blob: 6c3258e2fdeb6aa3f1258d63f3b5558137edcc86 [file] [log] [blame]
/*
* This file is part of ltrace.
* Copyright (C) 2007,2011,2012,2013 Petr Machata, Red Hat Inc.
* Copyright (C) 2010 Joe Damato
* Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes
* Copyright (C) 2006 Ian Wienand
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include "config.h"
#include <asm/unistd.h>
#include <assert.h>
#include <errno.h>
#include <gelf.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#ifdef HAVE_LIBSELINUX
# include <selinux/selinux.h>
#endif
#include "linux-gnu/trace-defs.h"
#include "linux-gnu/trace.h"
#include "backend.h"
#include "breakpoint.h"
#include "debug.h"
#include "events.h"
#include "ltrace-elf.h"
#include "options.h"
#include "proc.h"
#include "ptrace.h"
#include "type.h"
void
trace_fail_warning(pid_t pid)
{
/* This was adapted from GDB. */
#ifdef HAVE_LIBSELINUX
static int checked = 0;
if (checked)
return;
checked = 1;
/* -1 is returned for errors, 0 if it has no effect, 1 if
* PTRACE_ATTACH is forbidden. */
if (security_get_boolean_active("deny_ptrace") == 1)
fprintf(stderr,
"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
"tracing other processes. You can disable this process attach protection by\n"
"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
#endif /* HAVE_LIBSELINUX */
}
void
trace_me(void)
{
debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
perror("PTRACE_TRACEME");
trace_fail_warning(getpid());
exit(1);
}
}
/* There's a (hopefully) brief period of time after the child process
* forks when we can't trace it yet. Here we wait for kernel to
* prepare the process. */
int
wait_for_proc(pid_t pid)
{
/* man ptrace: PTRACE_ATTACH attaches to the process specified
in pid. The child is sent a SIGSTOP, but will not
necessarily have stopped by the completion of this call;
use wait() to wait for the child to stop. */
if (waitpid(pid, NULL, __WALL) != pid) {
perror ("trace_pid: waitpid");
return -1;
}
return 0;
}
int
trace_pid(pid_t pid)
{
debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
/* This shouldn't emit error messages, as there are legitimate
* reasons that the PID can't be attached: like it may have
* already ended. */
if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
return -1;
return wait_for_proc(pid);
}
void
trace_set_options(struct process *proc)
{
if (proc->tracesysgood & 0x80)
return;
pid_t pid = proc->pid;
debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
PTRACE_O_TRACEEXEC;
if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
perror("PTRACE_SETOPTIONS");
return;
}
proc->tracesysgood |= 0x80;
}
void
untrace_pid(pid_t pid) {
debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
ptrace(PTRACE_DETACH, pid, 0, 0);
}
void
continue_after_signal(pid_t pid, int signum)
{
debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
pid, signum);
ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
}
static enum ecb_status
event_for_pid(Event *event, void *data)
{
if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
return ECB_YIELD;
return ECB_CONT;
}
static int
have_events_for(pid_t pid)
{
return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
}
void
continue_process(pid_t pid)
{
debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
/* Only really continue the process if there are no events in
the queue for this process. Otherwise just wait for the
other events to arrive. */
if (!have_events_for(pid))
/* We always trace syscalls to control fork(),
* clone(), execve()... */
ptrace(PTRACE_SYSCALL, pid, 0, 0);
else
debug(DEBUG_PROCESS,
"putting off the continue, events in que.");
}
static struct pid_task *
get_task_info(struct pid_set *pids, pid_t pid)
{
assert(pid != 0);
size_t i;
for (i = 0; i < pids->count; ++i)
if (pids->tasks[i].pid == pid)
return &pids->tasks[i];
return NULL;
}
static struct pid_task *
add_task_info(struct pid_set *pids, pid_t pid)
{
if (pids->count == pids->alloc) {
size_t ns = (2 * pids->alloc) ?: 4;
struct pid_task *n = realloc(pids->tasks,
sizeof(*pids->tasks) * ns);
if (n == NULL)
return NULL;
pids->tasks = n;
pids->alloc = ns;
}
struct pid_task * task_info = &pids->tasks[pids->count++];
memset(task_info, 0, sizeof(*task_info));
task_info->pid = pid;
return task_info;
}
static enum callback_status
task_stopped(struct process *task, void *data)
{
enum process_status st = process_status(task->pid);
if (data != NULL)
*(enum process_status *)data = st;
/* If the task is already stopped, don't worry about it.
* Likewise if it managed to become a zombie or terminate in
* the meantime. This can happen when the whole thread group
* is terminating. */
switch (st) {
case PS_INVALID:
case PS_TRACING_STOP:
case PS_ZOMBIE:
return CBS_CONT;
case PS_SLEEPING:
case PS_STOP:
case PS_OTHER:
return CBS_STOP;
}
abort ();
}
/* Task is blocked if it's stopped, or if it's a vfork parent. */
static enum callback_status
task_blocked(struct process *task, void *data)
{
struct pid_set *pids = data;
struct pid_task *task_info = get_task_info(pids, task->pid);
if (task_info != NULL
&& task_info->vforked)
return CBS_CONT;
return task_stopped(task, NULL);
}
static Event *process_vfork_on_event(struct event_handler *super, Event *event);
static enum callback_status
task_vforked(struct process *task, void *data)
{
if (task->event_handler != NULL
&& task->event_handler->on_event == &process_vfork_on_event)
return CBS_STOP;
return CBS_CONT;
}
static int
is_vfork_parent(struct process *task)
{
return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
}
static enum callback_status
send_sigstop(struct process *task, void *data)
{
struct process *leader = task->leader;
struct pid_set *pids = data;
/* Look for pre-existing task record, or add new. */
struct pid_task *task_info = get_task_info(pids, task->pid);
if (task_info == NULL)
task_info = add_task_info(pids, task->pid);
if (task_info == NULL) {
perror("send_sigstop: add_task_info");
destroy_event_handler(leader);
/* Signal failure upwards. */
return CBS_STOP;
}
/* This task still has not been attached to. It should be
stopped by the kernel. */
if (task->state == STATE_BEING_CREATED)
return CBS_CONT;
/* Don't bother sending SIGSTOP if we are already stopped, or
* if we sent the SIGSTOP already, which happens when we are
* handling "onexit" and inherited the handler from breakpoint
* re-enablement. */
enum process_status st;
if (task_stopped(task, &st) == CBS_CONT)
return CBS_CONT;
if (task_info->sigstopped) {
if (!task_info->delivered)
return CBS_CONT;
task_info->delivered = 0;
}
/* Also don't attempt to stop the process if it's a parent of
* vforked process. We set up event handler specially to hint
* us. In that case parent is in D state, which we use to
* weed out unnecessary looping. */
if (st == PS_SLEEPING
&& is_vfork_parent(task)) {
task_info->vforked = 1;
return CBS_CONT;
}
if (task_kill(task->pid, SIGSTOP) >= 0) {
debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
task_info->sigstopped = 1;
} else
fprintf(stderr,
"Warning: couldn't send SIGSTOP to %d\n", task->pid);
return CBS_CONT;
}
/* On certain kernels, detaching right after a singlestep causes the
tracee to be killed with a SIGTRAP (that even though the singlestep
was properly caught by waitpid. The ugly workaround is to put a
breakpoint where IP points and let the process continue. After
this the breakpoint can be retracted and the process detached. */
static void
ugly_workaround(struct process *proc)
{
arch_addr_t ip = get_instruction_pointer(proc);
struct breakpoint *found;
if (DICT_FIND_VAL(proc->leader->breakpoints, &ip, &found) < 0) {
insert_breakpoint_at(proc, ip, NULL);
} else {
assert(found != NULL);
enable_breakpoint(proc, found);
}
ptrace(PTRACE_CONT, proc->pid, 0, 0);
}
static void
process_stopping_done(struct process_stopping_handler *self,
struct process *leader)
{
debug(DEBUG_PROCESS, "process stopping done %d",
self->task_enabling_breakpoint->pid);
if (!self->exiting) {
size_t i;
for (i = 0; i < self->pids.count; ++i)
if (self->pids.tasks[i].pid != 0
&& (self->pids.tasks[i].delivered
|| self->pids.tasks[i].sysret))
continue_process(self->pids.tasks[i].pid);
continue_process(self->task_enabling_breakpoint->pid);
}
if (self->exiting) {
ugly_workaround:
self->state = PSH_UGLY_WORKAROUND;
ugly_workaround(self->task_enabling_breakpoint);
} else {
switch ((self->ugly_workaround_p)(self)) {
case CBS_FAIL:
/* xxx handle me */
case CBS_STOP:
break;
case CBS_CONT:
goto ugly_workaround;
}
destroy_event_handler(leader);
}
}
/* Before we detach, we need to make sure that task's IP is on the
* edge of an instruction. So for tasks that have a breakpoint event
* in the queue, we adjust the instruction pointer, just like
* continue_after_breakpoint does. */
static enum ecb_status
undo_breakpoint(Event *event, void *data)
{
if (event != NULL
&& event->proc->leader == data
&& event->type == EVENT_BREAKPOINT)
set_instruction_pointer(event->proc, event->e_un.brk_addr);
return ECB_CONT;
}
static enum callback_status
untrace_task(struct process *task, void *data)
{
if (task != data)
untrace_pid(task->pid);
return CBS_CONT;
}
static enum callback_status
remove_task(struct process *task, void *data)
{
/* Don't untrace leader just yet. */
if (task != data)
remove_process(task);
return CBS_CONT;
}
static enum callback_status
retract_breakpoint_cb(struct process *proc, struct breakpoint *bp, void *data)
{
breakpoint_on_retract(bp, proc);
return CBS_CONT;
}
static void
detach_process(struct process *leader)
{
each_qd_event(&undo_breakpoint, leader);
disable_all_breakpoints(leader);
proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
/* Now untrace the process, if it was attached to by -p. */
struct opt_p_t *it;
for (it = opt_p; it != NULL; it = it->next) {
struct process *proc = pid2proc(it->pid);
if (proc == NULL)
continue;
if (proc->leader == leader) {
each_task(leader, NULL, &untrace_task, NULL);
break;
}
}
each_task(leader, NULL, &remove_task, leader);
destroy_event_handler(leader);
remove_task(leader, NULL);
}
static void
handle_stopping_event(struct pid_task *task_info, Event **eventp)
{
/* Mark all events, so that we know whom to SIGCONT later. */
if (task_info != NULL)
task_info->got_event = 1;
Event *event = *eventp;
/* In every state, sink SIGSTOP events for tasks that it was
* sent to. */
if (task_info != NULL
&& event->type == EVENT_SIGNAL
&& event->e_un.signum == SIGSTOP) {
debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
if (task_info->sigstopped
&& !task_info->delivered) {
task_info->delivered = 1;
*eventp = NULL; // sink the event
} else
fprintf(stderr, "suspicious: %d got SIGSTOP, but "
"sigstopped=%d and delivered=%d\n",
task_info->pid, task_info->sigstopped,
task_info->delivered);
}
}
/* Some SIGSTOPs may have not been delivered to their respective tasks
* yet. They are still in the queue. If we have seen an event for
* that process, continue it, so that the SIGSTOP can be delivered and
* caught by ltrace. We don't mind that the process is after
* breakpoint (and therefore potentially doesn't have aligned IP),
* because the signal will be delivered without the process actually
* starting. */
static void
continue_for_sigstop_delivery(struct pid_set *pids)
{
size_t i;
for (i = 0; i < pids->count; ++i) {
if (pids->tasks[i].pid != 0
&& pids->tasks[i].sigstopped
&& !pids->tasks[i].delivered
&& pids->tasks[i].got_event) {
debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
pids->tasks[i].pid);
ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
}
}
}
static int
event_exit_p(Event *event)
{
return event != NULL && (event->type == EVENT_EXIT
|| event->type == EVENT_EXIT_SIGNAL);
}
static int
event_exit_or_none_p(Event *event)
{
return event == NULL || event_exit_p(event)
|| event->type == EVENT_NONE;
}
static int
await_sigstop_delivery(struct pid_set *pids, struct pid_task *task_info,
Event *event)
{
/* If we still didn't get our SIGSTOP, continue the process
* and carry on. */
if (event != NULL && !event_exit_or_none_p(event)
&& task_info != NULL && task_info->sigstopped) {
debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
task_info->pid);
/* We should get the signal the first thing
* after this, so it should be OK to continue
* even if we are over a breakpoint. */
ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
} else {
/* If all SIGSTOPs were delivered, uninstall the
* handler and continue everyone. */
/* XXX I suspect that we should check tasks that are
* still around. Is things are now, there should be a
* race between waiting for everyone to stop and one
* of the tasks exiting. */
int all_clear = 1;
size_t i;
for (i = 0; i < pids->count; ++i)
if (pids->tasks[i].pid != 0
&& pids->tasks[i].sigstopped
&& !pids->tasks[i].delivered) {
all_clear = 0;
break;
}
return all_clear;
}
return 0;
}
static int
all_stops_accountable(struct pid_set *pids)
{
size_t i;
for (i = 0; i < pids->count; ++i)
if (pids->tasks[i].pid != 0
&& !pids->tasks[i].got_event
&& !have_events_for(pids->tasks[i].pid))
return 0;
return 1;
}
#ifndef ARCH_HAVE_SW_SINGLESTEP
enum sw_singlestep_status
arch_sw_singlestep(struct process *proc, struct breakpoint *bp,
int (*add_cb)(arch_addr_t, struct sw_singlestep_data *),
struct sw_singlestep_data *data)
{
return SWS_HW;
}
#endif
static Event *process_stopping_on_event(struct event_handler *super,
Event *event);
static void
remove_sw_breakpoints(struct process *proc)
{
struct process_stopping_handler *self
= (void *)proc->leader->event_handler;
assert(self != NULL);
assert(self->super.on_event == process_stopping_on_event);
int ct = sizeof(self->sws_bps) / sizeof(*self->sws_bps);
int i;
for (i = 0; i < ct; ++i)
if (self->sws_bps[i] != NULL) {
delete_breakpoint_at(proc, self->sws_bps[i]->addr);
self->sws_bps[i] = NULL;
}
}
static void
sw_singlestep_bp_on_hit(struct breakpoint *bp, struct process *proc)
{
remove_sw_breakpoints(proc);
}
struct sw_singlestep_data {
struct process_stopping_handler *self;
};
static int
sw_singlestep_add_bp(arch_addr_t addr, struct sw_singlestep_data *data)
{
struct process_stopping_handler *self = data->self;
struct process *proc = self->task_enabling_breakpoint;
int ct = sizeof(self->sws_bps) / sizeof(*self->sws_bps);
int i;
for (i = 0; i < ct; ++i)
if (self->sws_bps[i] == NULL) {
static struct bp_callbacks cbs = {
.on_hit = sw_singlestep_bp_on_hit,
};
struct breakpoint *bp
= insert_breakpoint_at(proc, addr, NULL);
breakpoint_set_callbacks(bp, &cbs);
self->sws_bps[i] = bp;
return 0;
}
assert(!"Too many sw singlestep breakpoints!");
abort();
}
static int
singlestep(struct process_stopping_handler *self)
{
size_t i;
for (i = 0; i < sizeof(self->sws_bps) / sizeof(*self->sws_bps); ++i)
self->sws_bps[i] = NULL;
struct sw_singlestep_data data = { self };
switch (arch_sw_singlestep(self->task_enabling_breakpoint,
self->breakpoint_being_enabled,
&sw_singlestep_add_bp, &data)) {
case SWS_HW:
/* Otherwise do the default action: singlestep. */
debug(1, "PTRACE_SINGLESTEP");
if (ptrace(PTRACE_SINGLESTEP,
self->task_enabling_breakpoint->pid, 0, 0)) {
perror("PTRACE_SINGLESTEP");
return -1;
}
return 0;
case SWS_OK:
return 0;
case SWS_FAIL:
return -1;
}
abort();
}
static void
post_singlestep(struct process_stopping_handler *self,
struct Event **eventp)
{
continue_for_sigstop_delivery(&self->pids);
if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
*eventp = NULL; // handled
struct process *proc = self->task_enabling_breakpoint;
remove_sw_breakpoints(proc);
self->breakpoint_being_enabled = NULL;
}
static void
singlestep_error(struct process_stopping_handler *self)
{
struct process *teb = self->task_enabling_breakpoint;
struct breakpoint *sbp = self->breakpoint_being_enabled;
fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
teb->pid, breakpoint_name(sbp), sbp->addr,
get_instruction_pointer(teb));
delete_breakpoint_at(teb->leader, sbp->addr);
}
static void
pt_continue(struct process_stopping_handler *self)
{
struct process *teb = self->task_enabling_breakpoint;
debug(1, "PTRACE_CONT");
ptrace(PTRACE_CONT, teb->pid, 0, 0);
}
static void
pt_singlestep(struct process_stopping_handler *self)
{
if (singlestep(self) < 0)
singlestep_error(self);
}
static void
disable_and(struct process_stopping_handler *self,
void (*do_this)(struct process_stopping_handler *self))
{
struct process *teb = self->task_enabling_breakpoint;
debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
if (self->breakpoint_being_enabled->enabled)
disable_breakpoint(teb, self->breakpoint_being_enabled);
(do_this)(self);
self->state = PSH_SINGLESTEP;
}
void
linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
{
disable_and(self, &pt_singlestep);
}
void
linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
{
disable_and(self, &pt_continue);
}
/* This event handler is installed when we are in the process of
* stopping the whole thread group to do the pointer re-enablement for
* one of the threads. We pump all events to the queue for later
* processing while we wait for all the threads to stop. When this
* happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
* re-enable, and continue everyone. */
static Event *
process_stopping_on_event(struct event_handler *super, Event *event)
{
struct process_stopping_handler *self = (void *)super;
struct process *task = event->proc;
struct process *leader = task->leader;
struct process *teb = self->task_enabling_breakpoint;
debug(DEBUG_PROCESS,
"process_stopping_on_event: pid %d; event type %d; state %d",
task->pid, event->type, self->state);
struct pid_task *task_info = get_task_info(&self->pids, task->pid);
if (task_info == NULL)
fprintf(stderr, "new task??? %d\n", task->pid);
handle_stopping_event(task_info, &event);
int state = self->state;
int event_to_queue = !event_exit_or_none_p(event);
/* Deactivate the entry if the task exits. */
if (event_exit_p(event) && task_info != NULL)
task_info->pid = 0;
/* Always handle sysrets. Whether sysret occurred and what
* sys it rets from may need to be determined based on process
* stack, so we need to keep that in sync with reality. Note
* that we don't continue the process after the sysret is
* handled. See continue_after_syscall. */
if (event != NULL && event->type == EVENT_SYSRET) {
debug(1, "%d LT_EV_SYSRET", event->proc->pid);
event_to_queue = 0;
if (task_info != NULL)
task_info->sysret = 1;
}
switch (state) {
case PSH_STOPPING:
/* If everyone is stopped, singlestep. */
if (each_task(leader, NULL, &task_blocked,
&self->pids) == NULL) {
(self->on_all_stopped)(self);
state = self->state;
}
break;
case PSH_SINGLESTEP:
/* In singlestep state, breakpoint signifies that we
* have now stepped, and can re-enable the breakpoint. */
if (event != NULL && task == teb) {
/* If this was caused by a real breakpoint, as
* opposed to a singlestep, assume that it's
* an artificial breakpoint installed for some
* reason for the re-enablement. In that case
* handle it. */
if (event->type == EVENT_BREAKPOINT) {
arch_addr_t ip
= get_instruction_pointer(task);
struct breakpoint *other
= address2bpstruct(leader, ip);
if (other != NULL)
breakpoint_on_hit(other, task);
}
/* If we got SIGNAL instead of BREAKPOINT,
* then this is not singlestep at all. */
if (event->type == EVENT_SIGNAL) {
do_singlestep:
if (singlestep(self) < 0) {
singlestep_error(self);
post_singlestep(self, &event);
goto psh_sinking;
}
break;
} else {
switch ((self->keep_stepping_p)(self)) {
case CBS_FAIL:
/* XXX handle me */
case CBS_STOP:
break;
case CBS_CONT:
/* Sink singlestep event. */
if (event->type == EVENT_BREAKPOINT)
event = NULL;
goto do_singlestep;
}
}
/* Re-enable the breakpoint that we are
* stepping over. */
struct breakpoint *sbp = self->breakpoint_being_enabled;
if (sbp->enabled)
enable_breakpoint(teb, sbp);
post_singlestep(self, &event);
goto psh_sinking;
}
break;
psh_sinking:
state = self->state = PSH_SINKING;
/* Fall through. */
case PSH_SINKING:
if (await_sigstop_delivery(&self->pids, task_info, event))
process_stopping_done(self, leader);
break;
case PSH_UGLY_WORKAROUND:
if (event == NULL)
break;
if (event->type == EVENT_BREAKPOINT) {
undo_breakpoint(event, leader);
if (task == teb)
self->task_enabling_breakpoint = NULL;
}
if (self->task_enabling_breakpoint == NULL
&& all_stops_accountable(&self->pids)) {
undo_breakpoint(event, leader);
detach_process(leader);
event = NULL; // handled
}
}
if (event != NULL && event_to_queue) {
enque_event(event);
event = NULL; // sink the event
}
return event;
}
static void
process_stopping_destroy(struct event_handler *super)
{
struct process_stopping_handler *self = (void *)super;
free(self->pids.tasks);
}
static enum callback_status
no(struct process_stopping_handler *self)
{
return CBS_STOP;
}
int
process_install_stopping_handler(struct process *proc, struct breakpoint *sbp,
void (*as)(struct process_stopping_handler *),
enum callback_status (*ks)
(struct process_stopping_handler *),
enum callback_status (*uw)
(struct process_stopping_handler *))
{
debug(DEBUG_FUNCTION,
"process_install_stopping_handler: pid=%d", proc->pid);
struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
if (handler == NULL)
return -1;
if (as == NULL)
as = &linux_ptrace_disable_and_singlestep;
if (ks == NULL)
ks = &no;
if (uw == NULL)
uw = &no;
handler->super.on_event = process_stopping_on_event;
handler->super.destroy = process_stopping_destroy;
handler->task_enabling_breakpoint = proc;
handler->breakpoint_being_enabled = sbp;
handler->on_all_stopped = as;
handler->keep_stepping_p = ks;
handler->ugly_workaround_p = uw;
install_event_handler(proc->leader, &handler->super);
if (each_task(proc->leader, NULL, &send_sigstop,
&handler->pids) != NULL) {
destroy_event_handler(proc);
return -1;
}
/* And deliver the first fake event, in case all the
* conditions are already fulfilled. */
Event ev = {
.type = EVENT_NONE,
.proc = proc,
};
process_stopping_on_event(&handler->super, &ev);
return 0;
}
void
continue_after_breakpoint(struct process *proc, struct breakpoint *sbp)
{
debug(DEBUG_PROCESS,
"continue_after_breakpoint: pid=%d, addr=%p",
proc->pid, sbp->addr);
set_instruction_pointer(proc, sbp->addr);
if (sbp->enabled == 0) {
continue_process(proc->pid);
} else if (process_install_stopping_handler
(proc, sbp, NULL, NULL, NULL) < 0) {
perror("process_stopping_handler_create");
/* Carry on not bothering to re-enable. */
continue_process(proc->pid);
}
}
/**
* Ltrace exit. When we are about to exit, we have to go through all
* the processes, stop them all, remove all the breakpoints, and then
* detach the processes that we attached to using -p. If we left the
* other tasks running, they might hit stray return breakpoints and
* produce artifacts, so we better stop everyone, even if it's a bit
* of extra work.
*/
struct ltrace_exiting_handler
{
struct event_handler super;
struct pid_set pids;
};
static Event *
ltrace_exiting_on_event(struct event_handler *super, Event *event)
{
struct ltrace_exiting_handler *self = (void *)super;
struct process *task = event->proc;
struct process *leader = task->leader;
debug(DEBUG_PROCESS,
"ltrace_exiting_on_event: pid %d; event type %d",
task->pid, event->type);
struct pid_task *task_info = get_task_info(&self->pids, task->pid);
handle_stopping_event(task_info, &event);
if (event != NULL && event->type == EVENT_BREAKPOINT)
undo_breakpoint(event, leader);
if (await_sigstop_delivery(&self->pids, task_info, event)
&& all_stops_accountable(&self->pids))
detach_process(leader);
/* Sink all non-exit events. We are about to exit, so we
* don't bother with queuing them. */
if (event_exit_or_none_p(event))
return event;
return NULL;
}
static void
ltrace_exiting_destroy(struct event_handler *super)
{
struct ltrace_exiting_handler *self = (void *)super;
free(self->pids.tasks);
}
static int
ltrace_exiting_install_handler(struct process *proc)
{
/* Only install to leader. */
if (proc->leader != proc)
return 0;
/* Perhaps we are already installed, if the user passed
* several -p options that are tasks of one process. */
if (proc->event_handler != NULL
&& proc->event_handler->on_event == &ltrace_exiting_on_event)
return 0;
/* If stopping handler is already present, let it do the
* work. */
if (proc->event_handler != NULL) {
assert(proc->event_handler->on_event
== &process_stopping_on_event);
struct process_stopping_handler *other
= (void *)proc->event_handler;
other->exiting = 1;
return 0;
}
struct ltrace_exiting_handler *handler
= calloc(sizeof(*handler), 1);
if (handler == NULL) {
perror("malloc exiting handler");
fatal:
/* XXXXXXXXXXXXXXXXXXX fixme */
return -1;
}
handler->super.on_event = ltrace_exiting_on_event;
handler->super.destroy = ltrace_exiting_destroy;
install_event_handler(proc->leader, &handler->super);
if (each_task(proc->leader, NULL, &send_sigstop,
&handler->pids) != NULL)
goto fatal;
return 0;
}
/*
* When the traced process vforks, it's suspended until the child
* process calls _exit or exec*. In the meantime, the two share the
* address space.
*
* The child process should only ever call _exit or exec*, but we
* can't count on that (it's not the role of ltrace to policy, but to
* observe). In any case, we will _at least_ have to deal with
* removal of vfork return breakpoint (which we have to smuggle back
* in, so that the parent can see it, too), and introduction of exec*
* return breakpoint. Since we already have both breakpoint actions
* to deal with, we might as well support it all.
*
* The gist is that we pretend that the child is in a thread group
* with its parent, and handle it as a multi-threaded case, with the
* exception that we know that the parent is blocked, and don't
* attempt to stop it. When the child execs, we undo the setup.
*/
struct process_vfork_handler
{
struct event_handler super;
int vfork_bp_refd:1;
};
static Event *
process_vfork_on_event(struct event_handler *super, Event *event)
{
debug(DEBUG_PROCESS,
"process_vfork_on_event: pid %d; event type %d",
event->proc->pid, event->type);
struct process_vfork_handler *self = (void *)super;
struct process *proc = event->proc;
assert(self != NULL);
switch (event->type) {
case EVENT_BREAKPOINT:
/* We turn on the vfork return breakpoint (which
* should be the one that we have tripped over just
* now) one extra time, so that the vfork parent hits
* it as well. */
if (!self->vfork_bp_refd) {
struct breakpoint *sbp = NULL;
DICT_FIND_VAL(proc->leader->breakpoints,
&event->e_un.brk_addr, &sbp);
assert(sbp != NULL);
breakpoint_turn_on(sbp, proc->leader);
self->vfork_bp_refd = 1;
}
break;
case EVENT_EXIT:
case EVENT_EXIT_SIGNAL:
case EVENT_EXEC:
/* Remove the leader that we artificially set up
* earlier. */
change_process_leader(proc, proc);
destroy_event_handler(proc);
continue_process(proc->parent->pid);
default:
;
}
return event;
}
void
continue_after_vfork(struct process *proc)
{
debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
struct process_vfork_handler *handler = calloc(sizeof(*handler), 1);
if (handler == NULL) {
perror("malloc vfork handler");
/* Carry on not bothering to treat the process as
* necessary. */
continue_process(proc->parent->pid);
return;
}
/* We must set up custom event handler, so that we see
* exec/exit events for the task itself. */
handler->super.on_event = process_vfork_on_event;
install_event_handler(proc, &handler->super);
/* Make sure that the child is sole thread. */
assert(proc->leader == proc);
assert(proc->next == NULL || proc->next->leader != proc);
/* Make sure that the child's parent is properly set up. */
assert(proc->parent != NULL);
assert(proc->parent->leader != NULL);
change_process_leader(proc, proc->parent->leader);
}
static int
is_mid_stopping(struct process *proc)
{
return proc != NULL
&& proc->event_handler != NULL
&& proc->event_handler->on_event == &process_stopping_on_event;
}
void
continue_after_syscall(struct process *proc, int sysnum, int ret_p)
{
/* Don't continue if we are mid-stopping. */
if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
debug(DEBUG_PROCESS,
"continue_after_syscall: don't continue %d",
proc->pid);
return;
}
continue_process(proc->pid);
}
void
continue_after_exec(struct process *proc)
{
continue_process(proc->pid);
/* After the exec, we expect to hit the first executable
* instruction.
*
* XXX TODO It would be nice to have this removed, but then we
* need to do that also for initial call to wait_for_proc in
* execute_program. In that case we could generate a
* EVENT_FIRST event or something, or maybe this could somehow
* be rolled into EVENT_NEW. */
wait_for_proc(proc->pid);
continue_process(proc->pid);
}
/* If ltrace gets SIGINT, the processes directly or indirectly run by
* ltrace get it too. We just have to wait long enough for the signal
* to be delivered and the process terminated, which we notice and
* exit ltrace, too. So there's not much we need to do there. We
* want to keep tracing those processes as usual, in case they just
* SIG_IGN the SIGINT to do their shutdown etc.
*
* For processes ran on the background, we want to install an exit
* handler that stops all the threads, removes all breakpoints, and
* detaches.
*/
void
os_ltrace_exiting(void)
{
struct opt_p_t *it;
for (it = opt_p; it != NULL; it = it->next) {
struct process *proc = pid2proc(it->pid);
if (proc == NULL || proc->leader == NULL)
continue;
if (ltrace_exiting_install_handler(proc->leader) < 0)
fprintf(stderr,
"Couldn't install exiting handler for %d.\n",
proc->pid);
}
}
int
os_ltrace_exiting_sighandler(void)
{
extern int linux_in_waitpid;
if (linux_in_waitpid) {
os_ltrace_exiting();
return 1;
}
return 0;
}
size_t
umovebytes(struct process *proc, void *addr, void *laddr, size_t len)
{
union {
long a;
char c[sizeof(long)];
} a;
int started = 0;
size_t offset = 0, bytes_read = 0;
while (offset < len) {
a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
if (a.a == -1 && errno) {
if (started && errno == EIO)
return bytes_read;
else
return -1;
}
started = 1;
if (len - offset >= sizeof(long)) {
memcpy(laddr + offset, &a.c[0], sizeof(long));
bytes_read += sizeof(long);
}
else {
memcpy(laddr + offset, &a.c[0], len - offset);
bytes_read += (len - offset);
}
offset += sizeof(long);
}
return bytes_read;
}
struct irelative_name_data_t {
GElf_Addr addr;
const char *found_name;
};
static enum callback_status
irelative_name_cb(GElf_Sym *symbol, const char *name, void *d)
{
struct irelative_name_data_t *data = d;
if (symbol->st_value == data->addr) {
bool is_ifunc = false;
#ifdef STT_GNU_IFUNC
is_ifunc = GELF_ST_TYPE(symbol->st_info) == STT_GNU_IFUNC;
#endif
data->found_name = name;
/* Keep looking, unless we found the actual IFUNC
* symbol. What we matched may have been a symbol
* denoting the resolver function, which would have
* the same address. */
return CBS_STOP_IF(is_ifunc);
}
return CBS_CONT;
}
char *
linux_elf_find_irelative_name(struct ltelf *lte, GElf_Addr addr)
{
struct irelative_name_data_t data = { addr, NULL };
if (addr != 0
&& elf_each_symbol(lte, 0,
irelative_name_cb, &data).status < 0)
return NULL;
const char *name;
if (data.found_name != NULL) {
name = data.found_name;
} else {
#define NAME "IREL."
/* NAME\0 + 0x + digits. */
char *tmp_name = alloca(sizeof NAME + 2 + 16);
sprintf(tmp_name, NAME "%#" PRIx64, (uint64_t) addr);
name = tmp_name;
#undef NAME
}
return strdup(name);
}
enum plt_status
linux_elf_add_plt_entry_irelative(struct process *proc, struct ltelf *lte,
GElf_Rela *rela, size_t ndx,
struct library_symbol **ret)
{
char *name = linux_elf_find_irelative_name(lte, rela->r_addend);
int i = default_elf_add_plt_entry(proc, lte, name, rela, ndx, ret);
free(name);
return i < 0 ? PLT_FAIL : PLT_OK;
}