blob: 5416f11510c384301fe5ecd08fd04e9839ea5090 [file] [log] [blame]
//===---- ARM64StorePairSuppress.cpp --- Suppress store pair formation ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass identifies floating point stores that should not be combined into
// store pairs. Later we may do the same for floating point loads.
// ===---------------------------------------------------------------------===//
#include "ARM64InstrInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "arm64-stp-suppress"
namespace {
class ARM64StorePairSuppress : public MachineFunctionPass {
const ARM64InstrInfo *TII;
const TargetRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
MachineFunction *MF;
TargetSchedModel SchedModel;
MachineTraceMetrics *Traces;
MachineTraceMetrics::Ensemble *MinInstr;
public:
static char ID;
ARM64StorePairSuppress() : MachineFunctionPass(ID) {}
virtual const char *getPassName() const override {
return "ARM64 Store Pair Suppression";
}
bool runOnMachineFunction(MachineFunction &F) override;
private:
bool shouldAddSTPToBlock(const MachineBasicBlock *BB);
bool isNarrowFPStore(const MachineInstr &MI);
virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineTraceMetrics>();
AU.addPreserved<MachineTraceMetrics>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
char ARM64StorePairSuppress::ID = 0;
} // anonymous
FunctionPass *llvm::createARM64StorePairSuppressPass() {
return new ARM64StorePairSuppress();
}
/// Return true if an STP can be added to this block without increasing the
/// critical resource height. STP is good to form in Ld/St limited blocks and
/// bad to form in float-point limited blocks. This is true independent of the
/// critical path. If the critical path is longer than the resource height, the
/// extra vector ops can limit physreg renaming. Otherwise, it could simply
/// oversaturate the vector units.
bool ARM64StorePairSuppress::shouldAddSTPToBlock(const MachineBasicBlock *BB) {
if (!MinInstr)
MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
MachineTraceMetrics::Trace BBTrace = MinInstr->getTrace(BB);
unsigned ResLength = BBTrace.getResourceLength();
// Get the machine model's scheduling class for STPQi.
// Bypass TargetSchedule's SchedClass resolution since we only have an opcode.
unsigned SCIdx = TII->get(ARM64::STPDi).getSchedClass();
const MCSchedClassDesc *SCDesc =
SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
// If a subtarget does not define resources for STPQi, bail here.
if (SCDesc->isValid() && !SCDesc->isVariant()) {
unsigned ResLenWithSTP = BBTrace.getResourceLength(
ArrayRef<const MachineBasicBlock *>(), SCDesc);
if (ResLenWithSTP > ResLength) {
DEBUG(dbgs() << " Suppress STP in BB: " << BB->getNumber()
<< " resources " << ResLength << " -> " << ResLenWithSTP
<< "\n");
return false;
}
}
return true;
}
/// Return true if this is a floating-point store smaller than the V reg. On
/// cyclone, these require a vector shuffle before storing a pair.
/// Ideally we would call getMatchingPairOpcode() and have the machine model
/// tell us if it's profitable with no cpu knowledge here.
///
/// FIXME: We plan to develop a decent Target abstraction for simple loads and
/// stores. Until then use a nasty switch similar to ARM64LoadStoreOptimizer.
bool ARM64StorePairSuppress::isNarrowFPStore(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case ARM64::STRSui:
case ARM64::STRDui:
case ARM64::STURSi:
case ARM64::STURDi:
return true;
}
}
bool ARM64StorePairSuppress::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
TII = static_cast<const ARM64InstrInfo *>(MF->getTarget().getInstrInfo());
TRI = MF->getTarget().getRegisterInfo();
MRI = &MF->getRegInfo();
const TargetSubtargetInfo &ST =
MF->getTarget().getSubtarget<TargetSubtargetInfo>();
SchedModel.init(*ST.getSchedModel(), &ST, TII);
Traces = &getAnalysis<MachineTraceMetrics>();
MinInstr = nullptr;
DEBUG(dbgs() << "*** " << getPassName() << ": " << MF->getName() << '\n');
if (!SchedModel.hasInstrSchedModel()) {
DEBUG(dbgs() << " Skipping pass: no machine model present.\n");
return false;
}
// Check for a sequence of stores to the same base address. We don't need to
// precisely determine whether a store pair can be formed. But we do want to
// filter out most situations where we can't form store pairs to avoid
// computing trace metrics in those cases.
for (auto &MBB : *MF) {
bool SuppressSTP = false;
unsigned PrevBaseReg = 0;
for (auto &MI : MBB) {
if (!isNarrowFPStore(MI))
continue;
unsigned BaseReg;
unsigned Offset;
if (TII->getLdStBaseRegImmOfs(&MI, BaseReg, Offset, TRI)) {
if (PrevBaseReg == BaseReg) {
// If this block can take STPs, skip ahead to the next block.
if (!SuppressSTP && shouldAddSTPToBlock(MI.getParent()))
break;
// Otherwise, continue unpairing the stores in this block.
DEBUG(dbgs() << "Unpairing store " << MI << "\n");
SuppressSTP = true;
TII->suppressLdStPair(&MI);
}
PrevBaseReg = BaseReg;
} else
PrevBaseReg = 0;
}
}
// This pass just sets some internal MachineMemOperand flags. It can't really
// invalidate anything.
return false;
}