflow = true;
return E_FAIL;
}
return S_OK;
}
class CCrcOutStream:
public ISequentialOutStream,
public CMyUnknownImp
{
public:
bool CalcCrc;
UInt32 Crc;
MY_UNKNOWN_IMP
CCrcOutStream(): CalcCrc(true) {};
void Init() { Crc = CRC_INIT_VAL; }
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CCrcOutStream::Write(const void *data, UInt32 size, UInt32 *processedSize)
{
if (CalcCrc)
Crc = CrcUpdate(Crc, data, size);
if (processedSize)
*processedSize = size;
return S_OK;
}
static UInt64 GetTimeCount()
{
#ifdef USE_POSIX_TIME
#ifdef USE_POSIX_TIME2
timeval v;
if (gettimeofday(&v, 0) == 0)
return (UInt64)(v.tv_sec) * 1000000 + v.tv_usec;
return (UInt64)time(NULL) * 1000000;
#else
return time(NULL);
#endif
#else
/*
LARGE_INTEGER value;
if (::QueryPerformanceCounter(&value))
return value.QuadPart;
*/
return GetTickCount();
#endif
}
static UInt64 GetFreq()
{
#ifdef USE_POSIX_TIME
#ifdef USE_POSIX_TIME2
return 1000000;
#else
return 1;
#endif
#else
/*
LARGE_INTEGER value;
if (::QueryPerformanceFrequency(&value))
return value.QuadPart;
*/
return 1000;
#endif
}
#ifdef USE_POSIX_TIME
struct CUserTime
{
UInt64 Sum;
clock_t Prev;
void Init()
{
Prev = clock();
Sum = 0;
}
UInt64 GetUserTime()
{
clock_t v = clock();
Sum += v - Prev;
Prev = v;
return Sum;
}
};
#else
static inline UInt64 GetTime64(const FILETIME &t) { return ((UInt64)t.dwHighDateTime << 32) | t.dwLowDateTime; }
UInt64 GetWinUserTime()
{
FILETIME creationTime, exitTime, kernelTime, userTime;
if (
#ifdef UNDER_CE
::GetThreadTimes(::GetCurrentThread()
#else
::GetProcessTimes(::GetCurrentProcess()
#endif
, &creationTime, &exitTime, &kernelTime, &userTime) != 0)
return GetTime64(userTime) + GetTime64(kernelTime);
return (UInt64)GetTickCount() * 10000;
}
struct CUserTime
{
UInt64 StartTime;
void Init() { StartTime = GetWinUserTime(); }
UInt64 GetUserTime() { return GetWinUserTime() - StartTime; }
};
#endif
static UInt64 GetUserFreq()
{
#ifdef USE_POSIX_TIME
return CLOCKS_PER_SEC;
#else
return 10000000;
#endif
}
class CBenchProgressStatus
{
#ifndef _7ZIP_ST
NSynchronization::CCriticalSection CS;
#endif
public:
HRESULT Res;
bool EncodeMode;
void SetResult(HRESULT res)
{
#ifndef _7ZIP_ST
NSynchronization::CCriticalSectionLock lock(CS);
#endif
Res = res;
}
HRESULT GetResult()
{
#ifndef _7ZIP_ST
NSynchronization::CCriticalSectionLock lock(CS);
#endif
return Res;
}
};
struct CBenchInfoCalc
{
CBenchInfo BenchInfo;
CUserTime UserTime;
void SetStartTime();
void SetFinishTime(CBenchInfo &dest);
};
void CBenchInfoCalc::SetStartTime()
{
BenchInfo.GlobalFreq = GetFreq();
BenchInfo.UserFreq = GetUserFreq();
BenchInfo.GlobalTime = ::GetTimeCount();
BenchInfo.UserTime = 0;
UserTime.Init();
}
void CBenchInfoCalc::SetFinishTime(CBenchInfo &dest)
{
dest = BenchInfo;
dest.GlobalTime = ::GetTimeCount() - BenchInfo.GlobalTime;
dest.UserTime = UserTime.GetUserTime();
}
class CBenchProgressInfo:
public ICompressProgressInfo,
public CMyUnknownImp,
public CBenchInfoCalc
{
public:
CBenchProgressStatus *Status;
IBenchCallback *Callback;
CBenchProgressInfo(): Callback(NULL) {}
MY_UNKNOWN_IMP
STDMETHOD(SetRatioInfo)(const UInt64 *inSize, const UInt64 *outSize);
};
STDMETHODIMP CBenchProgressInfo::SetRatioInfo(const UInt64 *inSize, const UInt64 *outSize)
{
HRESULT res = Status->GetResult();
if (res != S_OK)
return res;
if (!Callback)
return res;
CBenchInfo info;
SetFinishTime(info);
if (Status->EncodeMode)
{
info.UnpackSize = BenchInfo.UnpackSize + *inSize;
info.PackSize = BenchInfo.PackSize + *outSize;
res = Callback->SetEncodeResult(info, false);
}
else
{
info.PackSize = BenchInfo.PackSize + *inSize;
info.UnpackSize = BenchInfo.UnpackSize + *outSize;
res = Callback->SetDecodeResult(info, false);
}
if (res != S_OK)
Status->SetResult(res);
return res;
}
static const unsigned kSubBits = 8;
static UInt32 GetLogSize(UInt32 size)
{
for (unsigned i = kSubBits; i < 32; i++)
for (UInt32 j = 0; j < (1 << kSubBits); j++)
if (size <= (((UInt32)1) << i) + (j << (i - kSubBits)))
return (i << kSubBits) + j;
return (32 << kSubBits);
}
static void NormalizeVals(UInt64 &v1, UInt64 &v2)
{
while (v1 > 1000000)
{
v1 >>= 1;
v2 >>= 1;
}
}
UInt64 CBenchInfo::GetUsage() const
{
UInt64 userTime = UserTime;
UInt64 userFreq = UserFreq;
UInt64 globalTime = GlobalTime;
UInt64 globalFreq = GlobalFreq;
NormalizeVals(userTime, userFreq);
NormalizeVals(globalFreq, globalTime);
if (userFreq == 0)
userFreq = 1;
if (globalTime == 0)
globalTime = 1;
return userTime * globalFreq * 1000000 / userFreq / globalTime;
}
UInt64 CBenchInfo::GetRatingPerUsage(UInt64 rating) const
{
UInt64 userTime = UserTime;
UInt64 userFreq = UserFreq;
UInt64 globalTime = GlobalTime;
UInt64 globalFreq = GlobalFreq;
NormalizeVals(userFreq, userTime);
NormalizeVals(globalTime, globalFreq);
if (globalFreq == 0)
globalFreq = 1;
if (userTime == 0)
userTime = 1;
return userFreq * globalTime / globalFreq * rating / userTime;
}
static UInt64 MyMultDiv64(UInt64 value, UInt64 elapsedTime, UInt64 freq)
{
UInt64 elTime = elapsedTime;
NormalizeVals(freq, elTime);
if (elTime == 0)
elTime = 1;
return value * freq / elTime;
}
UInt64 CBenchInfo::GetSpeed(UInt64 numCommands) const
{
return MyMultDiv64(numCommands, GlobalTime, GlobalFreq);
}
struct CBenchProps
{
bool LzmaRatingMode;
UInt32 EncComplex;
UInt32 DecComplexCompr;
UInt32 DecComplexUnc;
CBenchProps(): LzmaRatingMode(false) {}
void SetLzmaCompexity();
UInt64 GeComprCommands(UInt64 unpackSize)
{
return unpackSize * EncComplex;
}
UInt64 GeDecomprCommands(UInt64 packSize, UInt64 unpackSize)
{
return (packSize * DecComplexCompr + unpackSize * DecComplexUnc);
}
UInt64 GetCompressRating(UInt32 dictSize, UInt64 elapsedTime, UInt64 freq, UInt64 size);
UInt64 GetDecompressRating(UInt64 elapsedTime, UInt64 freq, UInt64 outSize, UInt64 inSize, UInt64 numIterations);
};
void CBenchProps::SetLzmaCompexity()
{
EncComplex = 1200;
DecComplexUnc = 4;
DecComplexCompr = 190;
LzmaRatingMode = true;
}
UInt64 CBenchProps::GetCompressRating(UInt32 dictSize, UInt64 elapsedTime, UInt64 freq, UInt64 size)
{
if (dictSize < (1 << kBenchMinDicLogSize))
dictSize = (1 << kBenchMinDicLogSize);
UInt64 encComplex = EncComplex;
if (LzmaRatingMode)
{
UInt64 t = GetLogSize(dictSize) - (kBenchMinDicLogSize << kSubBits);
encComplex = 870 + ((t * t * 5) >> (2 * kSubBits));
}
UInt64 numCommands = (UInt64)size * encComplex;
return MyMultDiv64(numCommands, elapsedTime, freq);
}
UInt64 CBenchProps::GetDecompressRating(UInt64 elapsedTime, UInt64 freq, UInt64 outSize, UInt64 inSize, UInt64 numIterations)
{
UInt64 numCommands = (inSize * DecComplexCompr + outSize * DecComplexUnc) * numIterations;
return MyMultDiv64(numCommands, elapsedTime, freq);
}
UInt64 GetCompressRating(UInt32 dictSize, UInt64 elapsedTime, UInt64 freq, UInt64 size)
{
CBenchProps props;
props.SetLzmaCompexity();
return props.GetCompressRating(dictSize, elapsedTime, freq, size);
}
UInt64 GetDecompressRating(UInt64 elapsedTime, UInt64 freq, UInt64 outSize, UInt64 inSize, UInt64 numIterations)
{
CBenchProps props;
props.SetLzmaCompexity();
return props.GetDecompressRating(elapsedTime, freq, outSize, inSize, numIterations);
}
struct CEncoderInfo;
struct CEncoderInfo
{
#ifndef _7ZIP_ST
NWindows::CThread thread[2];
UInt32 NumDecoderSubThreads;
#endif
CMyComPtr<ICompressCoder> _encoder;
CMyComPtr<ICompressFilter> _encoderFilter;
CBenchProgressInfo *progressInfoSpec[2];
CMyComPtr<ICompressProgressInfo> progressInfo[2];
UInt64 NumIterations;
#ifdef USE_ALLOCA
size_t AllocaSize;
#endif
Byte _key[32];
Byte _iv[16];
Byte _psw[16];
bool CheckCrc_Enc;
bool CheckCrc_Dec;
struct CDecoderInfo
{
CEncoderInfo *Encoder;
UInt32 DecoderIndex;
bool CallbackMode;
#ifdef USE_ALLOCA
size_t AllocaSize;
#endif
};
CDecoderInfo decodersInfo[2];
CMyComPtr<ICompressCoder> _decoders[2];
CMyComPtr<ICompressFilter> _decoderFilter;
HRESULT Results[2];
CBenchmarkOutStream *outStreamSpec;
CMyComPtr<ISequentialOutStream> outStream;
IBenchCallback *callback;
IBenchPrintCallback *printCallback;
UInt32 crc;
size_t kBufferSize;
size_t compressedSize;
const Byte *uncompressedDataPtr;
const Byte *fileData;
CBenchRandomGenerator rg;
CBenchBuffer rgCopy; // it must be 16-byte aligned !!!
CBenchmarkOutStream *propStreamSpec;
CMyComPtr<ISequentialOutStream> propStream;
// for decode
COneMethodInfo _method;
size_t _uncompressedDataSize;
HRESULT Init(
const COneMethodInfo &method,
unsigned generateDictBits,
CBaseRandomGenerator *rg);
HRESULT Encode();
HRESULT Decode(UInt32 decoderIndex);
CEncoderInfo():
fileData(NULL),
CheckCrc_Enc(true),
CheckCrc_Dec(true),
outStreamSpec(NULL), callback(NULL), printCallback(NULL), propStreamSpec(NULL) {}
#ifndef _7ZIP_ST
static THREAD_FUNC_DECL EncodeThreadFunction(void *param)
{
HRESULT res;
CEncoderInfo *encoder = (CEncoderInfo *)param;
try
{
#ifdef USE_ALLOCA
alloca(encoder->AllocaSize);
#endif
res = encoder->Encode();
encoder->Results[0] = res;
}
catch(...)
{
res = E_FAIL;
}
if (res != S_OK)
encoder->progressInfoSpec[0]->Status->SetResult(res);
return 0;
}
static THREAD_FUNC_DECL DecodeThreadFunction(void *param)
{
CDecoderInfo *decoder = (CDecoderInfo *)param;
#ifdef USE_ALLOCA
alloca(decoder->AllocaSize);
#endif
CEncoderInfo *encoder = decoder->Encoder;
encoder->Results[decoder->DecoderIndex] = encoder->Decode(decoder->DecoderIndex);
return 0;
}
HRESULT CreateEncoderThread()
{
return thread[0].Create(EncodeThreadFunction, this);
}
HRESULT CreateDecoderThread(unsigned index, bool callbackMode
#ifdef USE_ALLOCA
, size_t allocaSize
#endif
)
{
CDecoderInfo &decoder = decodersInfo[index];
decoder.DecoderIndex = index;
decoder.Encoder = this;
#ifdef USE_ALLOCA
decoder.AllocaSize = allocaSize;
#endif
decoder.CallbackMode = callbackMode;
return thread[index].Create(DecodeThreadFunction, &decoder);
}
#endif
};
HRESULT CEncoderInfo::Init(
const COneMethodInfo &method,
unsigned generateDictBits,
CBaseRandomGenerator *rgLoc)
{
// we need extra space, if input data is already compressed
const size_t kCompressedBufferSize =
kCompressedAdditionalSize +
kBufferSize + kBufferSize / 16;
// kBufferSize / 2;
if (kCompressedBufferSize < kBufferSize)
return E_FAIL;
uncompressedDataPtr = fileData;
if (!fileData)
{
if (!rg.Alloc(kBufferSize))
return E_OUTOFMEMORY;
// DWORD ttt = GetTickCount();
if (generateDictBits == 0)
rg.GenerateSimpleRandom(rgLoc);
else
rg.GenerateLz(generateDictBits, rgLoc);
// printf("\n%d\n ", GetTickCount() - ttt);
crc = CrcCalc(rg.Buffer, rg.BufferSize);
uncompressedDataPtr = rg.Buffer;
}
if (_encoderFilter)
{
if (!rgCopy.Alloc(kBufferSize))
return E_OUTOFMEMORY;
}
outStreamSpec = new CBenchmarkOutStream;
outStream = outStreamSpec;
if (!outStreamSpec->Alloc(kCompressedBufferSize))
return E_OUTOFMEMORY;
propStreamSpec = 0;
if (!propStream)
{
propStreamSpec = new CBenchmarkOutStream;
propStream = propStreamSpec;
}
if (!propStreamSpec->Alloc(kMaxLzmaPropSize))
return E_OUTOFMEMORY;
propStreamSpec->Init(true, false);
CMyComPtr<IUnknown> coder;
if (_encoderFilter)
coder = _encoderFilter;
else
coder = _encoder;
{
CMyComPtr<ICompressSetCoderProperties> scp;
coder.QueryInterface(IID_ICompressSetCoderProperties, &scp);
if (scp)
{
UInt64 reduceSize = kBufferSize;
RINOK(method.SetCoderProps(scp, &reduceSize));
}
else
{
if (method.AreThereNonOptionalProps())
return E_INVALIDARG;
}
CMyComPtr<ICompressWriteCoderProperties> writeCoderProps;
coder.QueryInterface(IID_ICompressWriteCoderProperties, &writeCoderProps);
if (writeCoderProps)
{
RINOK(writeCoderProps->WriteCoderProperties(propStream));
}
{
CMyComPtr<ICryptoSetPassword> sp;
coder.QueryInterface(IID_ICryptoSetPassword, &sp);
if (sp)
{
RINOK(sp->CryptoSetPassword(_psw, sizeof(_psw)));
// we must call encoding one time to calculate password key for key cache.
// it must be after WriteCoderProperties!
Byte temp[16];
memset(temp, 0, sizeof(temp));
if (_encoderFilter)
{
_encoderFilter->Init();
_encoderFilter->Filter(temp, sizeof(temp));
}
else
{
CBenchmarkInStream *inStreamSpec = new CBenchmarkInStream;
CMyComPtr<ISequentialInStream> inStream = inStreamSpec;
inStreamSpec->Init(temp, sizeof(temp));
CCrcOutStream *crcStreamSpec = new CCrcOutStream;
CMyComPtr<ISequentialOutStream> crcStream = crcStreamSpec;
crcStreamSpec->Init();
RINOK(_encoder->Code(inStream, crcStream, 0, 0, NULL));
}
}
}
}
return S_OK;
}
static void My_FilterBench(ICompressFilter *filter, Byte *data, size_t size)
{
while (size != 0)
{
UInt32 cur = (UInt32)1 << 31;
if (cur > size)
cur = (UInt32)size;
UInt32 processed = filter->Filter(data, cur);
data += processed;
// if (processed > size) (in AES filter), we must fill last block with zeros.
// but it is not important for benchmark. So we just copy that data without filtering.
if (processed > size || processed == 0)
break;
size -= processed;
}
}
HRESULT CEncoderInfo::Encode()
{
CBenchInfo &bi = progressInfoSpec[0]->BenchInfo;
bi.UnpackSize = 0;
bi.PackSize = 0;
CMyComPtr<ICryptoProperties> cp;
CMyComPtr<IUnknown> coder;
if (_encoderFilter)
coder = _encoderFilter;
else
coder = _encoder;
coder.QueryInterface(IID_ICryptoProperties, &cp);
CBenchmarkInStream *inStreamSpec = new CBenchmarkInStream;
CMyComPtr<ISequentialInStream> inStream = inStreamSpec;
UInt64 prev = 0;
UInt32 crcPrev = 0;
if (cp)
{
RINOK(cp->SetKey(_key, sizeof(_key)));
RINOK(cp->SetInitVector(_iv, sizeof(_iv)));
}
for (UInt64 i = 0; i < NumIterations; i++)
{
if (printCallback && bi.UnpackSize - prev > (1 << 20))
{
RINOK(printCallback->CheckBreak());
prev = bi.UnpackSize;
}
bool isLast = (i == NumIterations - 1);
bool calcCrc = ((isLast || (i & 0x7F) == 0 || CheckCrc_Enc) && NumIterations != 1);
outStreamSpec->Init(isLast, calcCrc);
if (_encoderFilter)
{
memcpy(rgCopy.Buffer, uncompressedDataPtr, kBufferSize);
_encoderFilter->Init();
My_FilterBench(_encoderFilter, rgCopy.Buffer, kBufferSize);
RINOK(WriteStream(outStream, rgCopy.Buffer, kBufferSize));
}
else
{
inStreamSpec->Init(uncompressedDataPtr, kBufferSize);
RINOK(_encoder->Code(inStream, outStream, NULL, NULL, progressInfo[0]));
}
// outStreamSpec->Print();
UInt32 crcNew = CRC_GET_DIGEST(outStreamSpec->Crc);
if (i == 0)
crcPrev = crcNew;
else if (calcCrc && crcPrev != crcNew)
return E_FAIL;
compressedSize = outStreamSpec->Pos;
bi.UnpackSize += kBufferSize;
bi.PackSize += compressedSize;
}
_encoder.Release();
_encoderFilter.Release();
return S_OK;
}
HRESULT CEncoderInfo::Decode(UInt32 decoderIndex)
{
CBenchmarkInStream *inStreamSpec = new CBenchmarkInStream;
CMyComPtr<ISequentialInStream> inStream = inStreamSpec;
CMyComPtr<ICompressCoder> &decoder = _decoders[decoderIndex];
CMyComPtr<IUnknown> coder;
if (_decoderFilter)
{
if (decoderIndex != 0)
return E_FAIL;
coder = _decoderFilter;
}
else
coder = decoder;
CMyComPtr<ICompressSetDecoderProperties2> setDecProps;
coder.QueryInterface(IID_ICompressSetDecoderProperties2, &setDecProps);
if (!setDecProps && propStreamSpec->Pos != 0)
return E_FAIL;
CCrcOutStream *crcOutStreamSpec = new CCrcOutStream;
CMyComPtr<ISequentialOutStream> crcOutStream = crcOutStreamSpec;
CBenchProgressInfo *pi = progressInfoSpec[decoderIndex];
pi->BenchInfo.UnpackSize = 0;
pi->BenchInfo.PackSize = 0;
#ifndef _7ZIP_ST
{
CMyComPtr<ICompressSetCoderMt> setCoderMt;
coder.QueryInterface(IID_ICompressSetCoderMt, &setCoderMt);
if (setCoderMt)
{
RINOK(setCoderMt->SetNumberOfThreads(NumDecoderSubThreads));
}
}
#endif
CMyComPtr<ICompressSetCoderProperties> scp;
coder.QueryInterface(IID_ICompressSetCoderProperties, &scp);
if (scp)
{
UInt64 reduceSize = _uncompressedDataSize;
RINOK(_method.SetCoderProps(scp, &reduceSize));
}
CMyComPtr<ICryptoProperties> cp;
coder.QueryInterface(IID_ICryptoProperties, &cp);
if (setDecProps)
{
RINOK(setDecProps->SetDecoderProperties2(propStreamSpec->Buffer, (UInt32)propStreamSpec->Pos));
}
{
CMyComPtr<ICryptoSetPassword> sp;
coder.QueryInterface(IID_ICryptoSetPassword, &sp);
if (sp)
{
RINOK(sp->CryptoSetPassword(_psw, sizeof(_psw)));
}
}
UInt64 prev = 0;
if (cp)
{
RINOK(cp->SetKey(_key, sizeof(_key)));
RINOK(cp->SetInitVector(_iv, sizeof(_iv)));
}
for (UInt64 i = 0; i < NumIterations; i++)
{
if (printCallback && pi->BenchInfo.UnpackSize - prev > (1 << 20))
{
RINOK(printCallback->CheckBreak());
prev = pi->BenchInfo.UnpackSize;
}
inStreamSpec->Init(outStreamSpec->Buffer, compressedSize);
crcOutStreamSpec->Init();
UInt64 outSize = kBufferSize;
crcOutStreamSpec->CalcCrc = ((i & 0x7F) == 0 || CheckCrc_Dec);
if (_decoderFilter)
{
if (compressedSize > rgCopy.BufferSize)
return E_FAIL;
memcpy(rgCopy.Buffer, outStreamSpec->Buffer, compressedSize);
_decoderFilter->Init();
My_FilterBench(_decoderFilter, rgCopy.Buffer, compressedSize);
RINOK(WriteStream(crcOutStream, rgCopy.Buffer, compressedSize));
}
else
{
RINOK(decoder->Code(inStream, crcOutStream, 0, &outSize, progressInfo[decoderIndex]));
}
if (crcOutStreamSpec->CalcCrc && CRC_GET_DIGEST(crcOutStreamSpec->Crc) != crc)
return S_FALSE;
pi->BenchInfo.UnpackSize += kBufferSize;
pi->BenchInfo.PackSize += compressedSize;
}
decoder.Release();
_decoderFilter.Release();
return S_OK;
}
static const UInt32 kNumThreadsMax = (1 << 12);
struct CBenchEncoders
{
CEncoderInfo *encoders;
CBenchEncoders(UInt32 num): encoders(NULL) { encoders = new CEncoderInfo[num]; }
~CBenchEncoders() { delete []encoders; }
};
static UInt64 GetNumIterations(UInt64 numCommands, UInt64 complexInCommands)
{
if (numCommands < (1 << 4))
numCommands = (1 << 4);
UInt64 res = complexInCommands / numCommands;
return (res == 0 ? 1 : res);
}
static HRESULT MethodBench(
DECL_EXTERNAL_CODECS_LOC_VARS
UInt64 complexInCommands,
bool
#ifndef _7ZIP_ST
oldLzmaBenchMode
#endif
,
UInt32
#ifndef _7ZIP_ST
numThreads
#endif
,
const COneMethodInfo &method2,
size_t uncompressedDataSize,
const Byte *fileData,
unsigned generateDictBits,
IBenchPrintCallback *printCallback,
IBenchCallback *callback,
CBenchProps *benchProps)
{
COneMethodInfo method = method2;
UInt64 methodId;
UInt32 numStreams;
int codecIndex = FindMethod_Index(
EXTERNAL_CODECS_LOC_VARS
method.MethodName, true,
methodId, numStreams);
if (codecIndex < 0)
return E_NOTIMPL;
if (numStreams != 1)
return E_INVALIDARG;
UInt32 numEncoderThreads = 1;
UInt32 numSubDecoderThreads = 1;
#ifndef _7ZIP_ST
numEncoderThreads = numThreads;
if (oldLzmaBenchMode && methodId == k_LZMA)
{
if (numThreads == 1 && method.Get_NumThreads() < 0)
method.AddProp_NumThreads(1);
const UInt32 numLzmaThreads = method.Get_Lzma_NumThreads();
if (numThreads > 1 && numLzmaThreads > 1)
{
numEncoderThreads = numThreads / 2;
numSubDecoderThreads = 2;
}
}
#endif
CBenchEncoders encodersSpec(numEncoderThreads);
CEncoderInfo *encoders = encodersSpec.encoders;
UInt32 i;
for (i = 0; i < numEncoderThreads; i++)
{
CEncoderInfo &encoder = encoders[i];
encoder.callback = (i == 0) ? callback : 0;
encoder.printCallback = printCallback;
{
CCreatedCoder cod;
RINOK(CreateCoder_Index(EXTERNAL_CODECS_LOC_VARS codecIndex, true, encoder._encoderFilter, cod));
encoder._encoder = cod.Coder;
if (!encoder._encoder && !encoder._encoderFilter)
return E_NOTIMPL;
}
encoder.CheckCrc_Enc = (benchProps->EncComplex) > 30 ;
encoder.CheckCrc_Dec = (benchProps->DecComplexCompr + benchProps->DecComplexUnc) > 30 ;
memset(encoder._iv, 0, sizeof(encoder._iv));
memset(encoder._key, 0, sizeof(encoder._key));
memset(encoder._psw, 0, sizeof(encoder._psw));
for (UInt32 j = 0; j < numSubDecoderThreads; j++)
{
CCreatedCoder cod;
CMyComPtr<ICompressCoder> &decoder = encoder._decoders[j];
RINOK(CreateCoder_Id(EXTERNAL_CODECS_LOC_VARS methodId, false, encoder._decoderFilter, cod));
decoder = cod.Coder;
if (!encoder._decoderFilter && !decoder)
return E_NOTIMPL;
}
}
CBaseRandomGenerator rg;
rg.Init();
UInt32 crc = 0;
if (fileData)
crc = CrcCalc(fileData, uncompressedDataSize);
for (i = 0; i < numEncoderThreads; i++)
{
CEncoderInfo &encoder = encoders[i];
encoder._method = method;
encoder._uncompressedDataSize = uncompressedDataSize;
encoder.kBufferSize = uncompressedDataSize;
encoder.fileData = fileData;
encoder.crc = crc;
RINOK(encoders[i].Init(method, generateDictBits, &rg));
}
CBenchProgressStatus status;
status.Res = S_OK;
status.EncodeMode = true;
for (i = 0; i < numEncoderThreads; i++)
{
CEncoderInfo &encoder = encoders[i];
encoder.NumIterations = GetNumIterations(benchProps->GeComprCommands(uncompressedDataSize), complexInCommands);
for (int j = 0; j < 2; j++)
{
CBenchProgressInfo *spec = new CBenchProgressInfo;
encoder.progressInfoSpec[j] = spec;
encoder.progressInfo[j] = spec;
spec->Status = &status;
}
if (i == 0)
{
CBenchProgressInfo *bpi = encoder.progressInfoSpec[0];
bpi->Callback = callback;
bpi->BenchInfo.NumIterations = numEncoderThreads;
bpi->SetStartTime();
}
#ifndef _7ZIP_ST
if (numEncoderThreads > 1)
{
#ifdef USE_ALLOCA
encoder.AllocaSize = (i * 16 * 21) & 0x7FF;
#endif
RINOK(encoder.CreateEncoderThread())
}
else
#endif
{
RINOK(encoder.Encode());
}
}
#ifndef _7ZIP_ST
if (numEncoderThreads > 1)
for (i = 0; i < numEncoderThreads; i++)
encoders[i].thread[0].Wait();
#endif
RINOK(status.Res);
CBenchInfo info;
encoders[0].progressInfoSpec[0]->SetFinishTime(info);
info.UnpackSize = 0;
info.PackSize = 0;
info.NumIterations = encoders[0].NumIterations;
for (i = 0; i < numEncoderThreads; i++)
{
CEncoderInfo &encoder = encoders[i];
info.UnpackSize += encoder.kBufferSize;
info.PackSize += encoder.compressedSize;
}
RINOK(callback->SetEncodeResult(info, true));
status.Res = S_OK;
status.EncodeMode = false;
UInt32 numDecoderThreads = numEncoderThreads * numSubDecoderThreads;
for (i = 0; i < numEncoderThreads; i++)
{
CEncoderInfo &encoder = encoders[i];
if (i == 0)
{
encoder.NumIterations = GetNumIterations(benchProps->GeDecomprCommands(encoder.compressedSize, encoder.kBufferSize), complexInCommands);
CBenchProgressInfo *bpi = encoder.progressInfoSpec[0];
bpi->Callback = callback;
bpi->BenchInfo.NumIterations = numDecoderThreads;
bpi->SetStartTime();
}
else
encoder.NumIterations = encoders[0].NumIterations;
#ifndef _7ZIP_ST
{
int numSubThreads = method.Get_NumThreads();
encoder.NumDecoderSubThreads = (numSubThreads <= 0) ? 1 : numSubThreads;
}
if (numDecoderThreads > 1)
{
for (UInt32 j = 0; j < numSubDecoderThreads; j++)
{
HRESULT res = encoder.CreateDecoderThread(j, (i == 0 && j == 0)
#ifdef USE_ALLOCA
, ((i * numSubDecoderThreads + j) * 16 * 21) & 0x7FF
#endif
);
RINOK(res);
}
}
else
#endif
{
RINOK(encoder.Decode(0));
}
}
#ifndef _7ZIP_ST
HRESULT res = S_OK;
if (numDecoderThreads > 1)
for (i = 0; i < numEncoderThreads; i++)
for (UInt32 j = 0; j < numSubDecoderThreads; j++)
{
CEncoderInfo &encoder = encoders[i];
encoder.thread[j].Wait();
if (encoder.Results[j] != S_OK)
res = encoder.Results[j];
}
RINOK(res);
#endif
RINOK(status.Res);
encoders[0].progressInfoSpec[0]->SetFinishTime(info);
#ifndef _7ZIP_ST
#ifdef UNDER_CE
if (numDecoderThreads > 1)
for (i = 0; i < numEncoderThreads; i++)
for (UInt32 j = 0; j < numSubDecoderThreads; j++)
{
FILETIME creationTime, exitTime, kernelTime, userTime;
if (::GetThreadTimes(encoders[i].thread[j], &creationTime, &exitTime, &kernelTime, &userTime) != 0)
info.UserTime += GetTime64(userTime) + GetTime64(kernelTime);
}
#endif
#endif
info.UnpackSize = 0;
info.PackSize = 0;
info.NumIterations = numSubDecoderThreads * encoders[0].NumIterations;
for (i = 0; i < numEncoderThreads; i++)
{
CEncoderInfo &encoder = encoders[i];
info.UnpackSize += encoder.kBufferSize;
info.PackSize += encoder.compressedSize;
}
RINOK(callback->SetDecodeResult(info, false));
RINOK(callback->SetDecodeResult(info, true));
return S_OK;
}
static inline UInt64 GetLZMAUsage(bool multiThread, UInt32 dictionary)
{
UInt32 hs = dictionary - 1;
hs |= (hs >> 1);
hs |= (hs >> 2);
hs |= (hs >> 4);
hs |= (hs >> 8);
hs >>= 1;
hs |= 0xFFFF;
if (hs > (1 << 24))
hs >>= 1;
hs++;
return ((hs + (1 << 16)) + (UInt64)dictionary * 2) * 4 + (UInt64)dictionary * 3 / 2 +
(1 << 20) + (multiThread ? (6 << 20) : 0);
}
UInt64 GetBenchMemoryUsage(UInt32 numThreads, UInt32 dictionary, bool totalBench)
{
const UInt32 kBufferSize = dictionary;
const UInt32 kCompressedBufferSize = kBufferSize; // / 2;
bool lzmaMt = (totalBench || numThreads > 1);
UInt32 numBigThreads = numThreads;
if (!totalBench && lzmaMt)
numBigThreads /= 2;
return ((UInt64)kBufferSize + kCompressedBufferSize +
GetLZMAUsage(lzmaMt, dictionary) + (2 << 20)) * numBigThreads;
}
static HRESULT CrcBig(const void *data, UInt32 size, UInt64 numIterations,
const UInt32 *checkSum, IHasher *hf,
IBenchPrintCallback *callback)
{
Byte hash[64];
UInt64 i;
for (i = 0; i < sizeof(hash); i++)
hash[i] = 0;
for (i = 0; i < numIterations; i++)
{
if (callback && (i & 0xFF) == 0)
{
RINOK(callback->CheckBreak());
}
hf->Init();
hf->Update(data, size);
hf->Final(hash);
UInt32 hashSize = hf->GetDigestSize();
if (hashSize > sizeof(hash))
return S_FALSE;
UInt32 sum = 0;
for (UInt32 j = 0; j < hashSize; j += 4)
sum ^= GetUi32(hash + j);
if (checkSum && sum != *checkSum)
{
return S_FALSE;
}
}
return S_OK;
}
UInt32 g_BenchCpuFreqTemp = 1;
#define YY1 sum += val; sum ^= val;
#define YY3 YY1 YY1 YY1 YY1
#define YY5 YY3 YY3 YY3 YY3
#define YY7 YY5 YY5 YY5 YY5
static const UInt32 kNumFreqCommands = 128;
EXTERN_C_BEGIN
static UInt32 CountCpuFreq(UInt32 sum, UInt32 num, UInt32 val)
{
for (UInt32 i = 0; i < num; i++)
{
YY7
}
return sum;
}
EXTERN_C_END
#ifndef _7ZIP_ST
struct CFreqInfo
{
NWindows::CThread Thread;
IBenchPrintCallback *Callback;
HRESULT CallbackRes;
UInt32 ValRes;
UInt32 Size;
UInt64 NumIterations;
void Wait()
{
Thread.Wait();
Thread.Close();
}
};
static THREAD_FUNC_DECL FreqThreadFunction(void *param)
{
CFreqInfo *p = (CFreqInfo *)param;
UInt32 sum = g_BenchCpuFreqTemp;
for (UInt64 k = p->NumIterations; k > 0; k--)
{
p->CallbackRes = p->Callback->CheckBreak();
if (p->CallbackRes != S_OK)
return 0;
sum = CountCpuFreq(sum, p->Size, g_BenchCpuFreqTemp);
}
p->ValRes = sum;
return 0;
}
struct CFreqThreads
{
CFreqInfo *Items;
UInt32 NumThreads;
CFreqThreads(): Items(NULL), NumThreads(0) {}
void WaitAll()
{
for (UInt32 i = 0; i < NumThreads; i++)
Items[i].Wait();
NumThreads = 0;
}
~CFreqThreads()
{
WaitAll();
delete []Items;
}
};
struct CCrcInfo
{
NWindows::CThread Thread;
IBenchPrintCallback *Callback;
HRESULT CallbackRes;
const Byte *Data;
UInt32 Size;
UInt64 NumIterations;
bool CheckSumDefined;
UInt32 CheckSum;
CMyComPtr<IHasher> Hasher;
HRESULT Res;
#ifdef USE_ALLOCA
size_t AllocaSize;
#endif
void Wait()
{
Thread.Wait();
Thread.Close();
}
};
static THREAD_FUNC_DECL CrcThreadFunction(void *param)
{
CCrcInfo *p = (CCrcInfo *)param;
#ifdef USE_ALLOCA
alloca(p->AllocaSize);
#endif
p->Res = CrcBig(p->Data, p->Size, p->NumIterations,
p->CheckSumDefined ? &p->CheckSum : NULL, p->Hasher,
p->Callback);
return 0;
}
struct CCrcThreads
{
CCrcInfo *Items;
UInt32 NumThreads;
CCrcThreads(): Items(NULL), NumThreads(0) {}
void WaitAll()
{
for (UInt32 i = 0; i < NumThreads; i++)
Items[i].Wait();
NumThreads = 0;
}
~CCrcThreads()
{
WaitAll();
delete []Items;
}
};
#endif
static UInt32 CrcCalc1(const Byte *buf, UInt32 size)
{
UInt32 crc = CRC_INIT_VAL;;
for (UInt32 i = 0; i < size; i++)
crc = CRC_UPDATE_BYTE(crc, buf[i]);
return CRC_GET_DIGEST(crc);
}
static void RandGen(Byte *buf, UInt32 size, CBaseRandomGenerator &RG)
{
for (UInt32 i = 0; i < size; i++)
buf[i] = (Byte)RG.GetRnd();
}
static UInt32 RandGenCrc(Byte *buf, UInt32 size, CBaseRandomGenerator &RG)
{
RandGen(buf, size, RG);
return CrcCalc1(buf, size);
}
bool CrcInternalTest()
{
CBenchBuffer buffer;
const UInt32 kBufferSize0 = (1 << 8);
const UInt32 kBufferSize1 = (1 << 10);
const UInt32 kCheckSize = (1 << 5);
if (!buffer.Alloc(kBufferSize0 + kBufferSize1))
return false;
Byte *buf = buffer.Buffer;
UInt32 i;
for (i = 0; i < kBufferSize0; i++)
buf[i] = (Byte)i;
UInt32 crc1 = CrcCalc1(buf, kBufferSize0);
if (crc1 != 0x29058C73)
return false;
CBaseRandomGenerator RG;
RandGen(buf + kBufferSize0, kBufferSize1, RG);
for (i = 0; i < kBufferSize0 + kBufferSize1 - kCheckSize; i++)
for (UInt32 j = 0; j < kCheckSize; j++)
if (CrcCalc1(buf + i, j) != CrcCalc(buf + i, j))
return false;
return true;
}
struct CBenchMethod
{
unsigned Weight;
unsigned DictBits;
UInt32 EncComplex;
UInt32 DecComplexCompr;
UInt32 DecComplexUnc;
const char *Name;
};
static const CBenchMethod g_Bench[] =
{
{ 40, 17, 357, 145, 20, "LZMA:x1" },
{ 80, 24, 1220, 145, 20, "LZMA:x5:mt1" },
{ 80, 24, 1220, 145, 20, "LZMA:x5:mt2" },
{ 10, 16, 124, 40, 14, "Deflate:x1" },
{ 20, 16, 376, 40, 14, "Deflate:x5" },
{ 10, 16, 1082, 40, 14, "Deflate:x7" },
{ 10, 17, 422, 40, 14, "Deflate64:x5" },
{ 10, 15, 590, 69, 69, "BZip2:x1" },
{ 20, 19, 815, 122, 122, "BZip2:x5" },
{ 10, 19, 815, 122, 122, "BZip2:x5:mt2" },
{ 10, 19, 2530, 122, 122, "BZip2:x7" },
{ 10, 18, 1010, 0, 1150, "PPMD:x1" },
{ 10, 22, 1655, 0, 1830, "PPMD:x5" },
{ 2, 0, 6, 0, 6, "Delta:4" },
{ 2, 0, 4, 0, 4, "BCJ" },
{ 10, 0, 24, 0, 24, "AES256CBC:1" },
{ 2, 0, 8, 0, 2, "AES256CBC:2" }
};
struct CBenchHash
{
unsigned Weight;
UInt32 Complex;
UInt32 CheckSum;
const char *Name;
};
static const CBenchHash g_Hash[] =
{
{ 1, 1820, 0x8F8FEDAB, "CRC32:1" },
{ 10, 558, 0x8F8FEDAB, "CRC32:4" },
{ 10, 339, 0x8F8FEDAB, "CRC32:8" },
{ 10, 512, 0xDF1C17CC, "CRC64" },
{ 10, 5100, 0x2D79FF2E, "SHA256" },
{ 10, 2340, 0x4C25132B, "SHA1" },
{ 2, 5500, 0xE084E913, "BLAKE2sp" }
};
struct CTotalBenchRes
{
// UInt64 NumIterations1; // for Usage
UInt64 NumIterations2; // for Rating / RPU
UInt64 Rating;
UInt64 Usage;
UInt64 RPU;
void Init() { /* NumIterations1 = 0; */ NumIterations2 = 0; Rating = 0; Usage = 0; RPU = 0; }
void SetSum(const CTotalBenchRes &r1, const CTotalBenchRes &r2)
{
Rating = (r1.Rating + r2.Rating);
Usage = (r1.Usage + r2.Usage);
RPU = (r1.RPU + r2.RPU);
// NumIterations1 = (r1.NumIterations1 + r2.NumIterations1);
NumIterations2 = (r1.NumIterations2 + r2.NumIterations2);
}
};
static void PrintNumber(IBenchPrintCallback &f, UInt64 value, unsigned size)
{
char s[128];
unsigned startPos = (unsigned)sizeof(s) - 32;
memset(s, ' ', startPos);
ConvertUInt64ToString(value, s + startPos);
// if (withSpace)
{
startPos--;
size++;
}
unsigned len = (unsigned)strlen(s + startPos);
if (size > len)
{
startPos -= (size - len);
if (startPos < 0)
startPos = 0;
}
f.Print(s + startPos);
}
static const unsigned kFieldSize_Name = 12;
static const unsigned kFieldSize_SmallName = 4;
static const unsigned kFieldSize_Speed = 9;
static const unsigned kFieldSize_Usage = 5;
static const unsigned kFieldSize_RU = 6;
static const unsigned kFieldSize_Rating = 6;
static const unsigned kFieldSize_EU = 5;
static const unsigned kFieldSize_Effec = 5;
static const unsigned kFieldSize_TotalSize = 4 + kFieldSize_Speed + kFieldSize_Usage + kFieldSize_RU + kFieldSize_Rating;
static const unsigned kFieldSize_EUAndEffec = 2 + kFieldSize_EU + kFieldSize_Effec;
static void PrintRating(IBenchPrintCallback &f, UInt64 rating, unsigned size)
{
PrintNumber(f, (rating + 500000) / 1000000, size);
}
static void PrintPercents(IBenchPrintCallback &f, UInt64 val, UInt64 divider, unsigned size)
{
PrintNumber(f, (val * 100 + divider / 2) / divider, size);
}
static void PrintChars(IBenchPrintCallback &f, char c, unsigned size)
{
char s[256];
memset(s, (Byte)c, size);
s[size] = 0;
f.Print(s);
}
static void PrintSpaces(IBenchPrintCallback &f, unsigned size)
{
PrintChars(f, ' ', size);
}
static void PrintResults(IBenchPrintCallback &f, UInt64 usage, UInt64 rpu, UInt64 rating, bool showFreq, UInt64 cpuFreq)
{
PrintNumber(f, (usage + 5000) / 10000, kFieldSize_Usage);
PrintRating(f, rpu, kFieldSize_RU);
PrintRating(f, rating, kFieldSize_Rating);
if (showFreq)
{
if (cpuFreq == 0)
PrintSpaces(f, kFieldSize_EUAndEffec);
else
{
UInt64 ddd = cpuFreq * usage / 100;
if (ddd == 0)
ddd = 1;
PrintPercents(f, (rating * 10000), ddd, kFieldSize_EU);
PrintPercents(f, rating, cpuFreq, kFieldSize_Effec);
}
}
}
static void PrintResults(IBenchPrintCallback *f,
const CBenchInfo &info,
unsigned weight,
UInt64 rating,
bool showFreq, UInt64 cpuFreq,
CTotalBenchRes *res)
{
UInt64 speed = info.GetSpeed(info.UnpackSize * info.NumIterations);
if (f)
{
if (speed != 0)
PrintNumber(*f, speed / 1024, kFieldSize_Speed);
else
PrintSpaces(*f, 1 + kFieldSize_Speed);
}
UInt64 usage = info.GetUsage();
UInt64 rpu = info.GetRatingPerUsage(rating);
if (f)
{
PrintResults(*f, usage, rpu, rating, showFreq, cpuFreq);
}
if (res)
{
// res->NumIterations1++;
res->NumIterations2 += weight;
res->RPU += (rpu * weight);
res->Rating += (rating * weight);
res->Usage += (usage * weight);
}
}
static void PrintTotals(IBenchPrintCallback &f, bool showFreq, UInt64 cpuFreq, const CTotalBenchRes &res)
{
PrintSpaces(f, 1 + kFieldSize_Speed);
// UInt64 numIterations1 = res.NumIterations1; if (numIterations1 == 0) numIterations1 = 1;
UInt64 numIterations2 = res.NumIterations2; if (numIterations2 == 0) numIterations2 = 1;
PrintResults(f, res.Usage / numIterations2, res.RPU / numIterations2, res.Rating / numIterations2, showFreq, cpuFreq);
}
static void PrintHex(AString &s, UInt64 v)
{
char temp[32];
ConvertUInt64ToHex(v, temp);
s += temp;
}
AString GetProcessThreadsInfo(const NSystem::CProcessAffinity &ti)
{
AString s;
// s.Add_UInt32(ti.numProcessThreads);
if (ti.processAffinityMask != ti.systemAffinityMask)
{
// if (ti.numProcessThreads != ti.numSysThreads)
{
s += " / ";
s.Add_UInt32(ti.GetNumSystemThreads());
}
s += " : ";
PrintHex(s, ti.processAffinityMask);
s += " / ";
PrintHex(s, ti.systemAffinityMask);
}
return s;
}
static void PrintSize(AString &s, UInt64 v)
{
char c = 0;
if ((v & 0x3FF) == 0) { v >>= 10; c = 'K';
if ((v & 0x3FF) == 0) { v >>= 10; c = 'M';
if ((v & 0x3FF) == 0) { v >>= 10; c = 'G';
if ((v & 0x3FF) == 0) { v >>= 10; c = 'T';
}}}}
else
{
PrintHex(s, v);
return;
}
char temp[32];
ConvertUInt64ToString(v, temp);
s += temp;
if (c)
s += c;
}
#ifdef _7ZIP_LARGE_PAGES
extern bool g_LargePagesMode;
extern "C"
{
extern SIZE_T g_LargePageSize;
}
void Add_LargePages_String(AString &s)
{
if (g_LargePagesMode || g_LargePageSize != 0)
{
s += " (LP-";
PrintSize(s, g_LargePageSize);
if (!g_LargePagesMode)
s += "-NA";
s += ")";
}
}
#endif
static void PrintRequirements(IBenchPrintCallback &f, const char *sizeString,
bool size_Defined, UInt64 size, const char *threadsString, UInt32 numThreads)
{
f.Print("RAM ");
f.Print(sizeString);
if (size_Defined)
PrintNumber(f, (size >> 20), 6);
else
f.Print(" ?");
f.Print(" MB");
#ifdef _7ZIP_LARGE_PAGES
{
AString s;
Add_LargePages_String(s);
f.Print(s);
}
#endif
f.Print(", # ");
f.Print(threadsString);
PrintNumber(f, numThreads, 3);
}
struct CBenchCallbackToPrint: public IBenchCallback
{
CBenchProps BenchProps;
CTotalBenchRes EncodeRes;
CTotalBenchRes DecodeRes;
IBenchPrintCallback *_file;
UInt32 DictSize;
bool Use2Columns;
unsigned NameFieldSize;
bool ShowFreq;
UInt64 CpuFreq;
unsigned EncodeWeight;
unsigned DecodeWeight;
CBenchCallbackToPrint():
Use2Columns(false),
NameFieldSize(0),
ShowFreq(false),
CpuFreq(0),
EncodeWeight(1),
DecodeWeight(1)
{}
void Init() { EncodeRes.Init(); DecodeRes.Init(); }
void Print(const char *s);
void NewLine();
HRESULT SetFreq(bool showFreq, UInt64 cpuFreq);
HRESULT SetEncodeResult(const CBenchInfo &info, bool final);
HRESULT SetDecodeResult(const CBenchInfo &info, bool final);
};
HRESULT CBenchCallbackToPrint::SetFreq(bool showFreq, UInt64 cpuFreq)
{
ShowFreq = showFreq;
CpuFreq = cpuFreq;
return S_OK;
}
HRESULT CBenchCallbackToPrint::SetEncodeResult(const CBenchInfo &info, bool final)
{
RINOK(_file->CheckBreak());
if (final)
{
UInt64 rating = BenchProps.GetCompressRating(DictSize, info.GlobalTime, info.GlobalFreq, info.UnpackSize * info.NumIterations);
PrintResults(_file, info,
EncodeWeight, rating,
ShowFreq, CpuFreq, &EncodeRes);
if (!Use2Columns)
_file->NewLine();
}
return S_OK;
}
static const char * const kSep = " | ";
HRESULT CBenchCallbackToPrint::SetDecodeResult(const CBenchInfo &info, bool final)
{
RINOK(_file->CheckBreak());
if (final)
{
UInt64 rating = BenchProps.GetDecompressRating(info.GlobalTime, info.GlobalFreq, info.UnpackSize, info.PackSize, info.NumIterations);
if (Use2Columns)
_file->Print(kSep);
else
PrintSpaces(*_file, NameFieldSize);
CBenchInfo info2 = info;
info2.UnpackSize *= info2.NumIterations;
info2.PackSize *= info2.NumIterations;
info2.NumIterations = 1;
PrintResults(_file, info2,
DecodeWeight, rating,
ShowFreq, CpuFreq, &DecodeRes);
}
return S_OK;
}
void CBenchCallbackToPrint::Print(const char *s)
{
_file->Print(s);
}
void CBenchCallbackToPrint::NewLine()
{
_file->NewLine();
}
void PrintLeft(IBenchPrintCallback &f, const char *s, unsigned size)
{
f.Print(s);
int numSpaces = size - MyStringLen(s);
if (numSpaces > 0)
PrintSpaces(f, numSpaces);
}
void PrintRight(IBenchPrintCallback &f, const char *s, unsigned size)
{
int numSpaces = size - MyStringLen(s);
if (numSpaces > 0)
PrintSpaces(f, numSpaces);
f.Print(s);
}
static HRESULT TotalBench(
DECL_EXTERNAL_CODECS_LOC_VARS
UInt64 complexInCommands,
UInt32 numThreads,
bool forceUnpackSize,
size_t unpackSize,
const Byte *fileData,
IBenchPrintCallback *printCallback, CBenchCallbackToPrint *callback)
{
for (unsigned i = 0; i < ARRAY_SIZE(g_Bench); i++)
{
const CBenchMethod &bench = g_Bench[i];
PrintLeft(*callback->_file, bench.Name, kFieldSize_Name);
callback->BenchProps.DecComplexUnc = bench.DecComplexUnc;
callback->BenchProps.DecComplexCompr = bench.DecComplexCompr;
callback->BenchProps.EncComplex = bench.EncComplex;
COneMethodInfo method;
NCOM::CPropVariant propVariant;
propVariant = bench.Name;
RINOK(method.ParseMethodFromPROPVARIANT(UString(), propVariant));
size_t unpackSize2 = unpackSize;
if (!forceUnpackSize && bench.DictBits == 0)
unpackSize2 = kFilterUnpackSize;
callback->EncodeWeight = bench.Weight;
callback->DecodeWeight = bench.Weight;
HRESULT res = MethodBench(
EXTERNAL_CODECS_LOC_VARS
complexInCommands,
false, numThreads, method,
unpackSize2, fileData,
bench.DictBits,
printCallback, callback, &callback->BenchProps);
if (res == E_NOTIMPL)
{
// callback->Print(" ---");
// we need additional empty line as line for decompression results
if (!callback->Use2Columns)
callback->NewLine();
}
else
{
RINOK(res);
}
callback->NewLine();
}
return S_OK;
}
static HRESULT FreqBench(
UInt64 complexInCommands,
UInt32 numThreads,
IBenchPrintCallback *_file,
bool showFreq,
UInt64 specifiedFreq,
UInt64 &cpuFreq,
UInt32 &res)
{
res = 0;
cpuFreq = 0;
UInt32 bufferSize = 1 << 20;
UInt32 complexity = kNumFreqCommands;
if (numThreads == 0)
numThreads = 1;
#ifdef _7ZIP_ST
numThreads = 1;
#endif
UInt32 bsize = (bufferSize == 0 ? 1 : bufferSize);
UInt64 numIterations = complexInCommands / complexity / bsize;
if (numIterations == 0)
numIterations = 1;
CBenchInfoCalc progressInfoSpec;
#ifndef _7ZIP_ST
CFreqThreads threads;
if (numThreads > 1)
{
threads.Items = new CFreqInfo[numThreads];
UInt32 i;
for (i = 0; i < numThreads; i++)
{
CFreqInfo &info = threads.Items[i];
info.Callback = _file;
info.CallbackRes = S_OK;
info.NumIterations = numIterations;
info.Size = bufferSize;
}
progressInfoSpec.SetStartTime();
for (i = 0; i < numThreads; i++)
{
CFreqInfo &info = threads.Items[i];
RINOK(info.Thread.Create(FreqThreadFunction, &info));
threads.NumThreads++;
}
threads.WaitAll();
for (i = 0; i < numThreads; i++)
{
RINOK(threads.Items[i].CallbackRes);
}
}
else
#endif
{
progressInfoSpec.SetStartTime();
UInt32 sum = g_BenchCpuFreqTemp;
for (UInt64 k = numIterations; k > 0; k--)
{
RINOK(_file->CheckBreak());
sum = CountCpuFreq(sum, bufferSize, g_BenchCpuFreqTemp);
}
res += sum;
}
CBenchInfo info;
progressInfoSpec.SetFinishTime(info);
info.UnpackSize = 0;
info.PackSize = 0;
info.NumIterations = 1;
if (_file)
{
{
UInt64 numCommands = (UInt64)numIterations * bufferSize * numThreads * complexity;
UInt64 rating = info.GetSpeed(numCommands);
cpuFreq = rating / numThreads;
PrintResults(_file, info,
0, // weight
rating,
showFreq, showFreq ? (specifiedFreq != 0 ? specifiedFreq : cpuFreq) : 0, NULL);
}
RINOK(_file->CheckBreak());
}
return S_OK;
}
static HRESULT CrcBench(
DECL_EXTERNAL_CODECS_LOC_VARS
UInt64 complexInCommands,
UInt32 numThreads, UInt32 bufferSize,
UInt64 &speed,
UInt32 complexity, unsigned benchWeight,
const UInt32 *checkSum,
const COneMethodInfo &method,
IBenchPrintCallback *_file,
CTotalBenchRes *encodeRes,
bool showFreq, UInt64 cpuFreq)
{
if (numThreads == 0)
numThreads = 1;
#ifdef _7ZIP_ST
numThreads = 1;
#endif
const AString &methodName = method.MethodName;
// methodName.RemoveChar(L'-');
CMethodId hashID;
if (!FindHashMethod(
EXTERNAL_CODECS_LOC_VARS
methodName, hashID))
return E_NOTIMPL;
CBenchBuffer buffer;
size_t totalSize = (size_t)bufferSize * numThreads;
if (totalSize / numThreads != bufferSize)
return E_OUTOFMEMORY;
if (!buffer.Alloc(totalSize))
return E_OUTOFMEMORY;
Byte *buf = buffer.Buffer;
CBaseRandomGenerator RG;
UInt32 bsize = (bufferSize == 0 ? 1 : bufferSize);
UInt64 numIterations = complexInCommands * 256 / complexity / bsize;
if (numIterations == 0)
numIterations = 1;
CBenchInfoCalc progressInfoSpec;
#ifndef _7ZIP_ST
CCrcThreads threads;
if (numThreads > 1)
{
threads.Items = new CCrcInfo[numThreads];
UInt32 i;
for (i = 0; i < numThreads; i++)
{
CCrcInfo &info = threads.Items[i];
AString name;
RINOK(CreateHasher(EXTERNAL_CODECS_LOC_VARS hashID, name, info.Hasher));
if (!info.Hasher)
return E_NOTIMPL;
CMyComPtr<ICompressSetCoderProperties> scp;
info.Hasher.QueryInterface(IID_ICompressSetCoderProperties, &scp);
if (scp)
{
UInt64 reduceSize = 1;
RINOK(method.SetCoderProps(scp, &reduceSize));
}
Byte *data = buf + (size_t)bufferSize * i;
info.Callback = _file;
info.Data = data;
info.NumIterations = numIterations;
info.Size = bufferSize;
/* info.Crc = */ RandGenCrc(data, bufferSize, RG);
info.CheckSumDefined = false;
if (checkSum)
{
info.CheckSum = *checkSum;
info.CheckSumDefined = (checkSum && (i == 0));
}
#ifdef USE_ALLOCA
info.AllocaSize = (i * 16 * 21) & 0x7FF;
#endif
}
progressInfoSpec.SetStartTime();
for (i = 0; i < numThreads; i++)
{
CCrcInfo &info = threads.Items[i];
RINOK(info.Thread.Create(CrcThreadFunction, &info));
threads.NumThreads++;
}
threads.WaitAll();
for (i = 0; i < numThreads; i++)
{
RINOK(threads.Items[i].Res);
}
}
else
#endif
{
/* UInt32 crc = */ RandGenCrc(buf, bufferSize, RG);
progressInfoSpec.SetStartTime();
CMyComPtr<IHasher> hasher;
AString name;
RINOK(CreateHasher(EXTERNAL_CODECS_LOC_VARS hashID, name, hasher));
if (!hasher)
return E_NOTIMPL;
CMyComPtr<ICompressSetCoderProperties> scp;
hasher.QueryInterface(IID_ICompressSetCoderProperties, &scp);
if (scp)
{
UInt64 reduceSize = 1;
RINOK(method.SetCoderProps(scp, &reduceSize));
}
RINOK(CrcBig(buf, bufferSize, numIterations, checkSum, hasher, _file));
}
CBenchInfo info;
progressInfoSpec.SetFinishTime(info);
UInt64 unpSize = numIterations * bufferSize;
UInt64 unpSizeThreads = unpSize * numThreads;
info.UnpackSize = unpSizeThreads;
info.PackSize = unpSizeThreads;
info.NumIterations = 1;
if (_file)
{
{
UInt64 numCommands = unpSizeThreads * complexity / 256;
UInt64 rating = info.GetSpeed(numCommands);
PrintResults(_file, info,
benchWeight, rating,
showFreq, cpuFreq, encodeRes);
}
RINOK(_file->CheckBreak());
}
speed = info.GetSpeed(unpSizeThreads);
return S_OK;
}
static HRESULT TotalBench_Hash(
DECL_EXTERNAL_CODECS_LOC_VARS
UInt64 complexInCommands,
UInt32 numThreads, UInt32 bufSize,
IBenchPrintCallback *printCallback, CBenchCallbackToPrint *callback,
CTotalBenchRes *encodeRes,
bool showFreq, UInt64 cpuFreq)
{
for (unsigned i = 0; i < ARRAY_SIZE(g_Hash); i++)
{
const CBenchHash &bench = g_Hash[i];
PrintLeft(*callback->_file, bench.Name, kFieldSize_Name);
// callback->BenchProps.DecComplexUnc = bench.DecComplexUnc;
// callback->BenchProps.DecComplexCompr = bench.DecComplexCompr;
// callback->BenchProps.EncComplex = bench.EncComplex;
COneMethodInfo method;
NCOM::CPropVariant propVariant;
propVariant = bench.Name;
RINOK(method.ParseMethodFromPROPVARIANT(UString(), propVariant));
UInt64 speed;
HRESULT res = CrcBench(
EXTERNAL_CODECS_LOC_VARS
complexInCommands,
numThreads, bufSize,
speed,
bench.Complex, bench.Weight,
&bench.CheckSum, method,
printCallback, encodeRes, showFreq, cpuFreq);
if (res == E_NOTIMPL)
{
// callback->Print(" ---");
}
else
{
RINOK(res);
}
callback->NewLine();
}
return S_OK;
}
struct CTempValues
{
UInt64 *Values;
CTempValues(UInt32 num) { Values = new UInt64[num]; }
~CTempValues() { delete []Values; }
};
static void ParseNumberString(const UString &s, NCOM::CPropVariant &prop)
{
const wchar_t *end;
UInt64 result = ConvertStringToUInt64(s, &end);
if (*end != 0 || s.IsEmpty())
prop = s;
else if (result <= (UInt32)0xFFFFFFFF)
prop = (UInt32)result;
else
prop = result;
}
static UInt32 GetNumThreadsNext(unsigned i, UInt32 numThreads)
{
if (i < 2)
return i + 1;
i -= 1;
UInt32 num = (UInt32)(2 + (i & 1)) << (i >> 1);
return (num <= numThreads) ? num : numThreads;
}
static bool AreSameMethodNames(const char *fullName, const char *shortName)
{
return StringsAreEqualNoCase_Ascii(fullName, shortName);
}
#ifdef MY_CPU_X86_OR_AMD64
static void PrintCpuChars(AString &s, UInt32 v)
{
for (int j = 0; j < 4; j++)
{
Byte b = (Byte)(v & 0xFF);
v >>= 8;
if (b == 0)
break;
s += (char)b;
}
}
static void x86cpuid_to_String(const Cx86cpuid &c, AString &s)
{
s.Empty();
UInt32 maxFunc2 = 0;
UInt32 t[3];
MyCPUID(0x80000000, &maxFunc2, &t[0], &t[1], &t[2]);
bool fullNameIsAvail = (maxFunc2 >= 0x80000004);
if (!fullNameIsAvail)
{
for (int i = 0; i < 3; i++)
PrintCpuChars(s, c.vendor[i]);
}
else
{
for (int i = 0; i < 3; i++)
{
UInt32 d[4] = { 0 };
MyCPUID(0x80000002 + i, &d[0], &d[1], &d[2], &d[3]);
for (int j = 0; j < 4; j++)
PrintCpuChars(s, d[j]);
}
}
s.Add_Space_if_NotEmpty();
{
char temp[32];
ConvertUInt32ToHex(c.ver, temp);
s += '(';
s += temp;
s += ')';
}
}
#endif
static const char * const k_PROCESSOR_ARCHITECTURE[] =
{
"x86" // "INTEL"
, "MIPS"
, "ALPHA"
, "PPC"
, "SHX"
, "ARM"
, "IA64"
, "ALPHA64"
, "MSIL"
, "x64" // "AMD64"
, "IA32_ON_WIN64"
, "NEUTRAL"
, "ARM64"
, "ARM32_ON_WIN64"
};
#define MY__PROCESSOR_ARCHITECTURE_INTEL 0
#define MY__PROCESSOR_ARCHITECTURE_AMD64 9
#define MY__PROCESSOR_INTEL_PENTIUM 586
#define MY__PROCESSOR_AMD_X8664 8664
/*
static const CUInt32PCharPair k_PROCESSOR[] =
{
{ 2200, "IA64" },
{ 8664, "x64" }
};
#define PROCESSOR_INTEL_386 386
#define PROCESSOR_INTEL_486 486
#define PROCESSOR_INTEL_PENTIUM 586
#define PROCESSOR_INTEL_860 860
#define PROCESSOR_INTEL_IA64 2200
#define PROCESSOR_AMD_X8664 8664
#define PROCESSOR_MIPS_R2000 2000
#define PROCESSOR_MIPS_R3000 3000
#define PROCESSOR_MIPS_R4000 4000
#define PROCESSOR_ALPHA_21064 21064
#define PROCESSOR_PPC_601 601
#define PROCESSOR_PPC_603 603
#define PROCESSOR_PPC_604 604
#define PROCESSOR_PPC_620 620
#define PROCESSOR_HITACHI_SH3 10003
#define PROCESSOR_HITACHI_SH3E 10004
#define PROCESSOR_HITACHI_SH4 10005
#define PROCESSOR_MOTOROLA_821 821
#define PROCESSOR_SHx_SH3 103
#define PROCESSOR_SHx_SH4 104
#define PROCESSOR_STRONGARM 2577 // 0xA11
#define PROCESSOR_ARM720 1824 // 0x720
#define PROCESSOR_ARM820 2080 // 0x820
#define PROCESSOR_ARM920 2336 // 0x920
#define PROCESSOR_ARM_7TDMI 70001
#define PROCESSOR_OPTIL 18767 // 0x494f
*/
#ifdef _WIN32
static const char * const k_PF[] =
{
"FP_ERRATA"
, "FP_EMU"
, "CMPXCHG"
, "MMX"
, "PPC_MOVEMEM_64BIT"
, "ALPHA_BYTE"
, "SSE"
, "3DNOW"
, "RDTSC"
, "PAE"
, "SSE2"
, "SSE_DAZ"
, "NX"
, "SSE3"
, "CMPXCHG16B"
, "CMP8XCHG16"
, "CHANNELS"
, "XSAVE"
, "ARM_VFP_32"
, "ARM_NEON"
, "L2AT"
, "VIRT_FIRMWARE"
, "RDWRFSGSBASE"
, "FASTFAIL"
, "ARM_DIVIDE"
, "ARM_64BIT_LOADSTORE_ATOMIC"
, "ARM_EXTERNAL_CACHE"
, "ARM_FMAC"
, "RDRAND"
, "ARM_V8"
, "ARM_V8_CRYPTO"
, "ARM_V8_CRC32"
, "RDTSCP"
};
#endif
static void PrintPage(AString &s, UInt32 v)
{
if ((v & 0x3FF) == 0)
{
s.Add_UInt32(v >> 10);
s += "K";
}
else
s.Add_UInt32(v >> 10);
}
static AString TypeToString2(const char * const table[], unsigned num, UInt32 value)
{
char sz[16];
const char *p = NULL;
if (value < num)
p = table[value];
if (!p)
{
ConvertUInt32ToString(value, sz);
p = sz;
}
return (AString)p;
}
#ifdef _WIN32
static void SysInfo_To_String(AString &s, const SYSTEM_INFO &si)
{
s += TypeToString2(k_PROCESSOR_ARCHITECTURE, ARRAY_SIZE(k_PROCESSOR_ARCHITECTURE), si.wProcessorArchitecture);
if (!( si.wProcessorArchitecture == MY__PROCESSOR_ARCHITECTURE_INTEL && si.dwProcessorType == MY__PROCESSOR_INTEL_PENTIUM
|| si.wProcessorArchitecture == MY__PROCESSOR_ARCHITECTURE_AMD64 && si.dwProcessorType == MY__PROCESSOR_AMD_X8664))
{
s += " ";
// s += TypePairToString(k_PROCESSOR, ARRAY_SIZE(k_PROCESSOR), si.dwProcessorType);
s.Add_UInt32(si.dwProcessorType);
}
s += " ";
PrintHex(s, si.wProcessorLevel);
s += ".";
PrintHex(s, si.wProcessorRevision);
if ((UInt64)si.dwActiveProcessorMask + 1 != ((UInt64)1 << si.dwNumberOfProcessors))
if ((UInt64)si.dwActiveProcessorMask + 1 != 0 || si.dwNumberOfProcessors != sizeof(UInt64) * 8)
{
s += " act:";
PrintHex(s, si.dwActiveProcessorMask);
}
s += " cpus:";
s.Add_UInt32(si.dwNumberOfProcessors);
if (si.dwPageSize != 1 << 12)
{
s += " page:";
PrintPage(s, si.dwPageSize);
}
if (si.dwAllocationGranularity != 1 << 16)
{
s += " gran:";
PrintPage(s, si.dwAllocationGranularity);
}
s += " ";
DWORD_PTR minAdd = (DWORD_PTR)si.lpMinimumApplicationAddress;
UInt64 maxSize = (UInt64)(DWORD_PTR)si.lpMaximumApplicationAddress + 1;
const UInt32 kReserveSize = ((UInt32)1 << 16);
if (minAdd != kReserveSize)
{
PrintSize(s, minAdd);
s += "-";
}
else
{
if ((maxSize & (kReserveSize - 1)) == 0)
maxSize += kReserveSize;
}
PrintSize(s, maxSize);
}
#ifndef _WIN64
typedef VOID (WINAPI *Func_GetNativeSystemInfo)(LPSYSTEM_INFO lpSystemInfo);
#endif
#endif
void GetSysInfo(AString &s1, AString &s2)
{
s1.Empty();
s2.Empty();
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
{
SysInfo_To_String(s1, si);
// s += " : ";
}
#if !defined(_WIN64) && !defined(UNDER_CE)
Func_GetNativeSystemInfo fn_GetNativeSystemInfo = (Func_GetNativeSystemInfo)GetProcAddress(
GetModuleHandleA("kernel32.dll"), "GetNativeSystemInfo");
if (fn_GetNativeSystemInfo)
{
SYSTEM_INFO si2;
fn_GetNativeSystemInfo(&si2);
// if (memcmp(&si, &si2, sizeof(si)) != 0)
{
// s += " - ";
SysInfo_To_String(s2, si2);
}
}
#endif
#endif
}
void GetCpuName(AString &s)
{
s.Empty();
#ifdef MY_CPU_X86_OR_AMD64
{
Cx86cpuid cpuid;
if (x86cpuid_CheckAndRead(&cpuid))
{
AString s2;
x86cpuid_to_String(cpuid, s2);
s += s2;
}
else
{
#ifdef MY_CPU_AMD64
s += "x64";
#else
s += "x86";
#endif
}
}
#else
#ifdef MY_CPU_LE
s += "LE";
#elif defined(MY_CPU_BE)
s += "BE";
#endif
#endif
#ifdef _7ZIP_LARGE_PAGES
Add_LargePages_String(s);
#endif
}
void GetCpuFeatures(AString &s)
{
s.Empty();
#ifdef _WIN32
const unsigned kNumFeatures_Extra = 32; // we check also for unknown features
const unsigned kNumFeatures = ARRAY_SIZE(k_PF) + kNumFeatures_Extra;
for (unsigned i = 0; i < kNumFeatures; i++)
{
if (IsProcessorFeaturePresent(i))
{
s.Add_Space_if_NotEmpty();
s += TypeToString2(k_PF, ARRAY_SIZE(k_PF), i);
}
}
#endif
}
#ifdef _WIN32
#ifndef UNDER_CE
typedef void (WINAPI * Func_RtlGetVersion) (OSVERSIONINFOEXW *);
static BOOL My_RtlGetVersion(OSVERSIONINFOEXW *vi)
{
HMODULE ntdll = ::GetModuleHandleW(L"ntdll.dll");
if (!ntdll)
return FALSE;
Func_RtlGetVersion func = (Func_RtlGetVersion)GetProcAddress(ntdll, "RtlGetVersion");
if (!func)
return FALSE;
func(vi);
return TRUE;
}
#endif
#endif
HRESULT Bench(
DECL_EXTERNAL_CODECS_LOC_VARS
IBenchPrintCallback *printCallback,
IBenchCallback *benchCallback,
// IBenchFreqCallback *freqCallback,
const CObjectVector<CProperty> &props,
UInt32 numIterations,
bool multiDict)
{
if (!CrcInternalTest())
return S_FALSE;
UInt32 numCPUs = 1;
UInt64 ramSize = (UInt64)(sizeof(size_t)) << 29;
NSystem::CProcessAffinity threadsInfo;
threadsInfo.InitST();
#ifndef _7ZIP_ST
if (threadsInfo.Get() && threadsInfo.processAffinityMask != 0)
numCPUs = threadsInfo.GetNumProcessThreads();
else
numCPUs = NSystem::GetNumberOfProcessors();
#endif
bool ramSize_Defined = NSystem::GetRamSize(ramSize);
UInt32 numThreadsSpecified = numCPUs;
UInt32 testTime = kComplexInSeconds;
UInt64 specifiedFreq = 0;
bool multiThreadTests = false;
COneMethodInfo method;
CBenchBuffer fileDataBuffer;
{
unsigned i;
for (i = 0; i < props.Size(); i++)
{
const CProperty &property = props[i];
UString name (property.Name);
name.MakeLower_Ascii();
if (name.IsEqualTo("file"))
{
if (property.Value.IsEmpty())
return E_INVALIDARG;
#ifdef USE_WIN_FILE
NFile::NIO::CInFile file;
if (!file.Open(us2fs(property.Value)))
return E_INVALIDARG;
UInt64 len;
if (!file.GetLength(len))
return E_FAIL;
if (len >= ((UInt32)1 << 31) || len == 0)
return E_INVALIDARG;
if (!fileDataBuffer.Alloc((size_t)len))
return E_OUTOFMEMORY;
UInt32 processedSize;
file.Read(fileDataBuffer.Buffer, (UInt32)len, processedSize);
if (processedSize != len)
return E_FAIL;
if (printCallback)
{
printCallback->Print("file size =");
PrintNumber(*printCallback, len, 0);
printCallback->NewLine();
}
continue;
#else
return E_NOTIMPL;
#endif
}
NCOM::CPropVariant propVariant;
if (!property.Value.IsEmpty())
ParseNumberString(property.Value, propVariant);
if (name.IsEqualTo("time"))
{
RINOK(ParsePropToUInt32(UString(), propVariant, testTime));
continue;
}
if (name.IsEqualTo("freq"))
{
UInt32 freq32 = 0;
RINOK(ParsePropToUInt32(UString(), propVariant, freq32));
if (freq32 == 0)
return E_INVALIDARG;
specifiedFreq = (UInt64)freq32 * 1000000;
if (printCallback)
{
printCallback->Print("freq=");
PrintNumber(*printCallback, freq32, 0);
printCallback->NewLine();
}
continue;
}
if (name.IsPrefixedBy_Ascii_NoCase("mt"))
{
UString s = name.Ptr(2);
if (s.IsEqualTo("*")
|| s.IsEmpty() && propVariant.vt == VT_BSTR && StringsAreEqual_Ascii(propVariant.bstrVal, "*"))
{
multiThreadTests = true;
continue;
}
#ifndef _7ZIP_ST
RINOK(ParseMtProp(s, propVariant, numCPUs, numThreadsSpecified));
#endif
continue;
}
RINOK(method.ParseMethodFromPROPVARIANT(name, propVariant));
}
}
if (printCallback)
{
#ifdef _WIN32
#ifndef UNDER_CE
{
AString s;
// OSVERSIONINFO vi;
OSVERSIONINFOEXW vi;
vi.dwOSVersionInfoSize = sizeof(vi);
// if (::GetVersionEx(&vi))
if (My_RtlGetVersion(&vi))
{
s += "Windows";
if (vi.dwPlatformId != VER_PLATFORM_WIN32_NT)
s.Add_UInt32(vi.dwPlatformId);
s += " "; s.Add_UInt32(vi.dwMajorVersion);
s += "."; s.Add_UInt32(vi.dwMinorVersion);
s += " "; s.Add_UInt32(vi.dwBuildNumber);
// s += " "; s += GetAnsiString(vi.szCSDVersion);
}
printCallback->Print(s);
printCallback->NewLine();
}
#endif
#endif
{
AString s1, s2;
GetSysInfo(s1, s2);
if (!s1.IsEmpty() || !s2.IsEmpty())
{
printCallback->Print(s1);
if (s1 != s2 && !s2.IsEmpty())
{
printCallback->Print(" - ");
printCallback->Print(s2);
}
printCallback->NewLine();
}
}
{
AString s;
GetCpuFeatures(s);
if (!s.IsEmpty())
{
printCallback->Print(s);
printCallback->NewLine();
}
}
{
AString s;
GetCpuName(s);
if (!s.IsEmpty())
{
printCallback->Print(s);
printCallback->NewLine();
}
}
}
if (printCallback)
{
printCallback->Print("CPU Freq:");
}
UInt64 complexInCommands = kComplexInCommands;
if (printCallback /* || freqCallback */)
{
UInt64 numMilCommands = 1 << 6;
if (specifiedFreq != 0)
{
while (numMilCommands > 1 && specifiedFreq < (numMilCommands * 1000000))
numMilCommands >>= 1;
}
for (int jj = 0;; jj++)
{
if (printCallback)
RINOK(printCallback->CheckBreak());
UInt64 start = ::GetTimeCount();
UInt32 sum = (UInt32)start;
sum = CountCpuFreq(sum, (UInt32)(numMilCommands * 1000000 / kNumFreqCommands), g_BenchCpuFreqTemp);
if (sum == 0xF1541213)
if (printCallback)
printCallback->Print("");
const UInt64 realDelta = ::GetTimeCount() - start;
start = realDelta;
if (start == 0)
start = 1;
UInt64 freq = GetFreq();
// mips is constant in some compilers
const UInt64 mipsVal = numMilCommands * freq / start;
if (printCallback)
{
if (realDelta == 0)
{
printCallback->Print(" -");
}
else
{
// PrintNumber(*printCallback, start, 0);
PrintNumber(*printCallback, mipsVal, 5);
}
}
/*
if (freqCallback)
freqCallback->AddCpuFreq(mipsVal);
*/
if (jj >= 3)
{
SetComplexCommands(testTime, false, mipsVal * 1000000, complexInCommands);
if (jj >= 8 || start >= freq)
break;
// break; // change it
numMilCommands <<= 1;
}
}
}
if (printCallback)
{
printCallback->NewLine();
printCallback->NewLine();
PrintRequirements(*printCallback, "size: ", ramSize_Defined, ramSize, "CPU hardware threads:", numCPUs);
printCallback->Print(GetProcessThreadsInfo(threadsInfo));
printCallback->NewLine();
}
if (numThreadsSpecified < 1 || numThreadsSpecified > kNumThreadsMax)
return E_INVALIDARG;
UInt32 dict;
bool dictIsDefined = method.Get_DicSize(dict);
if (method.MethodName.IsEmpty())
method.MethodName = "LZMA";
if (benchCallback)
{
CBenchProps benchProps;
benchProps.SetLzmaCompexity();
UInt32 dictSize = method.Get_Lzma_DicSize();
UInt32 uncompressedDataSize = kAdditionalSize + dictSize;
return MethodBench(
EXTERNAL_CODECS_LOC_VARS
complexInCommands,
true, numThreadsSpecified,
method,
uncompressedDataSize, fileDataBuffer.Buffer,
kOldLzmaDictBits, printCallback, benchCallback, &benchProps);
}
AString methodName (method.MethodName);
if (methodName.IsEqualTo_Ascii_NoCase("CRC"))
methodName = "crc32";
method.MethodName = methodName;
CMethodId hashID;
if (FindHashMethod(EXTERNAL_CODECS_LOC_VARS methodName, hashID))
{
if (!printCallback)
return S_FALSE;
IBenchPrintCallback &f = *printCallback;
if (!dictIsDefined)
dict = (1 << 24);
// methhodName.RemoveChar(L'-');
UInt32 complexity = 10000;
const UInt32 *checkSum = NULL;
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(g_Hash); i++)
{
const CBenchHash &h = g_Hash[i];
AString benchMethod (h.Name);
AString benchProps;
int propPos = benchMethod.Find(':');
if (propPos >= 0)
{
benchProps = benchMethod.Ptr(propPos + 1);
benchMethod.DeleteFrom(propPos);
}
if (AreSameMethodNames(benchMethod, methodName))
{
if (benchProps.IsEmpty()
|| benchMethod.IsEqualTo_Ascii_NoCase("crc32") && benchProps == "8" && method.PropsString.IsEmpty()
|| method.PropsString.IsPrefixedBy_Ascii_NoCase(benchProps))
{
complexity = h.Complex;
checkSum = &h.CheckSum;
if (method.PropsString.IsEqualTo_Ascii_NoCase(benchProps))
break;
}
}
}
if (i == ARRAY_SIZE(g_Hash))
return E_NOTIMPL;
}
f.NewLine();
f.Print("Size");
const unsigned kFieldSize_CrcSpeed = 6;
unsigned numThreadsTests = 0;
for (;;)
{
UInt32 t = GetNumThreadsNext(numThreadsTests, numThreadsSpecified);
PrintNumber(f, t, kFieldSize_CrcSpeed);
numThreadsTests++;
if (t >= numThreadsSpecified)
break;
}
f.NewLine();
f.NewLine();
CTempValues speedTotals(numThreadsTests);
{
for (unsigned ti = 0; ti < numThreadsTests; ti++)
speedTotals.Values[ti] = 0;
}
UInt64 numSteps = 0;
for (UInt32 i = 0; i < numIterations; i++)
{
for (unsigned pow = 10; pow < 32; pow++)
{
UInt32 bufSize = (UInt32)1 << pow;
if (bufSize > dict)
break;
char s[16];
ConvertUInt32ToString(pow, s);
unsigned pos = MyStringLen(s);
s[pos++] = ':';
s[pos++] = ' ';
s[pos] = 0;
f.Print(s);
for (unsigned ti = 0; ti < numThreadsTests; ti++)
{
RINOK(f.CheckBreak());
UInt32 t = GetNumThreadsNext(ti, numThreadsSpecified);
UInt64 speed = 0;
RINOK(CrcBench(EXTERNAL_CODECS_LOC_VARS complexInCommands,
t, bufSize, speed,
complexity,
1, // benchWeight,
(pow == kNumHashDictBits) ? checkSum : NULL, method, NULL, NULL, false, 0));
PrintNumber(f, (speed >> 20), kFieldSize_CrcSpeed);
speedTotals.Values[ti] += speed;
}
f.NewLine();
numSteps++;
}
}
if (numSteps != 0)
{
f.NewLine();
f.Print("Avg:");
for (unsigned ti = 0; ti < numThreadsTests; ti++)
{
PrintNumber(f, ((speedTotals.Values[ti] / numSteps) >> 20), kFieldSize_CrcSpeed);
}
f.NewLine();
}
return S_OK;
}
bool use2Columns = false;
bool totalBenchMode = (method.MethodName.IsEqualTo_Ascii_NoCase("*"));
bool onlyHashBench = false;
if (method.MethodName.IsEqualTo_Ascii_NoCase("hash"))
{
onlyHashBench = true;
totalBenchMode = true;
}
// ---------- Threads loop ----------
for (unsigned threadsPassIndex = 0; threadsPassIndex < 3; threadsPassIndex++)
{
UInt32 numThreads = numThreadsSpecified;
if (!multiThreadTests)
{
if (threadsPassIndex != 0)
break;
}
else
{
numThreads = 1;
if (threadsPassIndex != 0)
{
if (numCPUs < 2)
break;
numThreads = numCPUs;
if (threadsPassIndex == 1)
{
if (numCPUs >= 4)
numThreads = numCPUs / 2;
}
else if (numCPUs < 4)
break;
}
}
CBenchCallbackToPrint callback;
callback.Init();
callback._file = printCallback;
IBenchPrintCallback &f = *printCallback;
if (threadsPassIndex > 0)
{
f.NewLine();
f.NewLine();
}
if (!dictIsDefined)
{
const unsigned dicSizeLog_Main = (totalBenchMode ? 24 : 25);
unsigned dicSizeLog = dicSizeLog_Main;
#ifdef UNDER_CE
dicSizeLog = (UInt64)1 << 20;
#endif
if (ramSize_Defined)
for (; dicSizeLog > kBenchMinDicLogSize; dicSizeLog--)
if (GetBenchMemoryUsage(numThreads, ((UInt32)1 << dicSizeLog), totalBenchMode) + (8 << 20) <= ramSize)
break;
dict = (UInt32)1 << dicSizeLog;
if (totalBenchMode && dicSizeLog != dicSizeLog_Main)
{
f.Print("Dictionary reduced to: ");
PrintNumber(f, dicSizeLog, 1);
f.NewLine();
}
}
PrintRequirements(f, "usage:", true, GetBenchMemoryUsage(numThreads, dict, totalBenchMode), "Benchmark threads: ", numThreads);
f.NewLine();
f.NewLine();
if (totalBenchMode)
{
callback.NameFieldSize = kFieldSize_Name;
use2Columns = false;
}
else
{
callback.NameFieldSize = kFieldSize_SmallName;
use2Columns = true;
}
callback.Use2Columns = use2Columns;
bool showFreq = false;
UInt64 cpuFreq = 0;
if (totalBenchMode)
{
showFreq = true;
}
unsigned fileldSize = kFieldSize_TotalSize;
if (showFreq)
fileldSize += kFieldSize_EUAndEffec;
if (use2Columns)
{
PrintSpaces(f, callback.NameFieldSize);
PrintRight(f, "Compressing", fileldSize);
f.Print(kSep);
PrintRight(f, "Decompressing", fileldSize);
}
f.NewLine();
PrintLeft(f, totalBenchMode ? "Method" : "Dict", callback.NameFieldSize);
int j;
for (j = 0; j < 2; j++)
{
PrintRight(f, "Speed", kFieldSize_Speed + 1);
PrintRight(f, "Usage", kFieldSize_Usage + 1);
PrintRight(f, "R/U", kFieldSize_RU + 1);
PrintRight(f, "Rating", kFieldSize_Rating + 1);
if (showFreq)
{
PrintRight(f, "E/U", kFieldSize_EU + 1);
PrintRight(f, "Effec", kFieldSize_Effec + 1);
}
if (!use2Columns)
break;
if (j == 0)
f.Print(kSep);
}
f.NewLine();
PrintSpaces(f, callback.NameFieldSize);
for (j = 0; j < 2; j++)
{
PrintRight(f, "KiB/s", kFieldSize_Speed + 1);
PrintRight(f, "%", kFieldSize_Usage + 1);
PrintRight(f, "MIPS", kFieldSize_RU + 1);
PrintRight(f, "MIPS", kFieldSize_Rating + 1);
if (showFreq)
{
PrintRight(f, "%", kFieldSize_EU + 1);
PrintRight(f, "%", kFieldSize_Effec + 1);
}
if (!use2Columns)
break;
if (j == 0)
f.Print(kSep);
}
f.NewLine();
f.NewLine();
if (specifiedFreq != 0)
cpuFreq = specifiedFreq;
if (totalBenchMode)
{
for (UInt32 i = 0; i < numIterations; i++)
{
if (i != 0)
printCallback->NewLine();
HRESULT res;
const unsigned kNumCpuTests = 3;
for (unsigned freqTest = 0; freqTest < kNumCpuTests; freqTest++)
{
PrintLeft(f, "CPU", kFieldSize_Name);
UInt32 resVal;
RINOK(FreqBench(complexInCommands, numThreads, printCallback,
(freqTest == kNumCpuTests - 1 || specifiedFreq != 0), // showFreq
specifiedFreq,
cpuFreq, resVal));
callback.NewLine();
if (specifiedFreq != 0)
cpuFreq = specifiedFreq;
if (freqTest == kNumCpuTests - 1)
SetComplexCommands(testTime, specifiedFreq != 0, cpuFreq, complexInCommands);
}
callback.NewLine();
callback.SetFreq(true, cpuFreq);
if (!onlyHashBench)
{
res = TotalBench(EXTERNAL_CODECS_LOC_VARS
complexInCommands, numThreads,
dictIsDefined || fileDataBuffer.Buffer, // forceUnpackSize
fileDataBuffer.Buffer ? fileDataBuffer.BufferSize : dict,
fileDataBuffer.Buffer,
printCallback, &callback);
RINOK(res);
}
res = TotalBench_Hash(EXTERNAL_CODECS_LOC_VARS complexInCommands, numThreads,
1 << kNumHashDictBits, printCallback, &callback, &callback.EncodeRes, true, cpuFreq);
RINOK(res);
callback.NewLine();
{
PrintLeft(f, "CPU", kFieldSize_Name);
UInt32 resVal;
UInt64 cpuFreqLastTemp = cpuFreq;
RINOK(FreqBench(complexInCommands, numThreads, printCallback,
specifiedFreq != 0, // showFreq
specifiedFreq,
cpuFreqLastTemp, resVal));
callback.NewLine();
}
}
}
else
{
bool needSetComplexity = true;
if (!methodName.IsEqualTo_Ascii_NoCase("LZMA"))
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(g_Bench); i++)
{
const CBenchMethod &h = g_Bench[i];
AString benchMethod (h.Name);
AString benchProps;
int propPos = benchMethod.Find(':');
if (propPos >= 0)
{
benchProps = benchMethod.Ptr(propPos + 1);
benchMethod.DeleteFrom(propPos);
}
if (AreSameMethodNames(benchMethod, methodName))
{
if (benchProps.IsEmpty()
|| benchProps == "x5" && method.PropsString.IsEmpty()
|| method.PropsString.IsPrefixedBy_Ascii_NoCase(benchProps))
{
callback.BenchProps.EncComplex = h.EncComplex;
callback.BenchProps.DecComplexCompr = h.DecComplexCompr;
callback.BenchProps.DecComplexUnc = h.DecComplexUnc;;
needSetComplexity = false;
break;
}
}
}
if (i == ARRAY_SIZE(g_Bench))
return E_NOTIMPL;
}
if (needSetComplexity)
callback.BenchProps.SetLzmaCompexity();
for (unsigned i = 0; i < numIterations; i++)
{
const unsigned kStartDicLog = 22;
unsigned pow = (dict < ((UInt32)1 << kStartDicLog)) ? kBenchMinDicLogSize : kStartDicLog;
if (!multiDict)
pow = 31;
while (((UInt32)1 << pow) > dict && pow > 0)
pow--;
for (; ((UInt32)1 << pow) <= dict; pow++)
{
char s[16];
ConvertUInt32ToString(pow, s);
unsigned pos = MyStringLen(s);
s[pos++] = ':';
s[pos] = 0;
PrintLeft(f, s, kFieldSize_SmallName);
callback.DictSize = (UInt32)1 << pow;
COneMethodInfo method2 = method;
if (StringsAreEqualNoCase_Ascii(method2.MethodName, "LZMA"))
{
// We add dictionary size property.
// method2 can have two different dictionary size properties.
// And last property is main.
NCOM::CPropVariant propVariant = (UInt32)pow;
RINOK(method2.ParseMethodFromPROPVARIANT((UString)"d", propVariant));
}
size_t uncompressedDataSize;
if (fileDataBuffer.Buffer)
{
uncompressedDataSize = fileDataBuffer.BufferSize;
}
else
{
uncompressedDataSize = callback.DictSize;
if (uncompressedDataSize >= (1 << 18))
uncompressedDataSize += kAdditionalSize;
}
HRESULT res = MethodBench(
EXTERNAL_CODECS_LOC_VARS
complexInCommands,
true, numThreads,
method2,
uncompressedDataSize, fileDataBuffer.Buffer,
kOldLzmaDictBits, printCallback, &callback, &callback.BenchProps);
f.NewLine();
RINOK(res);
if (!multiDict)
break;
}
}
}
PrintChars(f, '-', callback.NameFieldSize + fileldSize);
if (use2Columns)
{
f.Print(kSep);
PrintChars(f, '-', fileldSize);
}
f.NewLine();
if (use2Columns)
{
PrintLeft(f, "Avr:", callback.NameFieldSize);
PrintTotals(f, showFreq, cpuFreq, callback.EncodeRes);
f.Print(kSep);
PrintTotals(f, showFreq, cpuFreq, callback.DecodeRes);
f.NewLine();
}
PrintLeft(f, "Tot:", callback.NameFieldSize);
CTotalBenchRes midRes;
midRes.SetSum(callback.EncodeRes, callback.DecodeRes);
PrintTotals(f, showFreq, cpuFreq, midRes);
f.NewLine();
}
return S_OK;
}