blob: a5f34e65903e9ccc4f0b363d43c9d4ec4c052be7 [file] [log] [blame]
/*
LZ4 - Fast LZ compression algorithm
Copyright (C) 2011-2012, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//**************************************
// Compilation Directives
//**************************************
#if __STDC_VERSION__ >= 199901L
/* "restrict" is a known keyword */
#else
#define restrict // Disable restrict
#endif
#ifdef _MSC_VER
#define inline __forceinline
#endif
#ifdef __GNUC__
#define _PACKED __attribute__ ((packed))
#else
#define _PACKED
#endif
#define ARCH64 (__x86_64__ || __ppc64__ || _WIN64 || __LP64__) // Detect 64 bits mode
//**************************************
// Includes
//**************************************
#include <stdlib.h> // for malloc
#include <string.h> // for memset
#include "lz4.h"
//**************************************
// Performance parameter
//**************************************
// Increasing this value improves compression ratio
// Lowering this value reduces memory usage
// Lowering may also improve speed, typically on reaching cache size limits (L1 32KB for Intel, 64KB for AMD)
// Memory usage formula for 32 bits systems : N->2^(N+2) Bytes (examples : 17 -> 512KB ; 12 -> 16KB)
#define HASH_LOG 12
//#define _FORCE_SW_BITCOUNT // Uncomment for better performance if target platform has no hardware support for LowBitCount
//**************************************
// Basic Types
//**************************************
#if defined(_MSC_VER) // Visual Studio does not support 'stdint' natively
#define BYTE unsigned __int8
#define U16 unsigned __int16
#define U32 unsigned __int32
#define S32 __int32
#define U64 unsigned __int64
#else
#include <stdint.h>
#define BYTE uint8_t
#define U16 uint16_t
#define U32 uint32_t
#define S32 int32_t
#define U64 uint64_t
#endif
//**************************************
// Constants
//**************************************
#define MINMATCH 4
#define SKIPSTRENGTH 6
#define STACKLIMIT 13
#define HEAPMODE (HASH_LOG>STACKLIMIT) // Defines if memory is allocated into the stack (local variable), or into the heap (malloc()).
#define COPYTOKEN 4
#define COPYLENGTH 8
#define LASTLITERALS 5
#define MFLIMIT (COPYLENGTH+MINMATCH)
#define MINLENGTH (MFLIMIT+1)
#define MAXD_LOG 16
#define MAX_DISTANCE ((1 << MAXD_LOG) - 1)
#define HASHTABLESIZE (1 << HASH_LOG)
#define HASH_MASK (HASHTABLESIZE - 1)
#define ML_BITS 4
#define ML_MASK ((1U<<ML_BITS)-1)
#define RUN_BITS (8-ML_BITS)
#define RUN_MASK ((1U<<RUN_BITS)-1)
//**************************************
// Local structures
//**************************************
struct refTables
{
const BYTE* hashTable[HASHTABLESIZE];
};
typedef struct _U64_S
{
U64 v;
} _PACKED U64_S;
typedef struct _U32_S
{
U32 v;
} _PACKED U32_S;
typedef struct _U16_S
{
U16 v;
} _PACKED U16_S;
#define A64(x) (((U64_S *)(x))->v)
#define A32(x) (((U32_S *)(x))->v)
#define A16(x) (((U16_S *)(x))->v)
//**************************************
// Macros
//**************************************
#define LZ4_HASH_FUNCTION(i) (((i) * 2654435761U) >> ((MINMATCH*8)-HASH_LOG))
#define LZ4_HASH_VALUE(p) LZ4_HASH_FUNCTION(A32(p))
#define LZ4_COPYPACKET32(s,d) A32(d) = A32(s); d+=4; s+=4; A32(d) = A32(s); d+=4; s+=4;
#define LZ4_COPYPACKET64(s,d) A64(d) = A64(s); d+=8; s+=8;
#define LZ4_WILDCOPY32(s,d,e) do { LZ4_COPYPACKET32(s,d) } while (d<e);
#define LZ4_WILDCOPY64(s,d,e) do { LZ4_COPYPACKET64(s,d) } while (d<e);
//**************************************
// Architecture-specific macros
//**************************************
#if ARCH64 // 64-bit
#define LZ4_WILDCOPY LZ4_WILDCOPY64
#define LZ4_BLINDCOPY(s,d,l) { BYTE* e=d+l; LZ4_WILDCOPY(s,d,e); d=e; }
#else // 32-bit
#define LZ4_WILDCOPY LZ4_WILDCOPY32
#define LZ4_BLINDCOPY(s,d,l) { BYTE* e=d+l; LZ4_WILDCOPY(s,d,e); d=e; }
#endif
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define LZ4_READ_LITTLEENDIAN_16(d,s,p) { d = s - A16(p); }
#define LZ4_WRITE_LITTLEENDIAN_16(p,v) { A16(p) = v; p+=2; }
#else // Big Endian
#define LZ4_READ_LITTLEENDIAN_16(d,s,p) { int delta = p[0]; delta += p[1] << 8; d = s - delta; }
#define LZ4_WRITE_LITTLEENDIAN_16(p,v) { int delta = v; *p++ = delta; *op++ = delta>>8; }
#endif
//****************************
// Private functions
//****************************
inline static int LZ4_NbCommonBytes_LittleEndian( register U32 val )
{
#if defined(_MSC_VER) && !defined(_FORCE_SW_BITCOUNT)
unsigned long b = 0;
_BitScanForward( &b, val );
return (int)(b>>3);
#elif defined(__GNUC__) && !defined(_FORCE_SW_BITCOUNT)
return (__builtin_ctz(val) >> 3);
#else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -val) * 0x077CB531U)) >> 27];
#endif
}
//******************************
// Public Compression functions
//******************************
int LZ4_compressCtx(void** ctx,
char* source,
char* dest,
int isize)
{
#if HEAPMODE
struct refTables *srt = (struct refTables *) (*ctx);
const BYTE** HashTable;
#else
const BYTE* HashTable[HASHTABLESIZE] = {0};
#endif
const BYTE* ip = (BYTE*) source;
const BYTE* anchor = ip;
const BYTE* const iend = ip + isize;
const BYTE* const mflimit = iend - MFLIMIT;
#define matchlimit (iend - LASTLITERALS)
BYTE* op = (BYTE*) dest;
int len, length;
const int skipStrength = SKIPSTRENGTH;
U32 forwardH;
// Init
if (isize<MINLENGTH) goto _last_literals;
#if HEAPMODE
if (*ctx == NULL)
{
srt = (struct refTables *) malloc ( sizeof(struct refTables) );
*ctx = (void*) srt;
}
HashTable = srt->hashTable;
memset((void*)HashTable, 0, sizeof(srt->hashTable));
#else
(void) ctx;
#endif
// First Byte
HashTable[LZ4_HASH_VALUE(ip)] = ip;
ip++; forwardH = LZ4_HASH_VALUE(ip);
// Main Loop
for ( ; ; )
{
int findMatchAttempts = (1U << skipStrength) + 3;
const BYTE* forwardIp = ip;
const BYTE* ref;
BYTE* token;
// Find a match
do {
U32 h = forwardH;
int step = findMatchAttempts++ >> skipStrength;
ip = forwardIp;
forwardIp = ip + step;
if (forwardIp > mflimit) { goto _last_literals; }
forwardH = LZ4_HASH_VALUE(forwardIp);
ref = HashTable[h];
HashTable[h] = ip;
} while ((ref < ip - MAX_DISTANCE) || (A32(ref) != A32(ip)));
// Catch up
while ((ip>anchor) && (ref>(BYTE*)source) && (ip[-1]==ref[-1])) { ip--; ref--; }
// Encode Literal length
length = ip - anchor;
token = op++;
if (length>=(int)RUN_MASK) { *token=(RUN_MASK<<ML_BITS); len = length-RUN_MASK; for(; len > 254 ; len-=255) *op++ = 255; *op++ = (BYTE)len; }
else *token = (length<<ML_BITS);
// Copy Literals
LZ4_BLINDCOPY(anchor, op, length);
_next_match:
// Encode Offset
LZ4_WRITE_LITTLEENDIAN_16(op,ip-ref);
// Start Counting
ip+=MINMATCH; ref+=MINMATCH; // MinMatch verified
anchor = ip;
while (ip<matchlimit-3)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
U32 diff = A32(ref) ^ A32(ip);
if (!diff) { ip+=4; ref+=4; continue; }
ip += LZ4_NbCommonBytes_LittleEndian(diff);
#else
if (A32(ref) == A32(ip)) { ip+=4; ref+=4; continue; }
if (A16(ref) == A16(ip)) { ip+=2; ref+=2; }
if (*ref == *ip) ip++;
#endif
goto _endCount;
}
if ((ip<(matchlimit-1)) && (A16(ref) == A16(ip))) { ip+=2; ref+=2; }
if ((ip<matchlimit) && (*ref == *ip)) ip++;
_endCount:
// Encode MatchLength
len = (ip - anchor);
if (len>=(int)ML_MASK) { *token+=ML_MASK; len-=ML_MASK; for(; len > 509 ; len-=510) { *op++ = 255; *op++ = 255; } if (len > 254) { len-=255; *op++ = 255; } *op++ = (BYTE)len; }
else *token += len;
// Test end of chunk
if (ip > mflimit) { anchor = ip; break; }
// Fill table
HashTable[LZ4_HASH_VALUE(ip-2)] = ip-2;
// Test next position
ref = HashTable[LZ4_HASH_VALUE(ip)];
HashTable[LZ4_HASH_VALUE(ip)] = ip;
if ((ref > ip - (MAX_DISTANCE + 1)) && (A32(ref) == A32(ip))) { token = op++; *token=0; goto _next_match; }
// Prepare next loop
anchor = ip++;
forwardH = LZ4_HASH_VALUE(ip);
}
_last_literals:
// Encode Last Literals
{
int lastRun = iend - anchor;
if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; }
else *op++ = (lastRun<<ML_BITS);
memcpy(op, anchor, iend - anchor);
op += iend-anchor;
}
// End
return (int) (((char*)op)-dest);
}
// Note : this function is valid only if isize < LZ4_64KLIMIT
#define LZ4_64KLIMIT ((1U<<16) + (MFLIMIT-1))
#define HASHLOG64K (HASH_LOG+1)
#define LZ4_HASH64K_FUNCTION(i) (((i) * 2654435761U) >> ((MINMATCH*8)-HASHLOG64K))
#define LZ4_HASH64K_VALUE(p) LZ4_HASH64K_FUNCTION(A32(p))
int LZ4_compress64kCtx(void** ctx,
char* source,
char* dest,
int isize)
{
#if HEAPMODE
struct refTables *srt = (struct refTables *) (*ctx);
U16* HashTable;
#else
U16 HashTable[HASHTABLESIZE<<1] = {0};
#endif
const BYTE* ip = (BYTE*) source;
const BYTE* anchor = ip;
const BYTE* const base = ip;
const BYTE* const iend = ip + isize;
const BYTE* const mflimit = iend - MFLIMIT;
#define matchlimit (iend - LASTLITERALS)
BYTE* op = (BYTE*) dest;
int len, length;
const int skipStrength = SKIPSTRENGTH;
U32 forwardH;
// Init
if (isize<MINLENGTH) goto _last_literals;
#if HEAPMODE
if (*ctx == NULL)
{
srt = (struct refTables *) malloc ( sizeof(struct refTables) );
*ctx = (void*) srt;
}
HashTable = (U16*)(srt->hashTable);
memset((void*)HashTable, 0, sizeof(srt->hashTable));
#else
(void) ctx;
#endif
// First Byte
ip++; forwardH = LZ4_HASH64K_VALUE(ip);
// Main Loop
for ( ; ; )
{
int findMatchAttempts = (1U << skipStrength) + 3;
const BYTE* forwardIp = ip;
const BYTE* ref;
BYTE* token;
// Find a match
do {
U32 h = forwardH;
int step = findMatchAttempts++ >> skipStrength;
ip = forwardIp;
forwardIp = ip + step;
if (forwardIp > mflimit) { goto _last_literals; }
forwardH = LZ4_HASH64K_VALUE(forwardIp);
ref = base + HashTable[h];
HashTable[h] = ip - base;
} while (A32(ref) != A32(ip));
// Catch up
while ((ip>anchor) && (ref>(BYTE*)source) && (ip[-1]==ref[-1])) { ip--; ref--; }
// Encode Literal length
length = ip - anchor;
token = op++;
if (length>=(int)RUN_MASK) { *token=(RUN_MASK<<ML_BITS); len = length-RUN_MASK; for(; len > 254 ; len-=255) *op++ = 255; *op++ = (BYTE)len; }
else *token = (length<<ML_BITS);
// Copy Literals
LZ4_BLINDCOPY(anchor, op, length);
_next_match:
// Encode Offset
LZ4_WRITE_LITTLEENDIAN_16(op,ip-ref);
// Start Counting
ip+=MINMATCH; ref+=MINMATCH; // MinMatch verified
anchor = ip;
while (ip<matchlimit-3)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
U32 diff = A32(ref) ^ A32(ip);
if (!diff) { ip+=4; ref+=4; continue; }
ip += LZ4_NbCommonBytes_LittleEndian(diff);
#else
if (A32(ref) == A32(ip)) { ip+=4; ref+=4; continue; }
if (A16(ref) == A16(ip)) { ip+=2; ref+=2; }
if (*ref == *ip) ip++;
#endif
goto _endCount;
}
if ((ip<(matchlimit-1)) && (A16(ref) == A16(ip))) { ip+=2; ref+=2; }
if ((ip<matchlimit) && (*ref == *ip)) ip++;
_endCount:
// Encode MatchLength
len = (ip - anchor);
if (len>=(int)ML_MASK) { *token+=ML_MASK; len-=ML_MASK; for(; len > 509 ; len-=510) { *op++ = 255; *op++ = 255; } if (len > 254) { len-=255; *op++ = 255; } *op++ = (BYTE)len; }
else *token += len;
// Test end of chunk
if (ip > mflimit) { anchor = ip; break; }
// Fill table
HashTable[LZ4_HASH64K_VALUE(ip-2)] = ip - 2 - base;
// Test next position
ref = base + HashTable[LZ4_HASH64K_VALUE(ip)];
HashTable[LZ4_HASH64K_VALUE(ip)] = ip - base;
if (A32(ref) == A32(ip)) { token = op++; *token=0; goto _next_match; }
// Prepare next loop
anchor = ip++;
forwardH = LZ4_HASH64K_VALUE(ip);
}
_last_literals:
// Encode Last Literals
{
int lastRun = iend - anchor;
if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; }
else *op++ = (lastRun<<ML_BITS);
memcpy(op, anchor, iend - anchor);
op += iend-anchor;
}
// End
return (int) (((char*)op)-dest);
}
int LZ4_compress(char* source,
char* dest,
int isize)
{
#if HEAPMODE
void* ctx = malloc(sizeof(struct refTables));
int result;
if (isize < LZ4_64KLIMIT)
result = LZ4_compress64kCtx(&ctx, source, dest, isize);
else result = LZ4_compressCtx(&ctx, source, dest, isize);
free(ctx);
return result;
#else
if (isize < (int)LZ4_64KLIMIT) return LZ4_compress64kCtx(NULL, source, dest, isize);
return LZ4_compressCtx(NULL, source, dest, isize);
#endif
}
//****************************
// Decompression CODE
//****************************
// Note : The decoding functions LZ4_uncompress() and LZ4_uncompress_unknownOutputSize()
// are safe against "buffer overflow" attack type.
// They will *never* write nor read outside of the provided input and output buffer :
// they both check this condition *before* writing anything.
// A corrupted packet will trigger an error result, a negative int, indicating the position of the error within input stream.
int LZ4_uncompress(char* source,
char* dest,
int osize)
{
// Local Variables
const BYTE* restrict ip = (const BYTE*) source;
const BYTE* restrict ref;
BYTE* restrict op = (BYTE*) dest;
BYTE* const oend = op + osize;
BYTE* cpy;
BYTE token;
int len, length;
size_t dec1[] ={0, 3, 2, 3, 0, 0, 0, 0};
#if ARCH64
size_t dec2[]={0, 4, 4, 3, 4, 5, 6, 7};
#endif
// Main Loop
while (1)
{
// get runlength
token = *ip++;
if ((length=(token>>ML_BITS)) == RUN_MASK) { for (;(len=*ip++)==255;length+=255){} length += len; }
// copy literals
cpy = op+length;
if (cpy>oend-COPYLENGTH)
{
if (cpy > oend) goto _output_error;
memcpy(op, ip, length);
ip += length;
break; // Necessarily EOF
}
LZ4_WILDCOPY(ip, op, cpy); ip -= (op-cpy); op = cpy;
// get offset
LZ4_READ_LITTLEENDIAN_16(ref,cpy,ip); ip+=2;
if (ref < (BYTE* const)dest) goto _output_error;
// get matchlength
if ((length=(token&ML_MASK)) == ML_MASK) { for (;*ip==255;length+=255) {ip++;} length += *ip++; }
// copy repeated sequence
#if ARCH64
if (op-ref<8)
{
int tmp = dec2[op-ref];
*op++ = *ref++;
*op++ = *ref++;
*op++ = *ref++;
*op++ = *ref++;
ref -= dec1[op-ref];
A32(op)=A32(ref); op += 4; ref += 4;
ref -= tmp;
} else { LZ4_COPYPACKET64(ref,op); }
cpy = op + length - 4;
if (cpy > oend-COPYLENGTH)
{
if (cpy > oend) goto _output_error;
LZ4_WILDCOPY64(ref, op, (oend-COPYLENGTH));
while(op<cpy) *op++=*ref++;
op=cpy;
if (op == oend) break; // Check EOF (should never happen, since last 5 bytes are supposed to be literals)
continue;
}
LZ4_WILDCOPY64(ref, op, cpy);
op=cpy; // correction
#else
if (op-ref<COPYTOKEN)
{
*op++ = *ref++;
*op++ = *ref++;
*op++ = *ref++;
*op++ = *ref++;
ref -= dec1[op-ref];
A32(op)=A32(ref);
} else { A32(op)=A32(ref); op+=4; ref+=4; }
cpy = op + length;
if (cpy>oend-COPYLENGTH)
{
if (cpy > oend) goto _output_error;
LZ4_WILDCOPY32(ref, op, (oend-COPYLENGTH));
while(op<cpy) *op++=*ref++;
op=cpy;
if (op == oend) break; // Check EOF (should never happen, since last 5 bytes are supposed to be literals)
continue;
}
LZ4_WILDCOPY32(ref, op, cpy);
op=cpy; // correction
#endif
}
// end of decoding
return (int) (((char*)ip)-source);
// write overflow error detected
_output_error:
return (int) (-(((char*)ip)-source));
}
int LZ4_uncompress_unknownOutputSize(
char* source,
char* dest,
int isize,
int maxOutputSize)
{
// Local Variables
const BYTE* restrict ip = (const BYTE*) source;
const BYTE* const iend = ip + isize;
const BYTE* restrict ref;
BYTE* restrict op = (BYTE*) dest;
BYTE* const oend = op + maxOutputSize;
BYTE* cpy;
BYTE token;
int len, length;
size_t dec1[] ={0, 3, 2, 3, 0, 0, 0, 0};
#if ARCH64
size_t dec2[]={0, 4, 4, 3, 4, 5, 6, 7};
#endif
// Main Loop
while (ip<iend)
{
// get runlength
token = *ip++;
if ((length=(token>>ML_BITS)) == RUN_MASK) { for (;(len=*ip++)==255;length+=255){} length += len; }
// copy literals
cpy = op+length;
if (cpy>oend-COPYLENGTH)
{
if (cpy > oend) goto _output_error;
memcpy(op, ip, length);
op += length;
break; // Necessarily EOF
}
LZ4_WILDCOPY(ip, op, cpy); ip -= (op-cpy); op = cpy;
if (ip>=iend) break; // check EOF
// get offset
LZ4_READ_LITTLEENDIAN_16(ref,cpy,ip); ip+=2;
if (ref < (BYTE* const)dest) goto _output_error;
// get matchlength
if ((length=(token&ML_MASK)) == ML_MASK) { for (;(len=*ip++)==255;length+=255){} length += len; }
// copy repeated sequence
#if ARCH64
if (op-ref<8)
{
int tmp = dec2[op-ref];
*op++ = *ref++;
*op++ = *ref++;
*op++ = *ref++;
*op++ = *ref++;
ref -= dec1[op-ref];
A32(op)=A32(ref); op += 4; ref += 4;
ref -= tmp;
} else { LZ4_COPYPACKET64(ref,op); }
cpy = op + length - 4;
if (cpy > oend-COPYLENGTH)
{
if (cpy > oend) goto _output_error;
LZ4_WILDCOPY64(ref, op, (oend-COPYLENGTH));
while(op<cpy) *op++=*ref++;
op=cpy;
if (op == oend) break; // Check EOF (should never happen, since last 5 bytes are supposed to be literals)
continue;
}
LZ4_WILDCOPY64(ref, op, cpy);
op=cpy; // correction
#else
if (op-ref<COPYTOKEN)
{
*op++ = *ref++;
*op++ = *ref++;
*op++ = *ref++;
*op++ = *ref++;
ref -= dec1[op-ref];
A32(op)=A32(ref);
} else { A32(op)=A32(ref); op+=4; ref+=4; }
cpy = op + length;
if (cpy>oend-COPYLENGTH)
{
if (cpy > oend) goto _output_error;
LZ4_WILDCOPY32(ref, op, (oend-COPYLENGTH));
while(op<cpy) *op++=*ref++;
op=cpy;
if (op == oend) break; // Check EOF (should never happen, since last 5 bytes are supposed to be literals)
continue;
}
LZ4_WILDCOPY32(ref, op, cpy);
op=cpy; // correction
#endif
}
// end of decoding
return (int) (((char*)op)-dest);
// write overflow error detected
_output_error:
return (int) (-(((char*)ip)-source));
}